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ABSTRACT. Conditions for existence, uniqueness and
smoothness of solutions for systems of fractional differential
equations of Caputo and/or Riemann-Liouville type having
all of them in general and not of the same derivation
order are established in this paper. It includes mixed-
order, multi-order or non-commensurate fractional systems.
The smooth property is shown to be relevant for drawing
consequences on the global behavior of solutions for such
systems. In particular, we obtain sufficient conditions for
global boundedness of solutions to mixed-order nonlinear
systems and asymptotic stability of nonlinear fractional
systems using backstepping control.

1. Introduction. This paper deals with the existence and asymp-
totic behavior of smooth solutions for a system of fractional equations
defined by

(1.1) Dαiyi(t) = fi(t, y(t)),

where y : [0,∞)→Rn has components yi, αi > 0 for i= 1, . . . , n, and D
stands for either the Caputo or Riemann-Liouville fractional derivative
operator.

When αi =α for i= 1, . . . , n, many authors established conditions for
continuous solutions; among them, the reader may consult [10, Sections
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5, 6], since it is an illustrative reference of the reasoning involved. The
system (1.1) is generally studied in its strong solutions, namely, solutions
of an equivalent (under mild assumptions) integral system, which is a
Volterra equation with a weakly singular kernel. Mathematical results
in regards to the theory of integral equations are used to establish
higher-order smoothness properties of the solution for the scalar case
(see, e.g., [11, 23]). The study of weak solutions requires sophisticated
tools and, even so, restricted answers were obtained [20].

Also, for the case αi =α for i= 1, . . . , n, further properties have been
studied, such as an estimate of the growth [6], boundedeness properties
[15] and stability of the solutions [8]. The smoothness is taken as
an assumption in [1] in order to derive its asymptotic results, but no
conditions for this were given. Our contributions to the problem are
detailed below.

In Section 2, we set conditions for existence and uniqueness of
continuous solutions to (1.1) in the general case, where y is a vector
and αi are not necessarily all the same. This problem is relevant for
several reasons. First, it is necessary to simulate fractional systems in a
software to know what conditions must be imposed at the initial time
to have a well-defined continuous solution. In applications of fractional
order controllers to integer order systems, mixed order equations like
(1.1) appear [17]. On the other hand, some real process models are
most precise if a system like (4.1) is used in the general case [7, 12].
Second, many authors still discuss the initialization problem [24], but,
from a mathematical point of view, it reduces to determining what
kind of initial conditions must be imposed on the relevant variable x.
And, third, our method can be applied in generalizations for Dirichlet
problems following our ideas, together with those exposed in [3]. In [9],
this problem was analyzed, but with a sequential fractional derivative,
which is neither Caputo nor Riemann-Liouville. After this paper was
submitted for publication, an ArXiv publication [13], using a different
approach, considered the existence problem for Caputo systems with
continuous assumptions in closed intervals. We presented, in addition
to this, results for Riemann-Liouville systems and two corollaries for
continuity at open intervals.

In Section 3, we set conditions for existence and uniqueness of smooth
solutions to (1.1). This is done in the general case, but, even for the
same order of derivation, our results generalize the classical result of
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[23] formulated for an scalar integral equation. The relevance of this
problem derives from a fundamental quadratic inequality for fractional
derivatives [2, 4, 5], which allows for Lyapunov functions to be obtained
for fractional order systems by requiring a smooth condition on the
solution. In this way, weaker conditions for theorems involving Lyapunov
functions for fractional systems than [16, Theorem 1] can be obtained.

In Section 4, we illustrate the relevance of smooth properties for
the solutions of (1.1) to determine their asymptotic behavior by
showing how to deduce boundedness properties for fractional differential
equations. The method proposed represents a contribution since
the usual techniques, comparison principles and Lyapunov functions
[16, 22], have no immediate generalization for mixed order systems.
We also give conditions to assure the asymptotic stability for a nonlinear
fractional system using backstepping control.

We conclude this section by introducing some notation which is used
throughout the paper. Cn(I ⊂ R,Rs), or, in short, Cn(I ⊂ R), denotes
the set of functions f : I → Rs such that f has its n first derivatives
continuous on I. We denote

∑
i ai :=

∑n
i=1 ai whenever the index limits

are clear from the context. We will use the following norm for functions:

||y||∞ := sup
t∈I

∑
i

|yi(t)|

and, for vectors:

||y(t)||1 :=
∑
i

|yi(t)|.

Note that ||y||∞ := supt∈I ||y(t)||1 and that || · ||1 is equivalent to the
standard norm on Rn. d·e denotes the ceiling function.

2. Continuity of solutions. In this section, conditions for C0-
smooth solutions are established. It is shown that asking for C0-smooth
solutions to (1.1) is equivalent to asking for its strong solutions, namely,
solutions to an integral equation related to equation (1.1).

We recall a framework of fractional calculus. The fractional integral
of order α∈R>0 of a function f :R→R is given by (see [10, Section 2]):

(2.1) Iα[f(·)](t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ,
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where Γ(·) is the gamma function and, without loss of generality, we
have fixed the initial time at t= 0. We define Kαi(t) := 1/(Γ(αi))t

αi−1

as the kernel of the fractional integral of order αi.

The Riemann-Liouville fractional derivative of order α is given by
RDαf :=DmIm−αf , and the Caputo derivative is CDαf := Im−αDmf
[10, Sections 2, 3], where m= dαe.

Consider the system of integral equations

(2.2) yi(t) = pi(t) + Iαi [fi(·, y(·))](t),

where αi > 0, yi : R≥0 → R, pi : R≥0 → R and fi : R≥0 ×Rn → R for
i= 1, . . . , n. Equation (2.3) will be compactly written as

(2.3) y(t) = p(t) + Iα[f(·, y(·))](t),

where α is to be seen as a vector with components αi, and y, f, p are
vectors of components yi, fi, pi respectively, for i= 1, . . . , n.

Theorem 2.1. Consider system (2.3) with p : [0, T ]→Rn a continuous
function and fi(·, ·) continuous functions in their first variables and
Lipschitz continuous functions in their second variables for i= 1, . . . , n.
Then

(i) There exists a unique continuous solution y ∈ C[0, T ] to system
(2.3).

(ii) y ∈ C[0, T ] is a solution to system (2.3) for

(2.4) pi(t) :=

dαie−1∑
k=0

tk

k!
y
(k)
i0

if and only if each of its components yi is a solution to CDαiyi = fi(t, y)

with initial condition y
(k)
i (0)=y

(k)
i0

for k=1, . . . , dαie−1 and i=1, . . . , n.

Proof. (i) Define the operator A on C[0, T ′] for any 0≤ T ′ ≤ T by

(2.5) Ay(t) := p(t) + Iα[f(·, y(·))](t),

that is,
(Ay)i(t) := pi(t) + Iαi [fi(·, y(·))](t)

for i= 1, . . . , n.
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We will first prove that A : C[0, T ′] → C[0, T ′]. To prove that
Ay ∈ C[0, T ′] for any y ∈ C[0, T ′] whenever p ∈ C[0, T ′], we must show
that Iα[f(·, y(·))](t) is continuous in [0, T ′]; thus, we can drop p to prove
this fact. For any 0≤ t1 ≤ t2 ≤ T ′, we have

||Ay(t1)−Ay(t2)||1 =
∑
i

∣∣∣∣ ∫ t1

0

Kαi
(t1− τ)fi(τ, y(τ)) dτ

−
∫ t2

0

Kαi(t2− τ)fi(τ, y(τ)) dτ

∣∣∣∣
=
∑
i

∣∣∣∣ ∫ t1

0

[Kαi
(t1− τ)−Kαi

(t2− τ)]fi(τ, y(τ)) dτ

−
∫ t2

t1

Kαi
(t2− τ)fi(τ, y(τ)) dτ

∣∣∣∣.
By using that |fi(t)| ≤ ||f ||∞ for any t≥ 0 and any i∈ {1, . . . , n} and

inequalities in equation ([10, (6.7)]), we have

||Ay(t1)−Ay(t2)||1 ≤ 2||f ||∞
∑
i∈Jc

(t2− t1)αi

Γ(αi + 1)

+ ||f ||∞
∑
i∈J

(t2− t1)αi + tαi
2 − t

αi
1

Γ(αi + 1)
,

where J denotes the set of indices i such that αi> 1. By using the mean
value theorem, there exists a 0≤ t1 ≤ ξi ≤ t2 ≤ T ′ for all i ∈ {1, . . . , n}
such that

||Ay(t1)−Ay(t2)||1 ≤ 2||f ||∞
∑
i∈Jc

(t2− t1)αi

Γ(αi + 1)

+ ||f ||∞
∑
i∈J

(t2− t1)αi +αi(t2− t1)ξαi−1
i

Γ(αi + 1)
.

Thus,

||Ay(t1)−Ay(t2)||1 ≤ 2||f ||∞
∑
i∈Jc

(t2− t1)αi

Γ(αi + 1)

+ ||f ||∞
∑
i∈J

(t2− t1)αi +αi(t2− t1)Tαi−1

Γ(αi + 1)
,
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yielding that ||Ay(t1)−Ay(t2)||1 converges to zero whenever so does
|t1−t2|. Hence, A :C[0, T ′]→C[0, T ′]. We now prove that, for a particular
T0 ≤ T , A is a contraction map. For any y, ỹ ∈ C[0, T ], we have

||Ay−Aỹ||∞ = sup
t∈[0,T ]

∑
i

|Iαi [fi(·, y(·))](t)− Iαi [fi(·, ỹ(·))](t)|.

By Lipschitz assumption (without loss of generality, we assume a
common Lipschitz constant L for each fi, i= 1, . . . , n),

||Ay−Aỹ||∞ ≤ L sup
t∈[0,T ]

∑
i

Iαi [||y(·)− ỹ(·)||1](t),

and hence,

||Ay−Aỹ||∞ ≤ L( sup
t∈[0,T ]

||y(t)− ỹ(t)||1)
∑
i

Tαi/Γ(αi)

= L||y− ỹ||∞
∑
i

Tαi/Γ(αi).

Choosing a natural number N such that T0 = T/N implies∑
i

Tαi
0 /Γ(αi)< 1/L,

A becomes a contraction auto map on C[0, T0], whereby existence and
uniqueness of a fixed point of A follows by [25, Theorem 1.A]. Further-
more, we can write system (2.3) for a time greater than T0 as

yi(t+T0) = p(t+T0) +

∫ t

0

Kαi(t+T0− τ)[f(τ, y(τ))] dτ

+

∫ t

0

Kαi(t− τ)[f(t+T0, y(t+T0))] dτ,

and, by continuity of the solution in [0, T0], function

p̃(t) = p(t+T0) +

∫ t

0

Kαi
(t+T0− τ)[f(τ, y(τ))] dτ

is continuous. By repeating the arguments, we conclude continuity and
uniqueness of this solution in [0, T0], and hence, continuity and unique-
ness of the solution to the original equation in [0, 2T0]. Recursively, and
since the fixed point of A is a solution to system (2.3), it follows that
there exists a unique solution to (2.3) in C[0, T ].
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(ii) The proof is similar to [10, Lemma 6.2].

Necessity. Suppose that y(t) = p(t) + Iα[f(·, y(·))](t) is a continuous
function. We first will see that this function holds the initial conditions
associated to a fractional derivative. By continuity of the solution
Iα[f(·, y(·))](0) = 0, thereby, y(0) = y0. By differentiating,

y
(k)
i (0) = p

(k)
i (0) +DkIkIαi−k[f(·, y(·))](t)

for k = 1, . . . , dαie− 1, where it was the semi group property of integral
[10, Theorem 2]. Then, using [10, Theorem 3.7],

y
(k)
i (0) = y

(k)
i0

(0) + Iαi−k[f(·, y(·))](t)

for k = 1, . . . , dαie− 1 and, by continuity of the solution, the fractional

integral vanishes at zero, whereby y
(k)
i (0) = y

(k)
i0

(0). Next, we will see
that the function holds for the Caputo fractional equation. By αi-
differentiating the equality yi(t) = pi(t) + Iαi [fi(·, y(·))](t), which holds
for all t∈ [0, T ], we have Dαiyi = f(t, y), where we have used on the right
hand side, [10, Theorem 3.7] to obtain DαiIαi [fi(·, y(·))](t) = f(t, y(t)),
since the function y is continuous by hypothesis. Hence, as a composi-
tion of continuous functions, f(·, y(·)) is continuous and Dαipi ≡ 0 since
pi is a polynomial of order at most dαie − 1. In particular, we prove
that y is continuous and αi-differentiable in [0, T ] since the α-derivative
of pi(t) + Iαi [fi(·, y(·))](t) is continuous in [0, T ].

Sufficiency. Assume that y is a continuous function such that
Dαiyi(t) = f(t, y). Since f(t, y(t)) is a continuous function and by defini-
tion of the Caputo derivative [10, Definition 3.2], we have, equivalently,
RDαi [yi−pi](t) = f(t, y), where, in this case, pi is an order dαie−1 Tay-
lor expansion of y and RDαi denotes the Riemann-Liouville derivative.
By definition of the Riemann-Liouville derivative, we have, equivalently,

DdαieIdαie−αi [yi− pi](t) = f(t, y).

By dαie-integration, we have

(2.6) Idαie−αi [yi− pi](t) = Idαief(·, y(·))(t) + q(t),

where q(t) is a polynomial of order at most dαie− 1. From continuity
of functions f(·, y(·)) and y(t)− pi(t), we deduce that both fractional
integrals of (2.6) are zero order dαie−1 at t= 0, that is, integer differen-
tiation up to dαie− 1 of both integrals vanish at t= 0. Hence, q is zero
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order dαie − 1, and therefore, q ≡ 0. By differentiating and applying
[10, Theorem 2.14],

yi(t)− pi(t) =DI1−dαie+αiIdαief(·, y(·))(t).

By [10, Theorem 2.14], yi(t) = pi(t) + Iαif(·, y(·))(t), which concludes
the proof. �

Remark 2.2. The uniqueness of the solution on the set C[0, T ] was
asserted, but not in general. This drawback, common in integral
equation analysis, is due to the fact that the fixed point tool applies
only on a particular Banach space. Many authors using a fixed point
argument forget this fact claiming uniqueness without specifying with
respect to which space (see, e.g., [6, Theorem 2]).

Corollary 2.3. Consider the system of integral equations

(2.7) y(t) = g(t) + Iα[h(·)y(·)](t),

where α, y(t), g(t) are vectors in Rn and h(t) ∈Rn×Rn for every t≥ 0.
Suppose g ∈ C(0, T ] ∩ L1(0, T ), and h is a bounded matrix function
(||h||∞ ≤ h0) continuous on [0, T ]. Then, there exists a unique solution
y ∈ C(0, T ]∩L1(0, T ).

Proof. Defining the operator Ay := g+ Iαh(·)y(·) on L1(0, T ) and,
considering the L1-norm,

||f ||L1(0,T ) :=

(∫ T

0

||f(τ)||1dτ
)

=

(∫ T

0

∑
i

|fi(τ)| dτ
)
,

and we note that

||Ay(t)−Aỹ(t)||1 =

∥∥∥∥∑
i

Iαihij(·)[yi(·)− ỹj(·)](t)
∥∥∥∥
1

≤ h0
∥∥∥∥∫ t

0

∑
i

Kαi(τ)|yi(t− τ)− ỹi(t− τ)| dτ
∥∥∥∥
1

≤ h0
∫ t

0

∑
i

Kαi
(τ)
∑
i

|yi(t− τ)− ỹi(t− τ)| dτ.
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Choosing a sufficiently small time s so that h0(
∫ s
0

∑
iKαi

(τ) dτ)< η
for η < 1 a fixed number, we have

‖Ay(t)−Aỹ(t)‖L1(0,s)

≤
∫ s

0

∫ t

0

∑
i

Kαi
(τ)
∑
i

|yi(t− τ)− ỹi(t− τ)| dτ dt,

and, since yi,Kαi
are in L1(0, s), we get

||Ay(t)−Aỹ(t)||L1(0,s)

≤
∫ t

0

∑
i

Kαi
(τ)

(∫ s

0

∑
i

|yi(t− τ)− ỹi(t− τ)| dt
)
dτ

whereby ||Ay(t) − Aỹ(t)||L1(0,s) ≤ η||y(t) − ỹ(t)||L1(0,s), i.e., A is a

contraction map in L1(0, s). Moreover, since g ∈ L1(0, T ), A is an
auto map in L1(0, s). The fixed point theorem ([25, Theorem 1.A]) can
be applied on the Banach space L1(0, s), whereby there exists a unique
solution y ∈ L1(0, s).

We choose δ ∈ (0, s) and consider the following system of integral
equations

yi(t+ δ) = gi(t+ δ) + Iαi [fi(·, y(·))](t+ δ).

for i= 1, . . . , n. Note that gi(t+ δ) ∈ C[0, T − δ] and

Iαi [fi(·, y(·))](t) =

∫ δ

0

(t+ δ− τ)αi−1

Γ(αi)

∑
i

hij(τ)yj(τ) dτ

+

∫ t

0

(t− τ)αi−1

Γ(αi)

∑
i

hij(τ + δ)yj(τ + δ) dτ.

The term qi(t) :=
∫ δ
0

(t+ δ− τ)αi−1
∑
j hij(τ)yj(τ) dτ ∈ C[0, T ] since

hy ∈ L1(0, s) (by the Holder inequality), whereby its fractional integral
exists ([10, Theorem 2.1]), tαi−1 ∈ L1(0, s) is a non negative monotone
function so that, for a sequence tn tending monotonically to t ∈ [0, T ],
we have

(tn + δ− τ)αi−1
∑
j

hij(τ)yj(τ)−→ (t+ δ− τ)αi−1
∑
j

hij(τ)yj(τ)

monotonically and, by dominated convergence, qi(tn)→ qi(t).
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Therefore, calling ỹi(t) := qi(t+ δ), h̃ij(t) := hij(t+ δ), we get

ỹi(t) = qi(t) + Iαi h̃ỹ(t).

By Theorem 2.1, ỹi(t) ∈ C[0, T − δ]. Since 0 < δ < s is arbitrary,
yi(t) ∈ C(0, T ]. �

Remark 2.4. Theorem 2.1 can be improved to obtain uniqueness
on the set C(0, T ]∩L1(0, T ), with similar translation and contracting
mapping arguments used in the proof of Corollary 2.3.

Corollary 2.5. Consider the system of integral equations

(2.8) y(t) = p(t) + Iαf(·, y(·))(t),

where α is a vector of positive components, and y(t), p(t), f(t, y(t)) are
vectors in Rn for every t≥ 0. Suppose pi ∈ C(0, T ]∩L1(0, T ) and each
fi is continuous and Lipschitz continuous on the second variable for
i= 1, . . . , n. Then, there exists a unique solution y ∈ C(0, T ]∩L1(0, T )
for (2.8).

In particular, y ∈ C(0, T ]∩L1(0, T ) is a solution to system (2.8) for
pi, given by

(2.9) pi(t) :=

dαie∑
k=1

tαi−k

Γ(αi− k+ 1)
lim
τ→0+

Idαie−kyi(τ),

if and only if it is a solution to RDαiyi = fi(t, y) with initial conditions
given by limτ→0+ I

dαie−αiyi(τ). For null initial conditions, y ∈ C[0, T ]∩
L1(0, T ).

Proof. Defining the operator Ay := p+ Iαf(·, y(·)) on L1(0, T ), the
proof of the first part follows the same procedure as the proof of
Corollary 2.3, since, by Lipschitz assumption:

||Ay(t)−Aỹ(t)||1 ≤ L||
∑
i

Iαi [yi(·)− ỹj(·)](t)||1

where L is a common Lipschitz constant (see the proof of Theorem 2.1).
The second part is proved by a similar procedure as the proof of Theorem
2.1 (ii). �
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Remark 2.6. (i) Note that, by a suitable choice of p, Corollary
2.5 includes a system defined with Caputo and Riemann-Liouville
derivatives. For instance, for index i odd, the Caputo derivative is
used and all the rest are Riemann-Liouville derivatives.

(ii) Corollary 2.5 provides specific conditions for application of the
inequality [5, Lemma 1] for Riemann-Liouville systems as it requires
continuity of the solution.

3. Differentiability of solutions. In this section, we establish
conditions for Cp−smooth solutions (for p a natural number greater
than 1) to the equation

(3.1) Dαy(t) = f(t, y),

where α is a vector of positive components, y(t) is a vector for all t > 0
and D refers to the Caputo or Riemann-Liouville derivative. Since at
least the solution of (3.1) is required to be C1-continuous, we must study
the integral version of (3.1), according to Theorem 2.1 or Corollary 2.5.

The main motivation of this problem is that Caputo fractional
differentiation of the quadratic expression on y obeys a simple inequality
when the function y is continuously differentiable (or, more weakly,
absolutely continuous) and 0<α≤ 1, from which an asymptotic analysis
can be performed [4, 14]. In its simplest form [4, Lemma 1], this
inequality establishes that, for an absolutely continuous function y,

(3.2) CDα[y2](t)≤ 2y(t)Dα[y](t), for all t≥ 0.

It was also proven that the Riemann-Liouville derivative holds the
same inequality [5, Lemma 1]. Note that this inequality does not hold
for α > 1 (just take α = 3/2 and x(t) = t). But, as suggested in [11,
Remark 2.2], the solution of (3.1) with α < 1 in C1[0, T ] only occurs
under null initial conditions. Analytically, it follows from the following
reasoning: if f(0, y(0)) 6= 0, then y is not continuously differentiable
at t = 0. Indeed, by contradiction, if ẏ is continuous at zero, then
it is bounded in [0, t]. Therefore, CDαy(0) = limt→0+ 0I

1−α
t ẏ(t) = 0.

However, CDαy(0) = f(0, y(0)) 6= 0, which is a contradiction.

The type of singularity of ẏ that occurs in the origin in the scalar
case is O(tα−1), as follows from [23, Theorem 1]. In fact, one can write
(up to constants) ẏ(t) = tα−1+ψ(t) for any t > 0, with ψ(t) a continuous
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function in [0, T ]. Since limt→0+
∫ t
0

[τα−1 +ψ(τ)](t) = 0, we can express

y(t) = y(0) +
∫ t
0
[τα−1 +ψ(τ)] dτ for any t ≥ 0, and thus, y ∈ A1[0, T ],

i.e., y is absolutely continuous in [0, T ] ([10, Definition 1.5]), and thus,
[4, Lemma 1] can be applied.

Next, we generalize [23, Theorem 1] to establish differentiability for
vector mixed order differential equations, mainly following the reasoning
of the proof of [23, Theorem 1]. This will require some previous results.

We recall that, for the scalar equation,

y(t) = g(t) + Iαy(t) = g(t) +

∫ t

0

Kα(t− τ)y(τ) dτ,

with the kernel function Kα in L1(0, T ), there exists a resolvent function
R such that

y(t) = g(t) +

∫ t

0

R(t− τ)g(τ) dτ,

with R(t) = tα−1 + IαR(t) (see [23, Section 2]). Moreover, using [23,
Lemma 1], R≥ 0 and R ∈ L1(0, T ), whenever g ∈ L1(0, T ).

The next result, which generalizes [23, Lemma 3], will be instrumen-
tal in the proof of the main result of this section.

Lemma 3.1. Consider the following pair of nonlinear equations:

(3.3) Xj(t) = gj(t) + Iαfj(·, Xj(·))(t),

where α∈Rn, Xj(t)∈Rn for any t≥ 0, fj(·, ·) is a continuous function,
gj ∈ L1(0, T ) for any j = 1, 2, and f1 is a Lipschitz continuous function
in its second argument of Lipschitz constant L. Then

||X1(t)−X2(t)||1 ≤ ||Q(t)||1 +

∫ t

0

Rα(t− τ))||Q(τ)||1 dτ,

where Rα is the resolvent of
∑n
i=1 LKαi

(t) and

Q(t) := g1(t)− g2(t) + Iα[f1(·, X2(·))− f2(·, X2(·))](t).

Proof. Defining Z :=X1−X2, G := g1− g2, we have

Z =G+ Iα[f1(·, X2(·))− f2(·, X2(·))] + Iα[f1(·, X1(·))− f1(·, X2(·))].
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Setting Q := G+ Iα[f1(·, X2(·))− f2(·, X2(·))], it follows from the
Lipschitz assumption that |Zi|≤ |Qi|+LIαi ||Z||1 for i= 1, . . . , n. Hence,

||Z(t)||1 ≤ ||Q(t)||1 +
∑
i

LIαi ||Z(t)||1

≤ ||Q(t)||1 +

∫ t

0

∑
i

LKαi
(t− τ)||Z(τ)||1 dτ.

Defining Kα(t) :=
∑
i LKαi

(t), we obtain

||Z(t)||1 ≤ ||Q(t)||1 +

∫ t

0

Kα(t− τ)||Z(τ)||1 dτ.

It follows that there exists a nonnegative function p such that

||Z(t)||1 = ||Q(t)||1−p(t)+
∫ t
0
Kα(t−τ))||Z(τ)||1 dτ . Since Kα∈L1(0, T )

because Kαi
∈L1(0, T ) for i= 1, . . . , n, we can express ||Z(τ)||1 in terms

of a resolvent, namely,

||Z(t)||1 = ||Q(t)||1− p(t) +

∫ t

0

Rα(t− τ)
(
||Q(τ)||1− p(τ)

)
dτ.

Since p is nonnegative and Rα is continuous and positive, and Kαi
≥ 0

[23, Lemma 1], we conclude that

||Z||1(t)≤ ||Q||1(t) +

∫ t

0

Rα(t− τ))||Q(τ)||1 dτ. �

We have all the ingredients to prove the main theorem.

Theorem 3.2. Consider the following system of integral equations:

(3.4) yi(t) = pi(t) +

∫ t

0

Kαi(τ)fi(t− τ, y(t− τ)) dτ, i= 1, . . . , n,

where αi > 0 and pi ∈ C1[0, T ]. fi(t, x) is a C1 function for 0 ≤ t ≤ T
and for all x, and a Lipschitz continuous function in the second variable,
for every i= 1, . . . , n. Then y ∈ C1(0, T ]. Moreover, if αi ≥ 1 for every
i= 1, . . . , n, then y ∈ C1[0, T ].

Proof. First part. The formal derivative of (3.4) obtained by applying
the Leibniz rule without verifying its differentiability requirements
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(avoiding a vicious circle) is given by:

Dyi(t) =Dpi(t) +Kαi
(t)f(0, y(0))

+

∫ t

0

Kαi
(t− τ)[fi,1(τ, y(τ))

+ fi,2(τ, y(τ))Dy(τ)] dτ,(3.5)

where fi,1 = ∂fi(x, y)/∂x, fi,2 = ∂f(x, y)/∂y. Defining

Fi(t) :=Dpi(t) +Kαi(t)f(0, y(0)) +

∫ t

0

Kαi(t− τ)fi,1(τ, y(τ)) dτ

for all i= 1, . . . , n, and since, by Theorem 2.1, y ∈ C[0, T ], we have that
F ∈ C(0, T ]. Thus, we can write

Dyi(t) = Fi(t) +

∫ t

0

Kαi
(t− τ)fi,2(τ, y(τ))Dy(τ) dτ,

where fi,2(τ, y(τ)) is bounded and continuous in [0, T ] since y ∈ C[0, T ]
and the hypothesis fi ∈ C1. By Corollary 2.3, y ∈ C1(0, T ] and, by
Theorem 2.1, if αi ≥ 1 for every i= 1, . . . , n, then y ∈ C1[0, T ].

Second part. To conclude, we must prove that the formal derivative
(3.5) is indeed the derivative. Choose δ ∈ (0, T/2), any h ∈ (0, δ] and
t ∈ (0, T − δ]. Define Zi(t, h) := [yi(t+h)− yi(t)]/h. By using the mean
value theorem on function fi, we get for some τ∗i ∈ [t, t+h],

Zi(t, h) =Ri(t, h) +

∫ t

0

Kαi
(t− τ)fi,2(τ, y(τ∗i ))Z(τ, h) dτ,

where

Ri(t, h) =
pi(t+h)− pi(t)

h

+h−1
∫ t+h

t

Kαi
(τ)fi(t+h− τ, y(t+h− τ)) dτ

+

∫ t

0

Kαi
(τ)fi,1(t+ θ(h)− τ, y(t− τ)) dτ,

for 0< θ(h)< h. By Lemma 3.1,

||Z(t, h)−Dy||1 ≤ ||Q(t, h)||1 +

∫ t

0

Rα(t− τ)||Q(τ, h)||1 dτ,
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where

Qi(t, h) :=Ri(t, h)−Fi(t)+
∫ t

0

Kαi(t−τ)[fi,2(τ, y(τ∗i ))−fi,2(τ, y(τ))] dτ.

Let C be a common bound of the norm of functions Dpi, fi, fi,1, fi,2 and
F , which exists since they are continuous at [0, T ] due to the hypotheses
and the fact that y ∈ C[0, T ]. We have the following bounds:

|Ri(t, h)| ≤ C +C/h

∫ t+h

t

Kαi(τ) dτ +C

∫ t

0

Kαi(τ) dτ

and

|Fi(t)| ≤ C +CKαi(t) +C

∫ t

0

Kαi(τ)dτ.

Therefore,

|Qi(t, h)| ≤ 2C +C/h

∫ t+h

t

Kαi
(τ) dτ + 4C

∫ t

0

Kαi
(τ) dτ

≤ 2C

[
1 +Kαi

(t) + 2

∫ T

0

Kαi
(τ) dτ

]
:= C0 +C1Kαi(t).

Let C2 be the bound of Rα at [δ, T−δ] (by the proof of Lemma 3.1, Rα
is continuous) and 0< s≤ δ such that

∫ s
0
C2[C0 +C1Kαi(τ)] dτ < ε/3n

for every i= 1, . . . , n.

Let h0 be small enough such that, for every h ≤ h0, |Qi(t, h)| ≤
ε[3n(1 +

∫ T
0
Rα(τ) dτ)]−1 uniformly over s≤ t≤ T − s. We can always

do this since Qi(t, h) converges to zero with h converging to zero,
uniformly on 0< t≤ T . In fact, by a dominated convergence argument
similar to that of the proof of Corollary 2.3 (since y ∈ C[0, T ] and the
hypothesis fi ∈ C1), we have that∫ t

0

Kαi
(t− τ)[fi,2(τ, y(τ∗i ))− fi,2(τ, y(τ))] dτ

and∫ t

0

Kαi(τ)fi,1(t+θ(h)−τ, y(t−τ)) dτ−
∫ t

0

Kαi(τ)fi,1(t−τ, y(t−τ)) dτ
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converge to zero uniformly on 0 < t ≤ T when h converges to zero
(recall that τ∗i goes to τ when h converges to zero and y is continuous);
[pi(t+h)− pi(t)/h]−Dpi(t) converges to zero when h converges to zero,
since, by hypothesis, pi ∈ C1[0, T ], whereby it is uniform on 0< t≤ T ;
and, finally,

h−1
∫ t+h

t

Kαi(τ)fi(t+h− τ, y(t+h− τ)) dτ −Kαi(t)f(0, y(0))

converges to zero uniformly on 0 < t ≤ T when h converges to zero,
using that fi(t, x) is a C1, by the fundamental theorem of calculus.

For 0< h≤ h0 and t ∈ [δ, T − δ], we have

||Z(t, h)−Dy(t)||1 ≤ ||Q(t, h)||1 +

∫ s

0

Rα(t− τ)||Q(τ, h)||1 dτ

+

∫ t

s

Rα(t− τ)||Q(τ, h)||1 dτ

≤ ε/3 +

∫ s

0

C2[C0 +C1Kαi
(τ)] dτ

+ ε

∫ t

s

Rα(t− τ)

[
3

∫ T

0

Rα(u) du

]−1
dτ

< ε.

Hence, limh→0+ Z(t, h) = Dy(t) uniformly on [δ, T − δ]. Since δ
is arbitrary, it holds for any (δ, T ). Since convergence is uniform in
any interval [δ, T − δ], the set of functions {Z(·, h) : 0 < h < δ} is
equicontinuous. Thus, limh→0+ Z(t, h) = limh→0+ Z(t− h, h) = Dy(t)
uniformly on [δ, T − δ]. Similarly, limh→0+ Z(T, h) = Dy(T ), which
concludes the proof. �

Remark 3.3. (i) Theorem 3.2 is also valid for any kernel in L1(0, T )∩
C1(0, T ] instead of Kαi

, which makes possible to extend its claim to other
fractional-like systems. In particular, it holds for Riemann-Liouville
systems.

(ii) We note that, by the same reasons as in the scalar case, y ∈
A1[0, T ], namely, Dyi(t) =Ctαi−1+ψi(t) for any t>0 with C a constant,

ψi(t) a continuous function in [0, T ] and limt→0+
∫ t
0

[ταi−1+ψi(τ)](t) = 0.
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Then, we can express

yi(t) = yi(0) +

∫ t

0

[ταi−1 +ψi(τ)] dτ

for any t≥ 0, and thus, y ∈ A1[0, T ].

(iii) Since (0, T ]−smooth solutions contain only a singularity at t= 0,
whenever the initial condition is non zero, [0, T ]-smooth periodic solution
cannot be expected for all t≥ 0.

Using the equivalence with the integral equation, we generalize [11,
Theorems 2.4, 2.5] and [23, Theorem 3] to account for higher order
differentiability in mixed or multi order systems.

Corollary 3.4. Consider the system of integral equations (3.4) with f
holding the same assumptions as in Theorem 3.2. Let ki = dαie− 1 and
k = mini(dαie)− 1.

(i) If pi ∈ Cki [0, T ] then yi ∈ Cki [0, T ] for any i = 1, . . . , n and
y ∈ Ck[0, T ].

(ii) If pi ∈ Cki+1[0, T ], then yi ∈ Cki+1(0, T ] for any i= 1, . . . , n and
y ∈ Ck+1(0, T ], and its derivative is given by the Leibniz rule.

Proof. (i) By Theorem 2.1, the solution of (3.4) is continuous. Using
the fact that the fractional integral of a continuous function is also
continuous, that a continuous function x satisfies Iαix = IkiIαi−kix
([10, Theorem 2.2]) and DkiIkix= x ([10, Theorem 3.7]), we arrive at

(3.6) Dkyi(t) =Dkpi(t) + Iαi−k[fi(·, y(·))](t).

By definition, αi−ki>0, and hence, both terms on the right-hand side
of (3.6) are continuous. Then, yi ∈ Cki [0, T ], and therefore, y ∈ Ck[0, T ].

(ii) By differentiating again (3.5), we obtain

D2yi(t) =Gi(t) +

∫ t

0

Kαi(t− τ)[fi,2,2(τ, y(τ))D2y(τ)] dτ,

where fi,2,2 = ∂fi,2(x, y)/∂y, Gi :=Mi +Ni,

Mi(t) =D2pi(t) +DKαi
(t)f(0, y(0))

+Kαi
(t)fi,1(0, y(0))
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+

∫ t

0

Kαi(t− τ)[fi,1,1(τ, y(τ))] dτ,

where fi,2,1 = ∂fi,2(x, y)/∂x and

Ni(t) =

∫ t

0

Kαi(t− τ)[fi,1,2(τ, y(τ)) + fi,2,1(τ, y(τ))

+ fi,2,2(τ, y(τ))Dy(τ)]Dy(τ) dτ.

By Theorem 3.2, Gi ∈ C(0, T ] and, by Corollary 2.3, G ∈ C(0, T ]. By
using the second part of the proof of Theorem 3.2, D2y is indeed the
derivative. Recursively, the claims follow. �

Remark 3.5. (i) p(t), chosen as (2.4), satisfies the hypotheses of
Corollary 2.5, and so, for equation CDαiyi(t) = fi(t, y(t)), y∈Ck+1(0, T ].

(ii) The proof of [11, Theorem 2.5], for the same order case, is slightly
incomplete since it merely uses the formal derivative.

We exemplify the claim of Theorem 3.2 by showing an informal proof
for a specific case. Consider the following system:{

CDβx(t) =−y(t)f(t)
CDy(t) =Ay(t) + f(t)Tx(t),

where 0 < β < 1, A is a constant matrix and f is a bounded C1[0,∞)
function. By Theorem 2.1, x, y ∈ C[0, T ] for every T > 0. Hence,
y ∈ C1[0, T ] and yf ∈ C1[0, T ].

On the other hand, for any α, β ≤ 1 and α+β ≤ 1, by applying the
Laplace transform to any (locally integrable) function z, we have:

L[CDα〉CDβz] = sα(L[CDβz])− sα−1CDβz(0)

= sα(sβz− sβ−1z(0))− sα−1CDβz(0)

= sα+βz− sα+β−1z(0)− sα−1CDβz(0)

Applying the Laplace inverse transform, we get

L−1L[CDαCDβz] = L−1[sα+βz− sα+β−1z(0))]−L−1[sα−1CDβz(0)]

= CDα+βz−L−1[sα−1CDβz(0)],
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and thus, CDαCDβz = CDα+βz − Γ(1 − α)−1t−αCDβz(0). Since
CD1−βCDβx(t) =−CD1−β [yf ](t), we can write

Dx(t) =−CD1−β [yf ](t) + tβ−1CDβx(0)

=−CD1−β [yf ](t)−Γ(1−α)−1tβ−1y(0)f(0),

and, since D1−β [yf ](t) is the fractional integral of a continuous function,
it is continuous. Hence, x∈C1(0, T ], which directly follows from applying
Theorem 3.2, and from Corollary 2.5, y ∈ C1[0, T ].

4. Stability of solutions. In this section, we provide examples as
to how the smoothness property of the solutions to systems of type (1.1)
is used to study to their asymptotic properties. It is assumed that
the fractional derivative is of Caputo type. We deal with continuous
solutions to nonlinear mixed order (or multi-order) systems. For the
linear case, in [13], necessary and sufficient conditions for asymptotic
stability were recently provided and, in [18, Theorem 2.6], sufficient
conditions for robustness were obtained.

First, we establish a condition which guarantees bounded solutions
of the system of equations, given by:

(4.1)

{
CDαx(t) = f(x, y, t)
CDβy(t) = g(x, y, t),

where x : [0,∞)→ Rn, y : [0,∞)→ Rm, f, g are Lipschitz continuous
functions in their first two arguments and C1. Assume 0< α≤ β ≤ 1,
and suppose that

(4.2) xT f(x, y, t) + yT g(x, y, t) = (x, y)T (f(x, y, t), g(x, y, t))≤ 0

for any x, y ∈ Rn and for any t≥ 0. In the following, C denotes various
constant numbers, and || · || denotes the Euclidean norm on Rp for any
p ∈ N.

Theorem 4.1. Consider a solution (x, y) to system (4.1), where f and
g are Lipschitz continuous functions in their first two arguments, C1 in
its arguments and 0< α≤ β ≤ 1. Suppose that condition (4.2) holds.

(a)

(i) If α= β then (x, y) is a bounded function.
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(ii) If α < β, ||f(x(t), y(t), t)|| ≤ C||x(t)|| for all t > 0 with C a
constant number, and the system in y is BIBO stable with respect to the
input x, then (x, y) remains bounded.

(iii) If α < β, ||f(x(t), y(t), t)|| ≤ C||x(t)|| for all t > 0 with C a
constant independent of t, and yT g(·, y, ·) diverges to +∞ whenever ||y||
diverges to +∞, then (x, y) remains bounded.

(b) Suppose that there exists a constant number λ > 0 such that

(4.3) xT f(x, y, t) + yT g(x, y, t)≤−λyT y

for every x, y, t in the domain. Suppose there exists a C such that
||f(x(t), y(t), t)|| ≤ C||x(t)|| and ||g(x(t), y(t), t)|| ≤ C||y(t)||. Then,
(x, y) is a bounded function.

Part (a). We will prove by contradiction that a number L > ||x(0)||
cannot exist such that ||x(t)||> L for all t≥ T . Using (4.2), we have

xT CDαx+ yT CDβy = xT f(x, y, t) + yT g(x, y, t)≤ 0,

and hence, by using Theorem 3.2 (which can be applied by the
smoothness assumptions of functions f and g) together with Remark
2.6 (ii) and the inequality (3.2) ([4, Lemma 1] requiring absolute
continuity, and directly extended to the vector case [14]), we have

(4.4) CDα[xTx] +CDβ [yT y]≤ 0.

Applying again [10, Theorem 3.8] and [10, Theorem 2.2], since by
Theorem 2.1, x and y are continuous functions and by Theorem 3.2, ẋ
is locally integrable, we obtain by β-integration of (4.4):

(4.5) Iβ−α[xTx(·)−xTx(0)](t) + yT y(t)− yT y(0)≤ 0, for all t > 0.

(i) For α= β, inequality (4.5) can be written as xTx(t) + yT y(t)≤
xTx(0) + yT y(0), from which follows boundedness of (x(t), y(t)). More-
over, Lyapunov stability of the origin (x, y)=(0, 0) follows from standard
ε-δ arguments.

(ii) If there exists a number L > xTx(0) such that xTx(t) > L for
all t≥ T , then the integral Iβ−α[xTx(·)−xTx(0)] diverges to +∞ and,
since yT y(t)− yT y(0) is bounded from below, the inequality (4.5) does
not hold. Hence, we have proved that a number L > ||x(0)|| cannot
exist such that ||x(t)||> L for an unbounded increasing period of time.



SOLUTIONS TO FRACTIONAL DIFFERENTIAL SYSTEMS 79

Note that we have not yet proved that x is bounded, since it could
occur that, in an unbounded sequence of intervals of finite large, x grows
unbounded. A simple, but restrictive, condition to avoid this kind of
divergence is that ||f(x, y, t)||<C for every t with C a constant indepen-
dent of t, x, y. Indeed, this condition implies ||Dαx||<C and, by [15,
Proposition 1], we conclude that x is α-Holder continuous function and,
in particular, uniformly continuous, whereby its increments or decre-
ments in finite time intervals cannot be unbounded. Hence, since x can-
not diverge on either a finite or on an unbounded interval, x is bounded.

We have proved that a number L > ||x(0)|| cannot exist such that
||x(t)||> L for an unbounded increasing period of time. Thus, the only
alternative is that there exist a number L and a sequence (Tn)n∈N with
bounded separation (|Tn−Tn+1|<C for C, a constant independent of
n) such that ||x(Tn)||= L. Writing

x(t+Tn) = x(0) +

∫ Tn

0

Kα(t+Tn− τ)f(x(τ), y(τ), τ) dτ

+

∫ t+Tn

Tn

Kα(t+Tn− τ)f(x(τ), y(τ), τ) dτ

and, putting x̃(t) := x(t+Tn), we have

x̃(t) =R(t) +

∫ t

0

Kα(t− τ)f(x̃(τ), ỹ(τ), τ +Tn) dτ,

where R(t) := x(0) +
∫ Tn

0
Kα(t+ Tn− τ)f(x(τ), y(τ), τ) dτ . Note that

||R(0)|| = L and that
∫ Tn

0
Kα(t + Tn − τ)||f(x(τ), y(τ), τ)|| dτ is de-

creasing and converges to zero as t→+∞ ([19, Property 17]). Thus,
||R(t)|| ≤ L, and therefore,

||x̃(t)|| ≤ L+ ||
∫ t

0

Kα(t− τ)f(x̃(τ), ỹ(τ), τ +Tn) dτ ||.

By using the hypothesis ||f(x(t), y(t), t)|| ≤ C||x(t)|| for all t > 0, we
have

||x̃(t)|| ≤ L+C

∫ t

0

Kα(t− τ)||x̃(τ))|| dτ.

Using the generalized Gronwall inequality (see, e.g., [10, Lemma
6.19]), ||x̃(t)|| ≤ LEα(Ctα), where Eα is the Mittag-Leffler function.
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The bound on the right hand side of this inequality is independent of n,
whereby x cannot diverge on a sequence of finite intervals. Then, x is
a bounded function.

Now, we will consider the variable y. By α-integration of (4.4), we
obtain

xTx(t)−xTx(0) + Iα+1−βCD[yT y](t)≤ 0,

and the same reasoning as above shows that D[yT y] cannot be un-
bounded for an unbounded increasing period of time. On the other
hand, if D[yT y] diverges to −∞ at an unbounded increasing period of
time, integer order integration of it yields yT y(t) = yT y(0)+ID[yT y]≥ 0,
arriving at a similar contradiction as above. Hence, D[yT y] is bounded
from below at an unbounded increasing period of time. If Dαy=g(x, y, t)
is BIBO stable with respect to the input x and output y, then y is also
bounded.

(iii) Using that x is bounded and ||f(x, y, t)|| ≤ C||x|| is also
bounded, if g is radially unbounded respect to its first coordinate,
xT f(x, y, t) + yT g(x, y, t)≤ 0 does not hold if y is unbounded.

Part (b). By the same reasons as above, we get

(4.6) Iβ−α[xTx(·)−xTx(0)] + yT y(t)− yT y(0) + IβyT y ≤ 0.

From the condition ||f(x(t), y(t), t)|| ≤ C||x(t)|| we conclude that, if
x is unbounded, inequality (4.6) does not hold. Hence, x is bounded.
From this inequality, we have

(4.7) yT y(t)− yT y(0) + IβyT y ≤ Iβ−α[xTx(0)].

From the condition ||g(x(t), y(t), t)|| ≤ C||y(t)||, if y is unbounded,
IβyT y will grow in an order larger than tβ , contradicting the right hand
side of (4.6) that grows in an order tβ−α. Hence, y is bounded. �

A trivial application of Theorem 4.1 is given by the following system
CDα1x1(t) = λ1x1(t)

· · ·
CDαnxn(t) = λnxn(t),

where λi < 0, 0 < αi < 1 for i = 1, . . . , n, so that condition (4.2)
holds. The interesting fact is that the solution verifies Theorem 3.2,
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as we expected, since xi(t) = xi(0)Eαi
(λit

αi) ∈ C1(0,∞] due to the
fact that DEαi(t) is singular at zero (see, e.g., [21, 1.8.20]), but
xi(t) = xi(0)Eαi(λit

αi) ∈ C[0,∞] as Theorem 2.1 indicates.

A slight modification of the above system gives another example{
CDα1x1(t) = λ1x1(t) +x1x

2
2(1 +x21 +x22)−1

CDα2x2(t) = λ2x2(t)−x21x2(1 +x21 +x22)−1,

where λ1, λ2 < 0, whereby equations in x1 and x2 are BIBO stable
with respect to x2 and x1, respectively. Since condition (4.2) holds
and |CDα1x1(t)| ≤ (1 + |λ1|)|x1| and |CDα2x2(t)| ≤ (1 + |λ2|)|x2|, we
conclude from Theorem 4.1 (ii) that the solutions are bounded.

In the second example, we consider the following system:

(4.8)

{
CDαx= f(x) + g(x)z
CDαz = f1(x, z) + g1(x, z)v,

where α ≤ 1, x : R≥0→ Rn, z : R≥0→ R and f(0) = 0. The functions
f, g : Rn→ Rna and f1, g1 : Rn+1→ R are smooth Lipschitz continuous
functions. It is assumed that, for all (xT , z)T ∈ Rn+1, g1(x, z) 6= 0. The
problem is to find a function v such that x converges to the equilibrium
point x= 0 of the autonomous system and z converges to zero. In that
case, we say that the system is asymptotically stabilizable by feedback
input. A backstepping control is proposed in the next result.

Theorem 4.2. Consider that for system (4.8) there exists a smooth
function u such that F (x) := f(x) + g(x)u(x) is Lipschitz continuous
and xTF (x) ≤ −w(x) for all x in a neighborhood of x = 0, with w a
positive definite function greater than or equal to xTx and u(0) = 0.
Then (4.8) is asymptotically stabilizable by feedback input.

Proof. For simplicity, we first prove the statement for f1 ≡ 0 and
g1 ≡ 1. By defining e= z−u, system (4.8) can be rewritten as

(4.9)

{
CDαx= F (x) + g(x)(z−u) =: F (x) + g(x)e
CDαe= v−〉CDαu,

where, by assumption, F :Rn→Rn is smooth, Lipschitz continuous and
F (0) = 0. By defining 2V (x, e) = xTx+ e2, using Theorem 3.2 and [4,
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Lemma 1], we have

CDαV ≤ xTF (x) +xT g(x)e+ ev− e〉CDαu.

By choosing v =−xT g(x) +CDαu− ke, where k > 0, we obtain

CDαV (t)≤−w(x)− ke2

whereby (x, e) = (0, 0) is an asymptotically stable point [16, Theorem
1]. In particular, x→ 0 and z(t)→ u(x(t))→ 0 as t→∞ since u is
continuous. Note, for the application of Theorem 3.2 that equation (4.8)
takes the form: {

CDαx= F (x) + g(x)e
CDαe=−xT g(x)− ke,

and the function G(x, e) := (F (x) + g(x)e,−xT g(x)− ke, ) is smooth
and Lipschitz continuous around (x, e) = (0, 0).

For the general case, it is enough to take the control law v1 :=
(1/g1(x, z))(−f1(x, z) + v) with v defined as above. �

As an example holding the assumption of Theorem 2.1, take f1 ≡ 0,
g1 ≡ 1, g(x) = 1 and u(x) =−x− f(x).
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