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ABSTRACT. In this paper, we define a superconvergent
projection method for approximating the solution of Ham-
merstein integral equations of the second kind. The projec-
tion is chosen either to be the orthogonal or an interpolatory
projection at Gauss points onto the space of discontinu-
ous piecewise polynomials. For a smooth kernel or one less
smooth along the diagonal, the order of convergence of the
proposed method improves upon the classical product inte-
gration method. Several numerical examples are given to
demonstrate the effectiveness of the current method.

1. Introduction. Many problems that arise in the mathematical
physics, engineering, biology, economics, etc., lead to mathematical
models described by nonlinear integral equations [1, 12, 29]. For
instance, Hammerstein integral equations appear in nonlinear physical
phenomena such as electromagnetic fluid dynamics and reformulation
of boundary value problems with a nonlinear boundary condition, see
[8]. This equation is:

(1.1) x−Kx= f,

where K is the Hammerstein integral operator defined on X = L∞[0, 1]
by

(Kx)(s) =

∫ 1

0

κ(s, t)ψ(t, x(t)) dt, s ∈ [0, 1], x ∈ X,
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f and ψ are continuous functions, with ψ(t, u) nonlinear in u, and x
is the function to be determined. The kernel κ is continuous or may
have a discontinuity of the first kind along the line s= t. Then, K is a
compact operator from X to C[0, 1].

Several numerical methods for approximating the solution of (1.1)
are known. A variation of Nyström’s method was proposed by Lardy
[28]. A new collocation method was presented by Kumar and Sloan
[27], and its superconvergence properties were studied by Kumar [26].
Moreover, an extrapolation of a discrete version of a collocation-type
method was presented by Han [19]. The connection between Kumar
and Sloan’s method and the iterated spline collocation method for
Hammerstein equations was discussed by Brunner [11]. Two discrete
collocation methods were proposed by Kumar [25] and Atkinson and
Flores [9]. A degenerate kernel method for Hammerstein equations
was introduced by Kaneko and Xu [21]. The superconvergence of the
iterated Galerkin solutions for Hammerstein equations with smooth as
well as weakly singular kernels was probed by Kaneko and Xu [22].
Moreover, the superconvergence of the iterated collocation method for
Hammerstein equations with smooth as well as weakly singular kernels
was studied by Kaneko, Noren and Padila [20]. Hammerstein equations
with less smooth kernels along the diagonal were considered in [10]. A
nice review paper by Atkinson [7] is recommended to those readers who
require more information on the numerical treatments of Hammerstein
equations. Some theoretical results regarding these kinds of equations
may be found in a book by Zeidler [32]. Recently, Kulkarni’s method
for more general Urysohn equations was proposed in [18].

More recently, the authors in [4] used superconvergent Nyström and
degenerate kernel methods, which were inspired by Kulkarni’s method
[17, 23], to solve equation (1.1). They consist of approximating the
operator K by one of the two finite rank operators:

Tn = πnK+Kn,ι−πnKn,ι, ι= 1, 2,

K−Tn = (I−πn)(K−Kn,ι),

where πn is a sequence of interpolatory projections, Kn,1 is the
degenerate kernel operator obtained by interpolating the kernel with
respect to the second variable and Kn,2 is the Nyström operator based
on πn. These methods were already used for linear integral equations
in [3] and for the corresponding eigenvalue problems in [2, 5]. In this
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paper, similar projection methods are defined by replacing Kn,ι with
the following linear operator of product integration type, as defined by
Kumar [26] and Kumar and Sloan [27]:

(1.2) (Knx)(s) =

∫ 1

0

κ(s, t)(πnz)(t) dt, s ∈ [0, 1], x ∈ X,

where
z(t) = ψ(t, x(t))

and πn is a sequence of finite rank projections converging to the identity
operator pointwise. Thus, Kn is a variation of the Nyström operator
Kn,2, and, when the projection is orthogonal, we can show that

Kn ≡Kn,1.

It has also been shown that the extra factor of (I− πn) in K−KM
n

exhibits superconvergence. More precisely, it is established that, if
the kernel is sufficiently smooth, then, if πn is either the orthogonal
projection or the interpolatory projection at Gauss points onto a space
of piecewise polynomials of degree less than or equal to r − 1, the
orders of convergence of the proposed method and its iterated version
are, respectively, 3r and 4r. This is an improvement over the order of
convergence 2r in the product integration method. In the case of the
orthogonal projection, it can be shown that, for a kernel which is less
smooth along the diagonal, the iterated version of the method always
improves upon the classical methods, such as the Galerkin and iterated
Galerkin methods. The size of the system of equations that needs to be
solved is at most twice as that of the dimension of the range of πn. In
particular, the method presented here could be viewed as an extension
to the nonlinear case of the method introduced in [24].

The paper is organized in the following way. In Section 2, the
proposed method is defined along with relevant notation, and the
systems of nonlinear equations which need to be solved to obtain the
approximations to the solution are discussed. Section 3 contains a
general framework for the convergence analysis of the approximate and
the iterated solutions. The case of kernels less smooth along the diagonal
is discussed in Section 4. Numerical validation is given in Section 5.
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2. Description of the method.

2.1. Preliminaries. We consider a quasi-uniform partition of [0, 1]

(2.1) ∆n : 0 = s0 < s1 < s2 · · ·< sn−1 < sn = 1.

For simplicity, we drop the index n and write ∆n= ∆. Put Ei= [si−1, si],
hi = si− si−1 and h= max0≤i≤n hi. For a fixed r ≥ 1, we denote by Pr
the space of all polynomials of degree ≤ r− 1. Let

Xn = {υ : [0, 1]−→R : υ|Ei
∈ Pr, 1≤ i≤ n}

be the space of piecewise polynomials of degree ≤ r−1, with breakpoints
at s1, s2, . . . , sn−1. We consider two types of projections from X to Xn.

1. The map πn is the restriction to X of the orthogonal projection
from L2[0, 1] to Xn. The operator πn is defined by

(2.2)
(πnx)(s) =

nr∑
i=1

〈x, φi〉φi(s),

〈πnx, φi〉= 〈x, φi〉, 1≤ i≤ nr,

where nr = nr, {φi : i= 1, 2, . . . , nr} is an orthonormal basis of Xn and
〈·, ·〉 is the inner product defined by

〈f, g〉=

∫ 1

0

f(x)g(x) dx.

for all f, g ∈ L∞[0, 1].

2. Let Br = {τ1, . . . , τr} be the set of r Gauss points in [−1, 1].
Define a linear transformation

fi : [−1, 1]−→ [si−1, si]

as follows:

fi(t) =
1− t

2
si−1 +

1 + t

2
si, t ∈ [−1, 1].

Then,

A =

n⋃
i=1

fi(Br) = {τij = fi(τj) : 1≤ i≤ n, 1≤ j ≤ r}

= {ti : i= 1, 2, . . . , nr}
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is the set of nr interpolation Gauss points on [0, 1]. Let

πn : C[0, 1]−→ Xn

be the interpolatory operator, defined by

(2.3)
(πnx)(s) =

nr∑
i=1

x(ti)ϕi(s),

(πnx)(ti) = x(ti), 1≤ i≤ nr,

where {ϕi : i = 1, 2, . . . , nr} is the Lagrange basis of Xn. This map, if
necessary, is extended to L∞[0, 1] as in Atkinson, et al. [6], and then
πn is a projection. In both cases, πn converge to the pointwise identity
operator and, for x ∈ Cr[0, 1] (see [13, page 328, Corollary 7.6]):

(2.4) ‖(I−πn)x‖∞ ≤ c1‖x(r)‖∞hr,

where c1 is a constant independent of n.

Let z(t) =ψ(t, x(t)), and consider the following approximate operator
defined in [26] by

(2.5) (Knx)(s) =

∫ 1

0

κ(s, t)(πnz)(t) dt, s ∈ [0, 1], x ∈ X.

We propose approximating K by the following finite rank operator

(2.6)
KM
n = πnK+Kn−πnKn,

(K−KM
n ) = (I−πn)(K−Kn).

The corresponding approximation of (1.1) becomes

(2.7) xn− (πnK+Kn−πnKn)xn = f,

while the iterated solution is defined by

(2.8) x̃n = Kxn + f.

The reduction of (2.7) to a system of nonlinear equations is completed
in the next section.

2.2. Implementation. Let πn be the orthogonal projection defined
by (2.2). The corresponding operator Kn, defined by (2.5), can be
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written as

(Knx)(s) =

nr∑
j=1

〈z, φj〉κj(s), s ∈ [0, 1],

where κj(s) = 〈κ(s, ·), φj〉. Now, using equation (2.7), we can easily
show that the approximate solution has the following form

xn = f +

nr∑
i=1

Xiφi +

nr∑
j=1

Yjκj .

The coefficients {Xi,Yi, i= 1, . . . , nr} are obtained by substituting xn
in equation (2.7). Then, we successively have:

(πnK)xn =

nr∑
i=1

〈Kxn, φi〉φi

=

nr∑
i=1

[ ∫ 1

0

∫ 1

0

κ(s, t)ψ

(
t, f(t) +

nr∑
k=1

Xkφk(t)

+

nr∑
`=1

Y`κ`(t)
)
φi(s) dt ds

]
φi,

Knxn =

nr∑
j=1

[ ∫ 1

0

ψ

(
t, f(t) +

nr∑
k=1

Xkφk(t) +

nr∑
`=1

Y`κ`(t)
)
φj(t) dt

]
κj ,

(πnKn)xn =

nr∑
i=1

〈Knxn, φi〉φi

=

nr∑
i=1

{ nr∑
j=1

[ ∫ 1

0

ψ

(
t, f(t) +

nr∑
k=1

Xkφk(t)

+

nr∑
`=1

Y`κ`(t)
)
φj(t) dt

]
〈κj , φi〉

}
φi.

Except for some very specific situations, the family of functions {φi, κj}
is linearly independent; therefore, we can identify the coefficients of φi,
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and κj , respectively, and we obtain the following system of size 2nr:

(2.9)

Xi =

∫ 1

0

∫ 1

0

κ(s, t)ψ

(
t, f(t) +

nr∑
k=1

Xkφk(t) +

nr∑
`=1

Y`k`(t)
)
φi(s) dt ds

−
nr∑
j=1

Yj〈κj , φi〉,

Yj =

∫ 1

0

ψ

(
t, f(t) +

nr∑
k=1

Xkφk(t) +

nr∑
`=1

Y`κ`(t)
)
φj(t) dt

i, j = 1, . . . , nr.

Remark 2.1. Despite that the size of system (2.9) is twice that of the
Galerkin/iterated Galerkin methods, for a kernel κ which fails to be
sufficiently differentiable due to discontinuities along the diagonal, the
iterated solution (2.8) can converge faster than the iterated Galerkin
solution and even faster than the solutions obtained by the proposed
method using the interpolation projection.

For the interpolatory projection given by (2.3), applying πn and
(I −πn) to equation (2.7), we obtain

πnxn−πnKxn = πnf,(2.10)

(I−πn)xn− (I−πn)Knxn = (I−πn)f.(2.11)

Replacing xn by its expression from equation (2.11), Kxn becomes

(2.12) Kxn = K(πnxn + (I−πn)Knxn + (I−πn)f).

On the other hand, since Knxn = Knπnxn, we obtain

(2.13) Kxn = K(πnxn + (I−πn)Knπnxn + (I−πn)f).

Now, by replacing Kxn in equation (2.10), we obtain

πnxn−πnK(πnxn + (I−πn)Knπnxn + (I−πn)f) = πnf,

and then we obtain the following system of size nr:

xn(ti)−K(πnxn + (I−πn)Knπnxn + (I−πn)f)(ti) = f(ti),(2.14)

i= 1, . . . , nr.
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Now, from equation (2.11), the approximate solution is given by

xn = πnxn + (I−πn)Knπnxn + (I−πn)f.

Remark 2.2. In the iterated collocation method proposed by Sloan
[31], the approximate solution is given by xn = f +Kπnxn and satisfies
xn −Kπnxn = f . Thus, a system of the same size as in the case of
our method is required to be solved. The solutions xn and xn are
probably of equal complexity when being evaluated. The computational
complexity in the method proposed here may lie in the evaluation of
K(πnxn + (I− πn)Knπnxn + (I− πn)f) instead of Kπnxn in Sloan’s
method. This addition in the cost is compensated by the improvement
in the rate of convergence. On the other hand, there are integrals to be
evaluated in solving nonlinear systems (2.9) and (2.14) and in evaluating
x̃n. These integrals were numerically evaluated to high accuracy, to
imitate exact integration.

In the next section, we prove the local existence and uniqueness of
the solution of equation (2.7), and we give an estimation of its rate of
convergence.

3. Orders of convergence. Let x∗ be the unique solution of (1.1),
and let a and b be real numbers such that[

min
s∈[0,1]

x∗(s), max
s∈[0,1]

x∗(s)
]
⊂ [a, b].

Define Ω = [0, 1]×[a, b]. We assume throughout this paper, unless stated
otherwise, the following conditions on κ and ψ:

(i) Λ = sups∈[0,1]

∫ 1

0
|κ(s, t)| dt <∞.

(ii) The function ψ(t, u) is Lipschitz continuous in u∈ [a, b], i.e., there
exists a constant q1 > 0, for which |ψ(t, u)−ψ(t, v)| ≤ q1|u− v|, for all
u, v ∈ [a, b].

(iii) The partial derivative ∂ψ/∂u of ψ with respect to the second
variable exists and is Lipschitz continuous, i.e., there exists a q2 > 0
such that∣∣∣∣∂ψ∂u (t, x)− ∂ψ

∂u
(t, y)

∣∣∣∣≤ q2|x− y|, for all x, y ∈ [a, b].
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Condition (iii) implies that the operator K is Fréchet differentiable and
L = K′(x∗) is Λq2-Lipschitz. The Fréchet derivative is given by

(K′(x∗)h)(s) =

∫ 1

0

κ(s, t)
∂ψ

∂u
(t, x∗(t))h(t) dt,

and the operator K′(x∗) is compact. Throughout this paper, we use
the following notation:

L = K′(x∗), Ln = K′n(x∗), LMn =
(
KM
n

)′
(x∗), z∗(t) = ψ(t, x∗(t)).

Note also that, throughout this paper, c, c1, c2 denote generic constants
which may take different values but will be independent of n.

3.1. Approximate solution. The following result can be proven in
the same manner as in [16, Theorem 1].

Theorem 3.1. Suppose that x∗ ∈X is the unique solution of (1.1) with
f = 0 and that 1 is not an eigenvalue of L. Then, there exists a real
number δ0 > 0 such that the approximate equation (2.7) has a unique
solution xn in B(u, δ0) for a sufficiently large n. Moreover,

(3.1) c1αn ≤ ‖x∗−xn‖∞ ≤ c2αn,

where αn = ‖(I − LMn )−1(K(x∗) − KM
n (x∗))‖∞ → 0 as n → ∞ and

0< c1 < c2.

Lemma 3.2. Assume that 1 is not an eigenvalue of L. Then, for n
large enough, (I−LMn )−1 exists, and it is a bounded linear operator,
i.e.,

(3.2) ‖(I−LMn )−1‖∞ ≤ c.

Proof. Since the operators πn converge pointwise to the identity
operator and L,Ln are compact, it follows that

max {‖(I−πn)L‖, ‖(I−πn)Ln‖} −→ 0 as n→∞.

From (2.6), we get

L−LMn = (I−πn)(L−Ln).

Thus,

‖L−LMn ‖ ≤ ‖(I−πn)L‖+ ‖(I−πn)Ln‖ −→ 0 as n→∞.
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Hence, for n large enough, I− LMn is invertible, and it is uniformly
bounded by the geometric series theorem, see [8]. �

Choose r ≥ 1 and 0 ≤ p ≤ 2r. If κ ∈ Cp[0, 1]2, then R(K) ⊂ Cp[0, 1].
Thus, if f ∈ Cp[0, 1], then x ∈ Cp[0, 1]. We set

Di,jκ=
∂i+jκ

∂si∂tj
(s, t), s, t ∈ [0, 1],

‖κ‖p,∞ =

p∑
i=0

p∑
j=0

‖Di,jκ‖∞,

‖x‖p,∞ =

p∑
i=0

‖x(i)‖∞

and

Ψp =

p∑
i=0

max
t∈[0,1]

∣∣∣∣∂iψ∂ti (t, x(t))

∣∣∣∣.
Let πn be the orthogonal projection defined by (2.2). The result below
is used to obtain the order of convergence of xn to x∗.

Proposition 3.3. We assume that κ ∈ Cr[0, 1]2, ψ ∈ Cr(Ω) and
f ∈ Cr[0, 1]. Let x∗ be the unique solution of (1.1). Then:

(3.3) ‖(I−πn)(K−Kn)x∗‖∞ ≤ ch3r.

Proof. From the definition of Kn, we have

[(K−Kn)x∗](r)(s) =

∫ 1

0

`s(t)(I−πn)z∗(t) dt,

where `s(t) = (∂rκ)/(∂sr)(s, t) and z∗(t) = ψ(t, x∗(t)). Let `s denote
the complex conjugate of `s. Then

[(K−Kn)x∗](r)(s) = 〈(I−πn)z∗, `s〉
= 〈(I−πn)z∗, (I−πn)`s〉
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since πn is an orthogonal projection. Thus, by (2.4), we have, for each
s ∈ [0, 1],

|[(K−Kn)x∗](r)(s)| ≤ ‖(I−πn)z∗‖∞‖(I−πn)`s‖∞
≤ (c1)2‖z∗(r)‖∞‖(`s)(r)‖∞h2r.

Hence, taking the supremum over s ∈ [0, 1], we obtain

‖[(K−Kn)x∗](r)‖∞ ≤ (c1)2Ψr‖k‖r,∞h2r.

Now, by replacing x by (K−Kn)x∗ in (2.4), we obtain

‖(I−πn)(K−Kn)x∗‖∞ ≤ c1‖[(K−Kn)x∗](r)‖∞hr

≤ (c1)3Ψr‖k‖r,∞h3r

which completes the proof. �

Let πn be the interpolatory projection at the Gauss point defined by
(2.3). For f ∈ Cr[0, 1] and g ∈ C2r[0, 1], we have from [15]:

(3.4)

∣∣∣∣ ∫ 1

0

f(t)(I−πn)g(t) dt

∣∣∣∣≤ c2‖f‖r,∞‖g‖2r,∞h2r.

Proposition 3.4. Let x∗ be the unique solution of (1.1). For f ∈
C2r[0, 1], κ ∈ Cr[0, 1]2 and ψ ∈ C2r(Ω), we have

(3.5) ‖(K−Kn)x∗‖2r,∞ ≤ cΨ2r‖κ‖2r,∞h2r.

In addition,

(3.6) ‖(I−πn)(K−Kn)x∗‖∞ ≤ ch3r.

Proof. For a fixed j such that 0≤ j ≤ 2r, we have

[(K−Kn)x∗](j)(s) =

∫ 1

0

`s(t)(I−πn)z∗(t) dt,

where `s(t) = (∂jκ)/(∂sj)(s, t). Then, from (3.4), it follows that

|[(K−Kn)x∗](j)(s)| ≤ c2‖`s‖r,∞‖z∗‖2r,∞h2r.

Hence, taking the supremum over s ∈ [0, 1], we obtain

‖[(K−Kn)x∗](j)‖∞ ≤ c2Ψ2r‖κ‖2r,∞h2r,
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and hence,

‖(K−Kn)x∗‖2r,∞ =

2r∑
j=0

‖[(K−Kn)x∗](j)‖∞

≤ c2(2r+ 1)Ψ2r‖κ‖2r,∞h2r,

which proves (3.5). Now, by replacing x∗ by (K−Kn)x∗ in (2.4), we
obtain

‖(I−πn)(K−Kn)x∗‖∞ ≤ c1‖[(K−Kn)x∗](r)‖∞hr

≤ c1c2Ψ2r‖κ‖2r,∞h3r,

which completes the proof. �

Now we are ready to state the following, main theorem.

Theorem 3.5. Let x∗ ∈ X be the unique solution of (1.1), and assume
that 1 is not an eigenvalue of L. In the case of the orthogonal projection,
we assume that κ ∈ Cr[0, 1]2, ψ ∈ Cr(Ω) and f ∈ Cr[0, 1], while, in
the case of the interpolatory projection, we assume that κ ∈ C2r[0, 1]2,
ψ ∈ C2r(Ω) and f ∈ C2r[0, 1]. Then:

(3.7) ‖x∗−xn‖∞ = O(h3r).

Proof. Theorem 3.1 is applicable for f = 0. Then, by Lemma 3.1, we
have

(3.8) ‖x∗−xn‖∞ ≤ c‖(I−πn)(K−Kn)x∗‖∞.

Thus, (3.7) follows from (3.3) or (3.6). �

Remark 3.6. Let xn be the approximate solutions of equation (1.1)
obtained by the product integration method. Then, xn−Knxn = f . By
using (2.4) or (3.5), we can show that

‖x∗− xn‖∞ = O(h2r).

Hence, xn converges to x∗ faster than xn.

In what follows, we show that the iterated solution defined by (2.8)
converges to x∗ faster than xn.
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3.2. Iterated solution. Since Kn is Fréchet differentiable, we define

(3.9)

rn =
‖K(x∗)−K(xn)−L(x∗−xn)‖∞

‖x∗−xn‖∞

qn =
‖Kn(x∗)−Kn(xn)−Ln(x∗−xn)‖∞

‖x∗−xn‖∞
.

By Theorem 3.5 and the definitions of L and Ln, we deduce that

(3.10) {rn, qn} −→ 0 as n→∞.

In addition, it can be shown that

(3.11) max{rn, qn} ≤
c

2
‖x∗−xn‖∞,

see, for example, [30]. We use the following notation:

a = ‖(I−L)−1‖∞,

an = max{‖(I−πn)L‖∞, ‖(I−πn)Ln‖∞, ‖(I−πn)L∗‖∞},

bn = ‖L(I−πn)‖∞.

The sequence bn is uniformly bounded

(3.12) bn ≤ b, for all n≥ 1.

The error for the iterated solution is given in the next theorem.

Theorem 3.7. Let x∗ be the unique solution of (1.1) and assume that
1 is not an eigenvalue of L. For n large enough, we have

(3.13) ‖x∗− x̃n‖∞ ≤ c‖x∗−xn‖2∞+ a‖L(I−πn)(K−Kn)x∗‖∞
+ a‖L(I−πn)(L−Ln)‖∞‖x∗−xn‖∞.

Proof. We have

(I−L)(x∗− x̃n) = Kx∗−Kxn−L(x∗−xn) +L(x̃n−xn)

= Kx∗−Kxn−L(x∗−xn) +L(K−KM
n )xn

= Kx∗−Kxn−L(x∗−xn) +L(I−πn)(K−Kn)xn

= [I−L(I−πn)][Kx∗−Kxn−L(x∗−xn)]

+L(I−πn)(K−Kn)x∗−L(I−πn)(L−Ln)(x∗−xn)

+L(I−πn)[Knx
∗−Knxn−Ln(x∗−xn)].
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Multiplying by (I−L)−1, we find that

x∗− x̃n = [I+ (I−L)−1Lπn][Kx∗−Kxn−L(x∗−xn)]

+ (I−L)−1L(I−πn)(K−Kn)x∗

+ (I−L)−1L(I−πn)[Knx
∗−Knxn−Ln(x∗−xn)]

− (I−L)−1L(I−πn)(L−Ln)(x∗−xn).

By using (3.9), we deduce that

‖x∗− x̃n‖∞ ≤ c1(rn + qn)‖x∗−xn‖∞+ a‖L(I−πn)(K−Kn)x∗‖∞
+ a‖L(I−πn)(L−Ln)‖∞‖x∗−xn‖∞

and, by (3.11), the proof is complete. �

A preliminary result is proven first below.

Lemma 3.8. Let πn be the interpolatory projection at Gauss points.
For f ∈ Cr[0, 1], g ∈ C2r[0, 1], κ ∈ Cr[0, 1] and (∂ψ)/(∂u) ∈ Cr(Ω), we
have

(3.14) ‖L(I−πn)g‖∞ ≤ c‖g‖2r,∞h2r.

Proof. By the definition of L, we have

(L(I−πn)g)(s) =

∫ 1

0

κ(s, t)
∂ψ

∂u
(t, x∗(t))(I−πn)g(t) dt

=

∫ 1

0

q(s, t)(I−πn)g(t) dt,

where

q(s, t) = κ(s, t)
∂ψ

∂u
(t, x∗(t)).

Thus, by using (3.4), we obtain

‖L(I−πn)g‖∞

≤ c2
r∑
j=0

max
(s,t)∈[0,1]2

∣∣∣∣∂j+1κ(s, t)ψ(t, x∗(t))

∂tj∂u

∣∣∣∣‖k‖r,∞‖g‖2r,∞h2r,

which completes the proof. �
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Now, we are ready for the main theorem.

Theorem 3.9. Assume that the hypothesis of Theorem 3.5 are satisfied.
Further, we assume for interpolatory projection that (∂ψ)/(∂u) ∈ Cr(Ω).
Then, for n sufficiently large, the iterated solution x̃n, defined by (2.8),
satisfies

(3.15) ‖x∗− x̃n‖∞ = O(h4r).

Proof. For the orthogonal projection, we use the following identity
given in the proof of [20, Theorem 2.3]

(3.16) ‖x∗− x̃n‖∞ ≤ c[(1 + bn)rn + abn]‖x∗−xn‖∞.

By using (2.4), it can easily be verified that

(3.17) an = O(hr).

Hence, by the orthogonality of πn and the argument of Sloan [31,
Theorem 1], we have

(3.18) bn = ‖(I−πn)∗L∗‖∞ = ‖(I−πn)L∗‖∞ = O(hr).

Then, (3.15) follows by combining the estimates (3.7), (3.11), (3.16),
(3.17) and (3.18).

If πn is the interpolatory projection at r Gauss points, then, from
(3.13),

(3.19) ‖x∗− x̃n‖∞ ≤ c‖x∗−xn‖2∞
+ a‖L(I−πn)(K−Kn)x∗‖∞+ can‖x∗−xn‖.

On the other hand, by combining (3.14) and (3.5), we obtain

‖L(I−πn)(K−Kn)x∗‖∞ = O(h4r)

and thus, the desired result follows from estimates (3.7), (3.11)–(3.17)
and (3.19). �

One step of the Richardson extrapolation can be used to further
improve the order of convergence of x̃n. Let x̃2n be the iterated solution
associated with a uniform partition of [0, 1] with 2n intervals of length
h/2 and obtained by using the interpolatory projection at Gauss points.
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Define

xRn =
24rx̃2n− x̃n

24r − 1
.

Then, the following result can be proven.

Theorem 3.10. Let x∗ ∈X be the unique solution of (1.1), and assume
that 1 is not an eigenvalue of L. We assume that κ ∈ C2r+2[0, 1]2,
ψ ∈ C2r+2(Ω), f ∈ C2r+2[0, 1] and (∂ψ)/(∂u) ∈ Cr(Ω). Then:

(3.20) ‖x∗−xRn ‖∞ = O(h4r+2).

4. Case of kernels less smooth along the diagonal. Let α and
γ be two integers such that α≥ γ, α≥ 0 and γ ≥−1. We assume that
the kernel κ has the following form:

κ(s, t) =

{
κ1(s, t) 0≤ s≤ t≤ 1,

κ2(s, t) 0≤ t≤ s≤ 1,

with κ1 ∈ Cα({0≤ s≤ t≤ 1}), κ2 ∈ Cα ({0≤ t≤ s≤ 1}). If γ ≥ 0, then it
is assumed that κ∈ Cγ [0, 1]2 and, if γ =−1, then the kernel κ may have
a discontinuity of the first kind along the line s= t. Following Chatelin-
Lebbar [14], the class of kernels of the above form is denoted by C(α, γ).
The obvious examples of such kernels are Green’s functions of ordinary
differential equations and kernels of Voltera integral operators.

The operator
K : C[0, 1]−→ C[0, 1]

is compact, and the range of K, R(K), is contained in Cmin{α,γ+1}[0, 1].
For ν ≥ 0, set

Cν∆ = {y ∈ L∞ : y|Ei ∈ Cν(Ei), 1≤ i≤ n},

where ∆ is the quasi-uniform partition defined in Section 2 and
Ei = [si−1, si]. According to [10], K is a continuous map from Cα∆
to Cα∆.

Set
β = min{α, r},

γ1 = min{α, γ+ 1},

β1 = min{γ1, r}= min{α, r, γ+ 1}.
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If πn is either the orthogonal projection or the interpolatory projection
at Gauss points, then, from [14], we have for any x ∈ Cα∆,

(4.1) ‖(I−πn)x‖∞ ≤ c1‖x(β)‖∞hβ ,

and, if x ∈ C
η
∆ with 0≤ η ≤ α,

(4.2) ‖(I−πn)x‖∞ ≤ c1‖x(η1)‖∞hη1 ,

where η1 = min{η, r}.
To remove any ambiguity, in the remainder of the paper, Qn and πn

will denote the orthogonal projection and the interpolatory projection
at Gauss points, defined by (2.2) and (2.3), respectively.

4.1. Orthogonal projection. Let S denotes the linear integral oper-
ator defined by

(4.3) (Sx)(s) =

∫ 1

0

κ(s, t)x(t) dt, s ∈ [0, 1].

If the kernel κ ∈ C(α, γ), then, for x ∈ Cα∆,

(4.4) ‖S(I−Qn)x‖∞ ≤ c2‖x(β)‖∞hβ+β2 ,

and, for x ∈ C
β1

∆ ,

(4.5) ‖S(I−Qn)x‖∞ ≤ c2‖x(β1)‖∞hβ1+β2 ,

where
β2 = min{β, γ+ 2}= min{α, r, γ+ 2}.

Using these estimates, we prove the following, preliminary result.

Lemma 4.1. If the kernel κ ∈ C(α, γ), x ∈ Cα∆ and ψ ∈ Cα(Ω),

(4.6) ‖(K−Kn)x‖∞ ≤ c2Ψβh
β+β2 .

In addition, if g ∈ C
β1

∆ and (∂ψ)/(∂u) ∈ Cα(Ω), then

(4.7) ‖L(I−Qn)g‖∞ ≤ c2‖g(β1)‖∞hβ1+β2 .
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Proof. Writing (K − Kn)x = S(I − Qn)z, where z(t) = ψ(t, x(t)),
estimate (4.6) is immediate from (4.4). Note that, for g ∈ Cα∆,

(L(I−Qn)g)(s) =

∫ 1

0

κ(s, t)
∂ψ

∂u
(t, x(t))(I−Qn)g(t) dt

=

∫ 1

0

q(s, t)(I−Qn)g(t) dt,

with

q(s, t) = κ(s, t)
∂ψ

∂u
(t, x(t)).

Since, by assumption, (∂ψ)/(∂u) ∈ Cα(Ω), the kernel q(s, t) ∈ C(α, γ),
and, since L is a linear operator, the result follows from (4.5). �

Theorem 4.2. We assume that κ ∈ C(2α, γ), f ∈ Cα∆ and ψ ∈ Cα(Ω).
Let x∗ be the unique solution of (1.1). For all large n, we have

(4.8) ‖x∗−xn‖∞ = O(hβ+min{β+β1,γ+2}),

In addition, if (∂ψ)/(∂u) ∈ Cα(Ω), then

(4.9) ‖x∗− x̃n‖∞ = O(hβ+β2+min{β+β1,γ+2}).

Proof. Since f ∈ Cα∆, it follows from [14] that x∗ ∈ Cα∆, and, since
ψ ∈ Cα(Ω), we deduce that z∗(t) = ψ(t, x∗(t)) ∈ Cα∆. Now, since
Qnz

∗ ∈ C∞∆ , it follows that z∗−Qnz
∗ ∈ Cα∆. The linear operator S is a

continuous map from Cα∆ to C
γ1
∆ . Then, (K−Kn)x∗ = S(I−Qn)z∗ ∈ Cγ1∆ .

By (4.2), we obtain

(4.10) ‖(I−Qn)(K−Kn)x∗‖∞ ≤ c1‖[(K−Kn)x∗](β1)‖∞hβ1 .

We have

[(K−Kn)x∗](β1)(s) =

∫ 1

0

∂β1κ

∂sβ1
(s, t)(I−Qn)z∗(t) dt.

Since the kernel `(s, t) = (∂β1κ)/(∂sβ1)(s, t) ∈ C(2α − β1, γ − β1) ⊂
C(α, γ−β1), by (4.6), we obtain

(4.11) ‖[(K−Kn)x∗](β1)‖∞ = max
s∈[0,1]

|[(K−Kn)x∗](β1)(s)|

≤ c2Ψβh
β+min{β,γ−β1+2}.

By combining (3.8) and (4.10), the estimate (4.8) follows.
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For the iterated solution, by using estimate (3.13), we write

(4.12) ‖x∗− x̃n‖∞
≤ c(rn + qn)‖x∗−xn‖∞+ a‖L(I−πn)(K−Kn)x∗‖∞

+ a‖x∗−xn‖∞max
{
‖L(I−Qn)L‖∞, ‖L(I−Qn)Ln‖∞

}
.

From (3.11) and (4.8), the first term on right hand side of (4.12) is of
the order hβ

∗
, where

(4.13) β∗ = 2β+ 2 min{β+β1, γ+ 2} ≥ β+β2 + min{β+β1, γ+ 2}.

In addition, from (4.7) and (4.11), we have

(4.14) ‖L(I−Qn)(K−Kn)x∗‖∞ ≤ ‖[(K−Kn)x∗](β1)‖∞hβ1+β2 ,

≤ (c2)2Ψβh
β+β2+min{β+β1,γ+2}.

On the other hand, since Lg ∈ Cα∆ ⊂ C
β1

∆ , by (4.7), we get

‖L(I−Qn)Lg‖∞ ≤ c2‖(Lg)(β1)‖∞hβ1+β2 .

For g ∈ C∆, we have

(Lg)(β1)(s) =

∫ 1

0

∂β1κ

∂sβ1
(s, t)

∂ψ

∂u
(t, x∗(t))g(t) dt.

Thus,

‖(Lg)(β1)‖∞ ≤ max
t∈[0,1]

∣∣∣∣∂ψ∂u (t, x∗(t))

∣∣∣∣ max
(s,t)∈[0,1]2

∣∣∣∣∂β1κ

∂sβ1
(s, t)

∣∣∣∣‖g‖∞.
Hence,

‖L(I−Qn)L‖∞ = O(hβ1+β2).(4.15)

In a similar manner, we show that

(4.16) ‖L(I−Qn)Ln‖∞ = O(hβ1+β2).

Finally, combining estimates (4.12)–(4.16) and (4.19), the proof is
complete. �

Remark 4.3. The iterated Galerkin solution satisfies the following
equation:

xGn −KQnx
G
n = f.
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If the kernel κ ∈ C(α, γ), then, from [14]:

‖x∗−xGn ‖∞ = O(hβ+β2),

hence, for α≥ 0, x̃n converges to x∗ faster than xGn .

4.2. Interpolatory projection. We quote the following estimates

from [14]. If the kernel κ ∈ C(α, γ) with α≥ r, and x ∈ C
β3

∆ ,

(4.17) ‖S(I−πn)x‖∞ ≤ c‖x‖β3,∞h
β3 ,

where β3 = min{α, 2r, r+ γ+ 2}. Since (K−Kn)x= S(I−πn)z, then,

for x ∈ C
β3

∆ and ψ ∈ Cβ3(Ω),

(4.18) ‖(K−Kn)x‖∞ ≤ cΨβ3
hβ3 .

Theorem 4.4. We assume that κ ∈ C(2α, γ), f ∈ Cα∆ and ψ ∈ Cα(Ω)
with α≥ r. Let x∗ be the unique solution of (1.1). For all large n, we
have

(4.19) ‖x∗−xn‖∞ = O(hβ1+min{α,2r,r+γ−β1+2}).

Proof. Applying (4.2), we obtain

(4.20) ‖(I−πn)(K−Kn)x∗‖∞ ≤ c‖[(K−Kn)x∗](β1)‖∞hβ1 .

Since

[(K−Kn)x∗](β1)(s) =

∫ 1

0

∂β1κ

∂sβ1
(s, t)(I−πn)z∗(t) dt,

and the kernel `(s, t) = (∂β1κ)/(∂sβ1)(s, t) ∈ C(α, γ−β1), by (4.18), we
then obtain

(4.21) ‖[(K−Kn)x∗](β1)‖∞ ≤ cΨαh
min{α,2r,r+γ−β1+2}.

Combining (4.20) and (4.21), we obtain the desired result. �

Remark 4.5. Note that, for α≥ 2r since β = r, we have

β1 + min{α, 2r, r+ γ−β1 + 2}= β1 + min{2r, r+ γ−β1 + 2}
= r+ min{r+β1, γ+ 2}
= β+ min{β+β1, γ+ 2}.
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Thus, the method has the same order of convergence as in the case of
the orthogonal projection given by estimate (4.8).

4.3. Multi projection methods. In this section, we use two different
projectors to define the approximate operator KM

n . Let Qn and πn be
the orthogonal and interpolatory projections at Gauss points defined
by (2.2) and (2.3), respectively. Define

(4.22)
KM
n = QnK+Kn−QnKn,

K−KM
n = (I−Qn)(K−Kn),

where Kn is the approximate operator defined by (2.5), and based on
πn. We call this method the multi-projection 1 and, when the roles of
Qn and πn are permuted, the multi-projection 2. As in subsection 2.2,
the approximate solution is obtained by solving a nonlinear system of
size 2nr.

For the multi-projection 1, we have the following result.

Theorem 4.6. We assume that κ ∈ C(2α, γ), f ∈ Cα∆, ψ ∈ Cα(Ω) and
α≥ r. Let x∗ be the unique solution of (1.1). For all large n, we have

(4.23) ‖x∗−xn‖∞ = O(hβ1+min{α,2r,r+γ−β1+2}),

In addition, if (∂ψ)/(∂u) ∈ Cα(Ω), then

(4.24) ‖x∗− x̃n‖∞ = O(hβ1+β2+min{α,2r,r+γ−β1+2}).

Proof. From (4.2) and (4.18), the estimate (4.23) follows exactly in
the same manner as (4.19). Recall from (3.13) that

(4.25) ‖x∗− x̃n‖∞
≤ c‖x∗−xn‖2∞+ a‖L(I−Qn)(K−Kn)x∗‖∞

+ a‖x∗−xn‖∞max
{
‖L(I−Qn)L‖∞, ‖L(I−Qn)Ln‖∞

}
.

From (4.23), the first term on the right hand side of (4.25) is of the

order hβ , where

(4.26) β̄ = 2β1 + 2 min{α, 2r, r+ γ−β1 + 2}
≥ β1 +β2 + min{α, 2r, r+ γ−β1 + 2}.
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As before, we have from (4.7) and (4.21),

(4.27) ‖L(I−Qn)(K−Kn)x∗‖∞ ≤ ‖[(K−Kn)x∗](β1)‖∞
≤ cΨαh

β1+β2+min{α,2r,r+γ−β1+2}.

Now, by (4.15) and (4.16), the third term on the right hand side of
(4.14) is of the order:

O(hβ1+β2+min{α,2r,r+γ−β1+2}).

By combining (4.23), (4.25)–(4.27) and the above estimate, the proof is
complete. �

Note that, for α ≥ 2r, we obtain the same order of convergence
obtained by using the orthogonal projection given by estimate (4.9).

For the multi-projection 2, we can show the following result.

Theorem 4.7. We assume that κ ∈ C(2α, γ), f ∈ Cα∆ and ψ ∈ Cα(Ω).
Let x∗ be the unique solution of (1.1). For all large n, we have

(4.28) ‖x∗−xn‖∞ = O(hβ+min{β+β1,γ+2}).

Remark 4.8.

(a) For α ≥ 2r, the multi projection 1 has the same convergence
orders as the method using only orthogonal projection. The use of
both operators Qn and πn can reduce computational costs since the
expression of πn does not contain integrals.

(b) When the kernel is sufficiently smooth, the order of convergence
of these methods is also 3r, and that of the iterated version is 4r.

5. Numerical results. In this section, three examples are given to
illustrate the theory established in the previous sections. Let Xn be
the space of piecewise constant functions (r = 1) with respect to the
uniform partition of [0, 1] on n subintervals with mesh length h= 1/n

0<
1

n
<

2

n
< · · ·< n

n
= 1.

The projection πn is chosen either to be the interpolatory projection or
the orthogonal projection, with the range equal to Xn. In the case of
the interpolatory projection, the collocation points are the nr = nr = n
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midpoints

tk =
2k− 1

2n
, k = 1, . . . , n.

In implementing the methods described in the previous sections, the
associated nonlinear systems were solved using a Newton-Raphson
algorithm. We denote

‖x∗−xn‖∞ = O(hδ1), ‖x∗− x̃n‖∞ = O(hδ2).

Example 5.1. We consider the following Hammerstein integral equa-
tion with smooth kernel:

x(s)−
∫ 1

0

estlog(−x2(t) + t2 + 2) dt= f(s), s ∈ [0, 1],

where the exact solution is x∗(s) =
√
s, and f is chosen accordingly.

From Theorems 3.2 and 3.3, the expected orders of convergence are
δ1 = 3 and δ2 = 4. The results are given in Tables 1 and 2. It can
be seen that the computed orders of convergence match well with the
theoretically predicted values.

Table 1. Orthogonal projection.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 1.15× 10−3 5.30× 10−5

4 2.00× 10−4 2.53 3.48× 10−6 3.93
8 2.81× 10−5 2.83 2.20× 10−7 3.98
16 3.69× 10−6 2.93 1.38× 10−8 3.99
32 4.71× 10−7 2.97 8.65× 10−10 4.00

Table 2. Interpolatory projection.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 3.48× 10−3 3.23× 10−4

4 5.01× 10−4 2.80 2.14× 10−5 3.92
8 6.67× 10−5 2.91 1.36× 10−6 3.98
16 8.59× 10−6 2.96 8.53× 10−8 3.99
32 1.06× 10−6 2.98 5.34× 10−9 4.00
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Example 5.2. The second example is an equation quoted from [10]:

x(s) =

∫ 1

0

κ(s, t)[ψ(t, x(t)) + y(t)], s ∈ [0, 1],

with Green’s kernel

κ(s, t) =

{
−(1− t)s s≤ t,
−(1− s)t t≤ s,

and y(t) chosen so that x∗(s) = (s(1− s))/(s+ 1). In fact, this equation
is the reformulation of the boundary problem:

x′′(t) = ψ(t, x(t)) + y(t), 0< t < 1,

x(0) = x(1) = 0.

We consider the particular example

ψ(t, u) =
1

1 + t+u
.

For this equation, we have γ = 0, α =∞, r = 1 and β = β1 = β2 = 1.
From Theorems 4.1 and 4.3, the expected orders of convergence are
δ1 = 3 and δ2 = 4. The results are given in Tables 3 and 4.

Table 3. Orthogonal projection.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 2.02× 10−3 1.74× 10−5

4 4.71× 10−4 2.10 1.89× 10−6 3.20
8 8.12× 10−5 2.54 1.51× 10−7 3.65
16 1.25× 10−5 2.70 9.15× 10−9 4.04
32 1.73× 10−6 2.85 6.84× 10−10 3.74

Table 4. Multi projection 1.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 1.09× 10−3 1.27× 10−5

4 2.62× 10−4 2.05 1.40× 10−6 3.18
8 4.52× 10−5 2.54 1.12× 10−7 3.65
16 6.87× 10−6 2.72 7.36× 10−9 3.92
32 7.46× 10−7 3.20 4.54× 10−10 4.02
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Figure 1. Errors of the two methods.
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Figure 2. The iterated versions.

For the sake of completeness, we illustrate in Figures 1 and 2 the
approximation errors |x∗(s)− xn(s)| and |x∗(s)− x̃n(s)| obtained by
the two methods (multi projection 1 in blue) with n= 2.

Example 5.3. In this example, we choose the next equation with
discontinuous kernel along the diagonal, that is,

x(s)−
∫ 1

0

κ(s, t)x2(t) = s− 1
4 (s− 2s5), s ∈ [0, 1],

where

κ(s, t) =

{
st s≤ t,
−st t≤ s,

and the exact solution is x∗(s) = s. For this example, we have γ =−1,
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Table 5. Multi projection 1.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 7.14× 10−2 8.04× 10−3

4 2.16× 10−2 1.72 1.38× 10−3 2.54
8 5.63× 10−3 1.94 2.60× 10−4 2.41
16 1.28× 10−3 2.14 2.21× 10−5 3.56

Table 6. Multi projection 2.

n ‖x∗−xn‖∞ δ1 ‖x∗− x̃n‖∞ δ2

2 6.01× 10−2 1.01× 10−2

4 2.03× 10−2 1.57 3.20× 10−3 1.66
8 5.76× 10−3 1.81 7.96× 10−4 2.01
16 1.77× 10−3 1.71 2.41× 10−4 1.72

α =∞, r = 1, β1 = 0, and β = β2 = 1. From Theorems 4.1 and 4.3,
the expected orders of convergence are δ1 = 2 and δ2 = 3 for the multi
projection 1 and δ1 = 2 for the multi projection 2. The results are given
in Tables 5 and 6.

Note that the computed values of orders of convergence in all of the
cases are as expected. The integrals appearing in the nonlinear systems
have been evaluated by using the composite Gauss 2 point rule with
respect to a uniform partition.

6. Conclusions. The method presented in this paper naturally
extends to iterated schemes for less smooth kernels to further improve
the order of convergence as well as multivariable integral equations.
They may be extended to Hammerstein integral equations with weakly
singular kernels. That is a consideration for future papers.
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