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RATE OF APPROXIMATION FOR MULTIVARIATE
SAMPLING KANTOROVICH OPERATORS ON SOME

FUNCTIONS SPACES

DANILO COSTARELLI AND GIANLUCA VINTI

ABSTRACT. In this paper, the problem of the order of
approximation for the multivariate sampling Kantorovich op-
erators is studied. The cases of uniform approximation for
uniformly continuous and bounded functions/signals belong-
ing to Lipschitz classes and the case of the modular ap-
proximation for functions in Orlicz spaces are considered. In
the latter context, Lipschitz classes of Zygmund-type which
take into account of the modular functional involved are
introduced. Applications to Lp(Rn), interpolation and ex-
ponential spaces can be deduced from the general theory
formulated in the setting of Orlicz spaces. The special cases
of multivariate sampling Kantorovich operators based on ker-
nels of the product type and constructed by means of Fejér’s
and B-spline kernels have been studied in details.

1. Introduction. The sampling Kantorovich operators have been
introduced to approximate and reconstruct not necessarily continuous
signals. The multivariate sampling Kantorovich operators considered
in this paper ([27]) are of the form:

(Swf)(x) :=
∑
k∈Zn

χ(wx− tk)

[
wn

Ak

∫
Rw

k

f(u) du

]
, (x ∈ Rn), (I)

where f : Rn → R is a locally integrable function such that the above
series is convergent for every x ∈ Rn. The symbol tk = (tk1 , . . . , tkn)
denotes vectors where each (tki)ki∈Z, i = 1, . . . , n is a certain strictly
increasing sequence of real numbers with ∆ki = tki+1 − tki > 0. Note
that the sequences (tki)ki∈Z are not necessary equally spaced (irregular
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sampling scheme). We denote by Rw
k the sets:

Rw
k :=

[
tk1

w
,
tk1+1

w

]
×
[
tk2

w
,
tk2+1

w

]
×· · ·×

[
tkn

w
,
tkn+1

w

]
, (II)

w > 0 and Ak = ∆k1 ·∆k2 · . . . ·∆kn , k ∈ Zn. Moreover, the function
χ : Rn → R is a kernel satisfying suitable assumptions. In [3], the
authors introduced these operators in the univariate form, starting
from the well-known generalized sampling operators (see e.g., [2, 4,
12, 14, 16, 45, 9, 46, 47, 10, 43]) and replacing, in their definition,

the sample values f(k/w) with w
∫ (k+1)/w

k/w
f(u) du. Clearly, this is the

most natural mathematical modification to obtain operators which can
be well-defined also for general measurable, locally integrable functions,
not necessarily continuous. Moreover, this situation very often occurs
in Signal Processing, when one cannot match exactly the sample at the
point k/w: this represents the so-called ”time-jitter” error. The theory
of sampling Kantorovich operators allows us to reduce the time-jitter
error, calculating the information in a neighborhood of k/w rather than
exactly in the node k/w. These operators, as the generalized sampling
operators, represent an approximate version of the classical sampling
series, based on the Whittaker-Kotelnikov-Shannon sampling theorem
(see e.g., [1, 11, 15, 35, 31, 33, 34]).

Subsequently, the sampling Kantorovich operators have been studied
in various settings. In [28, 48] the nonlinear univariate and multivari-
ate versions of these operators were introduced; applications to image
processing have been discussed in [27, 28]. Indeed, static gray scale
images are characterized by jumps of gray levels mainly concentrated in
their contours or edges, and this can be translated, from a mathemat-
ical point of view, by discontinuities. For these reasons, multivariate
sampling Kantorovich operators appear very appropriate for applica-
tions to image reconstruction. Moreover, some preliminary applications
to civil engineering have been presented in [17, 18, 19]. Results con-
cerning the order of approximation have been obtained in [29, 30] in
the univariate case, for the linear and nonlinear versions of these opera-
tors. Extensions of the theory to more general contexts were presented
in [6, 32, 44, 49, 50].

In this paper, we study the problem of the rate of approximation
for the multivariate sampling Kantorovich operators in various set-
tings. More precisely, we consider the case of uniform approximation
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for uniformly continuous and bounded functions belonging to Lipschitz
classes and the case of the modular approximation for functions in Or-
licz spaces Lφ(Rn). In this context, we will introduce Lipschitz classes
of Zygmund-type which take into account the modular functional in-
volved. From the results concerning Orlicz spaces, applications to
Lp(Rn) spaces, 1 ≤ p < +∞, as to other examples of Orlicz spaces can
be deduced. In particular, the application of the multivariate sampling
Kantorovich operators to Lp-spaces is suitable for Signal/Image Pro-
cessing. Other important cases of Orlicz spaces considered here are the
interpolation spaces Lα logβ L(Rn) and the exponential spaces, which
are very useful for applications, e.g., to partial differential equations
and for embedding theorems between Sobolev spaces, respectively.

In order to obtain results concerning the order of approximation
for the multivariate sampling Kantorovich operators starting from
the one-dimensional theory, some difficulties arise. First of all, the
definition of the Lipschitz class in which we work must be extended
to the multivariate case, both in the case of uniformly continuous
functions and for functions in Orlicz spaces. But the main difficulty
is related to the construction of multivariate kernels which satisfy all
the assumptions of the above theory (see Section 6). Indeed, it turns
out that the kernels affect the rate of approximations when uniform and
modular approximation are considered. For this reason, we introduce
a procedure useful to construct multivariate kernels and to determine
their parameters µ, β and α, starting from one-dimensional kernels.
The special cases of multivariate kernels of the product type, based
upon Fejér’s and B-spline kernels have been studied in detail.

2. Preliminary notions. In this paper, we will denote by C(Rn)
the set of all uniformly continuous and bounded functions f : Rn → R
endowed with the usual sup-norm ∥ · ∥∞. Moreover, by ∥ · ∥2, we will
denote the usual Euclidean norm in Rn, i.e., ∥x∥2 := (x2

1+ · · ·+x2
n)

1/2,
x = (x1, . . . , xn) ∈ Rn.

In order to study the rate of approximation of a family of linear oper-
ators, we introduce the definition of the Zygmund-type class (Lipschitz
class) for functions of several variables.
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We define the class Lip∞(ν), 0 < ν ≤ 1, as

Lip∞(ν) := {f ∈ C(Rn) : ∥f(·)− f(·+ t)∥∞
= O(∥t∥ν2), as ∥t∥2 → 0} ,

where for any two functions f , g : Rn → R, f(t) = O(g(t)) as ∥t∥2 → 0
means that there exist constants C, γ > 0 such that |f(t)| ≤ C|g(t)|
for every t ∈ Rn, with ∥t∥2 ≤ γ ([7, 47]). The above definition
represents the extension to the multivariate setting of the Zygmund-
type classes introduced in [29] for univariate functions. It is easy to
observe that, in the case of functions defined on bounded domains, the
above definition is equivalent to the well-known definition of ν-Holder
continuous functions.

The sampling Kantorovich operators Sw studied in this paper are
suitable to reconstruct not necessarily continuous signals (see, e.g.,
[3, 27]), and a very general class of spaces containing such functions
are the so-called Orlicz spaces. Since in the rest of the paper we will
study the above operators also in this general setting, we now recall
some basic notions concerning Orlicz spaces.

A function φ : R+
0 → R+

0 is said to be a φ-function if it satisfies the
following conditions:
(Φ1) φ is a non decreasing and continuous function;
(Φ2) φ(0) = 0, φ(u) > 0 if u > 0 and limu→+∞ φ(u) = +∞.
Let us now consider the functional Iφ associated to any given φ-
function φ and defined as follows

Iφ[f ] :=

∫
Rn

φ(|f(x)|) dx,

for every f ∈ M(Rn), i.e., for every (Lebesgue) measurable function
f : Rn → R. As it is well-known, the functional Iφ satisfies a number
of important properties. For instance, Iφ is a modular functional (see
e.g., [7, 39, 41]), and moreover, if the φ-function φ is convex, the
corresponding modular functional is convex too.

Now, we are able to recall the definition of the Orlicz space Lφ(Rn)
generated by φ. We define

Lφ(Rn) := {f ∈ M(Rn) : Iφ[λf ] < +∞, for some λ > 0} .

A notion of convergence in Orlicz spaces, called modular convergence,
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was introduced in [40], which induces a topology in Lφ(Rn), called
modular topology.

A family (fw)w>0 ⊂ Lφ(Rn) is said to be modularly convergent to
f ∈ Lφ(Rn), if there exists λ > 0 such that

Iφ[λ(fw − f)] =

∫
Rn

φ(λ|fw(x)− f(x)|) dx −→ 0,(1)

as w → +∞.

Moreover we recall, for the sake of completeness, that in Lφ(Rn) can be
also given a stronger notion of convergence, i.e., the Luxemburg-norm
convergence, see e.g. [7, 39].

We now define by Lipφ(ν), 0 < ν ≤ 1, the Zygmung-type class in
Orlicz spaces, as the set of all functions f ∈ M(Rn) such that there
exists λ > 0 with

Iφ[λ(f(·)− f(·+ t))] =

∫
Rn

φ (λ |f (x)− f (x+ t)|) dx = O(∥t∥ν2),

as ∥t∥2 → 0. The above definition extends that given in [29] for
functions of one variable. For further results concerning Orlicz spaces,
see [5, 7, 8, 36, 37, 38, 39, 41, 42].

3. Multivariate sampling Kantorovich operators. In this sec-
tion, the definition of the multivariate sampling Kantorovich operators
is recalled ([27]), together with its main properties and some useful
remarks.

Let Πn = (tk)k∈Zn be a sequence of real numbers defined by
tk = (tk1 , . . . , tkn), where each (tki)ki∈Z, i = 1, . . . , n, is a sequence such
that −∞ < tki < tki+1 < +∞ for every ki ∈ Z, limki→±∞ tki = ±∞,
and there are two positive constants ∆, δ such that δ ≤ ∆ki :=
tki+1 − tki ≤ ∆, for every ki ∈ Z.

In what follows, a function χ : Rn → R will be called a kernel if it
satisfies the following properties:

(χ1) χ ∈ L1(Rn) and is bounded in a neighborhood of the origin;

(χ2) For some µ > 0,∑
k∈Zn

χ(wx− tk)− 1 =: Aw(x)− 1 = O(w−µ), as w → +∞,
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uniformly with respect to x ∈ Rn;

(χ3) For some β > 0, we assume that the discrete absolute moment
of order β is finite, i.e.,

mβ,Πn(χ) := sup
u∈R

∑
k∈Zn

∣∣χ(u− tk)
∣∣ · ∥u− tk∥β2 < +∞;

(χ4) There exists α > 0 such that, for every M > 0,∫
∥u∥2>M

wn |χ(wu)| du = O(w−α), as w → +∞.

The conditions listed above are the typical properties satisfied by the
approximate identities and are standard assumptions required in the
case of discrete linear operators.

In order to recall the definition of sampling Kantorovich operators,
we first introduce the following notation:

Rw
k :=

[
tk1

w
,
tk1+1

w

]
× · · · ×

[
tkn

w
,
tkn+1

w

]
⊂ Rn,

for every k ∈ Zn and w > 0. Denoting by Ak := ∆k1 · . . . · ∆kn , the
Lebesgue measure of Rw

k is given by Ak/w
n. We now define by (Sw)w>0

the family of the multivariate sampling Kantorovich operators defined
by

(2) (Swf)(x) :=
∑
k∈Zn

χ(wx− tk)

[
wn

Ak

∫
Rw

k

f(u) du

]
(x ∈ Rn),

where f : Rn → R is a locally integrable function such that the series
is convergent for every x ∈ Rn.

We begin giving the proof of following lemma.

Lemma 3.1. Under the assumptions (χ1) and (χ3) on the kernel χ,
we have:

(i) m0,Πn(χ) := supu∈Rn

∑
k∈Zn

∣∣χ(u− tk)
∣∣ < +∞;

(ii) For every γ > 0,∑
∥wx−tk∥2>γw

∣∣χ(wx− tk)
∣∣ = O(w−β), as w → +∞,
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uniformly with respect to x ∈ Rn, where β > 0 is the constant
of condition (χ3).

Proof. For a proof of (i), see e.g. [27].
(ii) Let γ > 0 be fixed. For every x ∈ Rn and w > 0, we obtain∑

∥wx−tk∥2>γw

∣∣χ(wx− tk)
∣∣≤ 1

γβwβ

∑
∥wx−tk∥2>γw

∣∣χ(wx−tk)
∣∣∥wx−tk∥β2

≤ 1

γβwβ
mβ,Πn(χ) < +∞,

and so the assertion follows. �

Remark 3.2. In the case of f ∈ L∞(Rn), by Lemma 3.1 (i), Swf are
well-defined for every w > 0. Indeed,

|(Swf)(x)| ≤ m0,Πn(χ) ∥f∥∞ < +∞,

for every x ∈ Rn and w > 0, i.e., Sw : L∞(Rn) → L∞(Rn).

4. Order of approximation in C(Rn). We now begin by studying
the rate of approximation for the family of linear, multivariate sampling
Kantorovich operators (2) in C(Rn).

Theorem 4.1. Let χ be a kernel and f ∈ Lip∞(ν), 0 < ν ≤ 1. Then

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{ν, β, µ} and µ, β > 0 are the constants of conditions
(χ2) and (χ3), respectively.

Proof. First, we consider the case of χ satisfying condition (χ3) for
0 < β ≤ 1.

Now let f ∈ Lip∞(ν), 0 < ν ≤ β, be fixed. By Remark 3.2, Swf are
well defined for every w > 0. Moreover, since f ∈ Lip∞(ν), we have

sup
x∈Rn

|f(x)− f(x+ t)| ≤ C∥t∥ν2 ,
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for some constants C, γ > 0, and for every t ∈ Rn such that ∥t∥2 ≤ γ.
Now let x ∈ Rn be fixed. Then we can write

|(Swf)(x)− f(x)| ≤ |(Swf)(x)− f(x)Aw(x)|
+ |f(x)Aw(x)− f(x)|

≤
∑
k∈Zn

∣∣χ(wx− tk)
∣∣ wn

Ak

∫
Rw

k

|f(u)− f(x)| du

+ |f(x)| |Aw(x)− 1|

≤
( ∑

∥wx−tk∥2≤wγ/2

+
∑

∥wx−tk∥2>wγ/2

)
∣∣χ(wx− tk)

∣∣ wn

Ak

∫
Rw

k

|f(u)− f(x)| du

+ ∥f∥∞|Aw(x)− 1| =: I1 + I2 + I3.

In order to estimate I1, we now introduce the following notation. We
denote by (Rw

k − x) sets of the form

(Rw
k − x) :=

[
tk1

w
− x1,

tk1+1

w
− x1

]
× · · · ×

[
tkn

w
− xn,

tkn+1

w
− xn

]
.

We can observe that, for every t ∈ (Rw
k − x), if ∥wx− tk∥2 ≤ wγ/2, we

have

∥t∥2 ≤ ∥t− tk/w + x∥2 + ∥tk/w − x∥2 ≤
√
n
∆

w
+

γ

2
< γ,

for sufficiently large w > 0. Then, by the change of variable u = x+t in
the integrals of I1, the above inequality and the definition of Lip∞(ν),
we can obtain

I1 =
∑

∥wx−tk∥2≤wγ/2

∣∣χ(wx− tk)
∣∣ wn

Ak
(3)

×
∫
(Rw

k −x)

|f(x+ t)− f(x)| dt

≤ C
∑

∥wx−tk∥2≤wγ/2

∣∣χ(wx− tk)
∣∣ wn

Ak

∫
(Rw

k −x)

∥t∥ν2 dt.
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In order to estimate (3), we proceed as follows:

max
t∈(Rw

k −x)
∥t∥ν2 ≤

(
max

t1∈

[
tk1
w −x1,

tk1+1
w −x1

]t21+ · · ·+ max

tn∈

[
tkn
w −xn,

tkn+1
w −xn

]t2n)ν/2

≤
(
max

{(
tk1

w
− x1

)2

,

(
tk1+1

w
− x1

)2}
+ · · ·+max

{(
tkn

w
− xn

)2

,

(
tkn+1

w
− xn

)2})ν/2

≤ 1

wν

(
max

{
(wx1 − tk1)

2
, (wx1 − tk1+1)

2
}
+ · · ·

+max
{
(wxn − tkn)

2
, (wxn − tkn+1)

2
})ν/2

≤ 1

wν

(
max

{
∥wx− tk∥22, ∥wx− tk −∆k∥22

}
+ · · ·

+max
{
∥wx− tk∥22, ∥wx− tk −∆k∥22

})ν/2
,

where ∆k := (∆k1 , . . . ,∆kn). Now, recalling that each ∆ki ≤ ∆,
i = 1, . . . , n, we can observe that

∥wx− tk −∆k∥2 ≤ ∥wx− tk∥2 +
√
n ∆,

then we finally obtain

max
t∈(Rw

k −x)
∥t∥ν2 ≤ w−νnν/2

[
∥wx− tk∥2 +

√
n∆

]ν
.

Now, since 0 < ν ≤ β ≤ 1, we have that the function xν for x ≥ 0 is
concave, and then subadditive, so we can write

(4) max
t∈(Rw

k −x)
∥t∥ν2 ≤ w−ν nν/2

[
∥wx− tk∥ν2 + nν/2∆ν

]
.
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Then, by the inequalities in (3) and (4), we obtain that

I1 ≤ w−ν nν/2 C
∑

∥wx−tk∥2≤wγ/2

∣∣χ(wx− tk)
∣∣ [ ∥wx− tk∥ν2 + nν/2∆ν

]
≤w−νnν/2 C

[ ∑
∥wx−tk∥2≤wγ/2

∣∣χ(wx−tk)
∣∣∥wx−tk∥ν2+nν/2∆νm0,Πn(χ)

]
≤ w−ν nν/2 C

[
mν,Πn(χ) + nν/2∆ν m0,Πn(χ)

]
.

Now, by condition (χ3) we have mβ,Πn(χ) < +∞, and this implies that
mν,Πn(χ) < +∞, for every 0 < ν ≤ β; moreover, by Lemma 3.1 (i), it
turns out that m0,Πn(χ) < +∞. Hence, we can state

I1 = O(w−ν), as w → +∞.

Further, by Lemma 3.1 (ii),

I2 ≤ 2 ∥f∥∞
∑

∥wx−tk∥2>wγ/2

∣∣χ(wx− tk)
∣∣ = O(w−β),

as w → +∞,

uniformly with respect to x ∈ Rn, and finally from (χ2) we obtain that
I3 = O(w−µ), as w → +∞, uniformly with respect to x ∈ Rn. Thus,
we have shown that

|(Swf)(x)− f(x)| ≤ I1 + I2 + I3

= O(w−ν) +O(w−β) +O(w−µ), as w → +∞,

uniformly with respect to x ∈ Rn, and therefore we finally obtain that

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{ν, β, µ}.
Now let f ∈ Lip∞(ν), with β ≤ ν ≤ 1 be fixed. Since Lip∞(ν) ⊆

Lip∞(β), then for the previous case we can claim that

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{β, µ} = min{ν, β, µ}, since ν ≥ β.

Finally, we consider χ satisfying condition (χ3) for β > 1. By the
above considerations, mβ,Π(χ) < +∞ implies m1,Π(χ) < +∞, which
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means that χ satisfies condition (χ3) also for β = 1, and so this case
can be reduced to the previous step, and the assertion follows. �

5. Order of approximation in Orlicz spaces Lφ(Rn). In order
to study the behavior of the sampling Kantorovich operators when no
necessary continuous signals (such as images) should be reconstructed,
and to study their degree of approximation, we consider the case of
the multivariate signal belonging to the general setting of Orlicz spaces
Lφ(Rn), where φ is a convex φ-function. We first recall the following
modular continuity property for Sw.

Theorem 5.1. Let χ be a kernel. For every f ∈ Lφ(Rn), the following
holds:

Iφ[λSwf ] ≤
∥χ∥1

δnm0,Πn(χ)
Iφ[λm0,Πn(χ)f ] (λ > 0),

for every w > 0. In particular, Swf ∈ Lφ(Rn) whenever f ∈ Lφ(Rn).

For a proof of Theorem 5.1, see [27]. The above theorem shows that
the map Sw : Lφ(Rn) → Lφ(Rn) is well defined and continuous with
respect to the modular topology ([39]).

Now, we establish the following result which gives a rate of approx-
imation for the sampling Kantorovich operators in Orlicz spaces.

Theorem 5.2. Let χ be a kernel and f ∈ Lφ(Rn)∩Lipφ(ν), 0 < ν ≤ 1.
Suppose, in addition, that there exist θ, γ > 0 such that

(5)

∫
∥t∥2≤γ

wn|χ(wt)| ∥t∥ν2 dt = O(w−θ), as w → +∞.

Then there exists λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

with ϵ := min{θ, ν, µ, α}, where µ, α > 0 are the constants of
conditions (χ2) and (χ4), respectively.

Proof. By the assumption f ∈ Lφ(Rn) ∩ Lipφ(ν), 0 < ν ≤ 1, we
have that Iφ[λ1f ] < +∞, and

Iφ[λ2(f(·)− f(·+ t))] = O(∥t∥ν2), as ∥t∥2 → 0,
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for some λ1, λ2 > 0. More in detail, there exist M1, γ > 0 such that

Iφ[λ2(f(·)− f(·+ t))] ≤ M1∥t∥ν2 ,

for every ∥t∥2 ≤ γ. Now, by the properties of the convex modular
functional Iφ, for λ > 0 we can split the term Iφ[λ(Swf−f)] as follows:

Iφ[λ(Swf − f)] =

∫
Rn

φ(λ|(Swf)(x)− f(x)|) dx

≤ 1

3

{∫
Rn

φ

(
3λ

∣∣∣∣(Swf)(x)

−
∑
k∈Zn

χ(wx− tk)
wn

Ak

∫
Rw

k

f

(
u+ x−

tk
w

)
du

∣∣∣∣) dx

+

∫
Rn

φ

(
3λ

∣∣∣∣ ∑
k∈Zn

χ(wx− tk)

× wn

Ak

∫
Rw

k

f

(
u+ x−

tk
w

)
du− f(x)Aw(x)

∣∣∣∣) dx

+

∫
Rn

φ (3λ |f(x)Aw(x)− f(x)|) dx
}

=:
1

3
{J1 + J2 + J3} .

In order to estimate the above terms, we begin considering the first
one, namely J1. Applying Jensen’s inequality (see, e.g., [26]) and the
Fubini-Tonelli theorem,

J1 =

∫
Rn

φ

(
3λ

∣∣∣∣(Swf)(x)−
∑
k∈Zn

χ(wx− tk)

× wn

Ak

∫
Rw

k

f

(
u+ x−

tk
w

)
du

∣∣∣∣) dx

≤ 1

m0,Πn(χ)

∫
Rn

∑
k∈Zn

|χ(wx− tk)|

× φ

(
3λm0,Πn(χ)

wn

Ak

∫
Rw

k

|f(u)− f(u+ x− tk
w
)| du

)
dx

≤ 1

m0,Πn(χ)

∑
k∈Zn

∫
Rn

|χ(wx− tk)|
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× φ

(
3λm0,Πn(χ)

wn

Ak

∫
Rw

k

|f(u)− f(u+ x−
tk
w
)| du

)
dx.

By the change of variable t = x − tk/w, applying the Fubini-Tonelli
theorem and Jensen’s inequality again, we may obtain the following:

J1 ≤ 1

m0,Πn(χ)

∫
Rn

|χ(wt)|

∑
k∈Zn

φ

(
3λm0,Πn(χ)

wn

Ak

∫
Rw

k

|f(u)−f(u+t)| du
)
dt

≤ 1

m0,Πn(χ)

∫
Rn

|χ(wt)|

×
{ ∑

k∈Zn

wn

Ak

∫
Rw

k

φ (3λm0,Πn(χ) |f(u)− f(u+ t)|) du
}
dt

≤ 1

m0,Πn(χ) δn

∫
Rn

wn

× |χ(wt)|
{∑

k∈Z

∫
Rw

k

φ(3λm0,Πn(χ) |f(u)− f(u+ t)|) du
}
dt

=
1

m0,Πn(χ) δn

∫
Rn

wn

× |χ(wt)|
{∫

Rn

φ(3λm0,Πn(χ) |f(u)− f(u+ t)|) du
}
dt

=
1

m0,Πn(χ) δn

{∫
∥t∥2|≤γ̃

wn

× |χ(wt)|
(∫

Rn

φ(3λm0,Πn(χ) |f(u)−f(u+ t)|) du
)
dt+

∫
∥t∥2>γ̃

wn

× |χ(wt)|
(∫

Rn

φ(3λm0,Πn(χ) |f(u)− f(u+ t)|) du
)
dt

}
=

1

m0,Πn(χ) δn
{J1,1 + J1,2} ,

with γ̃ := min{γ, γ}, where γ > 0 is the constant condition (5). Now,
without any loss of generality, we can choose λ > 0 sufficiently small,
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such that:

λ ≤ min

{
λ1

3M2
,

λ1

6m0,Πn(χ)
,

λ2

3m0,Πn(χ)
, λ2δ

n/3∆nm0,Πn(χ)

}
,

where M2 > 0 is a suitable positive constant obtained from condition
(χ2), i.e., ∣∣∣∣∑

k∈Z

χ(wx− tk)− 1

∣∣∣∣ ≤ M2 w
−µ,

uniformly with respect to x ∈ Rn and for sufficiently large w > 0. Now,
recalling that f ∈ Lipφ(ν), by condition (5), it is easy to deduce the
following estimate:

J1,1 ≤
∫
∥t∥2≤γ̃

wn |χ(wt)|
[ ∫

Rn

φ(λ2|f(u)− f(u+ t)|) du
]
dt

≤ M1

∫
∥t∥2≤γ̃

wn |χ(wt)| ∥t∥ν2 dt

= O(w−θ), as w → +∞,

while, in the case of J1,2, by the convexity of φ, we have

J1,2 ≤
∫
∥t∥2>γ̃

wn |χ(wt)|1
2

[ ∫
Rn

φ(6λm0,Πn(χ)|f(u)|) du

+

∫
Rn

φ(6λm0,Πn(χ)|f(u+ t)|) du
]
dt.

Observing that∫
Rn

φ(6λm0,Πn(χ)|f(u+ t)|) du =

∫
Rn

φ(6λm0,Πn(χ)|f(u)|) du,

for every t ∈ Rn, it turns out

J1,2 ≤
∫
∥t∥2>γ̃

wn |χ(wt)|
∫
Rn

φ(6λm0,Πn(χ)|f(u)|) du

= Iφ[6λm0,Πn(χ)f ]

∫
∥t∥2>γ̃

wn |χ(wt)| dt.

Therefore, by the above inequality, assumptions and considerations, we
deduce that

J1,2 = O(w−α), as w → +∞.
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Now, we estimate J2. Setting t = u− tk/w, we have

J2 ≤
∫
Rn

φ

(
3λ

∣∣∣∣ ∑
k∈Zn

χ(wx− tk)

[
wn

Ak

∫
Rw

k

f(u+x−
tk
w
) du− f(x)

]∣∣∣∣)dx
=

∫
Rn

φ

(
3λ

∣∣∣∣ ∑
k∈Zn

χ(wx− tk)

[
wn

Ak

∫
(Rw

k −tk/w)

f(x+ t)dt−f(x)

]∣∣∣∣)dx,

where (Rw
k − tk/w) := [0, ∆k1/w]× · · · × [0, ∆kn/w], for every k ∈ Zn

and w > 0. Thus,

J2≤
∫
Rn

φ

(
3λ

∣∣∣∣ ∑
k∈Zn

χ(wx− tk)
wn

Ak

∫
(Rw

k −tk/w)

[f(x+ t)− f(x)] dt

∣∣∣∣)dx
≤
∫
Rn

φ

(
3λ

[∑
k∈Zn

∣∣∣∣χ(wx− tk)

∣∣∣∣wn

δn

∫
(Rw

k −tk/w)

|f(x+t)−f(x)|dt
])

dx

≤
∫
Rn

φ

(
3λ

[ ∑
k∈Zn

|χ(wx− tk)|
wn

δn

∫
(∆w)

|f(x+ t)− f(x)| dt
])

dx,

where (∆w) := [0, ∆/w] × · · · × [0, ∆/w]. Then, using Jensen’s
inequality, the Fubini-Tonelli theorem, and since f ∈ Lipφ(ν), 0 <
ν ≤ 1, for sufficiently large w > 0, we can write

J2 ≤
∫
Rn

φ

(
3λm0,Πn(χ)

wn

δn

∫
(∆w)

|f(x+ t)− f(x)| dt
)
dx,

≤
∫
Rn

wn

∆n

[ ∫
(∆w)

φ

(
3λm0,Πn(χ)

∆n

δn
|f(x+ t)− f(x)|

)
dt

]
dx,

=
wn

∆n

∫
(∆w)

[ ∫
Rn

φ

(
3λm0,Πn(χ)

∆n

δn
|f(x+ t)− f(x)|

)
dx

]
dt

≤ wn

∆n

∫
(∆w)

[ ∫
Rn

φ (λ2 |f(x+ t)− f(x)|) dx
]
dt

≤ M1
wn

∆n

∫
(∆w)

∥t∥ν2 dt,

being ∥t∥2 ≤ γ. By the change of variable t = u/w, and denoting by
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(∆) := [0, ∆]× · · · × [0,∆], we have that

J2 ≤ M1

∆n

∫
(∆)

∥u/w∥ν2 du = w−ν M1

∆n

∫
(∆)

∥u∥ν2 du =: Cw−ν ,

for sufficiently large w > 0, i.e., J2 = O(w−ν), as w → +∞.

Finally, we proceed by estimating the last term of the initial inequal-
ity, namely, J3. Recalling condition (χ2) and the convexity of φ, for
sufficiently large w > 0, it is easy to obtain

J3 ≤
∫
Rn

φ (3λ |f(x)||Aw(x)− 1||) dx

≤
∫
Rn

φ
(
3λM2w

−µ |f(x)||
)
dx

≤ w−µIφ[3M2λf ] ≤ w−µIφ[λ1f ] < +∞.

Thus, combining all the above estimates, we can conclude that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

where ϵ := min{θ, ν, µ, α}. �

The assumptions required in the above theorem are rather standard
when the problem of the rate of approximation for a family of linear
discrete operators is studied in Orlicz spaces. In particular, condition
(5) represents a relation between the kernel of Sw and the Lipschitz
class under consideration. Condition (5) is clearly satisfied when, for
instance, the kernel χ is with compact support. Denoting by B(0, R)
the closed ball centered in the origin and with radius R > 0, if
suppχ ⊂ B(0, R), we have

(6)

∫
∥t∥2≤γ

wn |χ(w t)| ∥t∥ν2 dt ≤
∫
∥u∥2≤R

|χ(u)| ∥u/w∥ν2 du =: Kw−ν ,

for sufficiently large w > 0, i.e., θ = ν. Moreover, in the above case, χ
satisfies condition (χ4) for every α > 0. We obtain the following

Corollary 5.3. Let χ be a kernel with compact support. Moreover, let
f ∈ Lφ(Rn)∩Lipφ(ν), 0 < ν ≤ 1. Then, there exists a λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

with ϵ := min{ν, µ}, where µ > 0 is the constant of condition (χ2).
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Condition (5) is satisfied also in the case of kernels with unbounded
support if we require an additional condition on χ, i.e., that the
multivariate absolute moment

(7) mν(χ) :=

∫
Rn

|χ(u)| ∥u∥ν2du < +∞,

for some 0 < ν ≤ 1. Indeed, if condition (7) holds, for every γ > 0 we
have:
(8)∫

∥t∥2≤γ

wn |χ(wt)| ∥t∥ν2 dt ≤
∫
∥u∥2≤γw

|χ(u)| ∥u/w∥ν2 du ≤ mν(χ) w
−ν ,

for every w > 0, which shows that (5) holds for θ = ν. Thus, we obtain
the following

Corollary 5.4. Let χ be a kernel with mν(χ) < +∞, for some
0 < ν ≤ 1. Moreover, let f ∈ Lφ(Rn) ∩ Lipφ(ν) be fixed. Then there
exists λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

with ϵ := min{ν, µ, α}, where µ > 0 and α > 0 are the constants of
conditions (χ2) and (χ4), respectively.

Remark 5.5. Examples of convex φ-functions generating Orlicz spaces,
where the theory of multivariate sampling Kantorovich operators holds,
are: φp(u) := up, 1 ≤ p < +∞, which generates the well-known Lp(Rn)

spaces, φα,β := uα logβ(u + e), for α ≥ 1, β > 0, which gives rise to

interpolation spaces and finally, φγ(u) = eu
γ − 1, for γ > 0, u ≥ 0, in

order to obtain the exponential spaces. It is well known that the mod-
ular functional corresponding to φp(u) is I

φp [f ] := ∥f∥pp. The modular
functionals corresponding to φα,β and φγ are

Iφα,β [f ] :=

∫
Rn

|f(x)|α logβ(e+ |f(x)|) dx, (f ∈ M(Rn)),

and

Iφγ [f ] :=

∫
Rn

(e|f(x)|
γ

− 1) dx, (f ∈ M(Rn)),

respectively. The Lα logβ L-spaces (interpolation or Zygmund spaces
generated by φα,β), are widely used in the theory of partial differential
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equations, while the exponential spaces (generated by φγ) are impor-
tant for embedding theorems between Sobolev spaces.

6. Applications to special kernels. One important fact in our
theory is the choice of the kernels, which influence the order of approx-
imation that can be achieved by our operators (see e.g., [29, 30] in
one-dimensional setting).

To construct, in general, kernels satisfying all the assumptions (χi),
i = 1, . . . , 4, is not very easy.

For this reason, here we show a procedure useful to construct
examples using product of univariate kernels, see, e.g., [12, 17, 27, 28].
For the sake of simplicity, we consider only the case of uniform sampling
scheme, i.e., tk = k.

Denote by χ1, . . . , χn, the univariate functions χi : R → R, χi ∈
L1(R) and are bounded in a neighborhood of 0 ∈ R, satisfying the
following assumptions:

(9) mβ,Π1(χi) := sup
x∈R

∑
k∈Z

|χi(x− k)| · |x− k|β < +∞,

i = 1, . . . , n, for some β > 0; moreover,

(10)
∑
k∈Z

χi(x− k) = 1,

for every x ∈ R, i = 1, . . . , n, and for every M̃ > 0

(11)

∫
|x|>M̃

w |χi(wx)| dx = O(w−α), as w → +∞,

for every i = 1, . . . , n and for some α > 0.

Remark 6.1. Note that condition (10) is equivalent to

χ̂(k) :=

{
0, k ∈ Z \ {0} ,
1, k = 0,

where χ̂(v) :=
∫
R χ(u)e−ivu du, v ∈ R, denotes the Fourier transform

of χ; see [3, 13, 27, 29].

Now, setting
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(12) χ(x) :=
n∏

i=1

χi(xi), x = (x1, . . . , xn) ∈ Rn,

we can prove that χ is a multivariate kernel for the operators Sw

satisfying all the assumptions of our theory. Indeed, we have that
χ ∈ L1(Rn) since∫

Rn

|χ(x)| dx =

∫
Rn

n∏
i=1

|χi(xi)| dx1 . . . dxn

=

n∏
i=1

∫
R
|χi(xi)| dxi =

n∏
i=1

∥χi∥1 < +∞.

Moreover, it is also obviously bounded in a neighborhood of the origin;
then condition (χ1) holds. Further, by condition (10),

(13) Aw(x) =
∑
k∈Zn

χ(wx− k) =
n∏

i=1

∑
ki∈Z

χi(wxi − ki) = 1,

then Aw(x) − 1 = 0, for every x ∈ Rn and w > 0, i.e., χ satisfies
condition (χ2) for every µ > 0. Concerning condition (χ3), we have:

mβ,Πn(χ) = sup
x∈Rn

∑
k∈Zn

|χ(x− k)| · ∥x− k∥β2

≤ K sup
x∈Rn

∑
k∈Zn

|χ(x− k)| · ∥x− k∥β ,

where ∥x∥ := max{|xi|, i = 1, . . . , n}, x ∈ Rn, and K > 0 is a
suitable constant (we recall that all the norms are equivalent in Rn).
Denoting by k[j] ∈ Zn−1 the vectors k[j] := (k1, . . . , kj−1, kj+1, . . . , kn)

and by Πn−1
[j] the restriction of the sequence Πn to the vectors k[j], with

k[j] ∈ Zn−1, then we can write

mβ,Πn(χ) ≤ K sup
x∈Rn

[ ∑
k∈Zn

|χ(x− k)| ·
( n∑

j=1

|xj − kj |β
)]

≤ K sup
x∈Rn

n∑
j=1

[ ∑
k∈Zn

|χ(x− k)| · |xj − kj |β
]
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≤ K sup
x∈Rn

n∑
j=1

[ ∑
k∈Zn

( n∏
i=1

|χi(xi − ki)|
)
· |xj − kj |β

]

≤K sup
x∈Rn

n∑
j=1

[ ∑
k[j]∈Zn−1

( n∏
i=1

i ̸=j

|χi(xi−ki)|
)∑
kj∈Z

|χj(xj−kj)||xj−kj |β
]

≤ K sup
x∈Rn

n∑
j=1

[ ∑
k[j]∈Zn−1

( n∏
i=1

i ̸=j

|χi(xi − ki)|
)
mβ,Π1(χj)

]

≤ K sup
x∈Rn

n∑
j=1

[ n∏
i=1

i ̸=j

( ∑
k[j]∈Zn−1

|χi(xi − ki)|
)
mβ,Π1(χj)

]

≤ K sup
x∈Rn

n∑
j=1

[ n∏
i=1

i ̸=j

m0,Πn−1
[j]

(χi) ·mβ,Π1(χj)

]

= K
n∑

j=1

[ n∏
i=1

i ̸=j

m0,Πn−1
[j]

(χi) ·mβ,Π1(χj)

]
< +∞.

Finally, for every M > 0, there exists a suitable constant M̃ > 0 such
that

∫
∥u∥2>M

wn|χ(wu)|du≤
∫
∥u∥>M̃

wn|χ(wu)|du=
∫
∥u∥>M̃

[ n∏
i=1

w|χi(wui)|
]
du

≤
n∑

j=1

{[∫
∥u[j]∥>M̃

n∏
i=1

i̸=j

w|χi(wui)| du[j]

]

·
∫
|uj |>M̃

w |χj(wuj)| duj

}
≤

n∑
j=1

{[∫
∥t[j]∥>wM̃

n∏
i=1

i ̸=j

|χi(ti)|dt[j]
]

·
∫
|uj |>M̃

w|χj(wuj)|duj

}
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≤
n∑

j=1

{[∫
Rn−1

n∏
i=1

i ̸=j

|χi(ti)|dt[j]
]

·
∫
|uj |>M̃

w|χj(wuj)|duj

}
≤

n∑
j=1

{[ n∏
i=1

i ̸=j

∫
Rn−1

|χi(ti)|dt[j]
]

·
∫
|uj |>M̃

w|χj(wuj)|duj

}
≤

n∑
j=1

{( n∏
i=1

i ̸=j

∥χj∥1
)∫

|uj |>M̃

w |χj(wuj)| duj

}
,

where we used the change of variable wu[j] = t[j]; then, in correspon-

dence to the constant α > 0 of condition (11) the following holds:∫
∥u∥2>M

wn |χ(wu)| du = O(w−α), as w → +∞,

for every M > 0, i.e., χ satisfies condition (χ4) with α > 0. Thus, we
can say that χ is a multivariate kernel.

Now, we will show some practical examples of multivariate kernels,
constructed by product of univariate kernels.

In what follows, we denote by

F (x) :=
1

2
sinc2

(
x

2

)
(x ∈ R),

the well known one-dimensional Fejér’s kernel. The sinc (x) function is
defined by

sinc (x) :=

{
sinπx

πx
x ∈ R \ {0} ,

1 x = 0.

It is easy to observe that the function F is bounded, belongs to L1(R)
and satisfies the moment conditions (9) for every 0 < β ≤ 1. For the
above properties see, e.g., [3, 13, 29, 30]. Moreover, it is also possible
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to observe that the Fourier transform of F is given by (see [13])

F̂ (v) :=

{
1− |v/π|, |v| ≤ π,
0, |v| > π,

and therefore condition (10) is fulfilled as a consequence of Remark 6.1.
In addition,∫

|u|>M̃

w F (wu) du ≤ 2

π2
w−1

∫
|u|>M̃

1

u2
du =: Kw−1,

for every M̃ > 0 and w > 0, and hence condition (11) holds for α = 1.
Finally, in [13], it is proved that Fejér’s kernel satisfies the finiteness of
the absolute moments, i.e., mν(F ) < +∞, for every 0 < ν ≤ 1. Then,
according to the procedure described in this section, we can define by

Fn(x) =
n∏

i=1

F (xi), x = (x1, . . . , xn) ∈ Rn,

the multivariate Fejér’s kernel, which satisfies the conditions upon a
multivariate kernel with mν(Fn) < +∞, for every 0 < ν ≤ 1. Then
the multivariate sampling Kantorovich operators based on the Fejér’s
kernel, in the case of uniform sampling, now take the form

(SFn
w f)(x) =

∑
k∈Zn

[
wn

∫
Rw

k

f(u) du

]
Fn (wx− k) , (x ∈ Rn),

for every w > 0, where f : Rn → R is a locally integrable function such
that the above series is convergent for every x ∈ Rn. For SFn

w f , from
Theorem 4.1, Theorem 5.1 and Corollary 5.4, we can obtain respectively
the following

Corollary 6.2. Let f ∈ Lip∞(ν), with 0 < ν ≤ 1. Then∥∥SFn
w f − f

∥∥
∞ = O(w−ν), as w → +∞.

In the case of Orlicz spaces, for every f ∈ Lφ(Rn), the following holds:

Iφ[λSFn
w f ] ≤ 1

δn
Iφ[λf ],

for some λ > 0 and for every w > 0, since ∥Fn∥1 = 1 and m0,Πn(Fn) =
1. In particular, SFn

w f ∈ Lφ(Rn) whenever f ∈ Lφ(Rn).
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Moreover, for any f ∈ Lφ(Rn) ∩ Lipφ(ν), 0 < ν ≤ 1, there exists a
λ > 0 such that

Iφ[λ(SFn
w f − f)] = O(w−ν), as w → +∞.

The Fejér’s kernel Fn provides an example of a kernel with un-
bounded support. In this case, for practical applications of the above re-
construction formula to any given signal with unbounded duration, one
should evaluate the sampling series Swf at any fixed x ∈ Rn, and this
requires one to know an infinite number of mean values wn

∫
Rw

k
f(u) du.

Clearly, in order to evaluate the operators Swf at x, the infinite sam-
pling series must be truncated to a finite one, and this procedure leads
to the so-called truncation error. However, if the signal f has bounded
duration, i.e., compact support, this problem does not arise.

In order to avoid the truncation error, kernels χ with compact
support can be taken into consideration.

Noteworthy examples of such kernels can be constructed using the
well-known, univariate central B-spline of order k ∈ N, defined by

Mk(x) :=
1

(k − 1)!

k∑
i=0

(−1)i
(
k
i

)(
k

2
+ x− i

)k−1

+

.

We recall that (x)+ := max{x, 0} denotes the positive part of x ∈ R
(see [3, 27, 48]). We have that the Fourier transform of Mk is given
by

M̂k(v) := sincn
(

v

2π

)
, (v ∈ R),

and then, if we consider the case of the uniformly spaced sampling
scheme, condition (10) is satisfied for every µ > 0 by Remark 6.1.
Clearly, Mk are bounded on R, with compact support [−k/2, k/2], and
hence Mk ∈ L1(R), for all k ∈ N. Moreover, it is easy to deduce that
conditions (9) and (11) are fulfilled for every β > 0 and α > 0. As in
the case of Fejér’s kernel, we define the multivariate B-spline kernel of
order k ∈ N+ by

Mn
k (x) :=

n∏
i=1

Mk(xi), x = (x1, . . . , xn) ∈ Rn.
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Then the multivariate sampling Kantorovich operators based on the
B-spline kernel of order k, in the case of the uniform sampling scheme,
now take the form

(S
Mn

k
w f)(x) =

∑
k∈Zn

[
wn

∫
Rw

k

f(u) du

]
Mn

k (wx− k) , (x ∈ Rn),

for every w > 0, where f : Rn → R is a locally integrable function such
that the above series is convergent for every x ∈ Rn. From Theorem 4.1,
Theorem 5.1 and Corollary 5.3, we obtain the following:

Corollary 6.3. Let f ∈ Lip∞(ν), with 0 < ν ≤ 1. Then∥∥∥SMn
k

w f − f
∥∥∥
∞

= O(w−ν), as w → +∞.

In the case of Orlicz spaces, for every f ∈ Lφ(Rn), the following holds:

Iφ[λS
Mn

k
w f ] ≤ 1

δn
Iφ[λf ],

for some λ > 0 and for every w > 0. In particular, S
Mn

k
w f ∈ Lφ(Rn)

whenever f ∈ Lφ(Rn).

Moreover, for any f ∈ Lφ(Rn) ∩ Lipφ(ν), 0 < ν ≤ 1, there exists a
λ > 0 such that

Iφ[λ(S
Mn

k
w f − f)] = O(w−ν), as w → +∞.

For other useful examples of kernels, see, e.g., [3, 7, 13, 47, 17,
23, 24, 22, 20, 21, 25].

Acknowledgments. The authors are members of the Gruppo Nazio-
nale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
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