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NUMERICAL SOLUTIONS OF A CLASS OF
SINGULAR NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATIONS ON GRADED MESHES

PEDRO PEREZ-NAGERA AND JANOS TURI

ABSTRACT. In this paper, we present case studies to
illustrate the dependence of the rate of convergence of
numerical schemes for singular neutral equations (SNFDEs)
on the particular mesh employed in the computation. In
[12], a semigroup theoretical framework was used to show
convergence of semi- and fully- discrete methods for a class
of SNFDEs with weakly singular kernels. On the other hand,
numerical experiments in [12] demonstrated a “degradation”
of the expected rate of convergence when uniform meshes
were considered. In particular, it was numerically observed
that the degradation of the rate of convergence was related
to the strength of the singularity in the kernel of the
SNFDE. Following the idea used for Volterra equations with
weakly singular kernels, see, e.g., [1, 2], we investigate
graded meshes associated with the kernel of the SNFDE
in attempting to restore convergence rates.

1. Introduction. Consider the following SNFDE in the state space
L2
g(−r, 0), a weighted L2-space with kernel g:

(1.1)
d

dt

(∫ 0

−r

g(θ)x(t+ θ) dθ

)
= f(t), t > 0, 0 < r <∞,

with initial condition

(1.2) x(θ) = ρ(θ) for − r ≤ θ < 0,

where ρ is in L2
g(−r, 0). The kernel g appearing in (1.1) is positive and

nondecreasing on (−r, 0) and weakly singular at zero. More precisely,
g(s) > 0 and g′(s) ≥ 0 on (−r, 0) with g(s) → ∞ as s → 0− but still
integrable, i.e., g ∈ L1(−r, 0). It is helpful to keep in mind the so-called
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Abel kernel |s|−p on (−r, 0) with 0 < p < 1, which represents a possible
choice for g. The right-hand side function f is an integrable function.
We note that an equation of this type occurs in certain aeroelastic
systems, see [3].

Using standard notation for neutral functional differential equations
(NFDE), (1.1) could be rewritten as

(1.3)
d

dt
Dxt = f(t),

where the difference operator D is a bounded linear operator on
C := C([−r, 0];R), the space of continuous functions on [−r, 0], and xt
is the solution segment, i.e., xt(θ) = x(t+ θ), θ ∈ [−r, 0]. The neutral
equation defined in (1.1)–(1.2) is called singular since its difference
operator is not atomic at s = 0. Note that the difference operator D is
said to be atomic at s = 0 if it has the representation

Dψ = ψ(0) +

∫ 0

−r

ψ(s) dµ(s)

for ψ ∈ C, where µ is a function of bounded variation on [−r, 0] and
such that

lim
ε→0

Var[−ε,0](µ) = 0.

It was shown in [4] that atomicity of the D operator is a sufficient
condition for well posedness of the NFDE on product spaces of the type
R×Lq([−r, 0];R) for q ≥ 1. In equation (1.1), consider the non-atomic
D operator, defined by

Dψ :=

∫ 0

−r

ψ(s)|s|−pds,

with 0 < p < 1 and r > 0. For this non-atomic operator, a well-
posedness result was also obtained in [4] in product spaces under the
assumption that q < 1/(1 − p). Note that, for kernel singularity
corresponding to p = 1/2, the implication is that we are not able
use a Hilbert space setting (q < 2), which is very important for
computational considerations. To remedy this, a weighted L2-space
was chosen and, in [5, 12], it was shown that (1.1)–(1.2) is well posed
on this state space, providing an opportunity to study convergence
properties of numerical schemes in that setting. For a more in-depth
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look at these issues, the reader is referred to [4, 5, 11, 12, 14]. Also,
see [10] for a general discussion of NFDEs.

This paper is organized as follows. In Section 2, we introduce
finite-dimensional approximations for the SNFDE (1.1)–(1.2). We also
discuss graded discretizations of the interval [−r, 0] in the construction
of numerical schemes. In Section 3, we explore the degradation of the
convergence rate in the scheme discussed in Section 2. In Section 4, case
studies are presented to illustrate the dependence of the numerically
observed rate of convergence on mesh selection. Concluding remarks
may be found in Section 5.

2. Numerical approximations. In order to construct numerical
schemes, we proceed as in [12] and convert the SNFDE (1.1)–(1.2)
into a first order hyperbolic partial differential equation (PDE) with
nonlocal boundary conditions. The initial data at t = 0 is given by the
initial function ρ(θ), −r ≤ θ ≤ 0, and the boundary is generated by
the neutral equation itself.

Define φ(t, θ) := x(t+ θ) for −r < θ < 0 and t ≥ 0. Assuming that
φ is differentiable, it satisfies the PDE:

(2.1)
∂

∂t
φ(t, θ) =

∂

∂θ
φ(t, θ),

for t > 0, −r < θ < 0. Furthermore, it follows from (2.1) that the
boundary condition for t > 0 can be written as

(2.2)

∫ 0

−r

g(θ)
∂

∂θ
φ(t, θ) dθ = f(t).

Remark 2.1. In the (t, θ)-plane, φ(t, θ) along (0, θ), −r ≤ θ < 0, is
given by the initial condition ρ(θ). For t > 0, the right boundary, i.e.,
φ(t, 0)), can be obtained from (2.2), and then, φ(t, θ), t > 0,−r ≤ θ < 0
is determined along the characteristic lines. Using this perspective,
other numerical schemes similar to that presented here may be con-
structed.

We begin by constructing the approximating function. Let N be a
positive integer. We introduce the partition of the interval [−r, 0] as

−r =: τNN < τNN−1 < · · · < τN1 < τN0 := 0,
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and let δNj := τNj−1 − τNj > 0 for 1 ≤ j ≤ N . We define

φN (t, θ) :=
N∑
j=0

αN
j (t)BN

j (θ) for t ≥ 0, −r ≤ θ ≤ 0,

where the piecewise linear functions, BN
j , j = 0, 1, 2, . . . , N are given

as

BN
j (θ) :=


(θ − τNj+1)/δ

N
j+1 θ ∈ [τNj+1, τ

N
j ],

(τNj−1 − θ)/δNj θ ∈ [τNj , τ
N
j−1],

0 otherwise,

for j = 1, 2, . . . , N − 1;

BN
0 (θ) :=

{
(θ − τN1 )/δN1 θ ∈ [τN1 , τ

N
0 ],

0 otherwise;

and

BN
N (θ) :=

{
(τNN−1 − θ)/δNN θ ∈ [τNN , τ

N
N−1],

0 otherwise;

and αN
j (t), j = 0, 1, 2, . . . , N are time-dependent coefficients. One

option is to use uniform mesh in space, i.e., to select δj = δ = r/N .
A more involved option is to use a graded mesh, that is, select δj , j =
1, 2, . . . , N specifically for the particular SNFDE under consideration.

Graded meshes were applied in a collocation scheme in [2] to solve
Volterra integral equations of the second kind with weakly singular ker-
nels, and results on attainable optimal rates of convergence were given.
In this paper, SNFDEs with weakly singular kernels are considered in-
cluding kernels of the type g(t) = t−p, with 0 < p < 1, and thus, the
results in [2] serve as a motivation to introduce graded meshes into the
schemes presented here. In particular, we choose the mesh such that
the area of the integral of the kernel of the SNFDE is the same on each
subinterval, that is, we choose all τNj such that

(2.3)

∫ τN
j−1

τN
j

g(θ) dθ =
1

N

∫ 0

−r

g(θ) dθ

for 1 ≤ j ≤ N and where g(θ) is the kernel in equation (1.1). This mesh
is applied for most examples in Section 4 (note that, in Example 4.6,
it is somewhat modified to accommodate a more complicated kernel).
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Throughout our computations, we use uniform time steps of size ∆t
on the interval [0, T ], where T > 0 denotes the final time. In order
to simplify notation, the superscript N will be omitted during the
remainder of this section.

Remark 2.2. While uniform meshes yield simpler schemes, especially
when the space (δ) and time (∆t) discretization is selected such that
δ = ∆t, their application leads to a degradation of the expected rate
of convergence (see e.g., [12] for numerically observed rates of conver-
gence). The numerical findings in [12] indicate that the degradation of
the rate of convergence is directly related to the strength of the weak
singularity in the kernel of the SNFDE. A dependence on the kernel
singularity was also noted in [8, 9] in the context of numerical solu-
tions of Abel integral equations, namely, convergence rates of 2−p were
obtained for the kernels t−p, 0 < p < 1, when using a midpoint method
with uniform mesh.

Motivated by the analysis in [8], in this paper, rate of convergence
estimates are presented for numerical schemes for SNFDEs (see Lemma
3.1 below). In particular, we arrive at a discretization error of order
2 − p in the uniform mesh case and order 2 in the graded mesh case,
respectively, when we consider the difference of the integral in the
boundary condition (2.2) and its fully discretized analog in equation
(2.8). The numerical case studies in Section 4 indicate that the graded
mesh (2.3) is a viable candidate to prevent the “degradation” of the
expected convergence rate of 2 for the numerical schemes (2.9) for
SNFDEs with more general weakly singular kernels as well.

See [6, 7] for related results on mesh selection. In [6], an alternative
method for solving a particular class of SNFDEs is given where the
authors first convert the SNFDE to a Volterra equation of the second
kind which is then solved using a hybrid collocation method.

Assume that a mesh is specified, and consider a second-order space
discretization to equation (2.1) (see [12]):

(2.4)
d

dt

(
αj−1(t) + αj(t)

2

)
=

1

δj
(αj−1(t)− αj(t))

for 1 ≤ j ≤ N , and substitute φ(t, θ) into the boundary condition (2.2)
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to advance the solution to obtain

(2.5)

N∑
j=1

gj
δj

(αj−1(t)− αj(t)) = f(t),

where

gj :=

∫ τj−1

τj

g(θ) dθ.

Equations (2.4)–(2.5) form the semi-discrete scheme.

Using the second-order implicit trapezoidal rule in time in (2.4), we
obtain the fully discretized scheme

(2.6)
1

∆t

(
αk+1
j−1 + αk+1

j

2
−
αk
j−1 + αk

j

2

)
=

1

2δj

(
αk+1
j−1 − αk+1

j + αk
j−1 − αk

j

)
,

or, equivalently,

(2.7) αk+1
j−1Cj + αk+1

j = αk
j−1 + αk

jCj ,

where

Cj =

(
1

∆t
− 1

δj

)/(
1

∆t
+

1

δj

)
.

The right boundary αk+1
0 is computed from the equation

(2.8)
N∑
j=1

gj
δj

(αk+1
j−1 − αk+1

j ) = f((k + 1)∆t).

Since we are considering the second-order discretization (2.4) in space
and the second-order discretization (2.6) in time for equation (2.1), it
is reasonable to expect second-order convergence to the true solution.
If the mesh is uniform, i.e., δj = δ, j = 1, 2, . . ., and δ = ∆t, then
Cj = 0 for all j. Thus, we obtain the particular scheme with uniform
mesh considered in [12]. We now have a system of linear equations to

determine αk+1
j , j = 0, 1, 2, . . . , N , namely,

(2.9) K1a
k+1 = K2a

k + Fk+1,
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k ≥ 0, where

K1 :=



g1
δ1

(
g2
δ2

− g1
δ1

)
· · · · · ·

(
gN
δN

− gN−1

δN−1

)
− gN

δN

C1 1 0 · · · 0 0
0 C2 1 · · · 0 0
...

...
. . .

. . . 0 0
0 0 · · · CN−1 1 0
0 0 · · · 0 CN 1


,

ak :=



αk
0

αk
1

αk
2
...

αk
N−1

αk
N


,

K2 :=



0 0 0 · · · 0 0
1 C1 0 · · · 0 0
0 1 C2 · · · 0 0
...

...
. . .

. . . 0 0
0 0 · · · 1 CN−1 0
0 0 · · · 0 1 CN


,

and

Fk :=



f((k + 1)∆t)
0
0
...
0
0


.

Note that we have placed Fk+1 on the right side of the equation since
it is assumed to be a known quantity.

Remark 2.3. Note that the matrix K1 in (2.9) is nonsingular for all
N for Abel-type kernels considered in the forthcoming examples.
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Remark 2.4. The convergence of both the semi-discrete (2.4)–(2.5)
and fully-discrete (2.7)–(2.8) schemes was established in [12].

We now give a short explanation of system (2.9). At time t = 0,
we have that α0

j = ρ(τj) for j = 1, . . . , N and α0
0 can be computed

from (2.8) (with k = −1). Thus, the vector (α0
0, α

0
1, . . . , α

0
N−1, α

0
N )T

is known and will be used to compute (α1
0, α

1
1, . . . , α

1
N−1, α

1
N )T . In a

similar fashion, the vector of unknowns at step (k + 1)∆t,

(αk+1
0 , αk+1

1 , . . . , αk+1
N−1, α

k+1
N )T ,

will be computed using

(αk
0 , α

k
1 , . . . , α

k
N−1, α

k
N )T

for all remaining k ≥ 1. Assume that we are interested in approximat-
ing the true solution x(k∆t) up unto time-step kT . Then, the solution is
approximated by ϕN (k∆t, 0) (since θ < 0 introduces a delay), and thus,
the numerical solution is continuously advanced by the αk

0 component
(the right boundary mentioned above) in each newly computed vector
up unto step kT , that is, the numerical solution up unto time-step kT
is given by the values α1

0, α
2
0, . . . , α

kT−1
0 and αkT

0 .

In this section, a family of fully-discrete schemes with uniform and
graded meshes was introduced for the numerical solution of SNFDEs
with weakly singular kernels. In the next section, we establish error
estimates for both cases for a special class of weakly singular kernels.

3. On the rate of convergence. Here, we provide an analysis
of the discretization error of the integral in equation (2.2) and its
fully disctretized analog in (2.8) for kernels of the type g(θ) = |θ|−p,
0 < p < 1, for uniform and graded meshes. Lemma 3.1 shows the
superiority of the graded mesh (2.3) for these kernels.

Recall that the approximate solution is computed using the nonlo-
cal boundary condition (2.2). For this reason, to study the convergence
rate of the approximate solution to the true solution, we should under-
stand how fast the fully-discretized version of the integral converges to
the true value of the integral in (2.2). It is reasonable to expect that the
global rate of convergence of the scheme would most likely benefit from
a better approximation of the integral in (2.2), and therefore, we make
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the characterization of this discretization error the main objective of
this section.

At time tk+1 > 0, we want to establish a local consistency error
bound between the integral

J :=

∫ 0

−r

g(θ)
∂

∂θ
ϕ(tk+1, θ) dθ

and its fully-discretized analog, given by

K :=
N∑
j=1

gj
δj

(ϕ(tk+1, τj−1)− ϕ(tk+1, τj)),

where ϕ is the true solution of (2.1)–(2.2). By a local consistency error,
we mean how well the discretized version of the integral approximates
the true integral. Consider a kernel g of the form g(θ) = |θ|−p, and
assume that ϕ(tk+1, ·) ∈ C3[−r, 0]. The smoothness is assumed to
accommodate a Taylor series approach for the error analysis.

We have the following result:

Lemma 3.1. Let N be a positive integer, tk+1 > 0, g(θ) = |θ|−p,
0 < p < 1 for θ ∈ [−r, 0), r > 0, and assume that the solution of
(2.1)–(2.2), ϕ(tk+1, ·) ∈ C3[−r, 0]. Then, J − K = O(N−(2−p)) with
the uniform mesh, τj = −jr/N , and J −K = O(N−2) with the graded
mesh generated by (2.3).

Proof. We shall use the notation τj/2 := (τj−1 + τj)/2. Define

Kj :=
gj
δj

(φ(tk+1, τj−1)− φ(tk+1, τj))

and

Jj :=

∫ τj−1

τj

g(θ)ϕθ(tk+1, θ) dθ,

j = 1, 2, . . ., where we switched to the alternate notation ϕθ = (∂/∂θ)ϕ.
Using straightforward calculations involving the Taylor series expansion
of ϕ(tk+1, θ) with respect to its second argument around τj/2, we obtain
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the estimate∣∣∣∣ 1δj (φ(tk+1, τj−1)− φ(tk+1, τj))− ϕθ(tk+1, τj/2)

∣∣∣∣ ≤Mδ2j ,

whereM := max[−r,0] |ϕθθθ(tk+1, s)|, and therefore, |Kj−gjϕθ(tk+1, τj/2)|
≤Mδ2j gj . Using the Taylor expansion again around τj/2, we have

Jj − gjϕθ(tk+1, τj/2)

=

∫ τj−1

τj

(−θ)−p
(
ϕθ(tk+1, θ)− ϕθ(tk+1, τj/2)

)
dθ

= ϕθθ(tk+1, τj/2)

∫ τj−1

τj

(−θ)−p
(
θ − τj/2

)
dθ

+

∫ τj−1

τj

(−θ)−pE(θ) dθ,

where E(θ) = (1/2)ϕθθθ(tk+1, τ̃j/2)(θ − τj/2)
2 is the error term, and

τ̃j/2 is between θ and τj/2. From the mean value theorem for integrals,
we have that∣∣∣∣ ∫ τj−1

τj

(−θ)−pE(θ) dθ

∣∣∣∣ = |E(θj)gi| ≤Mδ2j gi,

where θj ∈ (τj , τj−1). Denote ξj = τj−1/δj . In a fashion similar to
Eggermont [8], using the change of variables y = (θ− τj−1)/(τj − τj−1)
and repeated integration-by-parts, we obtain that∫ τj−1

τj

(θ − τj/2)

(−θ)p
dθ

= −δ2−p
j

∫ 1

0

y − 1/2

(y − ξj)p
dy

= δ2−p
j

(
p

12
(1− ξj)

−p−1 +

∫ 1

0

p(p+ 1)(y − ξj)
−p−2

(
y3

6
− y2

4

)
dy

)
= δ2−p

j O((1− ξj)
−p−1)

as −ξj → ∞. Combining the previous two estimates, we get

|Jj − gjϕθ(tk+1, τj/2)| ≤ Cδ2−p
j (1− ξj)

−p−1 +Mδ2j gi
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for some constant C. Note that J−K =
∑N

j=1 Jj−Kj . Thus, denoting

hj := gjϕθ(tk+1, τj/2), we obtain
(3.1)

|J −K| ≤
N∑
j=1

|Jj −hj |+ |hj −Kj | ≤
N∑
j=1

Cδ2−p
j (1− ξj)

−p−1 +2Mδ2j gj .

If the mesh is uniform, then δj = r/N and τj = −rj/N for all j.
This gives that (1 − ξj)

−p−1 = j−p−1. Combining this with the fact
that

N∑
j=1

j−p−1 <
∞∑
j=1

j−p−1 <∞,

equation (3.1) gives that

|J −K| ≤ 2Mr2IN−2 + Cr2−pN−(2−p)
N∑
j=1

j−p−1

≤ 2Mr2IN−2 + C ′N−(2−p),

where C ′ is some constant and

I :=

∫ 0

−r

g(θ) dθ.

Thus, J −K = O(N−(2−p)), if the mesh is uniform.

If the mesh is graded, then gj = I/N for all j. From this equation,

we get that τj = −rj1/(1−p)N−1/(1−p). For b > −1 and ν ≥ 1, the
inequality (1 + b)ν ≥ 1 + νb holds. Since 0 < 1− p < 1, this inequality
yields that (

1− 1

j

)1/(1−p)

≥ 1− 1

(1− p)j
.

From the inequality immediately above, we have that
(3.2)

δj = r

(
j

N

)1/(1−p)[
1−

(
1− 1

j

)1/(1−p)]
≤ r

(
j

N

)1/(1−p)
1

j(1− p)

= ajp/(1−p)N−1/(1−p)

=: ∆j ,
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where a := r/(1 − p). Note that (1 − ξj)
−p−1 = δp+1

j (−τj)−p−1, and
thus,

(3.3)
δ2−p
j (1− ξj)

−p−1 = δ3j (−τj)−p−1 ≤ ∆3
j (−τj)−p−1

= a′N−2−(p/(1−p))j−1+(p/(1−p)),

where a′ := r2−p/(1− p)3. Recall that

N∑
j=1

jq = O(Nq+1)

for q > −1, and note that δj ≤ ∆j ≤ ∆N = aN−1. Hence, from
equations (3.1), (3.2) and (3.3), we obtain that

|J −K| ≤ 2MI∆2
N + Ca′N−2−(p/(1−p))

N∑
j=1

j−1+(p/(1−p))

≤ 2MIa2N−2 + C ′′N−2−(p/(1−p))Np/(1−p)

for some constant C ′′. Thus, J−K = O(N−2) if the mesh is graded. �

Both claims in Lemma 3.1 are now established and show that the
discretization error of J − K converges to zero faster with the non-
uniform graded mesh than with the uniform mesh. Note that we do
not always have the smoothness assumption here; thus, the examples
to follow will show that a discontinuity at zero in the derivatives of
the true solution and the forcing function will also affect the rate of
convergence. In addition, although we have only considered the case
when g(θ) = |θ|−p, it is believed that the graded mesh (2.3) improves
the rate of convergence of the scheme even for more general kernels,
e.g., g with the properties described in Section 1.

With Lemma 3.1 established, the question now is: how can the
improvement in the discretization error J − K affect the actual, i.e.,
numerically observed, rate of convergence of the numerical schemes
(2.9)? The purpose of the next section is to give a partial answer to
this question by presenting case studies to illustrate the dependence
of the actual rate of convergence of the fully-discrete implicit scheme
upon mesh selection.
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4. Numerical examples. In this section, we consider examples
where we apply the aforementioned scheme (2.9) using both uniform
and graded meshes. We first give a few words on what we mean by
numerical rate of convergence.

We want to study the rate of convergence of the error function
eN (t) := ϕN (t) − x(t) to zero, where t will be taken to be a time-
step node point, that is, we want to estimate a value m > 0 such that
|eN (t)| ≤ cN−m as N → ∞ and where c > 0 is a constant. Taking the
logarithm of this inequality (assuming it is defined) we have

log(|eN (t)|) ≤ log(c)−m log(N) =: ℓ(N).

We can see that log(eN (t)) lies below ℓ(N) for all N after some N ′ and,
if we plot log(eN (t)) against log(N) (where log(N) is on the horizontal
axis) as N increases, we can conclude that the sequence log(eN (t))
decreases at a rate m′ that is at least as fast as m. We can then use m′

as our approximate rate of convergence of |eN (t)| to zero. With this idea
in mind, in the examples to follow, we will compute the approximate
solution for N = 10, 20, 40, 80, 160 and 320 and plot the logarithm of
the errors against the log(N) to approximate the rate of convergence.
In Example 4.4, instead we consider the rate of convergence to zero of
the maximum error

|eN |∞ := max{|eN (t)| : t ∈ (0, 1] is a time-step node point}

as N increases and apply this same idea.

When it is not apparent what the numerical rate of convergence is,
e.g., see Figures 5–7 in Example 4.6, we provide least-squares lines to
approximate the rate of convergence, that is, for fixed t, we provide a
best fit function ms+ b, where m and b are such that∑

N∈A

[log(eN (t))− (m log(N) + b)]2,

where A := {10, 20, 40, 80, 160, 320}, is minimized, i.e., m and b
are such that ms + b simultaneously minimizes the distance of each
point (log(N), log(eN (t)) to this line. This sum is a differentiable
function of the two variables m and b and can, thus, be found using
minimization techniques from standard calculus. A least-squares line
will be considered to be the average numerical rate of convergence as
the discretization in space is refined, and it will itself be referred to as
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the numerical rate of convergence. These lines will be denoted as “–
LS lines” in the figures.

Remark 4.1. In the examples to follow, we take a weakly singular
Volterra equation of the first kind and reformulate it into an equation
of the form (1.1). For example, consider an equation of the form:

(4.1)

∫ t

0

g(t− s)x(s) ds = f(t),

where f(0) = 0, f ′(t) is locally integrable and x is the unknown function
to be determined. Letting θ = −(t− s), we have that∫ t

0

g(t− s)x(s) ds =

∫ 0

−t

g(−θ)x(t+ θ) dθ,

and, in addition, if we define x(u) = 0 for u ≤ 0, then (4.1) can be
reformulated to take the form:

d

dt

(∫ 0

−r

g(−θ)x(t+ θ) dθ

)
= f ′(t) for t > 0, r > 0,(4.2)

with x(θ) = 0 for − r ≤ θ ≤ 0.

We shall use T = 1 and r = 1 in the examples to follow.

Example 4.2. Consider first this example, given in the text [16] on
integral equations by Wazwaz,∫ t

0

x(s)

(t− s)1/4
ds =

128

231
t11/4.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/4
dθ

)
=

32

21
t7/4

for t > 0 and x(t) = 0 for t ≤ 0. The solution is x(t) = t2. The graded
mesh is given by {τj}, where

(4.3)

∫ τj−1

τj

|θ|−1/4dθ =
1

N

∫ 0

−1

|θ|−1/4dθ

for j ≥ 1. In Figure 1, we plot log2(eN (t = 0.4)) against log2(N) with
∆t = 1/N as N increases. We see that the convergence rate at t = 0.4



NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 461

Figure 1. Example 4.2. Approximate rates of convergence for both meshes
at t = 0.4.

Table 1. Example 4.2. Graded error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.001013657 0.001353132 0.001610427 0.001854214

20 0.000272433 0.000357831 0.000423953 0.000479526

40 7.15E-05 9.33E-05 0.000110144 0.000124464

80 1.85E-05 2.41E-05 2.84E-05 3.20E-05

160 4.76E-06 6.16E-06 7.25E-06 8.17E-06

320 1.21E-06 1.57E-06 1.84E-06 2.08E-06

is approximately 1.9 for the graded mesh and approximately 1.6 for the
uniform mesh. From Tables 1 and 2, we can see that accuracy is also
better with graded mesh under most mesh sizes.
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Table 2. Example 4.2. Uniform error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.002077632 0.002830702 0.003326358 0.003706897

20 0.000707676 0.000926724 0.001072235 0.001184404

40 0.000231681 0.000296101 0.00033911 0.000372326

80 7.40E-05 9.31E-05 0.000105834 0.000115691

160 2.33E-05 2.89E-05 3.27E-05 3.56E-05

320 7.23E-06 8.91E-06 1.00E-05 1.09E-05

Table 3. Example 4.3. Graded error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000170697 0.001140789 0.003566658 0.008178993

20 4.40E-05 0.000287571 0.000895002 0.002046136

40 1.11E-05 7.20E-05 0.000223952 0.000511856

80 2.78E-06 1.80E-05 5.60E-05 0.000127977

160 6.95E-07 4.51E-06 1.40E-05 3.20E-05

320 1.74E-07 1.13E-06 3.50E-06 8.00E-06

Example 4.3. This example is given in [15], where Rahman, et al.,
study numerical solutions of first and second kind weakly singular
Volterra equations using Laguerre polynomials,∫ t

0

x(s)

(t− s)1/2
ds = t5.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= 5t4

for t > 0 and x(t) = 0 for t ≤ 0. The solution is x(t) = 1280/315πt9/2.

From Tables 3 and 4, we can see that accuracy is increased at most
time-steps shown for the graded mesh. Furthermore, from Figure 2,
we can also see that, at t = 0.6, the rate of convergence is ≈ 1.45 for
uniform mesh and ≈ 2 for graded mesh.
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Table 4. Example 4.3. Uniform error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000385704 0.003632379 0.01320325 0.032723612

20 0.00016053 0.001446193 0.00514585 0.012585171

40 6.39E-05 0.000556191 0.001947204 0.004715879

80 2.46E-05 0.000208414 0.000721241 0.00173485

160 9.21E-06 7.67E-05 0.000263218 0.000630195

320 3.39E-06 2.79E-05 9.51E-05 0.000226974

Figure 2. Example 4.3. Approximate rates of convergence for both meshes
at t = 0.6.

Example 4.4. This example was also found in the text [16]. Consider∫ t

0

x(s)

(t− s)1/2
ds =

8

3
t3/2 +

16

5
t5/2.
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Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= 4t1/2 + 8t3/2

for t > 0 and x(t) = 0 for t ≤ 0. The solution is x(t) = 2t+ 3t2.

In this example, we look at the convergence to the solution in the
max error |eN |∞ as N increases. The max error was chosen here so that
we can obtain an understanding of the error on the whole interval and
not only at a fixed time. From Figure 3, we can estimate that the max
error rate of convergence is ≈ 1.5 for both uniform and graded mesh
with ∆t = 1/N . Unlike the first two examples, note that the forcing
function in the reformulated equation has an unbounded derivative
at zero. It seems that this discontinuity may have compromised the
expected rate of convergence of 2 for the graded mesh. From Tables
5–6, we can see that the accuracy appears to be better for the graded
mesh.

Table 5. Example 4.4. Graded error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.009505526 0.004760497 0.000962417 0.00126726

20 0.004514347 0.002602599 0.001423843 0.001190168

40 0.001852882 0.001142082 0.000758405 0.000998067

80 0.000711964 0.000457861 0.000329369 0.000379532

160 0.000264705 0.000175193 0.000131781 0.000138337

320 9.66E-05 6.52E-05 5.04E-05 4.77E-05

Table 6. Example 4.4. Uniform error table. ∆t = 1/N.

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.016568542 0.026032073 0.033280012 0.039371411

20 0.006508018 0.009842853 0.012389938 0.014532092

40 0.002460713 0.003633023 0.004529736 0.00528466

80 0.000908256 0.001321165 0.001637446 0.00190389

160 0.000330291 0.000475972 0.000587655 0.000681773

320 0.000118993 0.000170443 0.000209904 0.000243164
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Figure 3. Example 4.4. Approximate rates of convergence in the max
error on (0, 1].

Example 4.5. This example was found in [13], where Jahanshahi, et
al., considered a numerical method to solve Abel integral equations of
the first kind. Consider∫ t

0

x(t)

(t− s)1/2
ds = et − 1.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= et

for t > 0 and x(t) = 0 for t ≤ 0. The solution is given by

x(t) =
et√
π
erf(

√
t),

where erf(u) = 2/
√
π
∫ u

0
e−t2dt is the error function.
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Figure 4. Example 4.5. Approximate rates of convergence for both meshes
at t = 0.4.

At t = 0.4, Figure 4 shows that the uniform mesh and the graded
mesh yield rates of convergence of approximately 1 and 0.66, respec-
tively, for the given range of mesh sizes. These slow rates of convergence
are not surprising since the solution has unbounded derivatives at zero.
Figure 4 and Tables 7–8 show that there is a significant increase in
accuracy with graded mesh.

Example 4.6. We now consider the next example, found in [12],

1√
π

∫ t

0

e−(t−s)

(t− s)1/2
x(s) ds = e−t(t+ t3 + t5).

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

eθ

|θ|1/2
x(t+ θ) dθ

)
=
√
π(−e−t(t+ t3 + t5)+ e−t(1+3t2 +5t4))
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Table 7. Example 4.5. Graded error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000370818 0.002113945 0.003781737 0.00386041

20 0.002143661 0.00013414 0.000542405 0.003049412

40 0.001550951 0.000363341 7.40E-06 0.000872734

80 0.000890558 0.000254809 6.73E-05 0.000370849

160 0.00047324 0.000145548 4.96E-05 0.000116045

320 0.000243497 7.73E-05 2.88E-05 8.89E-06

Table 8. Example 4.5. Uniform error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.039093198 0.030079998 0.026815735 0.025626279

20 0.019228306 0.014461254 0.01263222 0.011821375

40 0.009444242 0.006989921 0.006006089 0.005521185

80 0.004651519 0.003401174 0.002884524 0.002613131

160 0.002298403 0.00166528 0.001398143 0.001252004

320 0.001138937 0.000819623 0.000682923 0.00060611

for t > 0 and x(t) = 0 for t ≤ 0. The solution is given by

x(t) = e−t

(
Γ(2)

Γ(3/2)
t1/2 +

Γ(4)

Γ(7/2)
t5/2 +

Γ(6)

Γ(11/2)
t9/2

)
.

Note that the solution has unbounded derivatives at zero.

It is reasonable to expect the scheme to be more accurate as ∆t gets
smaller. Hence, the purpose of this example is to study how the rate
of convergence at different times is affected when we consider time-
steps smaller than ∆t = 1/N . The size of system (2.9) does not change
when we decrease the step-size since the discretization of [−1, 0] remains
fixed.

Note that the kernel gives difficulty in extracting a graded mesh
tailored to this particular equation. Instead, we use the mesh we obtain
by ignoring the exponential part, i.e., the mesh generated using kernel
g(θ) = |θ|−1/2, since the strength of the singularity at zero is similar
for both kernels.

At t = 0.2, Figure 5 suggests that the rate of convergence is
approximately 0.5 with ∆t = 1/N , and, if we decrease the step-size
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Figure 5. Example 4.6. Approximate rates of convergence with graded
mesh at t = 0.2.

to 1/2N , the rate increases to approximately 2.1 and then decreases
to approximately 1.96 for 1/4N . Figure 4 shows the approximate
convergence rates at t = 0.6 to be 1.68, 1.86 and 1.66 for ∆t =
1/N, 1/2N and 1/4N , respectively. In Figure 4, we see that the
rate does not improve when we decrease the step-size at t = 0.8,
where the convergence rates are approximately 1.95, 0.96 and 1.3
for ∆t = 1/N, 1/2N and 1/4N , respectively. Although there were
improvements at t = 0.2 and t = 0.6 with ∆t = 1/2N , it was not as
beneficial with ∆t = 1/4N . There was no such improvement at t = 0.8.

Example 4.7. As a final application, we consider an example where
the dependent variable, x(t), also appears in the right side of the
equation. Consider

d

dt

(∫ 0

−1

x(t+ s)

|s|1/2
ds

)
= x(t)− t6 +

1024

231
t11/2
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Figure 6. Example 4.6. Approximate rates of convergence with graded
mesh at t = 0.6.

for t > 0 and x(u) = 0 for u ≤ 0. The true solution is x(t) = t6.
This requires only a minor modification in the discretization of the
boundary condition. More explicitly, if we recall the notation of
Section 2, the discretized boundary condition (2.8) has the modified

form −αk+1
0 +

∑N
j=1 gj(α

k+1
j−1 − αk+1

j )/δj = fk+1. From Figure 6, we
get a numerical convergence rate of about 1.5 for uniform mesh and 2
for graded mesh at time t = 0.4.

Table 9. Example 4.7. Uniform error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 4.48E-05 0.001267769 0.008851268 0.035107414

20 1.86E-05 0.000504024 0.003454789 0.013542525

40 7.45E-06 0.000195381 0.001317837 0.005114189

80 2.89E-06 7.39E-05 0.000492225 0.001895588

160 1.10E-06 2.74E-05 0.000180854 0.000692665

320 4.07E-07 1.00E-05 6.57E-05 0.000250544
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Figure 7. Example 4.6. Approximate rates of convergence with graded
mesh at t = 0.8.

Table 10. Example 4.7. Graded error table. ∆t = 1/N .

mesh↓ time→ 0.2 0.4 0.6 0.8

10 2.28E-05 0.00046216 0.00271248 0.009714935

20 6.17E-06 0.00011739 0.000681765 0.002432978

40 1.57E-06 2.95E-05 0.000170666 0.000608517

80 3.94E-07 7.37E-06 4.27E-05 0.000152146

160 9.87E-08 1.84E-06 1.07E-05 3.80E-05

320 2.47E-08 4.61E-07 2.67E-06 9.51E-06

5. Conclusion. The “degradation” in the rate of convergence for
SNFDEs with weakly singular kernels was observed in [12] (when using
uniform meshes) and in this paper we investigated possible fixes of
this phenomenon. In particular, we considered graded meshes (where
grading was related to the strength of the singularity of the kernel
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Figure 8. Example 4.7. Approximate rates of convergence for both
meshes at t = 0.4.

function in the SNFDE under consideration) to improve on the rate
of convergence. In Section 3, we established that the graded mesh
is a viable alternative to uniform mesh and, in Section 4, we applied
it to concrete examples. Examples 4.2 and 4.3 indeed show that the
expected rate of convergence of 2 can be recovered if the graded mesh
is applied. However, Examples 4.4 and 4.5 show that discontinuities in
the derivatives of either the forcing function or the true solution may
compromise the expected rates of convergence. Finally, in Example 4.7,
we applied the scheme with graded mesh to a more general equation
where we also observed an improvement in the convergence rate.
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