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ABSTRACT. A numerical collocation method is developed
for solving nonlinear Volterra integro-differential equations
(VIDEs) of the neutral type, as well as other non-standard
and classical VIDEs. A sigmoidal functions approximation
is used to suitably represent the solutions. Special computa-
tional advantages are obtained using unit step functions, and
important applications can also be obtained by using other
sigmoidal functions, such as logistic and Gompertz functions.
The method allows one to obtain a simultaneous approxima-
tion of the solution to a given VIDE and its first derivative, by
means of an explicit formula. A priori as well as a posteriori
estimates are derived for the numerical errors, and numerical
examples are given for the purpose of illustration. A compari-
son is made with the classical piecewise polynomial collocation
method as for accuracy and CPU time.

1. Introduction. In [19], a collocation method was introduced
for solving nonlinear Volterra integral equations of the second kind,
using the results established in [18], suited to approximate functions in
certain classes by sigmoidal functions. Sigmoidal functions were then
used in [21] to numerically solve balance laws.

In this paper, we use the sigmoidal functions approximation to
develop a new collocation method for solving nonlinear Volterra integro-
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differential equations (VIDEs) of neutral type, of the form

(I) y′(t) = f(t, y(t)) +

∫ t

a

K(t, s, y(s), y′(s)) ds, y(a) = y0,

for t ∈ I := [a, b], where f and K are sufficiently smooth given
functions, see [10, 14, 34, 35]. The method is also suited for solving
classical VIDEs, i.e., equations where the integral term in (I) does not
depend on y′(s), as well as non-standard VIDEs, i.e., classical equations
where the integral term depends in addition on y(t), see [9, 33]. The
most known example of a non-standard VIDE is perhaps given by the
logistic equation with a memory term, see [5, 6, 22]. Collocation
methods are widely used to solve integral equations, see, e.g., [2, 4,
9, 12, 13].

Sigmoidal functions arise in the theory of neural networks, where
they play the role of activation functions of artificial neurons forming
the network, see, e.g., [1, 20, 27, 30, 32, 36]. Recall that a function
σ : R → R is termed a sigmoidal function whenever limx→−∞ σ(x) = 0
and limx→+∞ σ(x) = 1. Neural networks are widely used in approxi-
mation theory, and many important papers have been written in recent
years concerning this subject, see, e.g., [7, 23, 24]. Results concerning
the rate of this kind of approximation were given in [7, 15, 24, 25,
28, 29].

Our collocation method consists of first approximating y′ by neural
networks by unit step (Heaviside) sigmoidal functions, H , of the form

(II)

N∑
k=0

αkH(t− tk),

where the coefficients αk have to be determined, and tk’s are suitable
nodes. Upon integrating (II), we then obtain an approximation for y as
well. At this point, replacing y and y′ in (I) with their approximations,
and evaluating the equations at suitable collocation points on the
interval I, we can determine the unknowns αk.

The choice of using unit step functions allows one to solve a large
class of integral equations with some computational advantages. In
particular, we can determine an explicit formula for calculating the
coefficients αk. In this way, an analytical representation for the
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collocation solutions can be obtained, along with the analytical form
of (II). Moreover, we can show that approximate solutions can also be
given in terms of other sigmoidal functions, such as for instance logistic
and Gompertz functions.

The numerical errors made approximating y and y′ are analyzed,
and some a priori as well as a posteriori estimates are derived for
such errors. A number of numerical examples are presented, and the
results are compared with those obtained by the classical piecewise
polynomial collocation method. The collocation method based on
sigmoidal functions developed here seems to be competitive regarding
the CPU time it requires. As for its accuracy, it performs better than
piecewise polynomial collocation when integro-differential equations
with weakly singular kernels are involved.

Here is the outline of the paper. In Section 2, we review some existing
approximation results based on superposition of sigmoidal functions. In
Section 3, our collocation method is described in detail, and it is shown
that, for every given VIDE, our method yields a unique collocation
solution. In Section 4, the numerical errors affecting the method are
analyzed, and in subsection 4.1 some a priori error estimates are given.
In subsection 4.2, some a posteriori error estimates are also provided.
Finally, in Section 5, numerical examples are given to illustrate the
performance of the method.

2. Approximation by bounded sigmoidal functions. Neural
networks are widely used in approximation theory, where they play the
role of universal approximators [16, 18, 23, 30, 32, 36]. Usually,
the activation function of the network is a sigmoidal function. Recall
that σ : R → R is termed a sigmoidal function, provided that
limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1. Sometimes, boundedness,
continuity and/or monotonicity are prescribed in addition.

In what follows, C0[a, b] will denote the set of all continuous functions
f : [a, b] → R. In [18], the following result, concerning uniform
approximation by sigmoidal functions, was proven using constructive
arguments.

Theorem 2.1. Let σ be a bounded sigmoidal function, and let
f ∈ C0[a, b] be fixed. For every ε > 0, there exist N ∈ N+ and w > 0
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(depending on N and σ), such that, if

(1)
(GNf)(t) :=

N∑
k=1

[f(tk)− f(tk−1)]σ(w(t − tk))

+ f(t0)σ(w(t − t−1)),

for t ∈ [a, b], h := (b − a)/N , and tk := a + kh, k = −1, 0, 1, . . . , N ,
then

‖GNf − f‖∞ := sup
t∈[a,b]

|(GNf)(t)− f(t)| < ε.

We emphasize that the continuity of σ is not required. In particular,
assuming σ continuous, Theorem 2.1 can be viewed as a density result
for the set of all functions of the form (1), with respect to the uniform
topology of C0[a, b].

Remark 2.2. The form of the coefficients in (1) is independent
of the specific choice of σ. Therefore, various approximations of f
could be provided using different sigmoidal functions, keeping the same
coefficients.

An important example of bounded sigmoidal functions is given by
the well-known logistic function, defined as σ�(t) := (1+e−t)−1, t ∈ R.
Logistic functions are largely used in biology, physics, and demography
(see, e.g., [8, 26]). Now, using Theorem 2.1 and choosing σ�, the
following result can be obtained.

Corollary 2.3 (see [18]). Let σ�(t) := (1 + e−t)−1, t ∈ R. For any
given f ∈ C0[a, b], and for every ε > 0, there exists N ∈ N+ such that

‖GNf − f‖∞ < ε,

where GNf is defined in (1) with w > (N/(b− a)) ln(N − 1).

Corollary 2.3 provides an estimate for w > 0, for every N ∈ N+,
in the case of approximation of continuous functions by finite linear
combination of logistic functions.
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Other interesting (and useful) examples of bounded sigmoidal func-
tions are provided by the Gompertz functions, defined as

σαβ(t) := e−αe−βt

, t ∈ R,

where the positive parameters α and β represent an effective translation
and a scaling, respectively. Gompertz functions find applications,
e.g., in modeling tumor growth [3, 17, 31], and in population aging
description [37]. Similarly to the case of logistic functions, the following
can be established.

Corollary 2.4 (see [18]). Let σαβ(t) := e−αe−βt

, t ∈ R, α, β > 0.
For any given f ∈ C0[a, b], and for every ε > 0, there exists N ∈ N+

such that
‖GNf − f‖∞ < ε,

where GNf is defined in (1) with

w >
N

(b− a)β
max

{∣∣∣∣ ln
(
− 1

α
ln

(
N − 1

N

))∣∣∣∣,
∣∣∣∣ ln

(
1

α
ln (N)

)∣∣∣∣
}
.

As in Corollary 2.3, Corollary 2.4 provides an estimate for the
parameter w > 0, when Gompertz sigmoidal functions are used.

Finally, we consider the special case of unit step (or Heaviside)
sigmoidal functions, H(t) := 1 for t ≥ 0, and H(t) := 0 for t < 0.
In this case, the results established in Theorem 2.1 hold true, and the
neural networks of form (1) reduce to

(2)
(GNf)(t) :=

N∑
k=1

[f(tk)− f(tk−1)]H(t− tk)

+ f(t0)H(t− t−1),

t ∈ R, where f ∈ C0[a, b], h := (b − a)/N , and tk := a + hk, k =
−1, 0, 1, . . . , N , [18, 19]. Note that in (2) GNf becomes independent
of the scaling parameter w > 0.

Remark 2.5. SetHk(t) := H(t−tk), withHk : [a, b] → R, tk := a+hk,
h := (b− a)/N , for k = −1, 1, . . . , N , and

ΣN := span {Hk : k = −1, 1, 2, . . . , N} .
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In [19], it was proved that the vector space ΣN has dimension N + 1,
and the set {Hk : k = −1, 1, 2, . . . , N} is a basis for it.

3. The collocation method. In this section, we introduce
a collocation method aimed at solving nonlinear Volterra integro-
differential equations (VIDEs) of the neutral type.

In what follows, we consider initial value problems of the form

(3)
y′(t) = f(t, y(t)) +

∫ t

a

K(t, s, y(s), y′(s)) ds,

y(a) = y0,

for t ∈ I := [a, b], where f : I × R → R, and K : Ω → R, since
Ω := I × I ×R×R, are sufficiently smooth functions.

Suppose that (3) admits of a classical solution y, with y ∈ C1(I).
Hence, y′ ∈ C0(I) and then, as a consequence of Theorem 2.1, y(t)
could be uniformly approximated on I by a superposition of bounded
sigmoidal functions. We choose to use unit step (sigmoidal) functions,
and set

(4) (GNy′)(t) :=
N∑

k=1

αkH(t− tk) + α0H(t− t−1), t ∈ I,

with GNy′ ∈ ΣN , N ∈ N+. This will be a neural network which
approximates y′. Here, the coefficients αk, k = 0, 1, . . . , N , are
unknowns, and tk = a + kh, h = (b − a)/N , for k = −1, 0, . . . , N .
Integrating GNy′, we define

(5)

(SNy)(t) :=

∫ t

a

(GNy′)(s) ds+ y0

=

N∑
k=1

αk

∫ t

a

H(s− tk) ds

+ α0

∫ t

a

H(s− t−1) ds+ y0,

for t ∈ I, where y0 is the initial data in (3). Clearly, SNy approximates
y. Note that GNy′ and SNy are both characterized by the same
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unknown coefficients αk. By the definition of Heaviside functions, we
have for every t ∈ I∫ t

a

H(s− t−1) ds = t− a, and

∫ t

a

H(s− tk) ds = t− tk,

for every k such that tk ≤ t, and∫ t

a

H(s− tk) ds = 0,

for every k with tk > t, k = 1, . . . , N . Then (5) becomes

(6) (SNy)(t) :=
∑

k:tk≤t

αk(t− tk) + y0, t ∈ I.

Inserting SNy and GNy′ in (3), in place of y and y′, respectively, we
obtain the collocation equation

(7)

(GNy′)(t) = f(t, (SNy)(t))

+

∫ t

a

K(t, s, (SNy)(s), (GNy′)(s)) ds.

If CN := {t0, t1, . . . , tN} denotes the set of the collocation points, we
can evaluate (7) at such points, obtaining

(8)

(GNy′)(ti) = f(ti, (SNy)(ti))

+

∫ ti

a

K(ti, s, (SNy)(s), (GNy′)(s)) ds,

for every fixed i, i = 0, 1, . . . , N . This is a algebraic system of N + 1
equations where the unknowns are the αk’s, k = 0, 1, . . . , N . Solving
such a system we obtain the αk’s and then SNy and GNy′.

We will show that SNy and GNy′ do provide a simultaneous approx-
imation of the solution, y, to (3) and of its first derivative, y′. We
can prove that system (8) always has a unique solution. Indeed, the
following theorem holds.

Theorem 3.1. The algebraic system (8) has a unique solution
α0, . . . , αN , i.e., the collocation method based on unit step functions,
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used for solving the nonlinear integro-differential equations of the neu-
tral type in (3), admits of a unique solution, SNy, for every N ∈ N+.
In particular, the coefficients αi of SNy (and GNy′), can be determined
by the following explicit formula:

(9) α0 := f(a, y0),

(10)

α1 := f (t1, α0(t1 − a) + y0)− α0

+

∫ t1

a

K (t1, s, α0(s− a) + y0, α0) ds,

and

(11)

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+

i∑
ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,

ν−1∑
k=0

αk

)
ds,

for every i, i = 2, . . .N .

Proof. By equation (8), for i = 0, 1, . . . , N , N ∈ N+, and the
definition of SNy and GNy′, we have

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1)

= f

(
ti,

i∑
k=0

αk(ti − tk) + y0

)

+

∫ ti

a

K

(
ti, s,

N∑
k=1

αk

∫ s

a

H(z − tk) dz + α0

∫ s

a

H(z − t−1) dz

+ y0,
N∑

k=1

αkH(s− tk) + α0H(s− t−1)

)
ds,
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that can also be rewritten as

(12)

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1)

= f

(
ti,

i∑
k=0

αk(ti − tk) + y0

)

+

i∑
ν=1

∫ tν

tν−1

K

(
ti, s,

N∑
k=1

αk

∫ s

a

H(z − tk) dz

+ α0

∫ s

a

H(z − t−1) dz + y0,

N∑
k=1

αkH(s− tk) + α0H(s− t−1)

)
ds.

For i = 0, equation (12) reduces to α0 = f(a, y0). For i = 1, (12)
reduces to

α0 + α1 = f (t1, α0(t1 − a) + y0)

+

∫ t1

a

K (t1, s, α0(s− a) + y0, α0) ds,

and then we have

α1 = f (t1, α0(t1 − a) + y0)− α0

+

∫ t1

a

K (t1, s, α0(s− a) + y0, α0) ds,

that can be immediately evaluated since α0 is known from the previous
step. Note that, in general, for every fixed i, i = 2, . . . , N , H(ti− tk) =
0 for every k > i, and H(ti − tk) = 1 for every k ≤ i. Moreover, it
is easy to see that, for every ν = 1, . . . , i, there is H(· − tk) = 1 on
[tν−1, tν ] for k = 0, . . . , ν − 1 and H(· − tk) = 0 on [tν−1, tν ] for k ≥ ν.
Finally note that, again for ν = 1, . . . , i, if s ∈ [tν−1, tν ], we have

N∑
k=1

αk

∫ s

a

H(z − tk) dz + α0

∫ s

a

H(z − t−1) dz =
ν−1∑
k=0

αk(s− tk).

Thus, for the general case i = 2, . . . , N , (12) becomes

i∑
k=0

αk = f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,
ν−1∑
k=0

αk

)
ds,
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so we can conclude that

αi = f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+

i∑
ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,

ν−1∑
k=0

αk

)
ds.

This shows that (8) admits of a unique solution, α0, . . . , αN .

Note that, in Theorem 3.1, integrability of the kernel, K, in the
integro-differential equation (3) is required. We emphasize the pecu-
liarities of the present collocation method:

(i) one can determine all coefficients αk in a very simple way,

(ii) a simultaneous approximation of y and y′ is provided by SNy and
GNy′, respectively, as well as the analytical form of SNy and GNy′.

Remark 3.2. Note that, if the kernel in equation (3) is of the
convolution type, i.e., K(t, s, y(t), y′(s)) = k(t − s)G(y(t), y′(s)), and
it does not depend on y(s) (for all s ∈ [0, t]), then, formulae (10) and
(11) in Theorem 3.1 reduce to

α1 := f (t1, α0(t1 − a) + y0)− α0 +G (α0(t1 − a) + y0, α0)

×
∫ t1

a

k (t1 − s) ds,

and

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+

i∑
ν=1

G

( ν−1∑
k=0

αk(ti − tk) + y0

ν−1∑
k=0

αk

)∫ tν

tν−1

k (ti − s) ds,

for every i, i = 2, . . .N . Now, changing the variable in the integrals,
setting z = s + h (where h is the step-size of the collocation points),
we obtain

(13)

∫ tν

tν−1

k (ti−s)ds =

∫ tν+h

tν−1+h

k (ti + h−z)dz =

∫ tν+1

tν

k (ti+1−z)dz.
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Relation (13) can be used to simplify the implementation of the colloca-
tion method in this case. In fact, in order to determine the coefficients
αi, now we need to compute only one additional integral. In general
we evaluate i integrals at each step, while in the present approach we
are able to reduce significantly the CPU time needed by our method.

The method can also be applied to other problems, such as classical
nonlinear integro-differential equations of the form

(14) y′(t) = f(t, y(t)) +

∫ t

a

K(t, s, y(s)) ds, y(0) = y0,

for t ∈ I := [a, b], where f : I ×R → R and K : I × I ×R → R are
sufficiently smooth functions.

Moreover, a further class of VIDEs to which our collocation method
can be applied is that of non-standard Volterra integro-differential
equations having the typical general form

(15) y′(t) = f(t, y(t)) +

∫ t

a

K(t, s, y(t), y(s)) ds, y(0) = y0,

where K : I × I ×R×R → R is sufficiently smooth and the integrand
depends on both y(s) and y(t). The best known example of such
a non-standard VIDE is given by the so-called logistic equation with
memory term, see [5, 6, 9, 22, 33]. Assume, as above, that (14) or
(15) admits of a classical solution. Proceeding as with neutral VIDEs,
that is, replacing y and y′ with SNy and GNy′ in (14) or (15), and
evaluating the ensuing collocation equations at the collocation points,
we obtain algebraic systems similar to those in (8). The following
theorems can be established by a straightforward adaptation of the
proof of Theorem 3.1. For clarity, we state these results explicitly here.

Theorem 3.3. The collocation method based on unit step functions
for solving the nonlinear VIDE (14), has a unique solution, SNy, for
every N ∈ N+. In particular, the coefficients αi of SNy (and GNy′),
can be determined by the following explicit formula:

(16) α0 := f(a, y0),
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(17) α1 :=f (t1, α0(t1−a)+ y0)−α0 +

∫ t1

a

K (t1, s, α0(s−a)+ y0) ds;

and

(18)

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+

i∑
ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0

)
ds,

for every i, i = 2, . . .N .

Theorem 3.4. The collocation method based on unit step functions,
for solving the non-standard VIDE (15), has a unique solution, SNy,
for every N ∈ N+. In particular, the coefficients αi of SNy (and
GNy′), can be determined by the following explicit formula:

(19) α0 := f(a, y0),

(20)

α1 := f (t1, α0(t1 − a) + y0)− α0

+

∫ t1

a

K (t1, s, α0(t1 − a) + y0, α0(s− a) + y0) ds,

and
(21)

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+

i∑
ν=1

∫ tν

tν−1

K

(
ti, s,

i−1∑
k=0

αk(ti − tk) + y0,

ν−1∑
k=0

αk(s− tk) + y0

)
ds,

for every i, i = 2, . . .N .

Remark 3.5. Suppose that y ∈ C1(I) is the classical solution of
a VIDE of the form in (3), and that SNy is its collocation solution,
written with coefficients αk provided by Theorem 3.1. Moreover,
GNy′ is given in terms of unit step functions, and this represents an
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approximation of y′. Now let σ be a fixed bounded sigmoidal function.
By Remark 2.2, we know that various approximations of any given
continuous function can be obtained using various different sigmoidal
functions, still retaining the same coefficients. Therefore, using the
same αk, we can define

(22) (Gσ
Ny′)(t) :=

N∑
k=1

αkσ(w(t − tk)) + α0σ(w(t − t−1)), t ∈ I,

where w is a suitable positive parameter depending on σ and N , and
the tk’s are the uniformly spaced nodes in the interval [a, b] defined
above. It follows that Gσ

Ny′ provides a further approximation to y′,
and hence we obtain, by integration,

(Sσ
Ny)(t) :=

N∑
k=1

αk

∫ t

a

σ(w(s − tk)) ds(23)

+ α0

∫ t

a

σ(w(s − t−1)) ds+ y0, t ∈ I,

which provides a further approximation to y on I, for every N ∈ N+.

The same observation can be made when our collocation method is
applied to VIDEs of the form (14) or (15), using the same coefficients
αk determined in Theorem 3.3 and Theorem 3.4, respectively.

4. Error analysis. In this section, we analyze the various sources
of numerical errors which affect our collocation method.

4.1. A priori estimates. We start by considering our collocation
method with unit step functions, applying it to the VIDEs of neutral
type in (3).

First of all, we define the error function for y′,

(24) eN (t) := y′(t)− (GNy′)(t), t ∈ I := [a, b],

where y is the classical solution of (3) and GNy′ is the neural net-
work given in (4) and written with coefficients αk determined by our
collocation method for (3). Integrating eN , we obtain

(25) EN (t) :=

∫ t

a

eN(z) dz = y(t)− (SNy)(t), t ∈ I := [a, b],
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that is, the error function for y. The following theorem provides some
a priori estimates for eN and EN .

Theorem 4.1. Let (3) be a given VIDE of the neutral type, which
admits of a classical solution y ∈ C1(I). Assume that there exist the
positive constants Lf , C, L1 and L2, such that

(i) for every (t1, s1), (t2, s2) ∈ I ×R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2,

where ‖ · ‖2 is the Euclidean norm in R2;

(ii) for every (t, s, x, z) ∈ I×I×[−‖y‖∞,+‖y‖∞]×[−‖y′‖∞,+‖y′‖∞],
we have |K(t, s, x, z)| ≤ C;

(iii) for every (t1, s, x, z), (t2, s, x, z) ∈ I × I × [−‖y‖∞, ‖y‖∞] ×
[−‖y′‖∞, ‖y′‖∞],

|K(t1, s, x, z)−K(t2, s, x, z)| ≤ L1 |t1 − t2|;

(iv) for every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I ×R×R,

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2.

Then,

|eN (t)| ≤ (b − a)M1

N
eM2 (t−a), t ∈ I := [a, b],

and

|EN (t)| ≤ (b − a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants
not dependent on N .

Proof. Let N ∈ N+ and t ∈ I := [a, b] be fixed. Define

j := max {i : ti ≤ t, ti ∈ CN , i = 0, 1, . . . , N} ,
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where ti = a+ kh, h := (b− a)/N , k = 0, 1, . . . , N , are the collocation
points. We can write

|eN (t)| ≤ |eN (t)− eN (tj)|+ |eN (tj)| ≤ |y′(t)− y′(tj)|
+ |(GNy′)(t)− (GNy′)(tj)|+ |eN (tj)|

= |y′(t)− y′(tj)|+ |eN(tj)|,
because (GNy′)(t) = (GNy′)(tj), since the function GNy′ is written as
a superposition of unit step functions and hence it is piecewise constant.
Now,

|eN(t)| ≤ |y′(t)− y′(tj)|+ |eN (tj)|

=

∣∣∣∣f(t, y(t)) +
∫ t

a

K(t, s, y(s), y′(s)) ds

− f(tj, y(tj))−
∫ tj

a

K(tj , s, y(s), y
′(s)) ds

∣∣∣∣
+
∣∣∣f(tj , y(tj)) + ∫ tj

a

[
K(tj , s, y(s), y

′(s))

−K(tj, s, (SNy)(s), (GNy′)(s))
]
ds

− f(tj, (SNy)(tj))

∣∣∣∣ ≤ |f(t, y(t))− f(tj , y(tj))|

+

∫ t

tj

|K(t, s, y(s), y′(s))| ds

+

∫ tj

a

|K(t, s, y(s), y′(s))−K(tj , s, y(s), y
′(s))| ds

+ |f(tj , y(tj))− f(tj , (SNy)(tj))|

+

∫ tj

a

|K(tj, s, y(s), y
′(s))−K(tj , s, (SNy)(s), y′(s))| ds

+

∫ tj

a

|K(tj, s, (SNy)(s), y′(s))

−K(tj, s, (SNy)(s), (GNy′)(s))| ds
=: J1 + J2 + J3 + J4 + J5 + J6.

We first estimate J1 and J4. Being y ∈ C1(I), y is Lipschitz continuous
on I, with some Lipschitz constant, say, Ly > 0. Thus, we obtain from
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condition (i)

J1 ≤ Lf

√
(t− tj)2 + (y(t)− y(tj))2 ≤ Lf

√
h2(1 + L2

y) =: hM,

and, moreover,

J4 ≤ Lf |y(tj)− (SNy)(tj)| = Lf |EN (tj)| ≤ Lf

∫ tj

a

|eN (z)| dz.

As, for J2, we can easily infer from condition (ii) that J2 ≤ C(t−tj) ≤
Ch. Turning our attention to J3, we have by condition (iii)

J3 ≤ L1 |t− tj | (tj − a) ≤ L1 (tj − a)h ≤ L1 (b− a)h.

We finally estimate J5 and J6. From condition (iv), we have

J5 ≤ L2

∫ tj

a

|y(s)− (SNy)(s)| ds = L2

∫ tj

a

|EN (s)| ds,

and similarly

J6 ≤ L2

∫ tj

a

|y′(s)− (GNy′)(s)| ds = L2

∫ tj

a

|eN(s)| ds.

Therefore, combining all such estimates we conclude that

|eN (t)| ≤ h [M + C + L1 (b− a)]

+ L2

∫ tj

a

|EN (s)| ds+ (Lf + L2)

∫ tj

a

|eN (z)| dz

= h [M + C + L1 (b− a)] + L2

∫ tj

a

∣∣∣∣
∫ s

a

eN(z) dz

∣∣∣∣ ds
+ (Lf + L2)

∫ tj

a

|eN (z)| dz

≤ h [M + C + L1 (b− a)] + L2

∫ tj

a

[∫ tj

a

|eN(z)| dz
]
ds

+ (Lf + L2)

∫ tj

a

|eN (z)| dz
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≤ h [M + C + L1 (b− a)]

+ [L2 (b − a+ 1) + Lf ]

∫ tj

a

|eN (z)| dz
≤ h [M + C + L1 (b− a)]

+ [L2 (b − a+ 1) + Lf ]

∫ t

a

|eN (z)| dz

=: hM1 +M2

∫ t

a

|eN(z)| dz.

The previous inequality holds for every t ∈ I, and thus we obtain, by
Gronwall’s lemma,

|eN(t)| ≤ hM1 e
M2 (t−a) =

(b − a)M1

N
eM2 (t−a), t ∈ I,

for every N ∈ N+. Moreover,

|EN (t)| ≤
∫ t

a

|eN (s)| ds ≤ (b − a)M1

N

∫ t

a

eM2 (s−a) ds,

=
(b − a)M1

NM2

(
eM2 (t−a) − 1

)
,

for every N ∈ N+.

Remark 4.2. We can infer from Theorem 4.1 that

‖eN‖∞ ≤ (b− a)M1

N
eM2 (b−a),

and

‖EN‖∞ ≤ (b− a)M1

NM2

(
eM2 (b−a) − 1

)
,

so that we can conclude that ‖eN‖∞ → 0 and ‖EN‖∞ → 0 as
N → +∞: SNy and GNy′ converge both uniformly on I, to y and
y′, respectively.

Remark 4.3. In Theorem 4.1, the Lipschitz conditions (i) and (iv) are
global. This is a technical assumption, which circumvents the need of
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having an a priori boundedness of SNy and GNy′. For such a reason,
Theorem 4.1 cannot cover, e.g., the case of VIDEs like (3) with kernels

of the form K(t, s, x, z) = K̃(t, s)xpzp, or f(t, s) = f̃(t) sp, with p > 1,
see also [19].

Theorem 4.1 can also be extended in such a way to apply our
collocation method to (14). Clearly, the coefficients αk of SNy (and
GNy′) in (14) are the same obtained in Theorem 3.3 (or in Theorem 3.4,
in case of the equations of the kind in (15)). The following can be
proved.

Theorem 4.4. Let a VIDE as in (14) be given, which admits a
classical solution y ∈ C1(I). Assume that there exist positive constants
Lf , C, L1 and L2, such that:

(i) for every (t1, s1), (t2, s2) ∈ I ×R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2;

(ii) for every (t, s, x) ∈ I×I×[−‖y‖∞,+‖y‖∞], we have |K(t, s, x)| ≤
C;

(iii) for every (t1, s, x), (t2, s, x) ∈ I × I × [−‖y‖∞, ‖y‖∞],

|K(t1, s, x)−K(t2, s, x)| ≤ L1 |t1 − t2|;

(iv) for every (t, s, x1), (t, s, x2) ∈ I × I ×R,

|K(t, s, x1)−K(t, s, x2)| ≤ L2 |x1 − x2|.

Then,

|eN (t)| ≤ (b− a)M1

N
eM2 (t−a), t ∈ I := [a, b],

and

|EN (t)| ≤ (b − a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants
not depending on N .
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The proof of this theorem is similar to that of Theorem 4.1, and thus
is omitted. Moreover, in case of non-standard VIDEs like those in (15),
we have the following.

Theorem 4.5. Let there be a fixed non-standard VIDE like that in
(15), which admits a classical solution y ∈ C1(I). Assume that there
exist positive constants Lf , C, L1 and L2, such that

(i) for every (t1, s1), (t2, s2) ∈ I ×R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2;

(ii) for every (t, s, x, z) ∈ I×I×[−‖y‖∞,+‖y‖∞]×[−‖y‖∞,+‖y‖∞],
we have |K(t, s, x, z)| ≤ C;

(iii) for every (t1, s, x, z), (t2, s, x, z) ∈ I × I × [−‖y‖∞, ‖y‖∞] ×
[−‖y‖∞, ‖y‖∞],

|K(t1, s, x, z)−K(t2, s, x, z)| ≤ L1 |t1 − t2|;

(iv) for every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I ×R×R,

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2.

Then,

|eN (t)| ≤ (b − a)M1

N
eM2 (t−a), t ∈ I := [a, b],

and

|EN (t)| ≤ (b − a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants
not depending on N .

Proof. As in the proof of Theorem 4.1 (and with the same notation),
we can write, for every fixed t ∈ I,
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|eN (t)| ≤ |y′(t)− y′(tj)|+ |eN (tj)|

=

∣∣∣∣f(t, y(t)) +
∫ t

a

K(t, s, y(t), y(s)) ds− f(tj , y(tj))

−
∫ tj

a

K(tj , s, y(tj), y(s)) ds

∣∣∣∣
+

∣∣∣∣f(tj, y(tj)) +
∫ tj

a

[
K(tj, s, y(tj), y(s))

−K(tj , s, (SNy)(tj), (SNy)(s))
]
ds− f(tj , (SNy)(tj))

∣∣∣
≤ |f(t, y(t))− f(tj , y(tj))|

+

∫ t

tj

|K(t, s, y(t), y(s))| ds

+

∫ tj

a

|K(t, s, y(t), y(s))−K(tj, s, y(tj), y(s))| ds
+ |f(tj , y(tj))− f(tj , (SNy)(tj))|

+

∫ tj

a

|K(tj , s, y(tj), y(s))

−K(tj , s, (SNy)(tj), y(s))| ds

+

∫ tj

a

|K(tj , s, (SNy)(tj), y(s))

−K(tj , s, (SNy)(tj), (SNy)(s))| ds
=: J1 + J2 + J3 + J4 + J5 + J6.

The terms J1, J2 and J4 can be estimated as in Theorem 4.1. As for
J3, J5 and J6, we obtain, exploiting (iii) and (iv) and the fact that y
is Lipschitz continuous with Lipschitz constant Ly > 0,

J3 ≤ L1 (tj − a)
√
(t− tj)2 + (y(t)− y(tj))2

≤ L1 (tj − a)
√
h2(1 + L2

y)

≤ L1 (b− a)
√
(1 + L2

y) h,
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and

J5 ≤ L2 |EN (tj)|
∫ tj

a

ds ≤ L2 (b−a) |EN(tj)| ≤ L2 (b−a)

∫ t

a

|eN (z)| dz,

and finally,

J6 ≤ L2

∫ tj

a

|EN (s)| ds ≤ L2 (b− a)

∫ tj

a

∫ s

a

|eN(z)| dz ds

≤ L2 (b− a)2
∫ tj

a

|eN (z)| dz

≤ L2 (b− a)2
∫ t

a

|eN (z)| dz.

The proof then follows as in Theorem 4.1.

4.2. A posteriori estimates. As noted in Remark 4.3, the a priori
estimates made in subsection 4.1 hold only for equations with kernels
K and data f which are globally Lipschitz. However, if we replace
conditions (i) and (iv) in Theorem 4.1 with a local Lipschitz condition,
some a posteriori error estimates can be established. Indeed, the
following can be proved.

Theorem 4.6. Let a given VIDE of neutral type like that in (3) have
a classical solution y ∈ C1(I), and assume that conditions (ii) and (iii)
of Theorem 4.1 hold for some positive constants C and L1, respectively.
Suppose in addition that:

(a) there exist a constant Lf > 0 and a function Lf : R+
0 → R+

0 ,
such that, for every γ > 0,

|f(t1, s1)− f(t2, s2)| ≤ Lf (γ) |f(t1, s1/γ)− f(t2, s2/γ)|,

for every (t1, s1), (t2, s2) ∈ I ×R, and such that

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2,

for every (t1, s1), (t2, s2) ∈ I × [−1, 1];
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(b) there exist a constant L2 > 0 and a function LK : R+
0 → R+

0

such that, for every constant γ > 0,

|K(t1, s1, x1, z1)−K(t2, s2, x2, z2)|
≤ LK(γ) |K(t1, s1, x1/γ, z1/γ)−K(t2, s2, x2/γ, z2/γ)|,

for every (t1, s1, x1, z1), (t2, s2, x2, z2) ∈ I × I ×R×R, and such that

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2,

for every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I × [−1, 1]× [−1, 1]. Then,

|eN (t)| ≤ (b− a)M1

N
eMN (t−a), t ∈ I = [a, b],

and

|EN (t)| ≤ (b− a)M1

NMN

(
eMN (t−a) − 1

)
, t ∈ I,

where

MN :=
M2

γN
{Lf (γN ) + LK(γN )} ,

M1 and M2 being suitable positive constants not depending on N , and

(26) γN := max {‖y‖∞, ‖y′‖∞, ‖SNy‖∞, ‖GNy′‖∞} ,

for every N ∈ N+.

Proof. We define Ji, i = 1, . . . , 6 as in the proof of Theorem 4.1,
for t ∈ I fixed. We first estimate J1, J2 and J3, as in the proof of
Theorem 4.1. Now, we estimate J4, J5 and J6. Let γN > 0 be the
constant defined in (26). Using condition (a), we obtain

J4 ≤ Lf (γN ) |f (tj , y(tj)/γN)− f (tj , (SNy)(tj)/γN )|

≤ Lf
Lf (γN )

γN
|EN (tj)| ≤ Lf

Lf (γN )

γN

∫ t

a

|eN (s)| ds,
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with |y(tj)|/γN , |(SNy)(tj)|/γN ≤ 1. Furthermore, we have from
condition (b),

J5 ≤ LK(γN )

∫ tj

a

∣∣∣∣K
(
tj , s,

y(s)

γN
,
y′(s)
γN

)
−K

(
tj , s,

(SNy)(s)

γN
,
y′(s)
γN

)∣∣∣∣ ds
≤ L2 LK(γN )

∫ tj

a

|y(s)/γN − (SNy)(s)/γN | ds

= L2
LK(γN )

γN

∫ tj

a

|EN (s)| ds

≤ L2
LK(γN )

γN

∫ tj

a

∫ s

a

|eN (z)| dz ds ≤ L2 (b− a)
LK(γN )

γN

∫ t

a

|eN (z)| dz.

Similarly,

J6 ≤ L2
LK(γN )

γN

∫ tj

a

|eN (s)| ds ≤ L2
LK(γN )

γN

∫ t

a

|eN(s)| ds.

Proceeding as in Theorem 4.1,

|eN(t)| ≤ hM1 +M2

{Lf (γN )

γN
+

LK(γN )

γN

}∫ t

a

|eN(z)| dz,

for every t ∈ I = [a, b], with h = (b − a)/N , the constant M1 being
defined as in Theorem 4.1 and M2 := 2 max{Lf , L2 (b−a), L2}. Then,
we obtain from Gronwall’s lemma

|eN(t)| ≤ (b − a)M1

N
eMN (t−a), t ∈ I = [a, b],

where

MN :=
M2

γN
{Lf (γN ) + LK(γN )} ,

and moreover,

|EN (t)| ≤ (b − a)M1

NMN

(
eMN (t−a) − 1

)
, t ∈ I,

for every N ∈ N+.
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Note that all examples of functions f and kernels K mentioned in
Remark 4.3 do satisfy conditions (a) and (b) of Theorem 4.6.

Remark 4.7. Theorem 4.6 can be easily extended to provide estimates
for the error affecting our method for VIDEs like (14) and (15), as in
Theorems 4.4 and 4.5.

We can now use the estimate provided by Theorem 4.1 (or Theo-
rem 4.6) to derive other estimates for the errors affecting the variant
of our method introduced in Remark 3.5 for equations like (3).

Let σ be a fixed bounded sigmoidal function. In what follows, we
denote by

(27) eσN (t) := y′(t)− (Gσ
Ny′)(t), t ∈ I := [a, b],

where Gσ
Ny′ is defined in (22) and it is written with the coefficients αk

determined by our collocation method for equation (3). Furthermore,
we denote by

(28) Eσ
N (t) :=

∫ t

a

eσN(z) dz = y(t)− (Sσ
Ny)(t), t ∈ I := [a, b],

that is, the error function for y, when the approximate solution is
expressed by Sσ

Ny defined in (23). The following theorem provides
some a posteriori estimates for the error functions eσN and Eσ

N .

Theorem 4.8. Let σ be a bounded sigmoidal function, and let (3) be
a given VIDE of the neutral type, which admits of a classical solution,
y ∈ C1(I). Under the assumptions (i) (iv) of Theorem 4.1, we have

|eσN(t)| ≤ (b− a)M1

N
eM2(t−a)

+
∑

k:tk≤t

|αk| |σ(w (t− tk))− 1|

+
∑

k:tk>t

|αk| |σ(w (t− tk))|,
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for every t ∈ I. Furthermore,

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+

N∑
k=1

|αk|
∫ t

a

|σ(w (s− tk))| ds,

for every t ∈ [a, t1], and

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+

i−1∑
k=1

|αk|
[ ∫ tk

a

|σ(w (s− tk))| ds

+

∫ t

tk

|σ(w (s− tk))− 1| ds
]

+

N∑
k=i

|αk|
∫ t

a

|σ(w (s− tk))| ds.

for every t ∈ [ti−1, ti], i = 2, . . . , N , and N ∈ N+, where M1 and M2

are suitable positive constants not depending on N .

Proof. We first write (Gσ
Ny′)(t) =: (GNy′)(t)+RN (t), where GNy′ is

defined in (4) with the coefficients αk determined in Theorem 3.1, and
RN is a suitable function. Let t ∈ I := [a, b] be fixed. We have

|RN (t)| = |(Gσ
Ny′)(t) − (GNy′)(t)|

=

∣∣∣∣
N∑

k=1

αk [σ(w (t− tk))−H(t− tk)]

+ α0 [σ(w (t− t−1))− 1]

∣∣∣∣,
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where w > 0 is a suitable parameter depending on σ and N ∈ N+.
We can observe that σ(w (t − tk)) − H(t − tk) = σ(w (t − tk)) − 1 if
t ≥ tk and σ(w (t− tk))−H(t− tk) = σ(w (t− tk)) if t < tk, for every
k = 1, . . . , N . Thus,

|RN (t)| ≤
∑

k:tk≤t

|αk| |σ(w (t− tk))− 1|+
∑

k:tk>t

|αk| |σ(w (t− tk))|.

By the inequality above and Theorem 4.1, we can write

|eσN (t)| = |y′(t)− (Gσ
Ny′t)| ≤ |y′(t)− (GNy′)(t)|

+ |(GNy′)(t) − (Gσ
Ny′)(t)|

= |eN (t)|+ |RN (t)| ≤ (b − a)M1

N
eM2 (t−a)

+
∑

k:tk≤t

|αk| |σ(w (t− tk))− 1|

+
∑

k:tk>t

|αk| |σ(w (t− tk))|,

for every t ∈ I. Finally, we can also obtain

|Eσ
N (t)| ≤

∫ t

a

|eσN (s)| ds ≤ (b− a)M1

N

∫ t

a

eM2 (s−a) ds

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+

N∑
k=1

|αk|
∫ t

a

|σ(w (s− tk))| ds,

for every t ∈ [a, t1], i.e.,

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+
N∑

k=1

|αk|
∫ t

a

|σ(w (s− tk))| ds,
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for every t ∈ [a, t1], where the positive numbers M1 and M2 are
those determined in the proof of Theorem 4.1. Moreover, we have,
for t ∈ (ti−1, ti], i = 2, . . . , N ,

|Eσ
N (t)| ≤ (b − a)M1

N

∫ t

a

eM2 (s−a) ds

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+

i−1∑
k=1

|αk|
[∫ tk

a

|σ(w (s− tk))| ds

+

∫ t

tk

|σ(w (s− tk))− 1| ds
]

+

N∑
k=i

|αk|
∫ t

a

|σ(w (s− tk))| ds,

or, equivalently,

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+ |α0|
∫ t

a

|σ(w (s− t−1))− 1| ds

+
i−1∑
k=1

|αk|
[ ∫ tk

a

|σ(w (s− tk))| ds

+

∫ t

tk

|σ(w (s− tk))− 1| ds
]

+

N∑
k=i

|αk|
∫ t

a

|σ(w (s− tk))| ds.

Note that, from the definition itself of sigmoidal functions, the terms
|σ(w (t − tk)) − 1| and |σ(w (t − tk))| in the estimates of Theorem 4.8
are small, when the positive parameter w is sufficiently large.

Now, we apply Theorem 4.8 to the special case of logistic sigmoidal
functions. This yields the following
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Corollary 4.9. If σ�(t) = (1 + e−t)−1, t ∈ R, and (3) is a given
VIDE of the neutral type, having a classical solution, y ∈ C1(I),
we have, under the assumptions (i) (iv) of Theorem 4.1, for every
w > (N/(b− a)) ln(N − 1),

|eσN (t)| ≤ (b− a)M1

N
eM2(t−a)

+
∑

k:tk≤t

|αk| e−w (t−tk)

1 + e−w (t−tk)

+
∑

k:tk>t

|αk| (1 + e−w (t−tk))−1,

for every t ∈ I. Furthermore,

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+

{
|α0| ln

(
1 + e−w (b−a)/N

1 + e−w (t−t−1)

)

+

N∑
k=1

|αk| ln
(
1 +

ew (t−a)

1 + ew (tk−a)

)}
b− a

N ln(N − 1)
,

for every t ∈ [a, t1], and

|Eσ
N (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
+

{
|α0| ln

(
1 + e−w (b−a)/N

1 + e−w (t−t−1)

)

+ 2 ln 2

[ i−1∑
k=1

|αk|
]

+

N∑
k=i

|αk| ln
(
1 +

ew (t−a)

1 + ew (tk−a)

)}
b− a

N ln(N − 1)
.

for every t ∈ (ti−1, ti], i = 2, . . . , N , and N ∈ N+, N > 2, where M1

and M2 are suitable positive constants not dependent on N .
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Proof. The proof is a direct consequence of Theorem 4.8 and Corol-
lary 2.3, just observing that

∫ tk

a

|σ�(w (s− tk))| ds+
∫ t

tk

|σ�(w (s− tk))− 1| ds

≤ 2 ln 2w−1 ≤ 2 ln 2 (b− a)

N ln(N − 1)
,

for k = 1, . . . , i − 1, where i = 2, . . . , N , is such that t ∈ (ti−1, ti], for
w > N/(b− a) ln(N − 1), and N ∈ N+, N > 2.

Clearly, the analogue of Corollary 4.9 can be established for the case
of the Gompertz sigmoidal functions.

Remark 4.10. Theorem 4.8 and Corollary 4.9 can also be extended
to the case of VIDEs like (14) and (15), thus obtaining a posteriori
estimates for the corresponding errors, eσN and Eσ

N . Further estimates
can be obtained replacing the assumptions of Theorem 4.1 with those
of Theorem 4.6, in Theorem 4.8 (and in Corollary 4.9).

5. Numerical examples. In this section, we apply the collocation
method developed earlier in this paper to numerically solve some VIDEs
of the form (3), (14) and (15).

Example 5.1. Consider the nonlinear VIDE, of the form (3),

y′(t) = 2e−t − e−y(t)

+ 2

∫ t

0

es−t−y(s) [2− y′(s)− ln (e (1 + s)y′(s))] ds,

with initial condition y(0) = 0, for t ∈ [0, 1]. Its solution is y(t) =
ln(1 + t).

In Table 1, the corresponding numerical errors, obtained by our
collocation method with unit step functions, are shown. In the same
table, we also show the numerical errors made when logistic functions,
σ�, and Gompertz functions, σαβ with α = 0.85 and β = 0.1, are used.
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TABLE 1. Numerical results for Example 5.1. EN , E
σ�
N and E

σαβ

N are the errors

on y, see Section 4. The scaling parameters, w of the collocation solutions S
σ�
N y

and S
σαβ

N
y are w = N2 and w = N2/(αβ), respectively, see Sections 2 and 3.

N ‖EN‖∞ ‖Eσ�

N ‖∞ ‖Eσαβ

N ‖∞ 1/(N lnN)

5 2.11× 10−2 1.86× 10−2 2.6× 10−2 1.24× 10−1

10 9.9× 10−3 9.6× 10−3 1.13× 10−2 4.34× 10−2

15 6.4× 10−3 6.4× 10−3 7.1× 10−3 2.46× 10−2

30 3.2× 10−3 3.2× 10−3 3.3× 10−3 9.8× 10−3

40 2.4× 10−3 2.4× 10−3 2.5× 10−3 6.8× 10−3

100 9.44× 10−4 9.44× 10−4 9.60× 10−4 2.2× 10−3

200 4.71× 10−4 4.71× 10−4 4.75× 10−4 9.43× 10−4

TABLE 2. Numerical errors for the piecewise polynomial collocation method for

the equation in Example 5.1.

N : 5 10 15 30 100

Errors: 1.5× 10−3 1.13 × 10−3 1.11× 10−3 6.47× 10−4 2.09× 10−4

From the results of Table 1 it seems that the numerical errors
pertaining to Example 5.1 decay to zero roughly as 1/(N lnN), when
N gets large, hence faster than shown by the theoretical results given
in Section 4.

In order to assess accuracy and performance of our collocation
method, based on sigmoidal functions, we compared it with the classi-
cal piecewise polynomial collocation method. In what follows, such a
comparison is made considering the collocation solutions in the space
of piecewise polynomials whose degree does not exceed m = 2, with
collocation parameters c1 = 0 and c2 = 1, i.e., the well-known Lobatto
points, see [9]. Here, hN := (b− a)/N is the uniform mesh size, and N
is the number of subintervals of [a, b] where the collocation is accom-
plished. In Table 2, the absolute errors for such a piecewise collocation
method are given, for several values of N , for the VIDE of the neutral
type in Example 5.1.



A COLLOCATION METHOD FOR VIDES 45

TABLE 3. Comparison between the CPU time (in seconds) for sigmoidal and

piecewise collocation methods for the problem in Example 5.1.

N sigmoidal functions piecewise polynomial

5 0.012895 0.069862

10 0.037928 0.097894

15 0.076565 0.149001

30 0.292096 0.314933

TABLE 4. Numerical results for Example 5.1. eN , e
σ�
N and e

σαβ

N are the errors

made computing y′, see Section 4. The scaling parameters, w, of the G
σ�
N y′ and

G
σαβ

N
y′ are w = N2 and w = N2/(αβ), respectively.

N ‖eN‖∞ ‖eσ�
N ‖∞ ‖eσαβ

N ‖∞
5 1.50 × 10−1 8.37× 10−2 1.25× 10−1

10 8.26 × 10−2 6.17× 10−2 7.6× 10−2

15 5.66 × 10−2 4.60× 10−2 5.61× 10−2

30 2.91 × 10−2 2.75× 10−2 2.91× 10−2

40 1.96 × 10−2 1.96× 10−2 1.96× 10−2

100 1.9× 10−3 4.9× 10−3 5.6× 10−3

200 9.70 × 10−4 2.4× 10−3 2.8× 10−3

TABLE 5. Numerical results for Example 5.2. EN , E
σ�
N and E

σαβ

N with α = 0.85

and β = 0.1 are the errors made evaluating y. The scaling parameters, w, of S
σ�
N

y

and S
σαβ

N y are w = N2 and w = N2/(αβ), respectively.

N ‖EN‖∞ ‖Eσ�
N ‖∞ ‖Eσαβ

N ‖∞ 1/(N lnN)

5 4.1× 10−3 3.6× 10−3 4.6× 10−3 1.24× 10−1

10 1.8× 10−3 1.8× 10−3 2× 10−3 4.34× 10−2

15 1.2× 10−3 1.2× 10−3 1.3× 10−3 2.46× 10−2

30 5.73× 10−4 5.71× 10−4 5.92 × 10−4 9.8× 10−3

40 4.26× 10−4 4.25× 10−4 4.37 × 10−4 6.8× 10−3

100 1.67× 10−4 1.67× 10−4 1.69 × 10−4 2.2× 10−3

TABLE 6. Numerical errors for the piecewise polynomial collocation method for

the equation in Example 5.2.

N : 5 10 15 30 100

Errors: 5.44× 10−2 1.7× 10−2 9× 10−3 3.1× 10−3 5.03× 10−4
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Comparing the numerical errors in Table 2 with those in Table 1, we
see, in general, the piecewise polynomial collocation methods, which are
local in nature, are more accurate than the method based on sigmoidal
functions. Moreover, for the piecewise polynomial collocation method,
mN = 2N collocation points are needed, where N is the number of
subintervals of [a, b]. We should then compare the numerical results in
Table 2 with those of Table 1, when the same number of collocation
points is used.

However, our method is simpler and offers some computational advan-
tages. Indeed, to solve nonlinear equations, we do not need to compute
the solutions of a sequence of nonlinear algebraic systems, as it hap-
pens using the piecewise polynomial collocation method. To determine
the coefficients of our collocation solutions, we can merely apply the
explicit linear recursive formulae given in Theorem 3.1. All integrals in
such formulae can be computed by numerical quadrature. In Table 3,
we show the CPU times needed to compute the solutions with the sig-
moidal and piecewise polynomial collocation methods for Example 5.1,
for various N .

Comparing the CPU times given in Table 3 we can observe that
the numerical solutions by the collocation method with sigmoidal
functions are computed in a shorter time than the piecewise polynomial
collocation method.

In addition, our method provides a simultaneous approximation of the
first derivative of the solution by a superposition of sigmoidal functions.
In Example 5.1, y′(t) = (1 + t)−1, t ∈ [0, 1]. In Table 4, the numerical
errors made in the approximation of y′ with GNy′, Gσ�

N y′ and G
σαβ

N y′,
α = 0.85 and β = 0.1 are shown.

Here the numerical errors in the approximation of y′ are larger than
those made approximating y.

Example 5.2. Consider the following classical nonlinear VIDE like
(14), with a weakly singular kernel, K, i.e.,

y′(t) =
1

8 y(t)
+
√
t

(
t

3
+

1

2

)
−
∫ t

0

y2(s)√
t− s

ds,

with initial condition y(0) = 1/2, for t ∈ [0, 1]. Its solution is
y(t) = (

√
t+ 1)/2.
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Weakly singular kernels are not Lipschitz continuous near the right-
points of the interval [0, t], with t ∈ [0, 1]. This fact represents a
problem for the convergence of the numerical method. The numerical
errors for such an example are shown in Table 5.

In Example 5.2, the numerical errors seem to decay roughly as
1/(N lnN), as well as in Example 5.1.

In Example 5.2, again, it is more interesting to compare the numerical
errors of Table 5 with those obtained by piecewise collocation. In
Table 6, we show the absolute errors of the piecewise polynomial
method applied to the equation in Example 5.2 on [0, 1].

Comparing the results in Tables 5 and 6, we can observe that the
collocation method with sigmoidal functions is more accurate than the
piecewise polynomial collocation method. Therefore, our numerical
method seems to be competitive in the case of equations with weakly
singular kernels.

Example 5.3. We consider the non-standard VIDE of the form (15),

y′(t) = y(t)

(
f̃(t) +

∫ t

0

e−(t−s)y(s) ds

)
,

where

f̃(t) := e−2t − e−t − 2,

and initial condition y(0) = 1, t ∈ [0, 1], whose solution is y(t) = e−2t,
see [11].

The corresponding numerical errors are given in Table 7.

Again, in Example 5.3, the same observation made for Examples 5.1
and 5.2 applies, concerning the decay rate of the numerical errors. Here,
‖EN‖∞, ‖Eσ�

N ‖∞ and ‖Eσαβ

N ‖∞ seem to decrease as C/(N lnN), since
C > 1 a suitable constant.

Similar considerations can be made for Example 5.3 as for Exam-
ple 5.1. In Table 8, the numerical errors obtained using piecewise poly-
nomial collocation on [0, 1] are given. Also in this case, the errors of
Table 8 turn out to be smaller then those in Table 7.
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TABLE 7. Numerical results for Example 5.3. EN , E
σ�
N and E

σαβ

N with α = 0.85

and β = 0.1 are the errors made evaluating y. The scaling parameters, w, of S
σ�
N y

and S
σαβ

N
y are w = N2 and w = N2/(αβ), respectively.

N ‖EN‖∞ ‖Eσ�
N

‖∞ ‖Eσαβ

N
‖∞

5 8.99 × 10−2 7.85× 10−2 1.01× 10−1

10 4.09 × 10−2 3.98× 10−2 4.47× 10−2

15 2.63 × 10−2 2.61× 10−2 2.82× 10−2

30 1.29 × 10−2 1.28× 10−2 1.34× 10−2

40 9.6× 10−3 9.6× 10−3 9.9× 10−3

100 3.8× 10−3 3.8× 10−3 3.8× 10−3

200 1.9× 10−3 1.9× 10−3 1.9× 10−3

TABLE 8. Numerical errors for the piecewise polynomial collocation method for

the equation in Example 5.3.

N : 5 10 15 30 100

Errors: 1.33× 10−2 6.40× 10−3 4.2× 10−3 2.1× 10−3 6.34× 10−4

Example 5.4. Consider the nonlinear VIDE of the neutral type:

y′(t) = 2t3 − 2y2(t)− 6t2 + 13t+ 12e−t − 12

+

∫ t

0

et−sy(s)(y′(s))2 ds,

for t ∈ [0, 1], subject to the initial condition y(0) = 0. Its solution is
y(t) = (1/2)t2.

The numerical errors for such an example are shown in Table 9.

In Example 5.4, we can determine all parameters required to obtain
the a posteriori error estimates of subsection 4.2. The constants M1

and M2 in Theorems 4.1 and 4.6 (which depend neither on the number
N of sigmoidal functions nor on the mesh size, h) are

M1 = M + C + L1, M2 = 2L2 + Lf ,
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TABLE 9. Numerical results for Example 5.4. EN , E
σ�
N and E

σαβ

N with α = 0.85

and β = 0.1 are the errors made evaluating y. The scaling parameters, w, of S
σ�
N y

and S
σαβ

N
y are w = N2 and w = N2/(αβ), respectively.

N ‖EN‖∞ ‖Eσ�
N

‖∞ ‖Eσαβ

N
‖∞

5 6.28 × 10−2 2.59× 10−2 5.57× 10−2

10 5× 10−3 3.9× 10−3 6.8× 10−3

15 2.8× 10−3 2.5× 10−3 3.9× 10−3

30 1.4× 10−3 1.3× 10−3 1.6× 10−3

40 1× 10−3 1× 10−3 1.1× 10−3

100 4.07 × 10−4 4.06× 10−4 4.21× 10−4

200 2.03 × 10−4 2.03× 10−4 2.07× 10−4

TABLE 10. Numerical errors for the piecewise polynomial collocation method for

the equation in Example 5.4.

Errors: 3.8× 10−3 1.7× 10−3 1.1× 10−3 5.33× 10−4 1.54 × 10−4

TABLE 11. Comparison between the numerical errors |EN (t)| and the a posteriori

error estimates RN (t) of Theorem 4.6, for Example 5.4.

N t |EN (t)| RN (t)

5 0.05 0.0013 0.2106

5 0.07 0.0025 0.6466

30 0.05 5.8332 × 10−4 0.0351

30 0.07 8.5885 × 10−4 0.1078

30 0.1 0.0011 0.5507

40 0.05 5.3125 × 10−4 0.0263

40 0.1 7.9136 × 10−4 0.4130

100 0.05 1.9677 × 10−4 0.0105

100 0.1 3.0052 × 10−4 0.1652

100 0.13 3.3732 × 10−4 0.8315

where M =
√
L2
y + 1 =

√
2, C = L1 = e/2, L2 = 2e, and Lf = 16,

hence,

M1 =
√
2 + e, M2 = 4e+ 16.
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Moreover, the functions introduced in conditions (a) and (b) of Theo-
rem 4.6 are Lf (γ) = γ2 and LK(γ) = γ3, γ ≥ 0, and finally

γN := max {1, ‖SNy‖∞, ‖GNy′‖∞} ,
and,

MN =
(4e+ 16)

N

(
γN + γ2

N

)
.

Therefore, the a posteriori estimate provided by Theorem 4.6 for the
collocation solutions of such neutral equations is given by

|EN (t)| ≤ (
√
2 + e)

NMN

(
eMN t − 1

)
=: RN (t),

for every t ∈ [0, 1]. This estimate is very sharp, especially when t is near
to zero. In Table 11, a comparison between the numerical errors |EN (t)|
and the a posteriori error estimates RN (t) of Theorem 4.6, for Example
5.4, is given. As a rule, a priori estimates provide overestimates
for the numerical errors. Clearly, since in the error inequality an
exponential function with exponent MN t appears depending on the
(large) constantMN , for larger values of t the previous estimate cannot
be very sharp. Similar considerations can be made in the case of
an a posteriori estimate obtained approximating solutions to neutral
integro-differential equations by logistic or Gompertz functions.
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