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ABSTRACT. This work describes and analyzes a stochas-
tic collocation method for stochastic Volterra integral equa-
tions (SVIEs) of the second kind with random forcing terms.
A collocation method is used in temporal direction, and
a spectral collocation method is used in the stochastic di-
mension, which lead to an uncoupled linear system associ-
ated with the collocation points. The convergence analysis
is carried out and the optimal error estimates are obtained.
Numerical experiments are conducted to verify the error es-
timates and demonstrate the effectiveness of the proposed
numerical method.

1. Introduction. Systems with uncertainties arise from the fact
that uncertainties appear in most mathematical models of real world
physical problems. The mathematical description of various processes
in biological, physical and engineering sciences gives rise to stochastic
or random differential equations and integral equations.

In this paper we are concerned with numerical approximations of
the following SVIE of the second kind with a random forcing term.

(1) y(t, ω)−
∫ t

0

(t−s)−αk(t, s)y(s, ω) ds = g(t, ω), 0 ≤ t ≤ T, ω ∈ Ω
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where (Ω,F , P ) is a complete probability space, y = y(t, ω) is an
unknown random field whose value is to be determined on [0, T ] × Ω,
k = k(t, s) is smooth on [0, T ]× [0, T ], 0 ≤ α < 1, and g = g(t, ω) is a
random forcing term.

SVIEs can be derived from integral reformulations of stochastic
partial differential equations with random initial values or forcing terms
[29]. They can also be derived directly from many engineering and
physical phenomena [8, 31, 35]. We refer to [8, 34, 35] and the
references therein for theoretical studies of SVIEs.

To solve SVIE (1) numerically the first step is to express the
random forcing term g = g(t, ω) with a Fourier series like expansion.
Two of the most commonly used methods for such an expansion are
the polynomial chaos (PC) expansion [36] and the Karhunen-Loev̀e
expansion (K-L) [24, 25]. The PC expansion uses the orthogonal
polynomial basis of independent random variables, while the K-L
expansion represents the random quantity with an infinite number
of uncorrelated random variables. Other nonlinear expansions have
also been used to parameterize the input data (cf., [13, 21, 28, 37]).
Although both PC and K-L expansions are infinite series, in many
practical applications, only a few terms in the expansions are needed
to describe the randomness with desired accuracy. Therefore, we can
assume that the expansion of g only includes these terms. As a
result, the exact solution y of (1) depends on only a finite number
of independent random variables which appear in the finite expansion
of g.

The most commonly used numerical method for mathematical prob-
lems with random input is the Monte Carlo method (cf., [16] and ref-
erences therein). The Monte Carlo method is easy to implement and
allows one to reuse available deterministic codes. However, even with a
mild dependence on the random variables, the convergence of the Monte
Carlo simulation is still very slow. Recently, more efficient numerical
methods for stochastic PDEs with random input data have been pro-
posed. Among these, the spectral Galerkin method [6, 7, 18, 20],
the stochastic collocation method [3, 5, 4, 27, 32, 38], perturba-
tion methods or Neumann expansions have gained much attention
[1, 19, 33, 37]. It has been shown that spectral Galerkin/stochastic
collocation methods based on the orthogonal tensor product polynomi-
als feature a very fast convergence rate [4, 6, 23]. For instance, when
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the exact solution is analytic with respect to the random variables, a
stochastic collocation method on the stochastic dimension was proved
to converge exponentially with respect to the number of the collocation
points employed for each random input variable [4].

The stochastic finite element method (cf., [15]), which employs stan-
dard finite element approximations in spatial domain and polynomial
approximations in the probability domain, leads to a fully coupled sys-
tem of linear equations requiring highly efficient strategies and parallel
computations for its numerical solution. In comparison, the stochas-
tic collocation method (cf., [4]) only requires collocating the equation
at the zeros of tensor product orthogonal polynomials with respect to
the joint probability density of the random variables. Stochastic col-
location has already been applied in a variety of problems and is the
subject of ongoing research [5, 14]. One of the main advantages of the
stochastic collocation method is that it leads to uncoupled determin-
istic problems. It can also treat efficiently the case of nonindependent
random variables with the introduction of an auxiliary density.

Most of the aforementioned references focus on stochastic partial
differential equations. We refer to [22, 26] for some recent work
on numerical approximations of stochastic integral equations. In this
paper, we will describe and analyze the stochastic collocation method
for SVIE (1). As in the SPDEs cases, the stochastic collocation method
for the SVIE naturally leads to uncouple deterministic problems. The
main difference in the numerical treatment between the stochastic
collocation method for SPDEs and the stochastic collocation method
for SVIEs studied in this paper is that, unlike the SPDE cases, we
use the collocation method on both physical (temporal) domains and
probability domains, which further reduces the computing cost. Our
work includes both error estimates and numerical experiments. The
first step of deriving the error estimate is to obtain an error estimate for
the semi-discrete collocation approximation in the temporal direction
which must be uniform with respect to the random variables. As shown
in our error analysis, the singularity expansion of the exact solution
[9, 11, 12] turns out to be an ideal tool for such a purpose.

The paper is organized as follows. In Section 2, we describe the
parameterization of SVIE (1) and its stochastic spectral collocation
approximation. In Section 3, we prove the convergence and obtain the
rate of convergence for the stochastic collocation approximation of (1).
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Finally, in Section 4, we verify our theoretical results and demonstrate
the efficiency of our numerical algorithm with numerical experiments.

2. The stochastic collocation method.

2.1. Parameterization in stochastic dimensions. Let (Ω,F , P )
be a complete probability space and ζ : Ω → R a real-valued random
variable such that ζ ∈ L1(Ω). The mean or expected value of ζ is
defined as

E[ζ] =

∫
Ω

ζ(ω) dP (ω).

Introduce function spaces

L2(Ω) :=
{
v;

∫
Ω

v2(ω)dP (ω) < ∞
}

and
(2)

VL2([0,T ])⊗L2(Ω) :=
{
v;

∫ T

0

E[v2]ds =

∫ T

0

∫
Ω

v2(s, ω) dP (ω) ds < ∞
}
.

In what follows, we assume that

(A1) (finite dimensional noise) the forcing term g has the form

g(t, ω) = f(t, Y1(ω), · · · , YN (ω)) on [0, T ]× Ω,(3)

where N ∈ N+ and {Yn}Nn=1 are real-valued random variables with zero
mean value and unit variance.

We denote by Γn := Yn(Ω) the image of Yn and Γ :=
⊗N

n=1 Γn.
For simplicity of the presentation, we assume that Γ is a bounded open
box in RN . We also assume that [Y1, Y2, . . . , YN ] has a joint probability
density function

ρ : Γ −→ R+, with ρ ∈ L∞(Γ).

By assumption (A1), the solution y = y(t, ω) of the problem (1) can be
described by a finite number of independent random variables, that is,

y(t, ω) = y(t, Y1(ω), · · · , YN (ω)).
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Then SVIE (1) becomes finding y ∈ VL2([0,T ])⊗L2
ρ(Γ)

such that

(4) y(t, θ)−
∫ t

0

(t− s)−αk(τ, s)y(s, θ )ds = g(t, θ), 0 < t < T, θ ∈ Γ,

where the space VL2([0,T ])⊗L2
ρ(Γ)

is the analogue of VL2([0,T ])⊗L2(Ω) with

(Ω,F , P ) replaced by (Γ,BN , ρdθ). Thus, the stochastic Volterra equa-
tion problem (1) now becomes a deterministic Volterra problem with
an N -dimensional parameter. For convenience, we use the notation
y(θ) whenever we emphasize the dependence of y on the parameter θ.

2.2. Stochastic collocation method. The goal of the stochastic
collocation method is to seek a numerical approximation to the exact
solution of (4) in a finite dimensional subspace Vm,p based on a tensor
product Vm,p = Sm([0, T ])⊗Pp(Γ). We assume that (C1) Sm([0, T ]) ⊂
L2([0, T ]), is the space of piecewise polynomials of degree m with
respect to a partition on temporal direction (with dimension Nm)

0 = t0 < t1 < · · · < tM = T ;

(C2) tij , j = 1, . . .m + 1, i = 1, . . .M are the collocation points
defined as

(5) tij = ti−1 + cj(ti − ti−1)

where 0 < c1 < c2 < · · · < cm+1 < 1 are constants;

(C3) Pp(Γ) ⊂ L2
ρ(Γ) is the span of tensor product polynomials with

degree at most p = (p1, · · · , pN ), i.e., Pp(Γ) = ⊗N
n=1Ppn(Γn), with

Ppn(Γn) = span(yjn, j = 0, · · · , pn), n = 1, . . . , N.

Hence, the dimension of Pp is Np =
∏N

n=1(pn + 1).

To construct the fully discrete stochastic collocation approximation,
we first introduce the semidiscrete collocation approximation ym(θ) =
ym(t, θ) ∈ Sm([0, T ]) in temporal direction as follows. For θ ∈ Γ and
j = 1, . . . ,m+ 1, i = 1, . . . ,M ,

ym(tij , θ)−
∫ tij

ti−1

(tij − s)−αk(tij , s)ym(s, θ) ds

=

∫ ti−1

0

(ti−1 − s)−αk(ti−1, s)ym(s, θ) ds+ g(tij , θ).(6)
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Next we collocate (6) on the zeros of Legendre or Hermite orthogonal
polynomials and build the approximate solution ym,p ∈ Sm([0, T ]) ⊗
Pp(Γ) by interpolating in θ the collocated solutions. To this end, we
first introduce an auxiliary probability density function ρ̂ : Γ → R+

that can be seen as the joint probability of N independent random
variables, i.e., it factorizes as

ρ̂(θ) =
N∏

n=1

ρ̂n(θn), for all θ ∈ Γ, and such that

∥∥∥∥ρρ̂
∥∥∥∥
L∞(Γ)

< ∞.(7)

For each n = 1, . . . , N , let θn,kn(1 ≤ kn ≤ pn + 1) be the pn + 1 roots
of the orthogonal polynomial qpn+1 according to the weight ρ̂n, which
then satisfies ∫

Γn

qpn+1(θ)v(θ)ρ̂n(θ) dθ = 0(8)

for all v ∈ Ppn(Γn).

We denote by θk the point θk = [θ1,k1 , θ2,k2 , . . . , θN,kN
] ∈ Γ and

introduce, for n = 1, 2, . . . , N , the Lagrange basis {ln,j}pn+1
j=1 of the

space Ppn such that

ln,j ∈ Ppn(Γn), ln,j(θn,k) = δjk, j, k = 1, . . . , pn + 1,

where δjk is the Kronecker symbol. Let lk(θ) =
∏N

n=1 ln,kn
(θn). Then

the collocation approximation is defined as

ym,p(t, θ) =

Np∑
k=1

ym(t, θk)lk(θ),(9)

where ym(t, θk) is the solution of problem (6) for θ = θk. Define the
Lagrange interpolation operator Ip : C0(Γ;Sm([0, T ])) → Sm([0, T ])⊗
Pp(Γ), such that

Ipv(θ) =
N∑

k=1

v(θk)lk(θ), for all v ∈ C0(Γ;Sm([0, T ])).(10)

We can now express ym,p as ym,p = Ipym.

3. Convergence analysis. In this section we study the convergence
of the stochastic collocation scheme proposed in the last section. First
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we introduce the function space
(11)

C0(Γ;B) :=
{
v : Γ → B, v is continuous in θ , max

θ∈Γ
∥v(θ)∥B < ∞

}
,

where B is a Banach space. We assume that

(A2) g ∈ C0(Γ;L2([0, T ])), and

(A3) the joint probability density ρ satisfies the following inequality

ρ(θ) ≤ Cρ(12)

where Cρ is a constant independent of θ.

Next we choose a suitable auxiliary density ρ̂(θ) =
∏N

k=1 ρ̂n(θn)
which satisfies

Cn
1 ≤ ρ̂n(θn) ≤ Cn

2 , for all θn ∈ Γn, n = 1, . . . , N,

for some positive constants Cn
1 and Cn

2 that do not depend on θn. We
remark that, under this assumption, ρ̂ satisfies (7).

Before presenting the convergence analysis, we need a result on the
analyticity of the exact solution u with respect to θ. Let K be the
linear operator on L2([0, T ]) such that, for u ∈ L2([0, T ]),

(Ku)(t) =

∫ t

0

(t− s)−αk(t, s)u(s, ω) ds, 0 ≤ t ≤ T.

Then we can rewrite (1) as

(13) (I −K)y(t, θ) = g(t, θ), 0 < t < T, θ ∈ Γ.

Assume that 1 is not an eigenvalue ofK. SinceK is compact, (I−K)−1

exists and is continuous.

The following lemma concerns the analyticity of the exact solution
y with respect to θ.

Lemma 3.1. Denote

Γ∗
n =

N∏
j=1,j ̸=n

Γj
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and

ρ̂∗n =
N∏

j=1,j ̸=n

ρ̂j .

Assume that, for every θ = (θn, θ
∗
n) ∈ Γ, there exists γn < +∞ such

that

∥∂k
θng(θ)∥L2([0,T ]) ≤ k!γk

n.(14)

Then the solution y = y(t, θn, θ
∗
n) as a function of θn, y : Γn →

C0(Γ∗
n;L

2([0, T ])) admits an analytic extension y(t, z, θ∗n), z ∈ C, in
the region of the complex plane

(15) Σ(Γn; τn) := {z ∈ C, dist (z,Γn) ≤ τn}

with 0 < τn < γn.

Proof. From (13), the kth derivative of y with respect to θn satisfies

(I −K)∂k
θny(t, θ) = ∂k

θng(t, θ), 0 < t < T, θ ∈ Γ.

Thus,

(16) ∥∂k
θny(·, θ)∥L2([0,T ]) ≤ ∥(I −K)−1∥∥∂k

θng(·, θ)∥L2([0,T ]).

Define for every θn ∈ Γn the power series y : C → C0(Γ∗
n, L

2(Ω)) as

y(t, z, θ∗) =
∞∑
k=0

(z − θn)
k

k!
∂k
θny(t, θn, θ

∗
n).

Then, from (14) and (16), we have that

∥y(t, z, ·)∥C0(Γ∗
n,L

2(Ω))

≤ ∥(I −K)−1∥
∞∑
k=0

|z − θn|k

k!
∥∂k

θny(t, θn, ·)∥C0(Γ∗
n,L

2(Ω))

≤ ∥(I −K)−1∥
∞∑
k=0

(|z − θn|γn)k.

Therefore, the series converges for all z ∈ C such that |z − θn| <
τn < γn. By a continuation argument, the function y can be extended
analytically on the whole region Σ(Γn, τn). �
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The next lemma gives an error estimate of the semi-discrete approx-
imation ym.

Lemma 3.2. Assume that

(i) k ∈ Cm+1([0, T ]× [0, T ]) and g ∈ C0(Γ, Cm+1([0, T ])) in (1);
(ii) the graded partition of [0, T ] is given by

(17) ti =

(
i

M

)r

T, i = 0, . . .M,

where r(α) = (m+ 1)/(1− α). Then there exists a positive
constant h such that

∥y − ym∥C0(Γ,L∞([0,T ]))

≤ C(T,m, {ci}, α)∥g∥C0(Γ,Cm+1([0,T ]))h
m+1

holds for any h = T/M ∈ (0, h) and collocation point set {cj}m+1
j=1 .

Proof. Using [9, (6.1.17)] (see also [11, (2.1)] and [12, (2.1)]) we
have that

(18) y(t) =
∑
(j,k)α

χj,k(g)t
j+k(1−α) + um(t, θ), t ∈ [0, T ], θ ∈ Γ,

where

(j, k)α = {(j, k), j, k ∈ N0, j + k(1− α) < m+ 1},

um ∈ C0(Γ, Cm+1([0, T ])) and χj,k(g) are constants depending on
g. Using the resolvent formula (6.1.11) of [9] we deduce that χj,k(·)
are linear functionals defined on C0(Γ, Cm+1([0, T ])), i.e., there exist
constants Cj,k such that

|χj,k(g)| ≤ Cj,k∥g∥C0(Γ,Cm+1([0,T ])).

Using the above estimate and following the proof of Theorem 6.1.4 of
[9] on the global error estimate (cf., Appendix), we derive that

∥y−ym∥C0(Γ,L∞([0,T ])) ≤ C(T,m, {ci}, α)∥g∥C0(Γ,Cm+1([0,T ]))h
m+1. �

Lemma 3.3 ([4]). Under the assumptions of Lemma 3.1, there exist
positive constants C and rn, n = 1, . . . , N , independent of m and p,
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such that

∥ym − ym,p∥L2([0,T ])⊗L2
ρ(Γ)

≤ C
N∑

n=1

βn(pn) exp{−rnp
θn
n },(19)

where

rn = log

[
2τn
|Γn|

(
1 +

√
1 +

|Γn|2
4τ2n

)]
.

Here τn is defined in Lemma 3.1.

We are now ready to give the error estimates for the numerical
solution ym,p to SVIE (1).

Theorem 3.4. Under the assumptions of Lemma 3.1 and Lemma 3.2,
there exist positive constants C and rn, n = 1, . . . , N , which are
independent of m and p, such that

∥y − ym,p∥L2([0,T ])⊗L2
ρ(Γ)

≤ C

(
hm+1 +

N∑
n=1

βn(pn) exp{−rnp
θn
n }

)
where the parameters θn, βn and rn are specified in Lemma 3.3.

Proof. By the construction of ym,p and the triangular inequality, we
have

∥y − ym,p∥L2([0,T ])⊗L2
ρ(Γ)

≤ ∥y − ym∥L2([0,T ])⊗L2
ρ(Γ)

(20)

+ ∥ym − ym,p∥L2([0,T ])⊗L2
ρ(Γ)

.

The first term on the right-hand side of (20) only depends on the
temporal discretization. By Lemma 3.2, we have that

∥y − ym∥L2([0,T ])⊗L2
ρ(Γ)

=

(∫
Γ

∫ T

0

|y(τ)− ym(τ)|2ρ(θ) dτ dθ
)1/2

≤ ∥y − ym∥∞
∫
Γ

∫ T

0

ρ(θ) dτ dθ

= T∥y − ym∥∞
≤ Chm+1.
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The second term is the interpolation error between the semidiscrete
solution ym and the full discrete solution ym,p, whose error is given by
(19) in Lemma 3.3. Combining these two error estimates, we obtain
the desired result. �

Using the above error estimates and following arguments similar to
those in Lemma 4.7 and Lemma 4.8 of [4], we have the following error
estimates for the first two moments.

Proposition 3.5. The following hold

∥E[y − ym,p]∥L2([0,T ]) ≤ C∥y − ym,p∥L2([0,T ])⊗L2
ρ(Ω),

∥E[y2 − y2m,p]∥L1(DR2
) ≤ C∥y − ym,p∥L2([0,T ])⊗L2

ρ(Ω),

with C independent of the discretization parameters h and p.

4. Numerical experiments. In this section, we carry out numer-
ical experiments to verify the convergence results derived in the last
section and demonstrate the effectiveness of the proposed numerical
algorithm.

Example 4.1. In this example, we consider the stochastic Volterra
integral equation

(21) y(t, ω)− 1

2

∫ t

0

(t− s)2es−ty(s, ω) ds = g(t, ω), 0 ≤ t ≤ 1,

with the forcing term

g(t, ω) =
1

2
t2e−t + exp{[Y1(ω) cosπt+ Y2(ω) sinπt

+ Y3(ω) cos 2πt+ Y4(ω) sin 2πt]e
−1/8}.

Here, the random variables Yn, n = 1, 2, 3, 4, are independent and
identically distributed (iid) with zero mean and unit variance. The
exact solution is given by

y(t) =
1

3

[
1− e−(3t)/2

(
cos

(√
3t

2

)
+
√
3 sin

(√
3t

2

))]
in the absence of the noise forcing term. In accordance with Theo-
rem 3.4, we choose the finite dimensional space for temporal direction
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as the space of piecewise polynomials of degree three with M = 1000
on [0, 1]. With such a large M , the overall numerical error will be dom-
inated by the error of the collocation approximation in the stochastic
dimension. Thus we can verify the exponential decrease of the col-
location errors in the stochastic dimension as the polynomial order of
the collocation interpolation increases. We consider two different cases,
the first case assumes uniform distribution for Yn and the second case
assumes Gaussian densities. The corresponding collocation points are
the roots of either Legendre or Hermite polynomials.
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Figure 1. Convergence results for the approximation of expected value and
second moment with uniform density in Example 4.1.

The computational results for the L2([0, 1]) approximation error in
the expected value and the second moment are shown in Figure 1 with
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Figure 2. Convergence results for the approximation of expected value and
second moment with Gauss density in Example 4.1.

uniform density, while the corresponding results are shown in Figure 2
with Gauss density. In Figure 1, the vertical axis denotes the expecta-
tion errors between numerical solution and exact solution (the dot-line
and plus-line denote E(u) and E(u2) respectively), and the horizontal
axis denotes the degree of polynomial in certain direction pi. The four
sub-figures denote the error for different directions p1, p2, p3 and p4,
and we use similar notation for the rest of the figures. To estimate the
computational error in the ith direction corresponding to a multi-index
p = (p1, . . . , pi, . . . , pN ), we approximate it by E[e] ≈ E[ym,p − ym,p̂],
with p̂ = (p1, . . . , pi + 1, . . . , pN ). We proceed similarly for the error in
the approximation of the second moment. As expected, the estimated
approximation error decreases exponentially as the polynomial degree
increases. As shown in [4], these results indicate the exponential decay
of the errors with respect to the degree of the polynomials used in the
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Figure 3. Convergence results for the approximation of expected value and
second moment with uniform density in Example 4.2.

spectral collocation approximation.

Example 4.2. In this example, we consider the following test problem

(22) y(t, ω) =
1

2

∫ t

0

(t− s)−1/2y(s, ω) ds+ g(t, ω), t ∈ (0, T ]

with the forcing term

g(t, ω) = −1

2
πt+

√
t+ exp{[Y1(ω) cosπt+ Y2(ω) sinπt

+ Y3(ω) cos 2πt+ Y4(ω) sin 2πt]e
−1/8}.

Here, the real random variables Yn, n = 1, . . . , 4 are iid with zero
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Figure 4. Convergence results for the approximation of expected value and
second moment with Gauss density in Example 4.2.

expectation and unit variance, and the exact solution is

y(t) =
√
t

in the absence of the noise forcing term. Since the kernel has weak
singularity, we use the geometric partition in the temporal direction
given by (17) with r = 1/2.

In our numerical simulation, we choose T = 1, K = 1000, k =
1/1000, n = 14 and µ = 0.5, i.e., the partition is given by

t0 = 0, tm =

(
1

2

)15−m

k, 1 ≤ m ≤ 15,
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tm = (m− 15)k, 17 ≤ m ≤ 1014.

Similar to the first example, we choose the finite dimensional space for
the temporal approximation to be the piecewise polynomials of degree
three on the above given partition, which again makes the collocation
error in stochastic dimension dominate the overall numerical error.
The computational results for the L2([0, 1]) approximation error in the
expected value and the second moment are shown in Figure 3 with
uniform density, while the corresponding results are shown in Figure 4
with Gauss density. Once again, the graphs show the estimated
approximation error decreases exponentially as the polynomial degree
increases.

5. Conclusions and future work. In this paper, we describe and
analyze a stochastic collocation method for Volterra integral equations
of the second kind with random forcing terms. The input data are
assumed to depend on a finite number of random variables. We use
the collocation method in both the temporal direction and the proba-
bility space and provide a complete convergence analysis. Our analysis
shows the exponential convergence of the collocation method under the
analyticity assumption for the forcing term with respect to the param-
eterized random variables. In future research, we plan to apply the
stochastic collocation method to the stochastic Volterra integral equa-
tions with delays, which have many applications in practice. Future
research also includes the stochastic collocation method for stochas-
tic fractional differential equations that can be converted to stochastic
Voltera integral equations (see [17]).

Acknowledgments. The authors thank the anonymous referees
and the Associate Editor for their careful reading of the manuscript
and their valuable comments.

APPENDIX

The purpose of this appendix is to fill the details of the proof of
Lemma 3.2. To this end, we need the following technical lemma whose
proof is straightforward.

Lemma 5.1. Let Ih be the graded mesh of Lemma 3.2 on I = [0, T ]
with grading exponent r ≥ 1. If the {ci} satisfy 0 ≤ c1 < · · · < cm ≤ 1,
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then for 1 ≤ ℓ < n ≤ N − 1 and ν ∈ N0,∫ 1

0

(
tn,i − tℓ

hℓ
− s

)−α

sνds ≤ γ(α)(n− ℓ)−α (i = 1, . . . ,m)

with γ(α) := 2α/(1− α).

Proof of global error estimate in Lemma 3.2. The proof follows
closely the proof of Theorem 2.2.1 of [9], except that now the local
(Peano) representation of the exact solution y on σn remains valid only
if n = 1, . . . , N − 1. The collocation error eh := y − ym satisfies the
error equation

eh(tn,i) =

∫ t1

0

Hα(tn,i, s)eh(s) ds+

∫ tn

t1

Hα(tn,i, s)eh(s) ds

+ hn

∫ ci

0

Hα(tn,i, tn + shn)eh(tn + shn) ds.(23)

Then the collocation error on the corresponding subintervals σn has
the local Lagrange (Peano) representation

(24) eh(tn + υhn) =
m∑
j=1

Lj(υ)ξn,j + hm
n Rm,n(υ), υ ∈ (0, 1],

where ξ(tn,j) := eh(tn,j) and

Rm,n(υ) :=

∫ 1

0

Km(υ, z)ym(tn + zhn) dz,

with

Km(υ, z) :=
1

(m− 1)!
{(υ−z)m−1

+ −
m∑

k=1

Lk(υ)(ck−z)m−1
+ }, z ∈ [0, 1].

The exact solution of (13) can be written in the form

y(t0+υh0) =
∑
(j,k)α

γj,k(α)(t0+υh0)
j+k(1−α)+hm

0 Y m,0(υ;α), υ ∈ [0, 1],

with
(j, k)α := {(j, k) : j, k ∈ N0, j + k(1− α) < m},
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and with obvious adaptation of the meaning of the definition of
Ym,0(υ;α). We rewrite this representation as

y(t0 + υt0) =
∑
(j,k)′α

γj,k(α)h
j+k(1−α)
0 υj+k(1−α)

+
∑
(j,k)′′α

γj,k(α)h
j+k(1−α)
0 υj+k(1−α)

+ hm
0 Ym,0(υ;α), υ ∈ [0, 1]

where

(j, k)′α := {(j, k) : j + k(1− α) ∈ N0, j + k(1− α) < m},

and

(j, k)′′α := {(j, k) : j + k(1− α) /∈ N0, j + k(1− α) < m}.

With self-explanatory meaning of the coefficients cj,k(α), we thus
obtain the local representation
(25)

y(t0+υh0) =

m−1∑
j=0

cj,0(α)υ
j+h1−α

0 Φm,0(υ;α)+hm
0 Ym,0(υ;α), υ ∈ [0, 1],

with
Φm,0(υ;α) :=

∑
(j,k)′′α

cj,k(α)υ
j+k(1−α).

Suppose now that on σ0 the collocation solution uh ∈ S
(−1)
m−1(Ih) is

expressed in the form

uh(t0 + υh0) =
m−1∑
j=0

dj,0υ
j , υ ∈ [0, 1].

This allows us to write the collocation error on σ0 as

eh(t0 + υh0) =

m−1∑
j=0

βj,0(α)υ
j + h1−α

0

∑
(j,k)′′α

cj,k(α)υ
j+k(1−α)

+ hm
0 Rm,0(υ;α), υ ∈ [0, 1],(26)

with βj,0(α) := cj,0(α)− dj,0.
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We now return to the error equation (23) corresponding to n = 0.
It follows from

eh(t0 + cih0) = (Vαeh)(t0 + cih0)

= hα
0

∫ ci

0

(ci − s)−αK(t0 + cih0, t0 + sh0)eh(t0 + sh0) ds

that the unknown coefficients βj,0(α) in (26) solve the linear algebraic
system

[Vm − h1−α
0 B0(α)]β0(α) = h1−α

0 q0(α) + hm
0 ρ0(α).

Here, Vm ∈ L(Rm) denotes the Vandermonde matrix based on the
collocation parameters {ci}, and the components of the vectors q0(α)
and ρ0(α) can be deduced from (6.2.40). Due to the continuity and
the boundedness of the kernel K and the remainder term Rm,0(·;α)
the inverse matrix [Vm − h1−α

0 B0(α)]
−1 exists for all α ∈ (0, 1) and is

uniformly bounded for sufficiently small h0. This in turn implies that,
since m ≥ 1,

∥β0(α)∥1 ≤ Bh1−α
0 (α ∈ (0, 1))

holds for some constant B, and thus

|eh(t0 + vh0)| ≤ ∥β0(α)∥1 + γ0(α)h
1−α
0 + γ1(α)h

m
0 , v ∈ [0, 1],

with appropriate constants γ0(α), γ1(α) and h0 ∈ (0, h). If the grading
exponent r = r(α) is chosen as r = µ/(1 − α), with 1 − α ≤ µ ≤ m,
then we have

h1−α
0 = (TN−r)1−α = T 1−αN−µ = O(hµ) (h := T/N),

and hence

(27) ∥eh∥0,∞ := max
v∈[0,1]

|eh(t0 + vh0)| = O(hµ).

Assume now that 1 ≤ n ≤ N − 1. It follows from the error equation
(23) and the corresponding expression for (Vαeh)(tn,i) that

[Im − h1−α
n Bn(α)]En =

n−1∑
ℓ=1

h1−α
ℓ B(ℓ)

n (α)Eℓ + h1−α
0 q(0)n (α)(28)

+ hm+1−α
n ρn(α) +

n−1∑
ℓ=1

hm+1−α
ℓ ρ(ℓ)n (α)
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described by the vectors

q0(α) :=

(∫ 1

0

(
tn,i − t0

h0
− s

)−α

·K(tn,i, t0 + sh0)eh(t0 + sh0) ds (i = 1, . . . ,m)

)T

,

ρn(α) :=

(∫ ci

0

(ci − s)−α

·K(tn,i, tn + shn)Rm,n(s;α) ds (i = 1, . . . ,m)

)T

,

ρ(ℓ)n (α) :=

(∫ 1

0

(
tn,i − tℓ

hℓ
− s

)−α

·K(tn,i, tℓ + shℓ)Rm,ℓ(s;α) ds (i = 1, . . . ,m)

)T

.

As [9, Theorem 6.2.1] showed, [Im − h1−α
n Bn(α)]

−1 exists and is
uniformly bounded whenever hn ∈ (0, h): there is a constant D0(α)
so that

(29) ∥(Im − h1−α
n Bn(α))

−1∥1 ≤ D0(α), (n = 1, . . . , N − 1).

Thus, (28) yields a generalized discrete Gronwall inequality,

∥En∥1 ≤ D0(α)

( n−1∑
ℓ=1

h1−α
ℓ ∥B(ℓ)

n (α)∥1(30)

· ∥Eℓ∥1 + h1−α
0 ∥q(0)n (α)∥1 + hm+1−α

n ∥ρn(α)∥1

+
n−1∑
ℓ=1

hm+1−α
ℓ ∥ρ(ℓ)n (α)∥1

)
, (n = 1, . . . , N − 1).

Using Lemma 5.1, assume now that ℓ < n−1. In this case, we obtain∫ 1

0

(
tn,i − tℓ

hℓ
− s

)−α

sνds ≤
∫ 1

0

(
tn − tℓ
hℓ

− s

)−α

ds=
1

1− α

{(
tn − tℓ
hℓ

)1−α

−
(
tn − tℓ
hℓ

− 1

)1−α}
=

1

1− α

(
tn − tℓ
hℓ

)1−α
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·
{
1−

[
1−

(
tn − tℓ
hℓ

)−1]1−α}
.

The application of the Mean-Value theorem to the function f(z) :=
(1− z)1−α, with z := [(tn − tℓ)/hℓ]

−1, leads without difficulty to∫ 1

0

(
tn,i − tℓ

hℓ
− s

)−α

ds ≤
(
tn − tℓ
hℓ

)−α(
1− θn,ℓ

(
tn − tℓ
hℓ

)−1)−α

,

where θn,ℓ is some number between 0 and 1. Since, as pointed out
above,

0 < h0 < h1 < · · · < hn−1 < hn < · · · < hN−1 = h,

it follows that

tn − tℓ
hℓ

=
hn−1 + · · ·+ hℓ+1 + hℓ

hℓ
≥ (n− ℓ)hℓ

hℓ
= n− ℓ,

and so

1− θn,ℓ(
tn − tℓ
hℓ

)−1 ≥ 1−
(
tn − tℓ
hℓ

)−1

≥ 1−
(
hℓ+1 + hℓ

hℓ

)−1

≥ 1

2

whenever ℓ ≤ n− 2.

Recall now the definition of the matrices B
(ℓ)
n (α) and the vectors

ρ
(ℓ)
n (α)(ℓ < n) from [9, subsection 6.2.1]. It is easy to verify that

∥B(ℓ)
n (α)∥1 ≤ D1(α)(n− ℓ)−α (ℓ < n)

and
∥ρ(ℓ)n (α)∥1 ≤ R1(α)(n− ℓ)−α (ℓ < n).

with appropriate constants D1(α) and R1(α) depending on m and the
bounds for K and the uniform norms of the Lagrange fundamental
polynomials Lj . The inequality (30) now becomes

∥En∥1 ≤ γ0(α)h
1−α

n−1∑
ℓ=1

(n− ℓ)−α∥E(ℓ)∥1 + γ1(α)h
1−α
0(31)

+ γ2(α)h
m+1−α
n + γ3(α)

n−1∑
ℓ=1

hm+1−α
ℓ (n− ℓ)−α,

with 1 ≤ n ≤ N − 1 and appropriate constants γi(α) (i = 1, 2, 3).
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Recall the generalized discrete Gronwall inequality and [9, Theorem
6.1.19]: we have zℓ := ∥E(ℓ)∥1, and the sequence {γn} given by

γn := γ1(α)h
1−α
0 + γ2(α)h

m+1−α
n + γ3(α)

n−1∑
ℓ=1

hm+1−α
ℓ (n− ℓ)−α,

(n ≥ 1)

is clearly non-decreasing. Moreover, we have

n−1∑
ℓ=1

h1−α
ℓ (n− ℓ)−α ≤ T 1−α

1− α
, n = 1, . . . , N.

This is easily verified by observing that, for any uniform mesh,∫ tn

0

(tn − s)−αds = h1−α
n−1∑
ℓ=0

∫ 1

0

(n− ℓ− s)−αds

≥ h1−α
n−1∑
ℓ=0

(n− ℓ)−α

where the last expression represents the lower Riemann sum (left
rectangular quadrature approximation) for the given integral whose
integrand is convex on [0, tn).

Hence, we have found a uniform upper bound for γn, namely,

γn ≤ γ̄ : = γ1(α)h
1−α
0 + γ2(α) + hm+1−α

n + γ3(α)h
mT 1−α/(1− α)

= γ1(α)h
1−α
0 + [γ2(α)h

1−α
0 + γ3(α)T

1−α/(1− α)]hm.

Combining with (31) leads to

∥En∥1 ≤ E1−α(γ0(α)Γ(1− α)(nh)1−α) · h1−α
0 · γ.

By using

nh ≤ nrTN−1 = (n/N)rT ≤ rT, n = 1, . . . , N,

we have

h1−α
0 = (TN−r)1−α = T 1−αN−r(1−α) = T 1−αN−µ(32)

for any graded Ih with grading exponent r = µ/(1−α)(1−α ≤ µ ≤ m).
Therefore, ∥En∥1 ≤ Bhµ(1 ≤ n ≤ N − 1), and so, by (24) and (27), we
arrive at the desired global estimate for ∥eh∥∞.
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