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STABLE AND CENTER-STABLE MANIFOLDS OF
ADMISSIBLE CLASSES FOR PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

TRINH VIET DUOC AND NGUYEN THIEU HUY

ABSTRACT. In this paper, we investigate the existence
of stable and center-stable manifolds of admissible classes
for mild solutions to partial functional differential equations
of the form u̇(t) = A(t)u(t) + f(t, ut), t ≥ 0. These
manifolds are constituted by trajectories of the solutions
belonging to admissible function spaces which contain wide
classes of function spaces like Lp-spaces and many other
function spaces occurring in interpolation theory such as
the Lorentz spaces Lp,q . Results in this paper are the
generalization and development for our results in [15].
The existence of these manifolds obtained in the case that
the family of operators (A(t))t≥0 generate the evolution
family (U(t, s))t≥s≥0 having an exponential dichotomy or
trichotomy on the half-line and the nonlinear forcing term f
satisfies the φ-Lipschitz condition, i.e., ∥f(t, ut) − f(t, vt)∥ ≤
φ(t)∥ut − vt∥C , where ut, vt ∈ C := C([−r, 0], X), and
φ(t) belongs to some admissible Banach function space and
satisfies certain conditions.

1. Introduction. In this paper, we generalize and develop the re-
sults in Huy and Duoc [15] regarding the existence of stable and center-
stable manifolds for mild solutions to partial functional differential
equations of the form

(1.1)
du

dt
= A(t)u(t) + f(t, ut), t ∈ [0,+∞),
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where A(t) is a (possibly unbounded) linear operator on a Banach
space X for every fixed t;

f : R+ × C −→ X

is a continuous nonlinear operator, C := C([−r, 0], X) is the Banach
space of all continuous functions from [−r, 0] into X, equipped with
the norm ∥ϕ∥C = supθ∈[−r,0] ∥ϕ(θ)∥ for ϕ ∈ C, and ut is the history

function defined by ut(θ) := u(t+ θ) for θ ∈ [−r, 0].
In the literature on the existence of manifolds the assumption that

the linear operators (A(t))t≥0, which generate the evolution family,
having an exponential dichotomy or trichotomy has seen little change.
The most popular condition imposed on f is its uniform Lipschitz
continuity with a sufficiently small Lipschitz constant, i.e.,

∥f(t, ϕ)− f(t, ψ)∥ ≤ q∥ϕ− ψ∥C
for q small enough (see [1–6], [8, 10, 11, 17, 20]). However, for equa-
tions arising in complicated reaction-diffusion processes, the mapping f
represents the source of material or population in many contexts where
the Lipschitz coefficient depends on time (see [21, Chapter 11], [22],
[26]). Therefore, a natural problem to study is the existence of man-
ifolds when the mapping f has the Lipschitz coefficient dependent on
time. Recently, we obtained exciting results in [12, 13, 15, 16] for
the existence of manifolds based on the notion of admissible Banach
function spaces which allow the Lipschitz coefficient of f to depend
upon time. More concretely, in [15], we have established results on the
existence of stable and center-stable manifolds for solutions to partial
functional differential equations (1.1), but these manifolds are created
by trajectories of bounded solutions.

The purpose of this paper is to show the existence of stable and
center-stable manifolds of the E-class for equation (1.1). These mani-
folds are created by solution trajectories in the admissible Banach space
E , see Definitions 2.2 and 2.5. The manifold of the E-class can contain
solution trajectories in spaces Lp with 1 ≤ p ≤ ∞, Lorentz spaces Lp,q

or some function spaces occurring in interpolation theory. Thus, the
results in [15] are only a specific case of E-class manifolds (L∞).

The difficulties in this paper which we must surmount, as compared
to [15], include: formulating the definition of invariant manifolds of the
E-class such that it contains the existence and uniqueness theorem as
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a property of the manifold (see Definition 3.3 below), overcoming some
proof techniques in the paper [15] and imposing suitable conditions for
the function φ and the admissible Banach function space E.

The paper is organized as follows. Section 2 recalls some notions
on function spaces and redefines the the exponentially E-invariant
function. Section 3 proves the existence of the invariant stable manifold
of E-class for the mild solutions of equation (1.1): the main results are
Theorems 3.6 and 3.7. The last part in Section 3 is Example 3.8, which
shows the existence of the invariant stable manifold of E-class which
is created by trajectories of the solutions belonging to spaces Lq(R+).
Section 4 proves the existence of the invariant center-stable manifold
of E-class for the mild solutions of equation (1.1), the main result of
which is Theorem 4.2, obtained by the method of recalling the evolution
family and then applying Theorems 3.6 and 3.7. Finally, Example 4.3
shows the existence of the invariant center-stable manifold of the E-
class, which is created by trajectories of the solutions in the Lorentz
space L2,1(R+).

2. Function spaces and admissibility. We recall some notions
on function spaces and refer the reader to Massera and Schäffer [18]
and Räbiger and Schnaubelt [23] for concrete applications.

Denote by B the Borel algebra and by λ the Lebesgue measure on
R+. The space L1,loc(R+) of real-valued locally integrable functions
on R+ (modulo λ-nullfunctions) becomes a Fréchet space with the
countable family of seminorms

pn(f) :=

∫
Jn

|f(t)| dt,

where Jn = [n, n+ 1] for each n ∈ N, see [18, Chapter 2, Section 20].

We can now define Banach function spaces as follows.

Definition 2.1. A vector space E of real-valued Borel-measurable
functions on R+ (modulo λ-nullfunctions) is called a Banach function
space (over (R+,B, λ)) if

(i) E is a Banach lattice with respect to a norm ∥ · ∥E , i.e.,
(E, ∥·∥E) is a Banach space, and if φ ∈ E and ψ is a real-valued
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Borel-measurable function such that |ψ(·)| ≤ |φ(·)|, λ-almost
everywhere, then ψ ∈ E and ∥ψ∥E ≤ ∥φ∥E ;

(ii) the characteristic functions χA belong to E for all A ∈ B of fi-
nite measure, and supt≥0 ∥χ[t,t+1]∥E <∞ and inft≥0 ∥χ[t,t+1]∥E
> 0;

(iii) E ↩→ L1,loc(R+), i.e., for each seminorm pn of L1,loc(R+) there
exists a number βpn > 0 such that pn(f) ≤ βpn∥f∥E for all
f ∈ E.

Next, we define Banach space E corresponding to Banach function
space E as follows.

Definition 2.2. Let E be a Banach function space and C :=C([−r, 0], X)
a Banach space endowed with the norm ∥ · ∥C . We set

E := E(R+, C) = {f : R+ −→ C such that

f is strongly measurable and ∥f(·)∥C ∈ E},

endowed with the norm ∥f∥E = ∥∥f(·)∥C∥E . We can easily see that E
is a Banach space. We call E the Banach space corresponding to the
Banach function space E.

Remark 2.3. Note that, in Definition 2.2, we can replace C by an
arbitrary Banach space.

We now introduce the notion of admissibility in the following defi-
nition.

Definition 2.4. The Banach function space E is called admissible if

(i) there is a constant M ≥ 1 such that∫ b

a

|φ(t)| dt ≤ M(b− a)

∥χ[a,b]∥E
∥φ∥E

for any compact interval [a, b] ⊂ R+ and for all φ ∈ E.
(ii) For φ ∈ E, the function Λ1φ defined by

Λ1φ(t) =

∫ t+1

t

φ(τ) dτ

belongs to E;
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(iii) E is T+
τ -invariant and T−

τ -invariant, where T+
τ and T−

τ are
defined for τ ∈ R+ by

T+
τ φ(t) =

{
φ(t− τ) for t ≥ τ ≥ 0

0 for 0 ≤ t < τ

T−
τ φ(t) = φ(t+ τ) for t ≥ 0.

(iv) The linear operators T+
τ and T−

τ are uniformly bounded, i.e.,
there are constants N1 and N2 such that

∥T+
τ ∥ ≤ N1, ∥T−

τ ∥ ≤ N2 for all τ ∈ R+.

Definition 2.5. Let E be an admissible Banach function space. Then,
E is called an admissible Banach space.

Example 2.6. The Banach function spaces Lp(R+), 1 ≤ p ≤ ∞ are
admissible. In addition, the space

M(R+) :=

{
f ∈ L1,loc(R+) : sup

t≥0

∫ t+1

t

|f(τ)| dτ <∞
}

endowed with the norm ∥f∥M := supt≥0

∫ t+1

t
|f(τ)| dτ and many other

function spaces occurring in interpolation theory, e.g., the Lorentz
spaces Lp, q(R+), 1 < p <∞, 1 ≤ q ≤ ∞ are also admissible.

Remark 2.7. We can easily see that, if E is an admissible Banach
function space, then E ↩→ M(R+).

We now collect some properties of admissible Banach function spaces
in the following proposition (see [13, Proposition 2.6]).

Proposition 2.8. Let E be an admissible Banach function space.
Then, the following assertions hold.

(a) Let φ ∈ L1,loc(R+) such that φ ≥ 0 and Λ1φ ∈ E, where Λ1 is
defined as in Definition 2.4 (ii). For σ > 0, we define functions Λσφ
and Λσφ by
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Λσφ(t) =

∫ t

0

e−σ(t−s)φ(s) ds,

Λσφ(t) =

∫ ∞

t

e−σ(s−t)φ(s) ds.

Then, Λσφ and Λσφ belong to E. In particular, if supt≥0

∫ t+1

t
|φ(τ)| dτ

< ∞ (this will be satisfied if φ ∈ E, see Remark 2.7), then Λσφ and
Λσφ are bounded. Moreover, with the ess sup norm denoted by ∥ · ∥∞,
we have

∥Λσφ∥∞ ≤ N1

1− e−σ
∥Λ1T

+
1 φ∥∞

∥Λσφ∥∞ ≤ N2

1− e−σ
∥Λ1φ∥∞.

(b) E contains exponentially decaying functions ψ(t) = e−αt for
t ≥ 0 and any fixed constant α > 0.

(c) E does not contain exponentially growing functions f(t) = ebt

for t ≥ 0 and any constant b > 0.

We next define the associate spaces of Banach function spaces, as
follows.

Definition 2.9. Let E be an admissible Banach function space and
denote by S(E) the unit sphere in E. Recall that L1 = {g : R+ → R | g
is measurable and

∫∞
0

|g(t)| dt < ∞}. Then, we consider the set E′ of
all measurable real-valued functions ψ on R+ such that

φψ ∈ L1,

∫ ∞

0

|φ(t)ψ(t)| dt ≤ k for all φ ∈ S(E),

where k depends only upon ψ. Then, E′ is a normed space with the
norm given by (see [18, Chapter 2, 22.M])

∥ψ∥E′ := sup

{∫ ∞

0

|φ(t)ψ(t)| dt : φ ∈ S(E)

}
for ψ ∈ E′.

We call E′ the associated space of E.

Remark 2.10. Let E be an admissible Banach function space and E′

its associated space. Then, from [18, Chapter 2, 22.M], we also have
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that the following “Hölder’s inequality” holds:

(2.1)

∫ ∞

0

|φ(t)ψ(t)| dt ≤ ∥φ∥E∥ψ∥E′ for all φ ∈ E, ψ ∈ E′.

In order to study the existence of stable and center-stable manifolds
of the E-class for partial functional differential equations, in this paper,
we will consider the admissible Banach function space E such that its
associate space E′ is also an admissible Banach function space. We
give the following definition of an exponentially E-invariant function.

Definition 2.11. Let E be an admissible Banach function space and E′

its associated space. A positive function φ ∈ E′ is called exponentially
E-invariant if, for any fixed ν > 0, the function hν , defined by

hν(t) := ∥e−ν|t−·|φ(·)∥E′ for t ≥ 0,

belongs to E.

We also give here some examples of admissible Banach function
spaces and their associated function spaces which satisfy the above
definition. Note that the functions φ(t) = βe−αt for t ≥ 0 and
fixed β, α > 0 are exponentially E-invariant to any admissible Banach
function space E.

Example 2.12. L′
p(R+) = Lq(R+) for 1/p + 1/q = 1, 1 ≤ p ≤ ∞

and the Lorentz spaces Lp,q(R+) have L′
p,q(R+) = Lp′,q′(R+) with

1/p + 1/p′ = 1, 1/q + 1/q′ = 1, 1 < p < ∞, 1 ≤ q ≤ ∞. In addition
to the functions of the form φ(t) = βe−αt, it can be seen that the
functions of the form φ = cχ[a,b] for any fixed constant c > 0 and any
finite interval [a, b] ⊂ R+ are also exponentially E-invariant functions,
in which E are the spaces Lp(R+) or Lp,q(R+).

3. Exponential dichotomy and stable manifold of E-class. In
this section, we prove the existence of the stable manifold of the E-class,
see Definition 3.3, for the mild solutions of equation (1.1). Throughout
this section, we assume that the evolution family (U(t, s))t≥s≥0 has an
exponential dichotomy on R+.
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We now make precise the notion of exponential dichotomy in the
following definition.

Definition 3.1. An evolution family (U(t, s))t≥s≥0 on the Banach
spaceX is said to have an exponential dichotomy on [0,∞) if there exist
bounded linear projections P (t), t ≥ 0, on X and positive constants
N, ν such that

(a) U(t, s)P (s) = P (t)U(t, s), t ≥ s ≥ 0;
(b) the restriction U(t, s)| : KerP (s) → KerP (t), t ≥ s ≥ 0,

is an isomorphism, and we denote its inverse by U(s, t)| :=

(U(t, s)|)
−1, 0 ≤ s ≤ t;

(c) ∥U(t, s)x∥ ≤ Ne−ν(t−s)∥x∥ for x ∈ P (s)X, t ≥ s ≥ 0;
(d) ∥U(s, t)|x∥ ≤ Ne−ν(t−s)∥x∥ for x ∈ KerP (t), t ≥ s ≥ 0.

The projections P (t), t ≥ 0, are called the dichotomy projections, and
the constants N, ν the dichotomy constants.

When the evolution family (U(t, s))t≥s≥0 on the Banach space X
has an exponential dichotomy on [0,∞), we can define the family of

operators (P̃ (t))t≥0 on C as follows.

(3.1)
P̃ (t) : C −→ C

(P̃ (t)ϕ)(θ) = U(t− θ, t)P (t)ϕ(0) for all θ ∈ [−r, 0].

Then, we have that (P̃ (t))2 = P̃ (t), and therefore, the operators P̃ (t),
t ≥ 0, are projections on C. Moreover,

ImP̃ (t) = {ϕ ∈ C : ϕ(θ) = U(t− θ, t)ν0

for all θ ∈ [−r, 0] for some ν0 ∈ ImP (t)}.

Next, we provide the notion of the φ-Lipschitz of the nonlinear
term f .

Definition 3.2. Let E be an admissible Banach function space and φ
a positive function belonging to E. A function f : [0,∞) × C → X is
said to be φ-Lipschitz if f satisfies:

(i) f(t, 0) = 0 for all t ∈ R+;
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(ii) ∥f(t, ϕ1) − f(t, ϕ2)∥ ≤ φ(t)∥ϕ1 − ϕ2∥C for all t ∈ R+ and all
ϕ1, ϕ2 ∈ C.

Note that, if f(t, ϕ) is φ-Lipschitz, then ∥f(t, ϕ)∥ ≤ φ(t)∥ϕ∥C for all
ϕ ∈ C and t ≥ 0.

The stable manifold of the E-class is constituted by mild solutions
of equation (1.1), that is, solutions of the following integral equation

(3.2)

u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ, uξ) dξ for t ≥ s ≥ 0,

us = ϕ ∈ C,

with (U(t, s))t≥s≥0 a given evolution family. We note that, if the evolu-
tion family (U(t, s))t≥s≥0 arises from the well-posed Cauchy problem,
then the function u : [s − r,∞) → X, which satisfies equation (3.2)
for some given function f , is called a mild solution of the semilinear
problem 

du

dt
= A(t)u(t) + f(t, ut), t ≥ s ≥ 0,

us = ϕ ∈ C.

Now, let E := E(R+, C) be the admissible Banach space correspond-
ing to admissible Banach function space E. Next, we give the definition
of a stable manifold of E-class for the solutions of equation (3.2).

Definition 3.3. A set S ⊂ R+ × C is said to be an invariant stable
manifold of E-class for the solutions to equation (3.2) if, for every

t ∈ R+, the phase space C splits into a direct sum C = X̃0(t) ⊕ X̃1(t)

with corresponding projections P̃ (t), i.e., X̃0(t) = ImP̃ (t) and X̃1(t) =

Ker P̃ (t), such that

sup
t≥0

∥P̃ (t)∥ <∞,

and there exists a family of Lipschitz mappings

Φt : X̃0(t) −→ X̃1(t), t ∈ R+,

with the Lipschitz constants independent of t such that:
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(i) S = {(t, ψ+Φt(ψ)) ∈ R+ × (X̃0(t)⊕ X̃1(t)) | t ∈ R+, ψ ∈ X̃0(t)},
and we denote

St := {ψ +Φt(ψ) : (t, ψ +Φt(ψ)) ∈ S};

(ii) St is homeomorphic to X̃0(t) for all t ≥ 0;

(iii) to each ϕ ∈ Ss, there corresponds one and only one solution u(t)
to equation (3.2) on [s − r,∞) satisfying the initial condition us = ϕ
and the function

z(t) =

{
ut for t ≥ s,

0 for 0 ≤ t < s

belongs to E . Moreover, any two solutions u(t) and v(t) of equa-
tion (3.2) corresponding to different functions ϕ1, ϕ2 ∈ Ss attract each
other exponentially in the sense that there exist positive constants µ
and Cµ independent of s ≥ 0 such that

(3.3) ∥ut−vt∥C ≤ Cµe
−µ(t−s)∥(P̃ (s)ϕ1)(0)−(P̃ (s)ϕ2)(0)∥ for t ≥ s;

(iv) S is positively invariant under equation (3.2), i.e., if u(t),
t ≥ s − r, is a solution to equation (3.2) such that initial conditions
us ∈ Ss and z(t) ∈ E , then we have ut ∈ St for all t ≥ s.

Note that, if we identify X̃0(t) ⊕ X̃1(t) with X̃0(t) × X̃1(t), then we
can write St = graph(Φt). This definition is a natural extension of the
definition of stable manifold in the papers [12, 15, 20].

Let the evolution family (U(t, s))t≥s≥0 have an exponential di-
chotomy with the dichotomy projections P (t), t ≥ 0, and constants
N, ν > 0. Note that the exponential dichotomy of (U(t, s))t≥s≥0 im-
plies that H := supt≥0 ∥P (t)∥ < ∞ and the map t 7→ P (t) is strongly
continuous (see [19, Lemma 4.2]). We can then define the Green’s
function on the half-line as:

(3.4) G(t, τ) =

{
P (t)U(t, τ) for t > τ ≥ 0

−U(t, τ)|(I − P (τ)) for 0 ≤ t < τ.

It follows from the exponential dichotomy of (U(t, s))t≥s≥0 that

∥G(t, τ)∥ ≤ N(1 +H)e−ν|t−τ | for all t ̸= τ.
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The next lemma gives the form of the solution to equation (3.2)
which belongs to E .

Lemma 3.4. Let the evolution family (U(t, s))t≥s≥0 have exponential
dichotomy with the dichotomy projections P (t), t ≥ 0, and dichotomy
constants N, ν > 0. Let E be the admissible Banach function space,
E′ its associated space and E := E(R+, C) an admissible Banach space
corresponding to E. Suppose that φ ∈ E′ is exponentially E-invariant
function, defined as in Definition 2.11. Let f : R+ × C → X be φ-
Lipschitz and u(t) a solution to equation (3.2) such that the function

z(t) =

{
ut for t ≥ s,

0 for 0 ≤ t < s

belongs to E for fixed s ≥ 0. Then, for t ≥ s, we can rewrite u(t) in
the form

(3.5)

u(t) = U(t, s)ν0 +

∫ ∞

s

G(t, τ)f(τ, uτ ) dτ,

us = ϕ ∈ C,

for some ν0 ∈ X0(s) = P (s)X, where G(t, τ) is the Green’s function
defined as in (3.4).

Proof. Set

y(t) =

∫ ∞

s

G(t, τ)f(τ, uτ ) dτ

for t ≥ s and y(t) = 0 for 0 ≤ t < s. We have

∥y(t)∥ ≤ N(1 +H)

∫ ∞

s

e−ν|t−τ |φ(τ)∥uτ∥C dτ

= N(1 +H)

∫ ∞

0

e−ν|t−τ |φ(τ)∥z(τ)∥C dτ.

Using “Hölder’s inequality” (2.1), we obtain

(3.6) ∥y(t)∥ ≤ N(1 +H)∥e−ν|t−·|φ(·)∥E′∥z∥E .

Note that the function hν(t) = ∥e−ν|t−·|φ(·)∥E′ belongs to E. There-
fore, by the Banach lattice property, we have that the function ∥y(t)∥ ∈
E. Similarly, we also have the function ∥u(t)∥ ∈ E. On the other hand,
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U(t, s)y(s) = −
∫ t

s

U(t, s)U(s, τ)|(I − P (τ))f(τ, uτ ) dτ

−
∫ ∞

t

U(t, s)U(s, τ)|(I − P (τ))f(τ, uτ ) dτ

= −
∫ t

s

U(t, τ)(I − P (τ))f(τ, uτ ) dτ

−
∫ ∞

t

U(t, τ)|(I − P (τ))f(τ, uτ ) dτ.

Therefore,

y(t) = U(t, s)y(s) +

∫ t

s

U(t, τ)f(τ, uτ ) dτ.

Since u(t) is a solution of equation (3.2), we obtain that u(t)− y(t) =
U(t, s)(u(s)− y(s)). Now, set ν0 = u(s)− y(s). From the fact that the
functions ∥y(t)∥ and ∥0u(t)∥ belong to E, it is implied that ν0 ∈ X0(s)
and P (s)u(s) = P (s)ϕ(0) = ν0. Therefore, u(t) = U(t, s)ν0 + y(t) for
t ≥ s. �

Remark 3.5. Equation (3.5) is called the Lyapunov-Perron equation.
By computing directly, we can see that the converse of Lemma 3.4 is
also true. This means that all solutions of the integral equation (3.5)
belonging to E are also solutions of equation (3.2) in the admissible
Banach space E for t ≥ s.

Using admissibility, we construct the structure of solutions of equa-
tion (3.2) in the following theorem.

Theorem 3.6. Let the evolution family (U(t, s))t≥s≥0 have exponential
dichotomy with the dichotomy projections P (t), t ≥ 0, and dichotomy
constants N, ν > 0. Let E and E′ be, respectively, an admissible
Banach function space and its associate space. Define the function
hν(t) = ∥e−ν|t−·|φ(·)∥E′ for t ≥ 0. Then, we have that, if the function f
is φ-Lipschitz with φ ∈ E′ being an exponentially E-invariant function
and

N(1 +H)eνr∥hν∥E < 1,
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then there corresponds to each ϕ ∈ ImP̃ (s) one and only one solution

u(t) of equation (3.2) on [s−r,∞), satisfying the condition P̃ (s)us = ϕ
and the function

z(t) =

{
ut for t ≥ s,

0 for 0 ≤ t < s,

belong to E. Moreover, if

N(1 +H)eνr(N1∥Λ1T
+
1 φ∥∞ +N2∥Λ1φ∥∞) < 1,

then the following estimate is valid for any two solutions u(t) and v(t)

corresponding to different initial functions ϕ1, ϕ2 ∈ ImP̃ (s):

∥ut − vt∥C ≤ Cµe
−µ(t−s)∥ϕ1(0)− ϕ2(0)∥ for all t ≥ s ≥ 0,

where µ is a positive number satisfying

0 < µ < ν + ln
(
1−N(1 +H)eνr(N1∥Λ1T

+
1 φ∥∞ +N2∥Λ1φ∥∞)

)
,

and

Cµ :=
Neνr

1− [N(1 +H)eνr]/[1− e−(ν−µ)](N1∥Λ1T
+
1 φ∥∞ +N2∥Λ1φ∥∞)

.

Proof. For ease of exposition, the proof is divided into two steps.

Step I. To point out the existence and uniqueness of solution for

equation (3.2) with each ϕ ∈ ImP̃ (s). Denote by C([s − r,∞), X) the
set of bounded, continuous andX-valued functions defined on [s−r,∞).
Setting ν0 := ϕ(0), for each z ∈ E := E(R+, C) then we have the
function Hz ∈ C([s− r,∞), X), defined as:

(Hz)(t) =


U(2s− t, s)ν0 +

∫ ∞

s

G(2s− t, τ)f(τ, z(τ)) dτ t∈ [s− r, s]

U(t, s)ν0 +

∫ ∞

s

G(t, τ)f(τ, z(τ)) dτ t≥s.

We will prove that the transformation T , defined by

(Tz)(t) =

{
(Hz)t for t ≥ s,

0 for 0 ≤ t < s

acts from E into E and is a contraction mapping.
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In fact, we have

∥(Hz)(t)∥ ≤



Ne−ν(s−t)∥ν0∥+N(1 +H)∫ ∞

s

e−ν|2s−t−τ |φ(τ)∥z(τ)∥C dτ for s−r≤ t≤s,

Ne−ν(t−s)∥ν0∥+N(1 +H)∫ ∞

s

e−ν|t−τ |φ(τ)∥z(τ)∥C dτ for t≥s.

Therefore, for t ≥ s, then

∥(Hz)t∥C = sup
θ∈[−r,0]

∥(Hz)(t+ θ)∥ ≤ Neνre−ν(t−s)∥ν0∥

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |φ(τ)∥z(τ)∥C dτ.

Using “Hölder’s inequality” (2.1), we obtain

∥(Hz)t∥C ≤ NeνrT+
s eν(t)∥ν0∥+N(1 +H)eνrhν(t)∥z∥E ,

where ∥z∥E = ∥∥z(τ)∥C∥E , hν(t) = ∥e−ν|t−·|φ(·)∥E′ and

T+
s eν(t) =

{
e−ν(t−s) for t ≥ s,

0 for 0 ≤ t < s.

Since the functions T+
s eν(t), hν(t) ∈ E, by the Banach lattice property

of E, therefore, function ∥(Tz)(t)∥C ∈ E. Thus, Tz ∈ E .

Next, we prove that, if N(1 + H)eνr∥hν∥E < 1, then T is the
contraction. For x, z ∈ E , we have estimate

∥(Hx)t − (Hz)t∥C ≤ N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |φ(τ)∥x(τ)− z(τ)∥C dτ

for t ≥ s. By “Hölder’s inequality” (2.1), we obtain

∥(Hx)t − (Hz)t∥C ≤ N(1 +H)eνrhν(t)∥x− z∥E .

From the Banach lattice property of E, we have

∥Tx− Tz∥E ≤ N(1 +H)eνr∥hν∥E∥x− z∥E .
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Thus, T is a contractive mapping. Hence, there exists a unique z ∈ E
such that Tz = z. Therefore, we have

z(t) =

{
(Hz)t for t ≥ s,

0 for 0 ≤ t < s.

This yields

(Hz)(t) =


U(2s− t, s)ν0

+

∫ ∞

s

G(2s− t, τ)f(τ, (Hz)τ ) dτ t ∈ [s− r, s]

U(t, s)ν0 +

∫ ∞

s

G(t, τ)f(τ, (Hz)τ ) dτ t ≥ s.

Hence, u(t) = (Hz)(t) is unique solution of equation (3.5). By
Lemma 3.4 and Remark 3.5, then u(t) is also a unique solution of
equation (3.2) with

us(θ) = U(s− θ, s)ν0 +

∫ ∞

s

G(s− θ, τ)f(τ, uτ ) dτ

for θ ∈ [−r, 0], and P (s)u(s) = ν0 = ϕ(0). Therefore, P̃ (s)us = ϕ by

the definition of P̃ (s), see equality (3.1).

Step II. Show that any two solutions have the property of exponen-
tial attraction. Let u(t), v(t) be two solutions to equation (3.5), cor-

responding to different initial functions ϕ1, ϕ2 ∈ ImP̃ (s), respectively.
Setting ν1 := ϕ1(0) and ν2 := ϕ2(0), we have that

∥u(t)− v(t)∥

≤



N(1 +H)

∫ ∞

s

e−ν|t−τ |φ(τ)∥uτ − vτ∥C dτ

+Ne−ν(t−s)∥ν1 − ν2∥ if t ≥ s,

N(1 +H)

∫ ∞

s

e−ν|2s−t−τ |φ(τ)∥uτ − vτ∥C dτ

+Ne−ν(s−t)∥ν1 − ν2∥ if s− r ≤ t ≤ s.
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Since t+ θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and θ ∈ [−r, 0], we obtain

∥ut − vt∥C ≤ Neνre−ν(t−s)∥ν1 − ν2∥

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |φ(τ)∥uτ − vτ∥C dτ, t ≥ s.

Set

h(t) =

{
∥ut − vt∥C for t ≥ s,

0 for 0 ≤ t < s.

Then, h(t) ∈ E, and

(3.7)

h(t) ≤ Neνre−ν(t−s)∥ν1 − ν2∥

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |φ(τ)h(τ) dτ, t ≥ s.

We will use the cone inequality theorem (see [13, Theorem 2.8]) for
admissible Banach function space E and the cone K as the set of all
nonnegative functions. We then consider the linear operator A, defined
for g ∈ E, by

(Ag)(t) =

{
N(1 +H)eνr

∫∞
s
e−ν|t−τ |φ(τ)g(τ) dτ for t ≥ s,

0 for 0 ≤ t < s.

By “Hölder’s inequality” (2.1),

|(Ag)(t)| ≤ N(1 +H)eνrhν(t)∥g∥E .

From the Banach lattice property of E, we have ∥Ag∥E ≤ N(1 +
H)eνr∥hν∥E∥g∥E . Therefore, A ∈ L(E) and ∥A∥ ≤ N(1+H)eνr∥hν∥E
< 1. Obviously, the cone K is invariant under the operator A.
Inequality (3.7) can now be rewritten as

h ≤ Ah+ z for z(t) = Neνre−ν(t−s)∥ν1 − ν2∥.

From the cone inequality theorem [13, Theorem 2.8], we obtain that
h ≤ g, where g is a solution in E of the equation g = Ag + z, which
can be rewritten as:

g(t) = Neνre−ν(t−s)∥ν1 − ν2∥+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |φ(τ)g(τ) dτ
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for t ≥ s. We set w(t) = eµ(t−s)g(t) for t ≥ s. Then, we obtain that w
is solution of the equation

(3.8)

w(t) = Neνre−(ν−µ)(t−s)∥ν1 − ν2∥

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |+µ(t−τ)φ(τ)w(τ) dτ.

We find w in L∞[s,∞), which is a space of real-valued functions, defined
and essentially bounded on [s,∞) (endowed with the sup-norm denoted
by ∥ · ∥∞). We consider the linear operator K, defined on L∞[s,∞)

(Kϕ)(t) = N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |+µ(t−τ)φ(τ)ϕ(τ) dτ for all t ≥ s.

By Proposition 2.8, it can easily be seen that K ∈ L(L∞[s,∞)) and

∥K∥ ≤ N(1 +H)eνr

1− e−(ν−µ)
(N1∥Λ1T

+
1 φ∥∞ +N2∥Λ1φ∥∞).

Equation (3.8) can be rewritten as:

w = Kw + z̃ for z̃(t) = Neνre−(ν−µ)(t−s)∥ν1 − ν2∥.

We have ∥K∥ < 1 if

0 < µ < ν + ln
(
1−N(1 +H)eνr(N1∥Λ1T

+
1 φ∥∞ +N2∥Λ1φ∥∞)

)
.

Under this condition, the equation w = Kw+ z̃ has the unique solution
w ∈ L∞[s,∞) and w = (I −K)−1z̃. Hence, we obtain that

∥w∥∞ = ∥(I −K)−1z̃∥∞ ≤ Neνr

1− ∥K∥
∥ν1 − ν2∥

≤ Neνr∥ν1 − ν2∥
1− [N(1 +H)eνr]/[1− e−(ν−µ)](N1∥Λ1T

+
1 φ∥∞ +N2∥Λ1φ∥∞)

:= Cµ∥ν1 − ν2∥.

This yields that w(t) ≤ Cµ∥ν1 − ν2∥ for t ≥ s. Hence,

h(t)=∥ut−vt∥C≤g(t)=e−µ(t−s)w(t)≤Cµe
−µ(t−s)∥ν1−ν2∥ for t ≥ s.

�

We now prove our main result of this section.
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Theorem 3.7. Let the evolution family (U(t, s))t≥s≥0 have exponential
dichotomy with the dichotomy projections P (t), t ≥ 0, and dichotomy
constants N, ν > 0. Let E and E′ be, respectively, an admissible
Banach function space and its associated space. Define the functions
eν(t) = e−νt and hν(t) = ∥e−ν|t−·|φ(·)∥E′ for t ≥ 0. Suppose
that φ ∈ E′ is an exponentially E-invariant function, defined as in
Definition 2.11. Then, if the function f is φ-Lipschitz with φ satisfying

max{N(1 +H)eνr(N1∥Λ1T
+
1 φ∥∞ +N2∥Λ1φ∥∞),

N(1 +H)eνr(∥hν∥E +NN1∥eν∥E∥φ∥E′)} < 1,

then there exists an invariant stable manifold S of E-class for the
solutions to equation (3.2).

Proof. Since (U(t, s))t≥s≥0 has an exponential dichotomy, we have
that, for each t ≥ 0, the phase space C splits into the direct sum

C = ImP̃ (t) ⊕ Ker P̃ (t) where the projections P̃ (t), t ≥ 0, are defined

as in equality (3.1). Clearly, supt≥0 ∥P̃ (t)∥ < ∞. We now construct a
stable manifold S = {(t, St)}t≥0 for the solutions to equation (3.2). In
order to do this, we determine the surface St for t ≥ 0 by the formula:

St := {ϕ+Φt(ϕ) : ϕ ∈ ImP̃ (t)} ⊂ C,

where the operator Φt is defined for each t ≥ 0 by

Φt(ϕ)(θ) =

∫ ∞

t

G(t− θ, τ)f(τ, uτ ) dτ for all θ ∈ [−r, 0];

here, u(·) is the unique solution of equation (3.2) on [−r + t,∞),

satisfying P̃ (t)ut = ϕ (note that the existence and uniqueness of u(·) is
guaranteed by Theorem 3.6). On the other hand, by the definition of

Green’s function G, see equation (3.4), we have that Φt(ϕ) ∈ Ker P̃ (t).

We next show that the stable manifold S satisfies the conditions
of Definition 3.3. Firstly, we prove that Φt0 is of Lipschitz continuity
with the Lipschitz constant independent of t0. Indeed, for ϕ1 and ϕ2
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belonging to ImP̃ (t0), we have

(3.9)

∥Φt0(ϕ1)(θ)− Φt0(ϕ2)(θ)∥

≤ N(1 +H)

∫ ∞

t0

e−ν|t0−θ−τ |φ(τ)∥uτ − vτ∥C dτ

≤ N(1 +H)

∫ ∞

t0

φ(τ)∥uτ − vτ∥C dτ

≤ N(1 +H)∥φ∥E′∥u− v∥E .

Moreover, by the Lyapunov-Perron equation for u(·) and v(·), see
equation (3.5), we have

∥ut − vt∥C ≤ Neνre−ν(t−t0)∥ϕ1 − ϕ2∥C +N(1 +H)eνrhν(t)∥u− v∥E

for t ≥ t0. By the Banach lattice property of E and e−ν(t−t0) =
T+
t0 eν(t), we obtain

∥u− v∥E ≤ Neνr∥T+
t0 eν∥E∥ϕ1 − ϕ2∥C +N(1 +H)eνr∥hν∥E∥u− v∥E

≤ NN1e
νr∥eν∥E∥ϕ1 − ϕ2∥C +N(1 +H)eνr∥hν∥E∥u− v∥E .

It follows that

∥u− v∥E ≤ NN1e
νr∥eν∥E

1−N(1 +H)eνr∥hν∥E
∥ϕ1 − ϕ2∥C .

Substituting this inequality for (3.9), we obtain that

∥Φt0(ϕ1)− Φt0(ϕ2)∥C ≤ N2(1 +H)N1e
νr∥eν∥E∥φ∥E′

1−N(1 +H)eνr∥hν∥E
∥ϕ1 − ϕ2∥C .

Therefore, Φt0 is of Lipschitz continuity with the Lipschitz constant

k :=
N2(1 +H)N1e

νr∥eν∥E∥φ∥E′

1−N(1 +H)eνr∥hν∥E
< 1

independent of t0.

In order to show that St0 is homeomorphic to ImP̃ (t0), we define
the transformation

F : ImP̃ (t0) −→ St0

by Fϕ := ϕ+Φt0(ϕ) for all ϕ ∈ ImP̃ (t0). Obviously, F is surjective and
of continuous mapping. If Fϕ1 = Fϕ2, then ϕ1−ϕ2 = Φt0(ϕ2)−Φt0(ϕ1).
Since Φt0 is of Lipschitz mapping with Lipschitz constant k < 1, so
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ϕ1 = ϕ2. Thus, F is a bijective. We also have

∥ϕ1 − ϕ2∥C ≤ ∥Fϕ1 − Fϕ2∥C + ∥Φt0(ϕ2)− Φt0(ϕ1)∥C
≤ ∥Fϕ1 − Fϕ2∥C + k∥ϕ1 − ϕ2∥C .

Therefore, ∥ϕ1−ϕ2∥C ≤ 1/(1− k)∥Fϕ1−Fϕ2∥C . This yields continuity
of inverse map F−1. Hence, F is a homeomorphism. Therefore, condi-
tion (ii) in Definition 3.3 is satisfied.

Condition (iii) in Definition 3.3 follows from Theorem 3.6. We shall
now prove that condition (iv) of Definition 3.3 is satisfied. Indeed, let
u(·) be a solution of equation (3.2) such that the function us(θ) ∈ Ss.
Then, by Lemma 3.4, the solution u(t) for t ∈ [s,∞) can be rewritten
in the form:

u(t) = U(t, s)ν0 +

∫ ∞

s

G(t, τ)f(τ, uτ ) dτ for some ν0 ∈ ImP (s).

Thus, for t ≥ s and θ ∈ [−r, 0], we have

u(t− θ) = U(t− θ, s)ν0 +

∫ ∞

s

G(t− θ, τ)f(τ, uτ ) dτ

= U(t− θ, s)ν0 +

∫ t

s

G(t− θ, τ)f(τ, uτ ) dτ

+

∫ ∞

t

G(t− θ, τ)f(τ, uτ ) dτ

= U(t− θ, s)ν0 +

∫ t

s

U(t− θ, τ)P (τ)f(τ, uτ ) dτ

+

∫ ∞

t

G(t− θ, τ)f(τ, uτ ) dτ

= U(t− θ, t)

[
U(t, s)ν0 +

∫ t

s

U(t, τ)P (τ)f(τ, uτ ) dτ

]
+

∫ ∞

t

G(t− θ, τ)f(τ, uτ ) dτ.

Set

µ0 = U(t, s)ν0 +

∫ t

s

U(t, τ)P (τ)f(τ, uτ ) dτ.
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We have P (t)µ0 = µ0; hence, µ0 ∈ ImP (t). We thus obtain that

U(t− θ, t)µ0 belongs to ImP̃ (t) and

u(t− θ) = U(t− θ, t)µ0 +

∫ ∞

t

G(t− θ, τ)f(τ, uτ ) dτ.

By the uniqueness of u(·) on [s− r,∞) as in the proof of Theorem 3.6,
we have that equation (3.2) has a unique solution u(·) on [−r + t,∞)

satisfying (P̃ (t)ut)(θ) = U(t− θ, t)µ0 and

u(ξ) = U(2t− ξ, t)µ0 +

∫ ∞

t

G(2t− ξ, τ)f(τ, uτ ) dτ

for ξ ∈ [−r+ t, t]. Therefore, the history function ut can be viewed as:

ut(θ)=u(t+θ)=U(t−θ, t)µ0+

∫ ∞

t

G(t−θ, τ)f(τ, uτ ) dτ= ϕ(θ)+Φt(ϕ)(θ).

Hence, ut ∈ St for t ≥ s. �

Finally we give an illustrative example. This example was considered
in [15]; thus, work verifying the φ-Lipschitz condition for the nonlinear
part is a repetition. However, the computation is significant for the
conditions on the functions φ and hν since we take E, E′ to be a
concrete admissible Banach function space.

Example 3.8. Consider the following problem.
(3.10)

∂

∂t
u(t, x) =

n∑
k,l=1

∂

∂xk

(
akl(t, x)

∂

∂xl
u(t, x)

)
+δu(t, x) + b te−αt

∫ 0

−r

ln(1 + |u(t+ θ, x)| dθ for t ≥ s ≥ 0,

x ∈ Ω,
n∑

k,l=1

nk(x)akl(t, x)
∂

∂xl
u(t, x) = 0 x ∈ ∂Ω,

us(θ, x) = u(s+ θ, x) = ϕ(θ, x), θ ∈ [−r, 0] x ∈ Ω.

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω ori-
ented by outer unit normal vector n(x). The coefficients akl(t, x) ∈
Cµ

b (R+, C(Ω)) ∩ Cb(R+, C
1(Ω)), 1/2 < µ ≤ 1, are supposed to be real,
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symmetric, and uniformly elliptic in the sense that

n∑
k,l=1

akl(t, x)vkvl ≥ η|v|2, for all x ∈ Ω and for some constant η > 0.

Finally, the constants α > 0, b ̸= 0 and δ > 0 are sufficient. We now
choose the Hilbert space X = L2(Ω) and define the differential operator

A(t, x,D) =
n∑

k,l=1

∂

∂xk

(
akl(t, x)

∂

∂xl

)
+ δ

with domain

D(A(t)) = {f ∈W 2,2(Ω) :
n∑

k,l=1

nk(x)akl(t, x)
∂

∂xl
f(x) = 0, x ∈ ∂Ω}.

Therefore, this problem can be rewritten as an abstract Cauchy prob-
lem 

d

dt
u(t, ·) = A(t)u(t, ·) + F (t, ut(θ, ·)) for t ≥ s ≥ 0,

us(θ, ·) = ϕ(θ, ·) ∈ C for θ ∈ [−r, 0],

where F : R+ × C → X is defined by

F (t, ϕ)(x) = b te−αt

∫ 0

−r

ln(1 + |(ϕ(θ))(x)|) dθ, x ∈ Ω.

We have F (t, ϕ)(·) ∈ X since Minkowski’s inequality implies that(∫
Ω

|F (t, ϕ)(x)|2dx
)1/2

= |b| te−αt

(∫
Ω

(∫ 0

−r

ln(1 + |(ϕ(θ))(x)|) dθ
)2

dx

)1/2

≤ |b| te−αt

∫ 0

−r

(∫
Ω

ln2(1 + |(ϕ(θ))(x)|) dx
)1/2

dθ

≤ |b| te−αt

∫ 0

−r

(∫
Ω

|(ϕ(θ))(x)|2dx
)1/2

dθ

= b| te−αt

∫ 0

−r

∥ϕ(θ)∥2 dθ <∞.
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From [24, Theorem 3.3, Example 4.2], the family of operators (A(t))t≥0

generates an evolution family having an exponential dichotomy, with
the dichotomy constants N and ν, provided that the Hölder constants
of akl are sufficiently small. In addition, the dichotomy projections
P (t), t ≥ 0, satisfy supt≥0 ∥P (t)∥ ≤ N .

Now, we verify that F is φ-Lipschitz with φ(t) = |b|rte−αt ∈
E′ = Lp(R+), p ∈ (1,∞). Indeed, condition (i) is evident. To
verify condition (ii), we use Minkowski’s inequality and the fact that
ln(1 + h) ≤ h for all h ≥ 0. Then,

∥F (t, ϕ1)(x)− F (t, ϕ2)(x)∥2

= |b| te−αt

(∫
Ω

(∫ 0

−r

ln
1 + |(ϕ1(θ))(x)|
1 + |(ϕ2(θ))(x)|

dθ

)2

dx

)1/2

≤ |b| te−αt

∫ 0

−r

(∫
Ω

ln2
1 + |(ϕ1(θ))(x)|
1 + |(ϕ2(θ))(x)|

dx

)1/2

dθ

= |b| te−αt

∫ 0

−r

(∫
Ω

ln2
(
1 +

|(ϕ1(θ))(x)| − |(ϕ2(θ))(x)|
1 + |(ϕ2(θ))(x)|

)
dx

)1/2

dθ

≤ |b| te−αt

∫ 0

−r

(∫
Ω

|(ϕ1(θ))(x)− (ϕ2(θ))(x)|2dx
)1/2

dθ

= |b| te−αt

∫ 0

−r

∥ϕ1(θ)− ϕ2(θ)∥2 dθ

≤ |b| rte−αt sup
θ∈[−r,0]

∥ϕ1(θ)− ϕ2(θ)∥2.

Hence, F is φ-Lipschitz with φ ∈ E′ = Lp(R+), p ∈ (1,∞). Therefore,
E = Lq(R+) with 1/p + 1/q = 1. In the space Lp(R+), the constants
N1 and N2 in Definition 2.4 are defined by N1 = N2 = 1. In addition,
we have

Λ1φ(t) =

∫ t+1

t

φ(τ) dτ

and

Λ1T
+
1 φ(t) =

∫ t

(t−1)+

φ(τ) dτ,
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where (t− 1)+ = max{0, t− 1}. Thus,

max{∥Λ1φ∥∞, ∥Λ1T
+
1 φ∥∞} < |b|r(1 + e−1 − e−α)

α2
.

On the other hand, we have tp < ept for all t ≥ 0. Thus, for α > ν +1,
then

∥φ∥E′ = |b|r
(∫ ∞

0

τpe−αpτdτ

)1/p

≤ |b|r
(∫ ∞

0

e−(α−1)pτdτ

)1/p

= |b|r
(

1

(α− 1)p

)1/p

,

and

hν(t) = |b|r
(∫ ∞

0

e−νp |t−τ |τpe−αpτdτ

)1/p

≤ |b|r
(

2

p(α− ν − 1)

)1/p

e−νt for t ≥ 0.

Therefore,

∥hν∥E ≤ |b|r
(

2

p(α− ν − 1)

)1/p(
1

νq

)1/q

.

From Theorem 3.7, we obtain that, if

max

{
2|b|r(1 + e−1 − e−α)

α2
,

|b|r
(

1

νq

)1/q[(
2

p(α− ν − 1)

)1/p

+N

(
1

(α− 1)p

)1/p]}
≤ e−νr

N(1 +N)
,

then there is an invariant stable manifold of E-class S for the mild
solutions to problem (3.10). The S manifold is created by trajectories
of the solutions belonging to Lq(R+).

4. Exponential trichotomy and center-stable manifolds of
E-class. In this section, we will consider the case where the evolution
family (U(t, s))t≥s≥0 has an exponential trichotomy on R+. With the
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same conditions as in Section 3, we will prove that there exists a center-
stable manifold of E-class for the solutions to equation (3.2).

We now recall the definition of an evolution family which has
exponential trichotomy.

Definition 4.1. A given evolution family (U(t, s))t≥s≥0 is said to have
an exponential trichotomy on the half-line if there are three families of
projections (Pj(t))t≥0, j = 1, 2, 3, and positive constants N , α and β
such that the following conditions are fulfilled:

(i) H = supt≥0 ∥Pj(t)∥ <∞, j = 1, 2, 3.
(ii) P1(t) + P2(t) + P3(t) = Id for t ≥ 0 and Pj(t)Pi(t) = 0, j ̸= i.
(iii) Pj(t)U(t, s) = U(t, s)Pj(s) for t ≥ s ≥ 0 and j = 1, 2, 3.
(iv) U(t, s)|ImPj(s) are isomorphisms from ImPj(s) onto ImPj(t),

for all t ≥ s ≥ 0 and j = 2, 3, respectively; we also denote the
inverse of U(t, s)|ImPj(s) by U(s, t)|, 0 ≤ s ≤ t.

(v) For all t ≥ s ≥ 0 and x ∈ X, the following estimates hold:

∥U(t, s)P1(s)x∥ ≤ Ne−β(t−s)∥P1(s)x∥

∥U(s, t)|P2(t)x∥ ≤ Ne−β(t−s)∥P2(t)x∥

∥U(t, s)P3(s)x∥ ≤ Neα(t−s)∥P3(s)x∥.

The projections Pj(t), t ≥ 0, j = 1, 2, 3, are called the trichotomy
projections, and the constants N , α and β, the trichotomy constants.

Note that, in the above definition, the Banach space X is split
into direct sums of three subspaces such that the evolution family
(U(t, s))t≥s≥0 is an exponential decay on ImP1(s), the exponential
growth on ImP2(s) and exponentially bounded on ImP3(s) for each
fixed s ≥ 0. Moreover, the evolution family (U(t, s))t≥s≥0 becomes an
exponential dichotomy if the family of projections P3(t) is trivial, i.e.,
P3(t) = 0 for all t ≥ 0.

Given that the evolution family (U(t, s))t≥s≥0 has an exponential
trichotomy on the half-line, we can now construct three families of

projections P̃j(t), t ≥ 0, j = 1, 2, 3, on C as follows:

(4.1) (P̃j(t)ϕ)(θ) = U(t−θ, t)Pj(t)ϕ(0) for all θ ∈ [−r, 0] and ϕ ∈ C.
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Next, is our second main result. We prove the existence of a center-
stable manifold of E-class for solutions of equation (3.2).

Theorem 4.2. Let the evolution family (U(t, s))t≥s≥0 have exponential
trichotomy with the trichotomy projections (Pj(t))t≥0, j = 1, 2, 3 and
the constants N , α and β given as in Definition 4.1. Let E and E′

be, respectively, an admissible Banach function space and its associated
space. For each fixed δ such that δ > α, define the functions eν(t) =
e−νt and hν(t) = ∥e−ν|t−·|φ(·)∥E′ for t ≥ 0 and ν = (δ − α)/2. Set

q := sup{∥Pj(t)∥ : t ≥ 0, j = 1, 3},

and

N0 := max{N, 2Nq}.

Suppose that φ ∈ E′ is an exponentially E-invariant function and the
function f is φ-Lipschitz with φ satisfying

max{N0(1 +H)eνr(N1∥Λ1T
+
1 φ∥∞ +N2∥Λ1φ∥∞),

N0(1 +H)eνr(∥hν∥E +N0N1∥eν∥E∥φ∥E′)} < 1.

Then, there exists a manifold S = {(t, St)}t≥0 ⊂ R+ × C for the
solutions to equation (3.2), called a center-stable manifold of E-class,
that is represented by the graphs of a family of Lipschitz continuous
mappings

Φt : Im(P̃1(t) + P̃3(t)) −→ ImP̃2(t)

with the Lipschitz constants independent of t such that St = graph(Φt)
has the following properties:

(i) St is homeomorphic to Im(P̃1(t) + P̃3(t)) for all t ≥ 0.

(ii) To each ϕ ∈ Ss, there corresponds one and only one solution
u(t) to equation (3.2) on [s− r,∞), satisfying e−γ(s+θ)us(θ) = ϕ(θ) for
θ ∈ [−r, 0], and the function

z(t) =

{
e−γ(t+·)ut(·) for t ≥ s,

0 for 0 ≤ t < s

belongs to E, where γ = (δ + α)/2. Moreover, for any two solutions
u(t) and v(t) to equation (3.2) corresponding to different functions
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ϕ1, ϕ2 ∈ Ss, we have the estimate
(4.2)

∥ut − vt∥C ≤ Cµe
(γ−µ)(t−s)∥(P̃ (s)ϕ1)(0)− (P̃ (s)ϕ2)(0)∥ for t ≥ s,

where µ and Cµ are positive constants independent of s, u(·), and v(·).

(iii) S is positively invariant under equation (3.2) in the sense that, if
u(t), t ≥ s−r, is the solution to equation (3.2), satisfying the condition
e−γ(s+·)us(·) ∈ Ss, and

z(t) =

{
e−γ(t+·)ut(·) for t ≥ s,

0 for 0 ≤ t < s

belongs to E, then the function e−γ(t+·)ut(·) ∈ St for all t ≥ s.

Proof. Set P (t) := P1(t) + P3(t) and Q(t) := P2(t) = Id−P (t) for
t ≥ 0. We have that P (t) and Q(t) are projections complementary to

each other onX. We then define the families of projections P̃j(t), t ≥ 0,

j = 1, 2, 3, on C as in equality (4.1). Setting P̃ (t) = P̃1(t) + P̃3(t) and

Q̃(t) = P̃2(t), t ≥ 0, we obtain that P̃ (t) and Q̃(t) are complementary
projections on C for each t ≥ 0.

We consider the following rescaling evolution family

Ũ(t, s) = e−γ(t−s)U(t, s) for all t ≥ s ≥ 0.

Now, we prove that the evolution family Ũ(t, s) has an exponential
dichotomy with dichotomy projections P (t), t ≥ 0. Indeed,

P (t)Ũ(t, s) = e−γ(t−s)(P1(t) + P3(t))U(t, s)

= e−γ(t−s)U(t, s)(P1(s) + P3(s)) = Ũ(t, s)P (s).

Since U(t, s)|ImP2(s) is a isomorphism from ImP2(s) onto ImP2(t) and

ImP2(t) = KerP (t) for all t ≥ 0, thus, Ũ(t, s)|KerP (s) is also an

isomorphism from KerP (s) onto KerP (t), and we denote Ũ(s, t)| :=

(Ũ(t, s)|KerP (s))
−1 for 0 ≤ s ≤ t. By the definition of exponential

trichotomy we have

∥Ũ(s, t)|Q(t)x∥ ≤ e−(β+γ)(t−s)∥Q(t)x∥ for all t ≥ s ≥ 0.
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On the other hand,

∥Ũ(t, s)P (s)x∥

= e−γ(t−s)∥U(t, s)(P1(s) + P3(s))x∥

≤ Ne−γ(t−s)(e−β(t−s)∥P1(s)x∥+ eα(t−s)∥P3(s)x∥)

= Ne−γ(t−s)(e−β(t−s)∥P1(s)P (s)x∥+ eα(t−s)∥P3(s)P (s)x∥)

for all t ≥ s ≥ 0 and x ∈ X. Setting q := sup{∥Pj(t)∥, t ≥ 0, j = 1, 3},
we finally obtain the following estimate:

∥Ũ(t, s)P (s)x∥ ≤ 2Nqe−(δ−α)/2(t−s)∥P (s)x∥.

Therefore, Ũ(t, s) has an exponential dichotomy with the dichotomy
projections P (t), t ≥ 0, and dichotomy constants N0 := max{N, 2Nq},
ν := (δ − α)/2.

Set x̃(t) = e−γtx(t), and define the mapping F : R+ × C → X as

F (t, ϕ) = e−γtf(t, eγ(t+·)ϕ(·)) for (t, ϕ) ∈ R+ × C.

Obviously, F is also φ-Lipschitz. Thus, we can rewrite equation (3.2)
in the new form

(4.3)

x̃(t) = Ũ(t, s)x̃(s) +

∫ t

s

Ũ(t, ξ)F (ξ, x̃ξ) dξ for all t ≥ s ≥ 0,

x̃s(·) = e−γ(s+·)ϕ(·) ∈ C.

Hence, by Theorem 3.7, we obtain that, if

max{N0(1 +H)eνr(N1∥Λ1T
+
1 φ∥∞ +N2∥Λ1φ∥∞),

N0(1 +H)eνr(∥hν∥E +N0N1∥eν∥E∥φ∥E′)} < 1

then there exists an invariant stable manifold of E-class S for the
solutions to equation (4.3). Returning to equation (3.2) by using the
relation x(t) := eγtx̃(t) and Theorems 3.6 and 3.7, we can easily verify
the properties of S which are stated in (i), (ii) and (iii). Thus, S is a
center-stable manifold of E-class for the solutions of equation (3.2). �

Next, we give an example in which the center-stable manifold is
created by trajectories of solutions in the Lorentz space L2,1(R+). In
order to simplify the computations, the linear operator generates an
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analytic semigroup and the nonlinear part is as in Example 3.8, but
the Lipschitz coefficient is different.

Example 4.3. For fixed n ∈ N\{0, 1}, consider the following problem:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + n2u(t, x)

+φ(t)

∫ 0

−r

ln(1 + |u(t+ θ, x)|) dθ for t > s ≥ 0, x ∈ [0, π],

u(t, 0) = u(t, π) = 0 t ∈ R+,

us(θ, x) = u(s+ θ, x) = ϕ(θ, x) θ ∈ [−r, 0], x ∈ [0, π],

(4.4)

where

φ(t) =
∞∑
j=1

b
√
j χ(1/(j+1),1/j](t) +

∞∑
j=1

be−2jχ(j,j+1](t), b ̸= 0.

Choose X = L2([0, π]), the operator A : D(A) ⊂ X → X defined by

Au =
∂2

∂x2
u+ n2u,

D(A) = {u ∈ H2([0, π]) : u(0) = u(π) = 0}.

Then, equation (4.4) can be rewritten as an abstract Cauchy problem
d

dt
u(t, ·) = Au(t, ·) + F (t, ut(θ, ·)) for t > s ≥ 0,

us(θ, ·) = ϕ(θ, ·) ∈ C for θ ∈ [−r, 0],

where F : R+ × C → X is defined by

F (t, ϕ)(x) = φ(t)

∫ 0

−r

ln(1 + |(ϕ(θ))(x)|) dθ, x ∈ [0, π].

It can be seen (see [9, Chapter II]) that A generates an analytic
semigroup (T (t))t≥0. On the other hand, the spectrum of A is defined
as

σ(A) = {−12+n2,−22+n2, . . . ,−(n−1)2+n2, 0,−(n+1)2+n2, . . .}.

Choose t0 > 0, by the spectral mapping theorem for the analytic
semigroup which yields that σ(T (t0)) consists of three disjoint compact
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sets σ1, σ2, σ3, where

σ1 ⊂ {|z| < 1}, σ2 ⊂ {|z| > 1} and σ3 ⊂ {|z| = 1}.

Hence, the trichotomy projections Pj , j = 1, 3, are the Riesz projections
for T (t0) corresponding to spectral sets σ1, σ2, σ3. Since σ2 and σ3
consist of finitely many points, so T (t)|ImPj are isomorphisms on ImPj

for all t ≥ 0 and j = 2, 3. Therefore, the evolution family (U(t, s))t≥s≥0,
defined by U(t, s) = T (t − s), has an exponential trichotomy with the
trichotomy constants N , α, β.

As in Example 3.8, F is φ-Lipschitz with φ(t) ∈ E′ = L2,∞(R+).
Therefore, E = L2,1(R+). Obviously, the function φ(t) cannot belong
to Lp(R+) spaces with p ≥ 2. In the Lorentz space L2,∞(R+), the
constants N1 and N2 in Definition 2.4 equal 1. We also have

∥Λ1φ∥∞ ≤ 2|b|, ∥Λ1T
+
1 φ∥∞ ≤ 2|b| and ∥φ∥E′ ≤ |b|.

Let ν ∈ (0, 1/2], i.e, δ ∈ (α, 2α]. Set gt(τ) = e−ν|t−τ |φ(τ). This
yields the estimate for the nonincreasing rearrangement function g∗t of
gt, as follows:

• If t ∈ (1/(k + 1), 1/k], k ≥ 1, then

g∗t (τ) ≤
k−1∑
j=1

|b|eν(t−1/(j+1))
√
j χ[1/(j+1),1/j)(τ)

+ |b|
√
k χ[1/(k+1),1/k)(τ)

+
∞∑

j=k+1

|b|eν(1/j−t)
√
j χ[1/(j+1),1/j)(τ)

+
∞∑
j=1

|b|eν(t−j)−2jχ[j,j+1)(τ).

• If t ∈ (k, k + 1], k ≥ 1, then

g∗t (τ) ≤
∞∑
j=1

|b|eν(1/j−t)
√
j χ[1/(j+1),1/j)(τ)+

k−1∑
j=1

|b|eν(j+1−t)−2jχ[j,j+1)(τ)

+ |b|e−2kχ[k,k+1)(τ) +
∞∑

j=k+1

|b|eν(t−j)−2jχ[j,j+1)(τ).
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Therefore,

hν(t) = ∥gt∥E′ = sup
τ≥0

√
τg∗t (τ) ≤

{
|b| if t ∈ [0, 1],

|b|e−ν(t−1) if t > 1.

Hence,

∥hν∥E ≤ |b|
(
2 +

1

ν

)
.

On the other hand, we have

∥eν∥E ≤ 2 +
1

νeν
.

From Theorem 4.2, we obtain that, if

|b|
(
2 +

1

ν

)
≤ e−νr

N0(1 +N0)(1 +H)
,

then there exists an invariant center-stable manifold of E-class for mild
solutions to the problem (4.4). The above condition will be satisfied
when b is sufficiently small. Moreover, this center-stable manifold is
created by trajectories of solutions in the Lorentz space L2,1(R+).
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23. F. Räbiger and R. Schnaubelt, The spectral mapping theorem for evolution

semigroups on spaces of vector-valued functions, Semigr. Forum 8 (1996), 225–239.



MANIFOLDS OF ADMISSIBLE CLASSES 575

24. R. Schnaubelt, Asymptotically autonomous parabolic evolution equations, J.
Evol. Eqs. 1 (2001), 19–37.

25. J. Wu, Theory and applications of partial functional differential equations,
Springer Verlag, Berlin, 1996.

26. A. Yagi, Abstract parabolic evolution equations and their applications,

Springer Verlag, New York, 2009.

VNU University of Science, Faculty of Mathematics, Mechanics, and In-
formatics, 334 Nguyen Trai, Hanoi, Vietnam and Thang Long Institute of
Mathematics and Applied Sciences, Nghiem Xuan Yem, Hanoi, Vietnam

Email address: tvduoc@gmail.com, duoctv@vnu.edu.vn

Hanoi University of Science and Technology, School of Applied Mathe-
matics and Informatics, 1 Dai Co Viet, Hanoi, Vietnam

Email address: huy.nguyenthieu@hust.edu.vn


