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ABSTRACT. The evolution in time of a viscoelastic body
is described by an equation with memory, which can be
seen as a perturbation of the equations of elasticity. This
observation is a useful tool in the study of control problems.
In this paper, by using moment methods, we compare a
viscoelastic system which fills a surface or a solid region
(the string case has already been studied) with its elastic
counterpart (which is a generalized telegrapher’s equation)
in order to prove exact controllability of the viscoelastic
body as a consequence of the assumed controllability of the
associated telegrapher’s equation.

1. Introduction. We study a control problem for the following
equation:

wtt = 2cwt +∇ · (a(x)∇w) + q(x)w(1.1)

+

∫ t

0

M(t− s) {∇ · (a(x)∇w(s)) + q(x)w(s)} ds+ F (x, t).

Here w = w(x, t) : Ω× [0, T ] 7→ R where T > 0 and Ω ⊆ Rd, d ≤ 3.

Equation (1.1) has several interpretations. For every d, w(x, t)
represents the temperature of a thermodynamical system with memory
which occupies the region Ω, see [12]. In linear viscoelasticity and
when d = 1 or d = 2, w(x, t) represents the displacement of the point
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in position x at time t of a body which fills the region Ω (see [31]). If
d = 3, then a similar interpretation holds for quite special classes of
displacements.

Equation (1.1) has to be supplemented with the initial condition

w(·, 0) = w0, wt(·, 0) = w1.

A control f ∈ L2
loc(0,+∞;L2(Γ)) acts on the boundary of Ω:

(1.2) w(x, t) = f(x, t), x ∈ Γ⊆∂Ω, w(x, t) = 0, x ∈ ∂Ω \ Γ.

We stress the fact that the control f is real valued.

Note that the arguments of w = w(x, t) are not explicitly indicated
unless needed for clarity. We shall write w(x, t) or w(t), or simply w.
Furthermore, w does depend on f but this dependence is not indicated.

We refer to [14] for the following properties of (1.1) (see also [24,
Appendix]). Let f ∈ L2(GT ) = L2(0, T ;L2(Γ)) and w(·, 0) = ξ ∈
L2(Ω), wt(·, 0) = η ∈ H−1(Ω). Then, (1.1) admits a unique solution
w(·, t) ∈ C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)), and the transformation

(ξ, η, f) 7−→ (w,wt)

is linear and continuous in the indicated spaces. So, the following
definition of controllability is justified:

Definition 1.1. System (1.1) is controllable at time T if, for every w0,
ξ ∈ L2(Ω) and w1, η ∈ H−1(Ω), there exists f ∈ L2(0, T ;L2(Γ)) such
that

w(·, T ) = ξ ∈ L2(Ω), wt(·, T ) = η ∈ H−1(Ω).

A control f with this property is called a steering control (to the target
(ξ, η)).

It is known that controllability of a linear system does not depend
on the initial condition or on the affine term F so that we can assume

(1.3) w(x, 0) = 0, wt(x, 0) = 0, F (x, t) = 0.

Controllability at time T implies controllability at larger times so
that:
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Definition 1.2. The sharp control time for system (1.1) (with con-
trol (1.2)) is the infimum of the set of the times at which the system is
controllable.

The special case of equation (1.1) withM(t) ≡ 0 is the (generalized)
telegrapher’s equation:

(1.4)

{
wtt = 2cwt +∇ · (a(x)∇w) + q(x)w,
w(x, t) = f(x, t) x ∈ Γ, w(x, t) = 0, x ∈ ∂Ω \ Γ.

The paper [32] proves controllability of (1.4) with real controls if Γ is
suitably chosen and identifies a Γ-dependent control time. Our goal is
the proof that, when the telegrapher’s equation is controllable at time
T , then also (1.1) is controllable and, conversely in the following sense:

Theorem 1.3. Let Ω ∈ R3 be a bounded region with C2 boundary and
M(t) ∈ H2

loc(0,+∞), q(x) ∈ C(Ω), a(x) ∈ C1(Ω), with a(x) > a0 > 0

for every x ∈ Ω. Then we have

(i) if the telegrapher’s equation (1.4) is controllable at time T , then
equation (1.1) is controllable at any larger time.

(ii) Equations (1.1) and (1.4) have the same sharp control time.

Among the different ways in which controllability can be proved,
possibly the oldest one is the reduction of a control problem to a
moment problem. Theorem 1.3, when d = 1, has been proved via
moment methods in [19, 25, 26], and we prove here that moment
methods can be used in general.

As an application of our results, we note that controllability can be
used to identify external signal using boundary observations, see [27].

Notations. Whenever the notations {Mn} and {Mn(t)} appear, they
denote respectively a bounded sequence of numbers and a sequence
of (continuous) functions which is bounded on a (preassigned) inter-
val [0, T ], not the same sequences at every occurrence. The special
expression of these sequences has no interest in the proofs.

We introduce the notation (∂/∂ν denotes normal derivative on ∂Ω)

Gt = Γ× (0, t), γaϕ = a(x)
∂ϕ

∂ν
on ∂Ω (in particular on Γ).
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Organization of the paper is as follows. The goal of the paper is the
proof of the two statements in Theorem 1.3. The proof is in two parts
and requires several preliminaries and ancillary material. Preliminaries
are in Section 2: subsection 2.1 presents a transformation of the
variable w which does not affect controllability but which simplifies
the computations; subsection 2.2 presents information on the theory of
moments and Riesz sequences, while the properties of the telegrapher’s
equation are in subsection 2.3.

In Section 3, we prove Theorem 1.3 (i) while equality of the sharp
control times (i.e., item (ii)) is proved in Section 4.

Proofs of ancillary results are in the appendix.

1.1. References and known results. The first results on control-
lability of viscoelastic systems have been obtained by Leugering (see,
for example, [16, 17]) then followed by several contributions (see, for
example, [15]). Among them, we consider in particular the results
in [5, 8, 20, 24]. The paper [20] proves Theorem 1.3 (even for a
nonconvolution kernel. See [28] for an important special case) in the
case q(x) = 0 and a(x) = 1. More importantly, it explicitly assumes
that the control acts on the whole boundary of Ω, Γ = ∂Ω. Under
these conditions, paper [20] proves controllability, as a consequence of
observability of the adjoint system, when T ≥ T0, where T0 is explic-
itly identified. Controllability via observability of the adjoint system
is proved in [8], when the control is distributed in a subregion close to
∂Ω (the proof is based on Carleman estimates).

An extension of the D’Alembert formula is used in [5, Section 5] to
study controllability to smooth targets of a (one-dimensional) thermal
system with memory.

The paper [24] uses an operator approach and represents the solu-
tions of (1.1) by using cosine operators (this idea is implicit in previous
papers, for example by Leugering). It is proved in [24] that control-
lability holds for the equation with memory if the corresponding wave
equation is controllable but the control time is not explicitly identified.

The papers [5, 8, 24] are concerned with the heat equation with
memory so that they study only the controllability of the component
w(t), not of the velocity, but at least the arguments in [24] are easily
extended to the pair (deformation/velocity).
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In conclusion, Theorem 1.3 extends and completes the results in
[5, 8, 20, 24] and furthermore it uses different techniques, which have
their independent interest: the proof uses moment methods and extends
to spaces of higher dimension the techniques and results developed in
[1, 3, 4, 19, 25, 26, 27, 28].

2. Preliminary information. Let A be the operator in L2(Ω),

(2.1) domA = H2(Ω) ∩H1
0 (Ω), Aw = ∇ · (a(x)∇w) + q(x)w.

This operator is selfadjoint with compact resolvent and has a se-
quence {−λ2n} of eigenvalues. Note the sign and the exponent, but this
does not imply that −λ2n is real negative. This property does depend
on the sign of q(x). The order of the eigenvalues is taken so that {|λn|}
is increasing (eigenvalues with equal modulus are taken in any order)
and every eigenvalue is repeated according to its multiplicity (which is
finite). It is known (see [23, page 192]) that there exist N , m0 > 0
and m1 > 0 such that, if n > N , then λ2n is real, and we have:

m0n
2/d < λ2n < m1n

2/d.

We shall use the following consequence:

Lemma 2.1. If d ≤ 3, then we have
∑

1/λ4n < +∞.

The space L2(Ω) has an orthonormal basis whose elements are
eigenvectors of A: Aϕn = −λ2nϕn.

For any k > 0, such that (kI −A) is positive, the sequence{
ϕn

(√
k + λ2n

)−1
}

is an orthonormal basis of (dom (kI − A)1/2), and so {ϕn
√
k + λ2n} is

an orthonormal basis of (dom (kI − A)1/2)′. This space is unitarily
equivalent to H−1(Ω) since (from [9, Theorem 1-D]) (dom (kI −
A)1/2) = H1

0 (Ω). Hence, every χ ∈ H−1(Ω) has the representation

(2.2) χ =
∑

χn

(√
k + λ2n

)
ϕn, {χn} ∈ l2.
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2.1. A preliminary transformation. The computations are simpli-
fied if we use a transformation first introduced in [25]. We integrate
both sides of (1.1). Initial conditions and affine terms are zero, so that
we get

wt(t) = 2cw(t) +

∫ t

0

Ñ(t− s) (∇ · (a(x)∇w(s)) + q(x)w(s)) ds

with

w(0) = 0, w|Γ(t) = f(t),

w|∂Ω\Γ(t) = 0, Ñ(t) = 1 +

∫ t

0

M(s) ds.

We introduce

θ(x, t) = e2γtw(x, t), γ = −M(0)/2 = −Ñ ′(0)/2.

We see that θ solves the following equation, where α = c + γ, N(t) =

e2γtÑ(t):

(2.3) θt = 2αθ(t) +

∫ t

0

N(t− s) (∇ · (a(x)∇θ(s)) + q(x)θ(s)) ds

with conditions

θ(0) = 0 θ|Γ(t) = e2γtf(t), θ|∂Ω\Γ(t) = 0

(the functions e2γtf(t) will be renamed f(t)). The fact that simplifies
the computation is:

N(0) = 1, N ′(0) = 0.

Thanks to the equality wt = e−2γt(θt − 2γθ), controllability of the
pair (w,wt) is equivalent to controllability of the pair (θ, θt). So, from
now on, we study the controllability of the pairs (θ, θt) where θ solves
equation (2.3).

Now we compute the derivative of both sides of equation (2.3). We
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get

rθtt = 2αθt +∇ · (a(x)∇θ) + q(x)θ(2.4)

+

∫ t

0

N(t− s) (∇ · (a(x)∇θ(s)) + q(x)θ(s)) ds.

The telegrapher’s equation associated to this system is

(2.5) wtt = 2αwt +∇ · (a(x)∇w) + q(x)w

(of course systems (2.5) and (1.4) have the same controllability prop-
erties).

We shall prove controllability of the viscoelastic system written in
the form (2.3) by comparing it with the telegrapher’s equation (2.5).
In this study, the following notation will be of frequent use (α is the
coefficient in (2.3) and (2.5)):

(2.6) βn =
√
λ2n − α2.

2.2. Riesz sequences and moment methods. The study of the
controllability of linear systems can often be reduced to the solution
of suitable moment problems. We confine ourselves to considering the
special case which is needed in the proof of Theorem 1.3. Let H be an
infinite dimensional, separable (real or complex) Hilbert space (inner
product is ⟨·, ·⟩, and the norm is | · |). Let {en} be a sequence in H.
We define J: H 7→ l2 as

dom J = {f ∈ H : {⟨f, en⟩} ∈ l2}, Jf = {⟨f, en⟩} .

The moment problem is the study of im J. In particular, we are
interested in understanding whether the sequence of the equations

(2.7) ⟨f, en⟩ = cn

admits a solution f for every {cn} ∈ l2, and to represent at least one
of the solutions. In the proof of Theorem 1.3 we only use the case
J ∈ L(H, l2). Then we restrict our interest to this case. It is then easy
to compute J∗:

(2.8) J∗ ({cn}) =
∑

encn.

It turns out (see [2, Theorem I.2.1]) that J is an isomorphism of
cl span {en} and l2 if and only if {en} is a Riesz sequence, i.e., if and
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only if {en} is the image of an orthonormal basis of a Hilbert space K
under a linear bounded and boundedly invertible transformation from
K to H.

A Riesz sequence in H which is complete in H is called a Riesz basis.

The following result holds (see [33, Theorem 9]):

Lemma 2.2. The sequence {en} is a Riesz sequence if and only if there
exist numbers m0 > 0 and m1 > 0 such that

(2.9) m0

∑
|an|2 ≤

∣∣∣∣∑ anen

∣∣∣∣2
H

≤ m1

∑
|an|2

for every finite sequence {an}. If, furthermore, the sequence {en} is
complete, then it is a Riesz basis.

Every Riesz sequence admits biorthogonal sequences {ψn}, i.e.,
sequences such that

⟨ψk, en⟩ = δn,k =

{
1 if n = k
0 if n ̸= k.

One (and only one) of these biorthogonal sequences belongs to the
closed space spanned by {en}. This biorthogonal sequence is a Riesz
sequence too, and the solution of the moment problem (2.7) is

f =
∑

cnψn.

Let {en} and {zn} be two sequences in H. We say that they are
quadratically close if ∑

|en − zn|2 < +∞,

and we use the following test (see [30, 33]):

Theorem 2.3. Let {en} be a Riesz sequence in H, and let {zn} be
quadratically close to {en}. Then we have

• Paley-Wiener theorem. There exists N such that {zn}n>N

is a Riesz sequence in H;
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• Bari theorem. The sequence {zn} is a Riesz sequence if, fur-
thermore, it is ω-independent, i.e., if (here {αn} is a sequence
of numbers)∑

αnzn = 0 =⇒ {αn} = 0.

A useful observation (implicitly used in the statement of Theo-
rem 2.3) is as follows: if {zn} is quadratically close to a Riesz sequence,
then

∑
αnzn converges in H if and only if {αn} ∈ l2 (see [10, Chap-

ter 6]).

The concrete case in which we are interested is the case H =
L2(0, T ;K) where K is a second Hilbert space (it will be K = L2(Γ)).
In this context, we need two special results. For completeness, the
proofs are given in the appendix.

Lemma 2.4. Let Z′ = Z\{0}, and let {bn}n∈Z′ , {kn}n∈Z′ be such that

(2.10) b−n = −bn, kn = k−n ∈ K, |Imbn| < L

for a suitable number L. If the sequence {eibntkn}n∈Z′ is a Riesz se-
quence in L2(0, 2T,K), then the following sequences are Riesz sequences
in L2(0, T ;K):

(2.11) {kn cos bnt}n>0 , {kn sin bnt}n>0 .

Now we consider a Riesz basis {en} in L2(0, T ;K) and a time T0 < T .
Then {en} is complete in L2(0, T0;K), but it is not a Riesz sequence
since every element of L2(0, T0;K) has infinitely many representations
as a series

∑
anen (one such representation for every extension which

belongs to L2(0, T ;K)).

Let J0 be the operator from L2(0, T0;K) to l2 given by

J0f =
{
⟨f, en⟩L2(0,T0;K)

}
.

We prove:

Lemma 2.5. dim [im J0]⊥ = +∞.
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Finally, we note that (2.2) can be written as (βn is defined in (2.6)):

χ =
∑

λ2
n=α2

(
χn

√
k + α2

)
ϕn +

∑
λ2
n ̸=α2

(
χn

√
k + λ2n
βn

)
[βnϕn] .

It follows that a Riesz basis of H−1(Ω) is the sequence whose elements
are {

ϕn if λ2n = α2

βnϕn if λ2n ̸= α2.

2.3. The telegrapher’s equation. We consider the telegrapher’s
equation (2.5) associated to equation (2.4). Controllability at time
T is equivalent to surjectivity of the map f 7→ ΛT f = (w(T ), wt(T ))
(from L2(GT ) to L2(Ω) × H−1(Ω)). By computing Λ∗

T , we see that
the telegrapher’s equation is controllable at time T if and only if there
exist m = mT > 0, M =MT > 0 such that

m
(
∥ϕ0∥2H1

0 (Ω) + ∥ϕ1∥2L2(Ω)

)
≤

∫
GT

∥γaϕ∥2 dGT(2.12)

≤M
(
∥ϕ0∥2H1

0 (Ω) + ∥ϕ1∥2L2(Ω)

)
.(2.13)

Here ϕ denotes the solution of the adjoint system

ϕtt = −2αϕt +∇ · (a(x)∇ϕ) + q(x)ϕ,

ϕ(·, 0) = ϕ0(x) ∈ H1
0 (Ω), ϕt(·, 0) = ϕ1(x) ∈ L2(Ω), ϕ|∂Ω

= 0.
(2.14)

The inequalities (2.13) have the following consequence:

Theorem 2.6. Let T > 0, and let the telegrapher’s equation (2.5) be
controllable at time T . Then we have:

(i) For every target (ξ, η) ∈ L2(Ω) ×H−1(Ω)), there exists a unique
steering control f = f (ξ,η) ∈ L2(GT ) of minimal norm. This
steering control is a continuous function of (ξ, η).

(ii) Let ϕ(x) be an eigenvector of A. Then
∫
Γ
|γaϕ|2 dΓ ̸= 0.

(iii) The sequence {(γaϕn)/λn}λn ̸=0 is almost normalized in L2(Γ),
i.e., there exist m > 0 and M such that

(2.15) 0 < m ≤ ∥(γaϕn)/λn∥L2(Γ) ≤M.
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Proof. Statement (i) follows since the left inequality in (2.13) is
coercivity of the adjoint of the map f 7→ (w(T ), w′(T )) (see [18, 22]).

We prove statement (ii). Let Aϕ = λϕ. If β =
√
λ2 − α2 ̸= 0, then

the function ϕ(x, t) = e−αtϕ(x) sinβt solves (2.14). The left inequality
in (2.13) shows that

mβ2∥ϕ|2L2(Ω) ≤
[∫ T

0

e−2αt sin2 βtdt

] ∫
γ

|γaϕ(x)|2 dΓ.

The result follows since (by definition) the eigenvectors are nonzero.

If β = 0, a similar argument holds, with ϕ(x, t) = e−αtϕ(x).

We prove statement (iii) (see [13] for the idea of the proof). Let

βn =
√
λ2n − α2. It may be βn = 0 in (2.6) only for a finite set of

indices. So, in the proof of the asymptotic estimate (2.15), we can

assume βn =
√
λ2n − α2 ̸= 0.

The function ϕ(x, t) = 1/βne
−αtϕn(x) sinβnt solves equation (2.14)

with initial conditions

ϕ(x, 0) = 0, ϕt(x, 0) = ϕn(x).

By using ∥ϕn∥L2(Ω) = 1, inequality (2.13) gives

m ≤
[ ∫ T

0

(
λn
βn
e−αt sinβnt

)2

dt

] ∫
Γ

∣∣∣∣γaϕnλn

∣∣∣∣2 dΓ < M.

The result follows since limn→+∞(λn/βn) = 1 and

lim
n→+∞

∫ T

0

e−2αt sin2 βnt dt =

(
1− e−2αT

)
4α

,

lim
n→+∞

∫ T

0

sin2 βnt dt =
1

2
T. �

2.3.1. Moment method for the telegrapher’s equation. The following
computations make sense for smooth controls and are then extended
to square integrable controls by continuity. Let (ϕn are eigenvectors of
A)

wn(t) =

∫
Ω

w(x, t)ϕn(x) dx.
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Then, wn(t) solves

w′′
n = 2αw′

n − λ2nwn −
∫
Γ

(γaϕn)f(x, t) dΓ.

So, with βn defined in (2.6), we have

wn(t) = −
∫
Gt

eαs
[
γaϕn
βn

sinβns

]
, βn ̸= 0(2.16)

wn(t) = −
∫
Gt

seαs [γaϕn] f(x, t− s) dGt, βn = 0(2.17)

(it may be βn = 0 for a finite number of indices). So, we have

−w(x, t) =
∑

ϕn(x)

∫
Gt

eαs
[
γaϕn
βn

sinβns

]
f(x, t− s) dGt,(2.18)

−wt(x, t) =
∑

βnϕn(x)(2.19)

·
∫
Gt

eαs
γaϕn
βn

[
α

βn
sinβns+ cosβns

]
f(x, t− s) dGt.

If βn = 0, then the corresponding term in (2.18) is replaced with (2.17),
while in (2.19) it is replaced with

(2.20)

∫
Gt

(1 + αs)eαs (γaϕn) f(x, t− s) dGt.

Equalities (2.18) and (2.19) show that controllability at time T of
the telegrapher’s equation is equivalent to solvability of the following
moment problem∫

GT

eαs
[
γaϕn
βn

sinβns

]
f(x, T − s) dGT = ξn(2.21) ∫

GT

eαs
γaϕn
βn

[
α

βn
sinβns+ cosβns

]
f(x, T − s) dGT = ηn(2.22)

where {ξn} and {ηn} belong to l2 and f is real.

We noted that, when βn = 0, the corresponding terms in (2.21) and
(2.22) have to be replaced respectively with (2.17) or (2.20). In order
to have a unified formulation, we introduce

J = {n : βn = 0}
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(a finite set of indices) and cn = ηn + iξn. Then, {cn} is an arbitrary
(complex valued) l2 sequence. The moment problem (2.21)–(2.22)
reduces to the following problem where g(x, s) = eαsf(x, T − s) is
real :

(2.23)

⟨g, en⟩ =
∫
GT

en(x, s)g(s) ds = cn, n > 0

en(x, s) =

{ (
γaϕn

βn

) [
eiβns + α

βn
sinβns

]
, n /∈ J

(1 + αs+ is) (γaϕn) , n ∈ J .

Statement (i) in Theorem 2.6 is equivalent to the following fact: for
every target (ξ, η) ∈ L2(Ω)×H−1(Ω) there exists a real steering control
f , which depends continuously on (ξ, η).

The index n in (2.23) is positive. It is convenient to reformulate the
problem with n ∈ Z′ = Z \ {0}. We define, for n < 0 and −n /∈ J :

(2.24) βn = −(β−n), ϕn = ϕ−n, λn = λ−n.

This implies e−n = −en if −n /∈ J , and this is the definition of e−n

for −n ∈ J . A real solution f of problem (2.23) (and n > 0) exists
and depends continuously on the complex sequence {cn}n>0 ∈ l2 if and
only if the moment problem

(2.25) ⟨f, en⟩L2(GT ) = cn, n ∈ Z′

admits a complex valued solution f ∈ L2(GT ) which depends contin-
uously on (ξ, η) (the proof is the same as in the memory case, and it
is given in the appendix). That is, controllability of the telegrapher’s
equation is equivalent to the fact that the moment operator of the se-
quence {en} is bounded and boundedly invertible. The sequences {en}
and {en} have the same basis properties. So we can state:

Theorem 2.7. The telegrapher’s equation is controllable in time T if
and only if the sequence {en}n∈Z′ is a Riesz sequence in L2(GT ) (with
complex scalars).

It is interesting to note that, when {ξn} and {ηn} are arbitrary in
l2, the same holds for the sequence {ηn + iξn − (γ/βn)ξn}, for every
number γ. So, Theorem 2.7 holds as well if the functions en in (2.23)
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are replaced by (
eiβnt +

γ

βn
sinβnt

)
γaϕn
βn

, n /∈ J ,

(1 + (i+ γ)s)γaϕn, n ∈ J

where γ is any fixed complex number (possibly γ = 0).

3. Controllability of the viscoelastic systems. In this section,
we prove item (i) of Theorem 1.3. Let θ solve (2.4)) and

θn(t) =

∫
Ω

θ(x, t)ϕn(x) dx.

Then we have

θ′n= 2αθn−λ2n
∫ t

0

N(t−s)θn(s) ds−
∫ t

0

N(t−s)
[ ∫

Γ

(γaϕn)f(x, s) dΓ

]
ds.

For every n, we introduce the functions zn(t) which solve

(3.1) z′n = 2αzn − λ2n

∫ t

0

N(t− s)zn(s) ds, zn(0) = 1.

Hence:

θn(t) = −
∫ t

0

zn(τ)

∫ t−τ

0

N(t− τ − s)

∫
Γ

(γaϕn)f(x, s) dΓ ds dτ

(3.2)

= −
∫
Gt

{∫ s

0

N(s− τ)zn(τ) dτ

}
(γaϕn)f(x, t− s) dGt

θ′n(t) = −
∫
Gt

[
zn(s) +

∫ s

0

N ′(s− τ)zn(τ) dτ

]
(γaϕn)f(x, t− s) dGt.

(3.3)

Thanks to continuous dependence of the solutions on the initial data
and regularity when the initial data are smooth (see [14] and [24,
Appendix])), the following equalities hold in C([0, T ];L2(Ω)) and
C([0, T ];H−1(Ω)):

θ(t) =
+∞∑
n=1

θn(t)ϕn(x), θt(t) =
+∞∑
n=1

θ′n(t)ϕn(x).
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Let {ξn} ∈ l2 and {ηn} ∈ l2 be the sequence of the coefficients of the
expansions of the targets ξ and η in series of, respectively, {ϕn} and
{βnϕn} (βnϕn replaced with ϕn if βn = 0). We see that controllability
at time T is equivalent to the solvability of the following moment
problem:
(3.4)∫

GT

Zn(t)
γaϕn
βn

f(x, T − s) dGT = cn = −(ηn + iξn), n /∈ J∫
GT

Zn(t)(γaϕn)f(x, T − s) dGT = cn = −(ηn + iξn), n ∈ J

where, for n > 0,

(3.5) Zn(t) =



zn(t) +

∫ t

0

N ′(t− s)zn(s) ds

+iβn
∫ t

0
N(t− s)zn(s) ds, n /∈ J ,

zn(t) +

∫ t

0

N ′(t− s)zn(s) ds

+i
∫ t

0
N(t− s)zn(s) ds, n ∈ J

(we recall that if n ∈ J then the element βnϕn of the basis of H−1(Ω)
has to be replaced with ϕn).

It is convenient to reformulate the moment problem with n ∈ Z′.
This is done by using the following definitions:

z−n(t) = zn(t), ϕ−n(x) = ϕn(x),

β−n = −βn, λ−n = λn, n /∈ J .

Let

(3.6) Ψn =
γaϕn
βn

, n /∈ J , Ψn = γaϕn, n ∈ J .

Then we have
Z−nΨ−n = −ZnΨn, n /∈ J .

We symmetrize J (with respect to 0) and we define Z−nΨ−n when
n ∈ J by:

Z−nΨ−n = −ZnΨn = −ZnΨn if n ∈ J .

So, we can consider the moment problem (3.4) with n ∈ Z′ = Z \ {0}.
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It is proved in the Appendix that {ZnΨn}n∈Z′ is a Riesz sequence
if and only if the moment problem (3.4) (with n > 0) admits a real
solution f which is a continuous function of (ηn + iξn) ∈ l2. So, in
order to prove the first statement in Theorem 1.3, we prove:

Theorem 3.1. Let the telegrapher’s equation (2.5) be controllable at
time T − ε. Then, the sequence {Zn(t)Ψn}n∈Z′ is a Riesz sequence in
L2(GT ).

The proof of Theorem 3.1 is in two steps: we prove that {Zn(t)Ψn}
is quadratically close to a Riesz sequence and then we prove that it is
ω-independent.

3.1. Step 1: Closeness to a Riesz sequence. Let

Kn(t) = N ′(t) + iβnN(t) if n /∈ J ,
Kn(t) = N ′(t) + iN(t) if n ∈ J .

The right hand side of the equality (3.5) is a variation of constants
formula, so that (compare (3.1)) Zn(t) solves

(3.7) Z ′
n = 2αZn − λ2n

∫ t

0

N(t− s)Zn(s) ds+Kn(t), Zn(0) = 1.

Hence, also

(3.8)

Z ′′
n = 2αZ ′

n − λ2nZn − λ2n

∫ t

0

N ′(t− s)Zn(s) ds+K ′
n(t),{

Zn(0) = 1 ,

Z ′
n(0) = 2α+ iβn(n /∈ J ), Z ′

n(0) = 2α+ i (n ∈ J ).

Then we have the following representation formulas:

if n /∈ J then,

Zn(t) = eαteiβnt + eαt
α

βn
sinβnt

+
1

βn

∫ t

0

eα(t−s) sinβn(t− s)

[
K ′

n(s)− λ2n

∫ s

0

N ′(s− r)Zn(r) dr

]
ds,

if n ∈ J then,

Zn(t) = eαt (1 + (α+ i)t)
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+

∫ t

0

eα(t−s)(t− s)

[
(N ′′(s) + iN ′(s))−α2

∫ r

0

N ′(r − s)Zn(s)ds

]
dr.

We introduce
Sn(t) = e−αtZn(t)

and we see that, for n /∈ J ,

Sn(t) = Gn(t)−
λ2n
βn

∫ t

0

sinβn(t−s)
∫ s

0

(
e−α(s−r)N ′(s− r)

)
Sn(r) dr ds

where (in the last integration by parts we use N ′(0) = 0).

Gn(t) = eiβnt +
α

βn
sinβnt(3.9)

+
1

βn

∫ t

0

e−αs [N ′′(s) + iβnN
′(s)] sinβn(t− s) ds

= eiβnt +
α−N ′(0)

βn
sinβnt

+

∫ t

0

N ′(t− s)e−α(t−s)

[
eiβn(t−s) +

α

βn
sinβn(t− s)

]
ds

= eiβnt +
α

βn
sinβnt

+

∫ t

0

N ′(t− s)e−α(t−s)

(
eiβns +

α

βn
sinβns

)
ds.

Instead, for n ∈ J , we have

Gn(t) = 1 + (α+ i)t+

∫ t

0

e−α(t−s)N ′(t− s) [1 + (α+ i)s] ds.

The linear transformation

y 7−→ y(t) +

∫ t

0

e−α(t−s)N ′(t− s)y(s) ds

is bounded with bounded inverse. So, Theorem 2.7 and controllability
of the telegrapher’s equation (2.5) imply that the sequence {Gn(t)Ψn}
is Riesz in L2(GT ).

We shall need asymptotic estimates of Sn(t) which hold for large n.
So we can work with n /∈ J . We introduce the notation

N1(t) = e−αtN ′(t) so that N1(0) = 0,
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µn =
λ2n
βn

2 so that 1− µn = −α2/βn
2.

An integration by parts gives

Sn(t) = Gn(t)− µn

∫ t

0

N1(t− r)Sn(r) dr

+ µn

∫ t

0

(∫ t−r

0

N ′
1(t− r − s) cosβnsds

)
Sn(r) dr.(3.10)

The Gronwall inequality shows that, for every T > 0, there exists
M =MT such that

|Sn(t)| ≤M, t ∈ [0, T ].

We integrate the last integral in (3.10) by parts again, and we get

Sn(t) = Gn(t)− µn

∫ t

0

N1(t− r)Sn(r) dr

+
µn

βn

∫ t

0

(
N ′

1(0) sinβn(t− r)(3.11)

+

∫ t−r

0

N ′′
1 (t− r − s) sinβnsds

)
Sn(r) dr.

We introduce

En(t) = eiβnt +
α

βn
sinβnt (if n /∈ J ),

and we rewrite (3.11) as (⋆ denotes the convolution)

(Sn − En) +N1 ⋆ (Sn − En) =
N ′

1(0)

βn

∫ t

0

sinβn(t− r)Sn(r) dr

+
1

βn

∫ t

0

N ′′
1 (s)

∫ t−s

0

sinβn(t− s− r)Sn(r) dr ds+
1

βn
2Mn(t),

(3.12)

Mn(t) = −α2

∫ t

0

N1(t− r)Sn(r) dr

+
α

βn

∫ t

0

[
N ′

1(0) sinβn(t− r) +

∫ t−r

0

N ′′
1 (t− r − s) sinβnsds

]
dr.
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Note that here we have explicitly written the expression of the
functions Mn(t), but this expression does not have a real interest:
the important fact is that the sequence {Mn(t)} is bounded on (any)
interval [0, T ]. This is the sole property of interest and, as we said
already, in the following we use {Mn(t)} to denote a sequence of
(continuous) functions which is bounded (on an interval [0, T ]), not
the same sequence at every occurrence. We shall not write down the
explicit expression of the functions Mn(t), which has no role in the
proofs.

By using the definition of En(t), we see the existence of a sequence
{Mn(t)} of continuous functions defined for t ≥ 0, bounded on bounded
intervals and such that

(3.13) Sn(t) = eiβnt +
Mn(t)

βn
.

Now we compute:∫ t

0

Sn(r) sinβn(t− r) dr

=

∫ t

0

(
eiβnr +

Mn(r)

βn

)
sinβn(t− r) dr = − i

2
teiβnt +

i

2βn
sinβnt

(3.14)

+
1

βn

∫ t

0

Mn(r) sinβn(t− r) dr.

We observe

i

βn
teiβnt = −

∫ t

0

seiβns ds+
1

βn
2

(
eiβnt − 1

)
= −

∫ t

0

sEn(s) ds+
1

βn
2Mn(t).

i.e.,

1

βn

∫ t

0

Sn(r) sinβn(t− r) dr = −1

2

it

βn
eiβnt +

1

βn
2Mn(t)

=
1

2

∫ t

0

sEn(s) ds+
1

βn
2Mn(t).



122 L. PANDOLFI

We replace this expression in (3.12) and we rewrite the equality as

(Sn − En) +N1 ⋆ (Sn − En) =
N ′

1(0)

2

∫ t

0

sEn(s) ds

+
1

2

∫ t

0

N ′′
1 (s)

∫ t−s

0

rEn(r) dr ds

+
1

βn
2Mn(t)

=
1

2

∫ t

0

N ′
1(t− r)rEn(r) dr +

1

βn
2Mn(t)

(as usual, the functions Mn(t) are not the same at every step).

Let L(t) be the resolvent kernel of N1(t) so that L(0) = 0 and L(t)
is twice differentiable. We have

Sn(t) = En(t) +
1

2

∫ t

0

N ′
1(t− s)sEn(s) ds

− 1

2

∫ t

0

(sEn(s))

[∫ t−s

0

L(t− s− r)N ′
1(r) dr

]
ds

+
1

βn
2Mn(t).

In conclusion,

ΨnSn(t) = ΨnEn(t)

+
1

2

∫ t

0

s

[
N ′

1(t− s)−
∫ t−s

0

L(t−s−r)N ′
1(r) dr

]
ΨnEn(s) ds

+
1

βn
2Mn(t)(3.15)

(note that we can replace ΨnMn(t) with Mn(t) since {Ψn} is bounded
in L2(Γ)). The sequence whose elements are

ΨnEn(t)+
1

2

∫ t

0

s

[
N ′

1(t−s)−
∫ t−s

0

L(t−s−r)N ′
1(r) dr

]
ΨnEn(s) ds

is the image of a Riesz sequence of L2(GT ) under a linear bounded and
boundedly invertible transformation. Hence, it is a Riesz sequence too
so that, by using Theorem 2.3 and Lemma 2.1, we get:
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Theorem 3.2. Let the telegrapher’s equation (2.5) be controllable at
time T . Then, {Sn(t)Ψn}n∈Z′ is quadratically close to a Riesz sequence
in L2(GT ) and so there exists N such that {Sn(t)Ψn}|n|>N is a Riesz
sequence too.

In the second step, we prove that {Sn(t)Ψn}n∈Z′ is ω-independent
in L2(GT ); hence, it is a Riesz sequence and this completes the proof
of statement (i) in Theorem 1.3.

3.2. Step 2: ω-independence. We consider the equality

(3.16)
∑
n̸=0

αnSn(t)Ψn = 0 in L2(GT ).

Theorem 3.2 implies that {αn} ∈ l2. Our goal is the proof that αn = 0
for every n. The proof is in three steps:

Step 1. if equality (3.16) holds, then αn = γn/βn
3 where {γn} ∈ l2.

Step 2. The property of {αn} in Step 1 is used to prove that αn = 0
for n > N (N is the number in Theorem 3.2).

Step 3. We finish the proof by proving that αn = 0 also for n ≤ N .

Now we proceed to realize this program.

Step 1: Decaying properties of {αn}. In this step, we use the shorthand
notation

H1 = H1([0, T ];L2(Ω)).

We shall use the following lemma (proved in the Appendix).

Lemma 3.3. Let a sequence {αn} be such that

Φ(x, t) =
∑
n∈Z′

αne
iβntΨn ∈ H1 = H1(0, T ;L2(Γ)).

If {eiβntΨn} is Riesz on a shorter interval T − ϵ, then there exists
{δn} ∈ l2 such that

αn =
δn
βn
.
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We single out from the series (3.16) those terms which correspond
to indices in J (if any). Let

F (t) =
∑
n∈J

αnSn(t)Ψn if J ̸= ∅, F (t) = 0 otherwise.

This sum is finite, and for the indices in this sum, we have

Sn(t) = 1 + (α+ i)t

+

∫ t

0

(t− r)

{
e−αr (N ′′(r) + iN ′(r))

− α2

∫ r

0

N1(r − s)Sn(s) ds

}
dr.

So, Sn(t) does not depend on n when n ∈ J , and it is of class H3: F (t)
is a fixed H3 function (possibly zero).

When, in the next equalities, the index of the series is not explicitly
indicated, we intend that it belongs to the set Z′ \ J .

Using (3.9) and (3.11), we rewrite (3.16) as

−
∑

αne
iβntΨn = F (t) + α

∑ αn

βn
Ψn sinβnt

+

∫ t

0

N1(t− s)
∑

αn

(
eiβns +

α

βn
sinβns

)
Ψn ds

−
∫ t

0

N1(t− r)
∑

αnµnSn(r)Ψn dr

+N ′
1(0)

∑∫ t

0

αnµn

βn
sinβn(t− r)Sn(r)Ψn dr

+

∫ t

0

N ′′
1 (s)

∑αnµn

βn

∫ t−s

0

sinβn(t−s−r)Sn(r)Ψn dr ds

= F (t) + f1 + f2 + f3 + f4 + f5.(3.17)

We already know that F ∈ H1. We prove fi ∈ H1 for every i.

The fact that {Ψn sinβns} and {ψn cosβns} are Riesz sequences in
L2(GT ) (see Lemma 2.4) implies that f1 and f2 belong to H1.

The series in f3 converges in L2(GT ) and N1(t) is continuously
differentiable, so that f3 ∈ H1.
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We consider the function f4, i.e., we consider the series

(3.18)
∑ αnµn

βn

∫ t

0

sinβn(t− r)Sn(r)Ψn dr.

Using (3.13) and d ≤ 3, we see that this series converges in L2(GT ). A
formal termwise differentiation gives:

(3.19)
∑

αnµn

∫ t

0

cosβn(t− r)Sn(r)Ψn dr.

We replace Sn(r) with its expression (3.13), and we get:∑
αnµn

∫ t

0

cosβn(t− s)En(s)Ψn ds (A)

−iN ′(0)
∑ αn

βn

∫ t

0

s cosβn(t− s)eiβnsΨn ds (B)

+
∑ αn

βn
2

∫ t

0

Mn(s) cosβn(t− s) ds. (C)

The three series converge: the series (A) and (B) because the inte-
grand are linear combinations of Ψn cosβnt, Ψn sinβnt and Ψne

iβnt:
convergence follows from Lemma 2.4. Lemma 2.1 (i.e., d ≤ 3) shows
convergence of the series (C). So we have f4 ∈ H1 and its convolution
with N ′′

1 (i.e., f5) belongs to H
1 too.

In conclusion, using controllability of the telegraph equation in a
shorter time,∑

αne
iβntΨn ∈ H1 hence αn =

δn
βn
, {δn} ∈ l2.

We replace this expression of {αn} in (3.17), and we equate the
derivatives of both sides. We get

− i
∑

δne
iβntΨn = F ′(t) + α

∑ δn
βn

Ψn cosβnt

+

∫ t

0

N ′
1(t− s)

∑ δn
βn

(
eiβns +

α

βn
sinβns

)
Ψn ds

−
∫ t

0

N ′
1(t− r)

∑ δnµn

βn
Sn(r)Ψn dr
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+N ′
1(0)

∫ t

0

∑ δnµn

βn
cosβn(t− r)Sn(r)Ψn dr

+

∫ t

0

N ′′
1 (s)

∫ t−s

0

∑ δnµn

βn
cosβn(t− s− r)Sn(r)Ψn dr ds.(3.20)

Arguments similar to the previous ones show that every series on the
right hand side can be differentiated once more. The term in the second
last line is the one that deserves a bit of attention. Its derivative is the
sum of the two series

N ′
1(0)

∑ δnµn

βn
Sn(t)Ψn,−N ′

1(0)
∑

δnµn

∫ t

0

sinβn(t− r)Sn(r)Ψn dr.

The first series converges thanks to the first statement in Theorem 3.2.

We insert (3.13) in the second series, and we get∑
δnµnΨn

∫ t

0

sinβn(t− r)
{
En(r)− irN ′(0)

1

βn
eiβnr +

1

βn
2Mn(r)

}
dr.

Convergence of this series is seen as above. Hence, we get

δn =
γ̃n
βn
, αn =

γ̃n

βn
2 , {γ̃n} ∈ l2.

Now we iterate this process: we replace δn with γ̃n/βn, and we equate
the derivatives. We get

(3.21) γ̃n =
γn
βn
, i.e., αm =

γn

βn
3 , {γn} ∈ l2 .

Details of the computations are in the Appendix.

In conclusion, we proved the existence of a sequence {γn} ∈ l2 such
that

αn = γn if n ∈ J , αn =
γn

βn
3 , if n /∈ J ,

where αn are the coefficients in the series (3.16).

Step 2: the sum in (3.16) is finite. We recall the definition of Sn(t) in
terms of Zn(t), and we rewrite (3.16) as

(3.22)
∑
n∈Z′

αnΨnZn(t) =
∑
n∈Z′

γn

βn
3ΨnZn(t) = 0.
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The series (3.22) converges uniformly so that:

(3.23)
∑
n∈Z′

αnΨn =
∑
n∈Z′

γn

βn
3 Ψn = 0.

Here γn/βn
3 has to be replaced with γn if n ∈ J . We implicitly intend

this substitution also in the next series.

The first statement in Theorem 3.2, the form of Kn(t) , d ≤ 3 and
βn

2 ≍ λ2n, show that the series (3.22) is termwise differentiable. Hence,
we have: ∑

αnΨn

{
− λ2n

∫ t

0

N(t− s)Zn(s) ds+Kn(t)

}
= 0.

We can distribute the series on the sum, and we get

(3.24)

∫ t

0

N(t− s)
∑
n∈Z′

γnλ
2
n

βn
3 Zn(s)Ψn ds =

∑
n∈Z′

γn

βn
3Kn(t)Ψn.

Using (3.23) and Kn(t) = N ′(t) + iβnN(t), we get∑ γn

βn
3Kn(t)Ψn = iN(t)

∑ γn

βn
2Ψn,

and so ∫ t

0

N(t− s)
∑
n∈Z′

γnλ
2
n

βn
3 Zn(s)Ψn ds = iN(t)

∑
n∈Z′

γn

βn
2Ψn.

The property N(0) ̸= 0 implies a further property of {αn}:

(3.25)
∑
n∈Z′

γn

βn
2Ψn =

∑
n∈Z′

βnαnΨn = 0,

and so the right hand side of (3.24) vanishes.

The property N(0) ̸= 0 used in (3.24) gives:

(3.26)
∑
n∈Z′

αnλ
2
nZn(t)Ψn =

∑
n∈Z′

γnλ
2
n

βn
3 Zn(t)Ψn = 0.

We recall equality (3.22):
∑

n∈Z′ αnZn(t)Ψn = 0. We introduce the
finite (possibly empty) set of indices

O = {n : λn = 0} .
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Note that if n ∈ O then Zn(t) = Ẑ(t), the same for every n. We
rewrite (3.26) and (3.22) as (the sum on the right side is zero if O = ∅):
(3.27)∑

n/∈O

αnZn(t)Ψn = −
∑
n∈O

αnZn(t)Ψn,
∑
n/∈O

αnλ
2
nZn(t)Ψn = 0.

Let k1 /∈ O be an index (of minimal absolute value) for which
αk1 ̸= 0. By combining the equalities in (3.27) we get∑

n/∈O

(
αn − αnλ

2
n

λ2k1

)
Zn(t)Ψn = −

∑
n∈O

αnZn(t)Ψn.

Note that the right hand side is the same as in the first equality of
(3.27).

Let

α(1)
n =

(
1− λ2n

λ2k1

)
αn

and note that{
α(1)
n

}
∈ l2;

{
α
(1)
k1

= 0 if λk = λk1

if λk ̸= λk1 then α
(1)
k = 0 ⇐⇒ αk = 0.

So,

(3.28)
∑
n∈O

αnZn(t)Ψn ∈ X1 = cl span {Zn(t)Ψn, n /∈ O, λn ̸= λk1
}∑

n/∈O
λn ̸=λk1

α
(1)
n Zn(t)Ψn = −

∑
n∈O αnZn(t)Ψn.

Thanks to {α(1)
n } ∈ l2, we can start a bootstrap argument and repeat

this procedure: we find that {λ3nα
(1)
n } ∈ l2. We fix a second element k2

(of minimal absolute value) such that α
(1)
k2

̸= 0 and, as above, we get

(3.29)


∑
n∈O

αnZn(t)Ψn ∈ X2 = cl span {Zn(t)Ψn, n /∈ O,

λn /∈ {λk1 , λk2}}∑
n/∈O
λn /∈{λk1

, λk2
}
α
(2)
n Zn(t)Ψn =

∑
n∈O αnZn(t)Ψn.
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The new sequence {α(2)
n } ∈ l2 has the property that{

α
(2)
k = 0 if λk ∈ {λk1 , λk2}

if λn /∈ {λk1 , λk2} then α
(2)
n = 0 ⇐⇒ αn = 0.

The argument can be repeated, and we find∑
n∈O

αnZn(t)Ψn∈XR = cl span
{
Zn(t)Ψn, n /∈O, λn /∈{λk1 , λk2 , . . . λkR}

}
for every R, i.e.

Lemma 3.4. We have:∑
n∈O

αnZn(t)Ψn ∈
∩
R

XR = {0}

and, after at most 2N iterations of the process, we find∑
|n|>N

α(N)
n Zn(t)Ψn = 0.

If N is large enough, as specified in Theorem 3.2, we see that

α(N)
n = 0 when |n| > N

and the original equality (3.22) involves a finite sum. We rewrite it as

(3.30)
∑

|n|≤K

n/∈O

αnZn(t)Ψn = 0.

Step 3: we have αn = 0 for every n. We use the following lemma:

Lemma 3.5. The sequence {Zn(t)Ψn(x)}n/∈O is linearly independent.

The proof is similar to the proof of the corresponding result in [3, 29]
and is omitted. This lemma and (3.30) imply αn = 0 if n /∈ O.

In conclusion, equality (3.22) is in fact

0 =
∑
n∈O

αnZn(t)Ψn = Z̃(t)
∑
n∈O

αnΨn,
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Z̃(t) ̸= 0 so that ∑
n∈O

αnΨn = 0.

Finally we prove:

Lemma 3.6. If n ∈ O, then αn = 0.

Proof. We introduce

Φ(x) =
∑
n∈O

αnΦn(x)

which is an eigenfunction of the operator A whose eigenvalue is 0

AΦ(x) = 0.

Note that if λn = 0, then βn = iα does not depend on n, and so

Ψn =


γaΦn

βn
=
γaΦn

iα
if α ̸= 0

γaΦn if α = 0.

So, in both cases, we get

AΦ = 0, γaΦ = 0.

By using statement (ii) in Theorem 2.6, we see that

Φ(x) =
∑

αnΦn(x) = 0.

Condition αn = 0 follows, since {Φn} is an orthonormal sequence. �

4. Sharp control time. The results proved up to now show that
the sharp control time of the viscoelastic system is not larger than
that of the telegrapher’s equation. Conversely controllability of (1.1)
implies controllability of the telegrapher’s equation (2.5). In fact, if
equation (1.1) is controllable at time T then the moment problem (3.4)
is solvable (with continuity) and then the sequence {Zn(t)Ψn} is a Riesz
sequence in L2(0, T ;L2(Γ)). The first statement of Theorem 3.2 implies
the existence of a number N such that, for |n| > N , the sequence whose
elements are described in Theorem 2.7 is Riesz in L2(0, T0;L

2(Γ)).
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This implies that the moment problem (2.21)–(2.22) for the tele-
grapher’s equation is solvable for {(ξn, ηn)} ∈ L, where L has finite
codimension, see [10, page 323], i.e., the reachable set at time T0 for
the telegrapher’s equation has finite codimension. We use Lemma 2.5
in order to prove that this is not true if the telegrapher’s equation is
not controllable.

Let T > T0 be any time at which the telegrapher’s equation (2.5) is
controllable.

Let us denote en the elements of the sequence described in Theo-
rem 2.7. By adding elements of (cl span {en})⊥, we complete the se-
quence {en} to a Riesz basis of L2(0, T ;L2(Γ)). We denote kn the
added elements.

We consider the operator J0: L2(0, T0;L
2(Γ)) 7→ l2 given by

J0f =
{
⟨f, en⟩L2(0,T0;L2(Γ))

}
∪
{
⟨f, kn⟩L2(0,T0;L2(Γ))

}
.

Lemma 2.5 shows that the codimension of its image is not finite, and
so we also have

dimL⊥ = dim
{
⟨f, en⟩L2(0,T0;L2(Γ))

}⊥
= +∞.

So, the index N cannot exist and the viscoelastic system is not con-
trollable at time T0 if the telegrapher’s equation is not controllable.

The previous negative result proves the second statement in Theo-
rem 1.3, and it has a clear relation with the following fact, that the
speed of propagation of waves in a viscoelastic body is equal to the
speed of propagation in the corresponding (memoryless) elastic body,
see [6, 7].

5. Appendix: proofs. Ancillary proofs are collected here.

In order to prove Lemma 2.4 we first note that the transformation∑
αne

ibntkn 7−→
∑

αne
−ibnT eibnτkn :L

2(−T, T ;K) 7−→L2(0, 2T ;K)

is bounded and boundedly invertible since {|Imbn|} is bounded.
Hence, the assumption is that (2.9) holds for the sequence {eibntkn}n∈Z′

in L2(−T, T ;K). We use Euler formulas and we see that (2.9) holds for
the cosine sequences (2.11) in L2(0, T ;K) (the sine sequence is treated
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analogously). In fact:∥∥∥∥∑
n>0

ankncos bnt

∥∥∥∥2
L2(0,T ;K)

=
1

4

∥∥∥∥∑
n>0

ankne
ibnt+

∑
n>0

ankne
−ibnt

∥∥∥∥2
L2(0,T ;K)

=
1

8

∥∥∥∥∑
n∈Z′

ankne
ibnt

∥∥∥∥2
L2(−T,T ;K)

.

In the last equality, we put an = a−n, and we used −bn = bn, k−n = kn.

Inequalities (2.9) hold by assumption for the right side and so they
hold also for the left side.

This proof has been adapted from [11], where it is proved that the
opposite implication is false.

Now we prove Lemma 2.5. We know that

(Im J0)⊥ = ker J∗0 =
{
{cn} ∈ l2 :

∑
cnen = 0 in L2(0, T0;K)

}
.

Every sequence {cn} ∈ l2 such that
∑
cnen = 0 in L2(0, T0;K) while∑

cnen ̸= 0 in L2(T0, T ;K) belongs to ker J∗0, and conversely. So,
dim ker J∗0 = +∞. �
Real and complex solutions of two moment problems. We use (·, ·) to
denote the integral of a product in L2(GT ) (so that (f, g) is linear in
both the entries) and we use l2(N) and l2(Z′) to denote the space of
the complex valued l2 sequences, with indices in N or in Z′.

Let en = {ζn + iζ̂n} be a sequence in L2(GT ) such that en = −e−n

so that
ζ−n = −ζn, ζ̂−n = ζ̂n.

We consider the problems

(en, f) = cn, {cn} = {ηn + iξn} ∈ l2(N)(5.1)

(en, g) = dn = rn + isn, {dn} ∈ l2(Z′).(5.2)

We prove that if the problem (5.1) has a real valued solution f ∈
L2(GT ) which depends continuously on {cn} ∈ L2(N), then moment
problem (5.2) has a complex valued solution g ∈ L2(GT ), which
depends continuously on {dn} ∈ l2(Z′), and conversely. Let g =
h+ ik. We separate real and imaginary parts and we see that moment
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problem (5.2) can be reformulated as

(ξn, h)− (ζ̂n, k) = rn, (ζn, k) + (ζ̂n, h) = sn,

(ζn, h) + (ζ̂n, k) = −r−n, (ζn, k)− (ζ̂n, h) = −s−n.

This is equivalent to the pair of problems (both with arbitrary complex
valued l2 sequences on the right hand side)

(ζn + iζ̂n, h) =
1

2
{[rn − r−n] + i[sn + s−n]} n ∈ N, h real valued.

(ζn + iζ̂n, k) =
1

2
{[sn − s−n]− i[rn + r−n]} n ∈ N, k real valued.

So, the solution of (5.2) is the same as the solution of two copies of
problem (5.1). This ends the proof. �
The proof of Lemma 3.3. We first note that Theorem 3.2 implies
{αn} ∈ l2 and that, in order to prove the formula for {αn}, it is
sufficient that we prove that it holds for |n| sufficiently large. So, we
consider the new function

(5.3) C(x, t) =
∑

|n|≥N

αne
iβntΨn ∈W 1,2(0, T+ĥ;L2(Γ)),

where N is the number specified in Theorem 3.2. It is known that
Ct(x, t) ∈ L2(0, T ;L2(Γ)) is the limit of the incremental quotient:

Ct(x, t) = lim
h→0

C(x, t+ h)− C(x, t)

h
= lim

h→0

∑
|n|>N

αn
eiβnh − 1

h
eiβntΨn.

Thanks to the choice of N , there exists m0 > 0 such that

m0

∑
|n|>N

∣∣∣∣αnβn
eiβnh − 1

βnh

∣∣∣∣2 ≤
∥∥∥∥C(x, t+ h)− C(x, t)

h

∥∥∥∥2
L2(0,T ;L2(Γ))

≤ 2∥C ′∥2L2(0,T ;L2(Γ)).

The last equality holds for h “small,” |h| < h0. We consider 0 < h < h0.

Let s be real. There exists s0 > 0 such that:∣∣∣∣eis − 1

s

∣∣∣∣2 =

(
cos s− 1

s

)2

+

(
sin s

s

)2

>
1

2
for 0 < s < s0.
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Then we have, for every h ∈ (0, h0),

1

2

∑
|n|>N

βn<s0/h

|αnβn|2 ≤
∑

|n|>N

∣∣∣∣αnβn
eiβnh − 1

βnh

∣∣∣∣2 ≤ 2

m0
∥C ′∥2L2(0,T ;L2(Γ)).

The limit for h→ 0+ gives the result. �
End of the proof of formula (3.21). We insert δn = γ̃n/βn in (3.20), and
we equate the derivatives of both sides. The right hand side is the sum
of F ′′(t)Ψn which can be differentiated, and of the following functions
S1-S5, where

S1 = −α
∑ γ̃n

βn
Ψn sinβnt,

S2 = N ′
1(0)

∑ γ̃n

βn
2Ψn

(
eiβnt +

α

βn
sinβnt

)
,

S3 =

∫ t

0

N ′′
1 (t− s)

∑ γ̃n

βn
2Ψn

(
eiβns +

α

βn
sinβns

)
ds.

These functions can be differentiated since {Ψn sinβnt} and {Ψncosβnt}
are Riesz sequences in L2(GT ).

The remaining functions are

S4 = −N ′
1(0)

∑∫ t

0

γ̃nµn

βn
sinβn(t− r)ΨnSn(r) dr,

S5 = −
∫ t

0

N ′′
1 (s)

[∑∫ t−s

0

γ̃nµn

βn
sinβn(t− s− r)ΨnSn(r) dr

]
ds.

The series in S4 is L2(GT ) convergent. Termwise differentiation gives

d

dt

∫ t

0

∑ γ̃nµn

βn
sinβn(t−r)Sn(r) dr =

∫ t

0

∑
γ̃nµn cosβn(t−r)Sn(r) dr.

This series is L2(GT )-convergent and so the series in S4 belongs to H1

(compare with the series (3.19)). This implies differentiability of S5.
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