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ABSTRACT. In this work we establish some new esti-
mates for layer potentials of the acoustic wave equation in the
time domain, and for their associated retarded integral opera-
tors. These estimates are proven using time-domain estimates
based on the theory of evolution equations and improve known
estimates that use the Laplace transform.

1. Introduction. In this paper we prove some new bounds for the
(two- and three-dimensional) time domain acoustic wave equation layer
potentials and their related boundary integral operators.

In 1986, Alain Bamberger and Tuong Ha-Duong published two arti-
cles ([2, 3]) on retarded integral equations for wave propagation. These
seminal papers established much of what is known today about re-
tarded layer potentials, proving continuity of layer potentials and their
associated integral operators as well as invertibility properties of some
relevant integral operators. The analysis of both papers has two key
ingredients: (a) the time variable is dealt with by using a Laplace
transform; (b) estimates in the Laplace domain are proved using vari-
ational techniques in free space, very much in the spirit of [16] (see
also [15]). Even if the results in [2, 3] are given only for the three-
dimensional case (retarded operators with no memory), because of the
way the analysis is given, all results can easily be generalized to any
space dimension. An additional aspect that is relevant in [2, 3] is
the justification of time-and-space Galerkin discretization of some as-
sociated retarded boundary integral equations, a result that sparked
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intense activity in the French numerical analysis community on inte-
gral methods for acoustic, electromagnetic and elastic waves in the time
domain. Not surprisingly, when Lubich’s convolution quadrature tech-
niques started to be applied to retarded boundary integral equations
(this happened in [14]), the key results of Bamberger and Ha-Duong
were instrumental in proving convergence estimates for a method that
relies heavily on the Laplace transform of the symbol of the opera-
tor, even though it is a marching-on-in-time scheme. The relevance
of having precise bounds in the Laplace domain for numerical analysis
purposes has also been expanded in more recent work at the abstract
level (with the recent analysis of RK-CQ schemes in [5, 6]) and with
applications to the wave equation at different stages of discretization
([4, 8, 13]).

In this paper we advance in the project of developing the theory of re-
tarded layer potentials with a view on creating a systematic approach to
the analysis of CQ-BEM (Convolution Quadrature in time and Bound-
ary Element Methods in space) for scattering problems. As opposed to
most existing analytical approaches, while partially following the ap-
proach of [18], we will use purely time-domain techniques, inherently
based on groups of isometries associated to unbounded operators and
on how they can be used to treat initial value problems for differential
equations of the second order in Hilbert spaces. We will show how to
identify both surface layer potentials with solutions of wave equations
with homogeneous initial conditions, homogeneous Dirichlet conditions
on a distant boundary and non-homogeneous transmission conditions
on the surface where the potentials are defined. This identification will
hold true for a limited time-interval, and a different dynamic equation
(with a new cut-off boundary placed farther away from the original
surface) has to be dealt with for larger time intervals. In its turn, this
will make us be very careful with dependence of constants in all bounds
with respect to the (size of the) domain. Bounds for the solution of
the associated evolution equations will depend upon quite general re-
sults for non-homogeneous initial value problems. A delicate point will
be proving that the strong solutions of these truncated (in time and
space) problems coincides with the weak distributional definitions of
the layer potentials. Since the type of results we will be using are not
common knowledge for persons who might be interested in this work,
and due to the fact that the kind of bounds we need are not standard
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in the theory of C0-semigroups (and, as such, cannot be located in the
best known references on the subject), we will give a self-contained
exposition of the theory as we need it, based upon the simple idea of
separation of variables, the Duhamel principle, and very careful han-
dling of orthogonal-series-valued functions.

From the point of view of what we obtain, let us emphasize that
all bounds improve results that can be proved by estimates that use
the Laplace transform. Improvement happens in reduced regularity
requirements and in slower growth of constants as a function of time.
This goes in addition to our overall aim of widening the toolbox for
analysis of time-domain boundary integral equations, which we hope
will be highly beneficial for analysis of novel discretization techniques
for them.

Although results will be stated and proved for the acoustic wave
equation (in any dimension larger than one), all results hold verbatim
for linear elastic waves, as can easily be seen from how the analysis
uses a very limited set of tools that are valid for both families of
wave propagation problems. Extension to Maxwell equations is likely,
however, to be more involved.

The paper is structured as follows. Retarded layer potentials and
their associated integral operators are introduced in Section 2, first
formally in their strong integral forms and as solutions of transmission
problems, and then rigorously through their Laplace transforms. Sec-
tion 3 contains the statements of the two mains results of this paper,
one concerning the single layer potential and the other concerning the
double layer potential. Sections 4 and 5 contain the proofs of The-
orems 3.1 and 3.2, respectively. In Section 6 we use the same kind
of techniques to produce two more results, much in the same spirit,
concerning the exterior Steklov-Poincaré (Dirichlet-to-Neumann and
Neumann-to-Dirichlet) operators. In Section 7 we compare the kind
of results that can be obtained with bounds in the Laplace domain
with the results of Sections 3 and 6. In Section 8 we state some basic
results including bounds on non-homogeneous problems associated to
the wave equation with different kinds of boundary conditions; these
results have been used in the previous sections. Finally, Appendix A
includes the already mentioned treatment of some problems related to
the wave equation by means of rigorous separation of variables.
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Notation, terminology and background. Given a function of a
real variable with values in a Banach space X , ϕ : R → X , we will
say that it is causal when ϕ(t) = 0 for all t < 0. If ϕ is a distribution
with values in X , we will say that it is causal when the support of ϕ
is contained in [0,∞). The space of k-times continuously differentiable
functions I → X (where I is an interval) will be denoted Ck(I;X). The
space of bounded linear operators between two Hilbert spaces X and
Y is denoted L(X,Y ) and endowed with the natural operator norm.
Standard results on Sobolev spaces will be used throughout. For easy
reference, see [1, 15]. Some very basic knowledge on vector-valued
distributions on the real line will be used: it is essentially limited to
concepts like differentiation, support, Laplace transform, identification
of functions with distributions, etc. All of this can be consulted in [10].

On time differentiation. There will be two kinds of time deriva-
tives involved in this work: for classical strong derivatives with respect
to time of functions defined in [0,∞) with values on a Banach space
X (understanding the derivative as the right derivative at t = 0), we
will use the notation u̇; for derivatives of distributions on the real line
with values in a Banach space X , we will use the notation u′. Partial
derivatives with respect to t will only make a brief appearance in a
formal argument.

Remark 1.1. If u : [0,∞) → X is a continuous function and we define

(1) (Eu)(t) :=

{
u(t) t ≥ 0,

0 t < 0,

then Eu defines a causal X-valued distribution. If u ∈ C1([0,∞);X)
and u(0) = 0, then (Eu)′ = Eu̇. Also, if u is an X-valued distribution
and X ⊂ Y with continuous injection, then u is a Y -valued distribution
and their distributional derivatives are the same, that is, when we
consider the X-valued distribution u′ as a Y -valued distribution, we
obtain the distributional derivative of the Y -valued distribution u. This
fact is actually a particular case of the following fact: if u is anX-valued
distribution and A ∈ L(X,Y ), then Au is a Y -valued distribution and
(Au)′ = Au′.

2. Retarded layer potentials. Let Ω− be a bounded open set in
Rd with Lipschitz boundary Γ, and let Ω+ := Rd \ Ω−. We assume
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that the set Ω+ is connected. No further hypothesis concerning the
geometric setup will be made in this article. The normal vector field
on Γ, point from Ω− to Ω+ will be denoted ν.

Classical integral form of the layer potentials. For densities
λ, ϕ : Γ × R → R that are causal as functions of their real variable
(time), we can define the retarded single layer potential by

(S ∗ λ)(x,t) :=
∫
Γ

λ(y, t − |x− y|)
4π|x− y| dΓ(y),

and the retarded double layer potential by

(D ∗ ϕ)(x, t) :=
∫
Γ

∇y

(
ϕ(z, t− |x− y|)

4π|x− y|
)∣∣∣

z=y
ν(y) dΓ(y)

=

∫
Γ

(x− y) · ν(y)
4π|x− y|3

× (
ϕ(y, t − |x− y|) + |x− y|ϕ̇(y, t − |x− y|)) dΓ(y).

These are valid formulas for x ∈ R3 \ Γ as long as the densities are
smooth enough. The two-dimensional layer potentials are defined by

(S ∗ λ)(x, t) := 1

2π

∫
Γ

∫ t−|x−y|

0

λ(y, τ)√
(t− τ)2 − |x− y|2 dΓ(y) dτ

and

(D ∗ ϕ)(x, t)
:=

1

2π

∫
Γ

ϕ(u, t− |x− y|)
|x− y|

(x− y) · ν(y)√
(t− τ)2 − |x− y|2 dΓ(y)

− 1

2π

∫
Γ

∫ t−|x−y|

0

ϕ(y, τ)

(t−τ)2 − |x−y|2
(x−y) · ν(y)√

(t− τ)2 − |x−y|2 dΓ(y) dτ.

Convolutional notation for potentials and operators will be used
throughout. As we will shortly see, the convolution symbol makes
reference to the time-convolution.
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Layer potentials via transmission problems. In a first step,
layer potentials can be understood as solutions of transmission prob-
lems. Let γ− (respectively γ+) denote the operator that restricts func-
tions on Ω− (respectively Ω+) to Γ, i.e., the interior (respectively exte-
rior) trace operator. Similarly, let ∂±ν denote the interior and exterior
normal derivative operators. Jumps across Γ will be denoted

[[γu]] := γ−u− γ+u, [[∂νu]] := ∂−ν u− ∂+ν u,

while averages will be denoted

{{γu}} := 1
2 (γ

−u+ γ+u), {{∂νu}} := 1
2 (∂

−
ν u+ ∂+ν u).

Given a causal density λ, the single layer potential u := S ∗ λ can be
formally defined as the solution to the transmission problem:

utt = Δu in Rd \ Γ× (0,∞),(2a)

[[γu]] = 0 on Γ× (0,∞),(2b)

[[∂νu]] = λ on Γ× (0,∞),(2c)

u(·, 0) = 0 in Rd \ Γ,(2d)

ut(·, 0) = 0 in Rd \ Γ.(2e)

Similarly, for a causal density ϕ, u := D ∗ ϕ is the solution of the
transmission problem:

utt = Δu in Rd \ Γ× (0,∞),

[[γu]] = −ϕ on Γ× (0,∞),

[[∂νu]] = 0 on Γ× (0,∞),

u(·, 0) = 0 in Rd \ Γ,
ut(·, 0) = 0 in Rd \ Γ.

With this definition, it follows that

(3)

[[γ(S ∗ λ)]] = 0,

[[∂ν(D ∗ ϕ)]] = 0,

[[∂ν(S ∗ λ)]] = λ,

[[γ(D ∗ ϕ)]] = −ϕ.
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The definition of the layer potentials through transmission problems
allows us to define the following four retarded boundary integral oper-
ators:

V ∗ λ := {{γ(S ∗ λ)}} = γ−(S ∗ λ) = γ+(S ∗ λ),(4)

Kt ∗ λ := {{∂ν(S ∗ λ)}},(5)

K ∗ ϕ := {{γ(D ∗ ϕ)}},(6)

W ∗ ϕ := −{{∂ν(D ∗ ϕ)}} = −∂−ν (D ∗ ϕ) = −∂+ν (D ∗ ϕ).(7)

These definitions and the jump relations (3) then prove that

∂±ν (S ∗ λ) = ∓ 1
2λ+Kt ∗ λ, γ±(D ∗ ϕ) = ± 1

2ϕ+K ∗ ϕ.

Layer potentials via their Laplace transforms. Although the
definition of the layer potentials through the transmission problems
they are due to satisfy leads to an easy formal introduction of potentials,
integral operators and most of the associated Calderón calculus with
integral operators, properties of these operators are usually obtained
by studying their Laplace transforms. This is the usual rigorous way of
introducing these potentials (see [2, 3]). In order to do this, consider
the fundamental solution of the operator Δ − s2 for s ∈ C+ := {s ∈
C : Re s > 0}:

Ed(x,y; s) :=

{
ı/4H

(1)
0 (ıs|x− y|) (d = 2),

e−s|x−y|/4π|x− y| (d = 3).

The theory of layer potentials for elliptic problems (see [9] or the more
general introduction in the monograph [15]) can then be invoked in
order to define the single and double layer potentials, which are weak
forms of the integral expressions

H−1/2(Γ) 
 λ �−→ S(s)λ :=

∫
Γ

Ed(·,y; s)λ(y) dΓ(y),

and

H1/2(Γ) 
 ϕ �−→ D(s)ϕ :=

∫
Γ

∇yEd(·,y; s) · ν(y)ϕ(y) dΓ(y),
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respectively. For an arbitrary open set O, we let

H1
Δ(O) := {u ∈ H1(O) : Δu ∈ L2(O)},

endowed with its natural norm. Then S(s) : H−1/2(Γ) → H1
Δ(R

d \ Γ)
and D(s) : H1/2(Γ) → H1

Δ(R
d \ Γ) are bounded for all s ∈ C+. The

jump relations

(8)

[[γS(s)λ]] = 0,

[[∂νD(s)ϕ]] = 0,

[[∂νS(s)λ]] = λ,

[[γD(s)ϕ]] = −ϕ,

justify the definition of the four associated boundary integral operators
using averages of the traces

V(s)λ := {{γS(s)λ}} = γ±S(s)λ,
Kt(s)λ := {{∂νS(s)λ}},
K(s)ϕ := {{γD(s)ϕ}},
W(s)ϕ := −{{∂νD(s)ϕ}} = −∂±ν D(s)ϕ.

Bounds of the operator norms of the two potentials and four operators
above, made explicit in terms of s, have been obtained in [2, 3, 13].
Using them, it is then possible to use Payley-Wiener’s theorem (see a
sketch of the theory in [10] or a full introduction in [19]) and show
that all six of them (S,D,V,K,Kt and W) are Laplace transforms of
operator-valued causal distributions. For instance, it follows that there
exists an L(H−1/2(Γ), H1

Δ(R
d \Γ))-valued causal distribution S whose

Laplace transform is well defined in C+ and is equal to S(s). The
theory of vector-valued distributions proves then that, for any causal
H−1/2(Γ)-valued distribution λ, the convolution product S ∗λ is a well-
defined causal H1

Δ(R
d \Γ)-valued distribution. Moreover, if u := S ∗λ,

then

(9) u′′ = Δu.

(Recall notation for distributional derivatives given at the end of the
introductory section.) The Laplace operator in (9) is the Laplacian
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FIGURE 1. Sketch of the geometry of the problem. The exterior domain is

Ω+ := Rd \ Ω−.

Δ : H1
Δ(R

d \ Γ) → L2(Rd \ Γ) ≡ L2(Rd) and (9) is to be understood
as the equality of two L2(Rd)-valued causal distributions. The fact
that u is causal and that differentiation is understood for distributions
defined on the real line (as opposed to distributions defined in (0,∞)),
encodes the vanishing initial conditions (2d) and (2e). The jump
properties of S(s) in (8) then prove the transmission conditions in
(3). This gives full justification for understanding u = S ∗ λ as
a solution of the transmission problem (2) with time differentiation
(and initial conditions) re-understood as differentiation of vector-valued
distributions. If V and Kt are the causal operator-valued distributions
whose Laplace transforms are V(s) and Kt(s), respectively, then their
time convolutions with a given causal density λ satisfy the identities
(4) and (5), thus identifying the two possible definitions of the time
domain integral operators associated to the single layer potential.

The same considerations can be applied for a rigorous definition of
the double layer potential in the sense of convolutions of vector-valued
distributions. Note that both layer potentials had been introduced
directly (without using the Laplace transform) in the three-dimensional
case in [12], with a theory that cannot easily be extended to the two-
dimensional case.
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Propagation, uniqueness and integral representation. Finite
speed of propagation of the waves generated by layer potentials will be
a key ingredient in our theoretical setting. For our purposes, only the
following aspect will be used. Henceforth, we take a fixed R > 0 such
that

(10) Ω− ⊂ B0 := B(0;R) := {x ∈ Rd : |x| < R}.

We also consider the distance between Γ and ∂B0:

(11) δ := min{|x− y| : x ∈ Γ,y ∈ ∂B0}.

For T > 0, we denote BT := B(0;R + T ), and we let γT be the trace
operator from H1(BT \ Ω−) to H1/2(∂BT ). See Figure 1 for a sketch
of the different geometric objects.

Proposition 2.1. Let λ be an H−1/2(Γ)-valued causal distribution,
ϕ an H1/2(Γ)-valued causal distribution, and u := S ∗ λ+D ∗ ϕ.
(a) The temporal support of the H1/2(∂BT )-valued distribution γTu

is contained in [T + δ,∞).

(b) Letting OT := Rd \BT−δ/2, the temporal support of the H1(OT )-
valued distribution u|OT is contained in [T + δ/2,∞).

Proof. This result is a consequence of some simple techniques related
to the Laplace transform. Firstly, if the Laplace transform F(s) of a
distribution f can be bounded as

(12) ‖F(s)‖ ≤ C exp(−cRe s)|s|μ for all s ∈ C with Re s > 0,

where c > 0 and μ ∈ R, then the support of f is contained in [c,∞).
Using estimates of the fundamental solution Ed as a function of s, it is
possible to prove a bound like (12) for S(s) (respectively, D(s)) as an
operator from H−1/2(Γ) (respectively, H1/2(Γ)) to H1/2(∂BT ) and to
H1(OT ).

Proposition 2.2. Let λ be an H−1/2(Γ)-valued causal distribution
and ϕ an H1/2(Γ)-valued causal distribution, and assume that both are
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Laplace transformable. Then u := S ∗ λ − D ∗ ϕ is the only causal
H1(Rd \ Γ)-valued distributional solution of the transmission problem

u′′ = Δu, [[γu]] = ϕ, [[∂νu]] = λ

that admits a Laplace transform.

Proof. For definitions and basic properties of the Laplace transform
of casual vector-valued distributions, we refer to [10]. We sketch
a proof for the case when data (λ and ϕ) are causal distributions
whose Laplace transform is defined in C+. The case when these
Laplace transforms are defined in any other half plane is identical.
If Λ(s) := L{λ} and Φ(s) := L{ϕ} are well defined for s ∈ C+, then
U(s) := L{u} = S(s)Λ(s)−D(s)Φ(s) solves

s2U(s) = ΔU(s) in Rd \ Γ
[[γU(s)]] = Φ(s),

[[∂νU(s)]] = Λ(s) for all s ∈ C+.

This is equivalent to the transmission problem for the causal wave
equation given in the statement of the theorem. To show uniqueness,
we only need to remark that any solution of

s2U(s) = ΔU(s) in Rd \ Γ
[[γU(s)]] = 0,

[[∂νU(s)]] = 0,

is a solution of s2U(s) = ΔU(s) in Rd. Therefore, multiplying this
equation by sU(s) and integrating by parts, it follows that∫

Rd

(
s |s|2|U(s)|2 + s|∇U(s)|2) = 0.

Taking the real part it follows that U(s) = 0 for all s, and hence u = 0.
(Note that this kind of arguments appears already in [2], albeit in a
slightly different language.)

3. Main results. Before stating the two main results of this paper,
we need to make precise statements on some constants related to the
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geometric setting and the Sobolev norms. The reference radius R > 0
will be chosen so that (10) holds.

Given an open set O, we will denote

‖u‖O :=

(∫
O
|u(x)|2dx

)1/2

,

‖u‖21,O :=
(
‖u‖2O + ‖∇u‖2O

)1/2

.

The first set of constants we need are the Poincaré-Friedrichs constants
on the balls BT := B(0;R+ T ) for T ≥ 0:

(13) ‖v‖BT ≤ CT ‖∇v‖BT , for all v ∈ H1
0 (BT ).

A simple scaling argument shows that CT = C0(1+T/R). The second
relevant constant is a continuity constant for the interior and exterior
trace operators. It will be jointly expressed for functions that are H1

on each side of Γ:

(14) ‖γ±u‖1/2,Γ ≤ CΓ‖u‖1,B0\Γ, for all u ∈ H1(B0 \ Γ).

Here ‖ · ‖1/2,Γ is a fixed determination of the H1/2(Γ)-norm (several
equivalent choices are available in the literature; see [1, 15]). The
third constant is related to a lifting of the trace operator. Since γ− :
H1(Ω−) → H1/2(Γ) is bounded and surjective, there exists a bounded
linear operator L− : H1/2(Γ) → H1(Ω−) such that γ−L−ϕ = ϕ for all
ϕ ∈ H1/2(Γ), i.e., L− is a bounded right-inverse of the interior trace.
We then denote CL := ‖L−‖. The use we will make of this operator
and its norm will be through L : H1/2(Γ) → H1(Rd \ Γ) given by

Lϕ :=

{
L−ϕ in Ω−,
0 in Ω+,

noting that

(15)
‖Lϕ‖1,Rd\Γ = ‖Lϕ‖1,Ω− ≤ CL‖ϕ‖1/2,Γ,

γ−Lϕ = ϕ, γ+Lϕ = 0.
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The final constant is related to the definition of the normal derivative.
Given u ∈ H1

Δ(B0 \ Γ), we can define ∂±ν u ∈ H−1/2(Γ) with Green’s
formula. Then, there is a constant Cν such that
(16)

‖∂±ν u‖−1/2,Γ ≤Cν

(
‖∇u‖2B0∩Ω±+‖Δu‖2B0∩Ω±

)1/2

for all u ∈ H1
Δ(B0\Γ).

The main theorems of this paper are given next. Given a Banach
space X and a positive integer k, we introduce

Wk
0 (R;X) := {ϕ ∈ Ck−1(R;X) : ϕ(k) ∈ L1

loc(R;X), suppϕ ⊆ [0,∞)}

where L1
loc(R;X) is the space of locally integrable functions with values

in X .

Theorem 3.1. Let λ ∈ W2
0 (R;H−1/2(Γ)) and let

B
−1/2
2 (λ, t) :=

∫ t

0

(
‖λ(τ)‖−1/2,Γ + ‖λ̈(τ)‖−1/2,Γ

)
dτ.

Then, for all t ≥ 0,

‖(S ∗ λ)(t)‖1,Rd ≤ CΓ

(
‖λ(t)‖−1/2,Γ +

√
1 + C2

t B
−1/2
2 (λ, t)

)
,

(17)

‖(V ∗ λ)(t)‖1/2,Γ ≤ C2
Γ

(
‖λ(t)‖−1/2,Γ +

√
1 + C2

t B
−1/2
2 (λ, t)

)
,

(18)

‖(Kt ∗ λ)(t)‖−1/2,Γ ≤
√
2CνCΓ

(
‖λ(t)‖−1/2,Γ +B

−1/2
2 (λ, t)

)
.

(19)

Theorem 3.2. Let

B
1/2
2 (ϕ, t) :=

∫ t

0

(
‖ϕ(τ)‖1/2,Γ + ‖ϕ̈(τ)‖1/2,Γ

)
dτ,

B
1/2
4 (ϕ, t) :=

∫ t

0

(
4‖ϕ(τ)‖1/2,Γ + 5‖ϕ̈(τ)‖1/2,Γ + ‖ϕ(4)(τ)‖1/2,Γ

)
dτ.
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Then, for all t ≥ 0 and ϕ ∈ W2
0 (R;H1/2(Γ)),

‖(D ∗ ϕ)(t)‖1,Rd\Γ ≤ CL

(
‖ϕ(t)‖1/2,Γ +

√
1 + C2

t B
1/2
2 (ϕ, t)

)
,

(20)

‖(K ∗ ϕ)(t)‖1/2,Γ ≤ CΓCL

(
‖ϕ(t)‖1/2,Γ +

√
1 + C2

t B
1/2
2 (ϕ, t)

)
.

(21)

Furthermore, for any ϕ ∈ W4
0 (R;H1/2(Γ)),

(22) ‖(W ∗ ϕ)(t)‖−1/2,Γ

≤
√
2CνCL

(
4‖ϕ(t)‖1/2,Γ + 2‖ϕ̈(t)‖1/2,Γ +B

1/2
4 (ϕ, t)

)
.

4. The single layer potential. Since the convolution operator
λ �→ S ∗ λ preserves causality, in order to obtain bounds at a given
value of the time variable t = T , the value of λ in (T,∞) is not relevant.
Therefore, we can assume without loss of generality that the growth of
λ allows it to have a Laplace transform. We can actually assume that
λ is compactly supported for the sake of the arguments that follow.

Introduction of a cut-off boundary. Let u := S ∗ λ. By
Proposition 2.2, u is a causal distribution with values inX := H1(Rd)∩
H1

Δ(R
d \ Γ). Moreover, it is the only (X-valued causal distributional

Laplace transformable) solution of

(23) u′′ = Δu and [[∂νu]] = λ,

with the differential equation taking place in the sense of distributions
with values in L2(Rd \ Γ) ≡ L2(Rd), while the transmission condition
is to be understood in the sense of H−1/2(Γ)-valued distributions. Now
let T > 0 be fixed, and let BT and δ be as in Section 2. We look for a
causal distribution with values in

XT := H1
0 (BT ) ∩H1

Δ(BT \ Γ)
such that

(24) u′′T = ΔuT and [[∂νuT ]] = λ.
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This differential equation is understandable in the sense of L2(BT )-
valued distributions. We will show that, for smooth data λ, this
problem has strong solutions, with the time derivatives understood in
the classical sense.

Proposition 4.1. As H1
Δ(BT \ Γ)-valued distributions, u = uT in

(−∞, T + δ).

Proof. Consider the H1
Δ(BT \ Γ)-valued distribution w := u − uT =

u|BT − uT . Then

w′′ = Δw, [[∂νw]] = 0, and γTw = γTu.

Since the support of γTu is contained in [T+δ,∞) (by Proposition 2.1),
so is the support of w, which proves the result.

Proposition 4.2. For λ ∈ W2
0 (R;H−1/2(Γ)), the unique solution of

(24) satisfies

(25) uT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);XT ),

the strong initial conditions uT (0) = u̇T (0) = 0 and the bounds for all
t ≥ 0

‖uT (t)‖1,BT ≤ CΓ

(
‖λ(t)‖−1/2,Γ +

√
1 + C2

T B
−1/2
2 (λ, t)

)
,

(26)

‖∇uT (t)‖BT ≤ CΓ

(
‖λ(t)‖−1/2,Γ +B

−1/2
2 (λ, t)

)
,

(27)

‖ΔuT (t)‖BT \Γ ≤ CΓ

(
‖λ(t)‖−1/2,Γ +B

−1/2
2 (λ, t)

)
.

(28)

Proof. Consider first the function u0 : [0,∞) → H1
0 (BT ) defined by

solving the steady-state problems

−Δu0(t) + u0(t) = 0 in BT \ Γ, [[∂νu0(t)]] = λ(t), γTu0(t) = 0,
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for t ≥ 0. The variational formulation of this family of boundary value
problems is[

u0(t) ∈ H1
0 (BT ),

(∇u0(t),∇v)BT + (u0(t), v)BT = 〈λ(t), γv〉Γ for all v ∈ H1
0 (BT ),

where 〈·, ·〉Γ is the H−1/2(Γ) ×H1/2(Γ) duality product. Therefore, a
simple argument yields

(29)
‖u0(t)‖1,BT ≤ CΓ‖λ(t)‖−1/2,Γ,

‖Δu0(t)‖BT \Γ ≤ CΓ‖λ(t)‖−1/2,Γ.

Note that u0(t) is the result of applying a bounded linear (time-
independent) map H−1/2(Γ) → XT to λ(t). Therefore, since λ is twice
continuously differentiable in [0,∞), it follows that
(30)
‖ü0(t)‖1,BT ≤ CΓ‖λ̈(t)‖−1/2,Γ, ‖Δü0(t)‖BT \Γ ≤ CΓ‖λ̈(t)‖−1/2,Γ.

We next consider the function v0 : [0,∞) → H2(BT ) ∩ H1
0 (BT ) that

solves the evolution problem

(31) v̈0(t) = Δv0(t) + u0(t)− ü0(t) t ≥ 0, v0(0) = v̇0(0) = 0,

i.e., the hypotheses of Proposition 8.1 hold with f = u0−ü0. Therefore,
using (29) (30), it follows that

(32)
‖Δv0(t)‖BT ≤

∫ t

0

‖∇u0(τ)−∇ü0(τ)‖BT dτ

≤ CΓB
−1/2
2 (λ, t),

as well as

(33)
‖v0(t)‖BT ≤ CTCΓB

−1/2
2 (λ, t),

‖∇v0(t)‖BT ≤ CΓB
−1/2
2 (λ, t).

If we now define uT := u0 + v0, then the regularity requirement (25) is
satisfied and the three bounds in the statement of the proposition are
direct consequences of (29), (32) and (33). Moreover,

üT (t) = ΔuT (t), [[∂νuT (t)]] = λ(t), γTuT (t) = 0 ∀t ≥ 0.
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Note also that uT (0) = u0(0) = 0 and u̇T (0) = u̇0(0) = 0, since λ(0) =
0 and λ̇(0) = 0 (λ : R → H−1/2(Γ) is assumed to be C2 and causal).
Therefore, considering the extension operator (1), it follows that EuT is
an XT -valued causal distribution, (EuT )

′′ = EüT = EΔuT = ΔEuT
and [[∂νEuT ]] = E[[∂νuT ]] = Eλ|(0,∞) = λ. Therefore, EuT satisfies
(24), and the proof is finished.

Proof of Theorem 3.1. By Proposition 2.1, the distribution u|Rd\BT−δ/2

vanishes in the time interval (−∞, T + δ/2). Therefore, by Propo-
sition 4.1, uT (t) = 0 in the annular domain BT \ BT−δ/2 for all

t ≤ T + δ/2. This makes the extension by zero of uT (t) to Rd \ BT

an element of H1
Δ(R

d \ Γ) for all t ≤ T + δ/2. (Note that the overlap-
ping annular region is needed to ensure that the Laplace operator does
not generate a singular distribution on ∂BT .) Then, the argument of
Proposition 4.1 can be used to show that the distribution u can be iden-
tified with this extension in the time interval (−∞, T+δ/2). Therefore,
identifying u(T ) = uT (T ), the inequalities of Proposition 4.2 yield

‖(S ∗ λ)(T )‖1,Rd ≤ CΓ

(
‖λ(T )‖−1/2,Γ +

√
1 + C2

T B
−1/2
2 (λ, T )

)
,

(34)

‖∇(S ∗ λ)(T )‖Rd ≤ CΓ

(
‖λ(T )‖−1/2,Γ +B

−1/2
2 (λ, T )

)
,

(35)

‖Δ(S ∗ λ)(T )‖Rd\Γ ≤ CΓ

(
‖λ(T )‖−1/2,Γ +B

−1/2
2 (λ, T )

)
.

(36)

We can now substitute all occurrences of T by t, since T was arbitrary.
The result is now almost straightforward. First of all, (34) is just (17).
Also, by the trace inequality (14) and the fact that V ∗ λ = γ±(S ∗ λ),
(18) is a direct consequence of (17). Finally, the bound for the normal
derivative (16), the fact that Kt ∗ λ = {{∂ν(S ∗ λ)}} and inequalities
(35) (36) prove (19).

5. The double layer potential. We start by introducing a cut-off
boundary ∂BT as in Section 4 (for arbitrary T > 0). We are going to
compare u := D ∗ ϕ with the causal distribution uT with values in

YT := {v ∈ H1
Δ(BT \ Γ) : γT v = 0},
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such that

(37) u′′T = ΔuT , [[γuT ]] = −ϕ and [[∂νuT ]] = 0.

The same argument as the one of Proposition 4.1 shows that, as
H1

Δ(BT \ Γ)-valued distributions u = uT in (−∞, T + δ), where δ is
defined in (11). Smoothness of the solution of (37) and bounds for it in
different norms will be proved in two steps. Note that, from the point
of view of regularity, Proposition 5.2 improves the initial estimate of
Proposition 5.1, but that more regularity of ϕ is used in the process.

Proposition 5.1. For ϕ ∈ W2
0 (R;H1/2(Γ)), the unique solution of

(37) satisfies

(38) uT ∈ C1([0,∞);L2(BT )) ∩ C([0,∞);H1(BT \ Γ)),

the strong initial conditions uT (0) = u̇T (0) = 0 and the bounds for all
t ≥ 0

‖uT (t)‖1,BT \Γ ≤ CL

(
‖ϕ(t)‖1/2,Γ +

√
1 + C2

T B
1/2
2 (ϕ, t)

)
,

(39)

‖∇uT (t)‖BT \Γ ≤ CL

(
‖ϕ(t)‖1/2,Γ +B

1/2
2 (ϕ, t)

)
.

(40)

Proof. First let u0 : [0,∞) → H1(BT \ Γ) be given by solving the
steady-state problems

−Δu0(t) + u0(t) = 0 in BT \ Γ, [[γu0(t)]] = −ϕ(t),(41a)

γTu0(t) = 0, [[∂νu0(t)]] = 0,(41b)

for each t ≥ 0. The variational formulation of (41) is

(42)

⎡⎣u0(t) ∈ H1(BT \ Γ),
[[γu0(t)]] = −ϕ(t), γTu0(t) = 0,
(∇u0(t),∇v)BT \Γ + (u0(t), v)BT = 0 for all v ∈ H1

0 (BT ).



PROPERTIES OF LAYER POTENTIALS 271

Using the lifting operator (15), we can choose the test v = u0(t) +
Lϕ(t) ∈ H1

0 (BT ) in (42) and prove the estimate

(43) ‖u0(t)‖1,BT \Γ ≤ ‖Lϕ(t)‖1,BT \Γ ≤ CL‖ϕ(t)‖1/2,Γ.

Since u0(t) is the result of applying a linear bounded (time-independent)
map H1/2(Γ) → YT to ϕ(t), it follows that

(44) ‖ü0(t)‖1,BT \Γ ≤ CL‖ϕ̈(t)‖1/2,Γ.

We then consider v0 : [0,∞) → H1
0 (BT ) to be a solution of

(45) v̈0(t) = Δv0(t) + u0(t)− ü0(t) t ≥ 0, v0(0) = v̇0(0) = 0,

with the equation taking place in H−1(BT ) (that is, v0 is a weak
solution in the terminology of Section 8). By Proposition 8.2 (the
right-hand side f := u0 − ü0 : [0,∞) → L2(BT ) is continuous) we can
bound

(46) ‖∇v0(t)‖BT ≤
∫ t

0

‖u0(τ) − ü0(τ)‖BT dτ ≤ CLB
1/2
2 (ϕ, t),

where we have applied (43) (44).

Let us then define uT := u0 + v0. Since ϕ ∈ C2([0,∞);H1/2(Γ)), it
follows that u0 ∈ C2([0,∞);H1(BT \Γ)) and v0 ∈ C1([0,∞);L2(BT ))∩
C([0,∞);H1

0 (BT )) by Proposition 8.2. Therefore, uT satisfies (38).
Since ϕ(0) = ϕ̇(0) = 0, it follows that uT (0) = u̇T (0) = 0. Considering
(41) and (45) (recall that v0 takes values in H1

0 (BT )), it follows that

üT (t) = ΔuT (t), [[γuT (t)]] = −ϕ(t), [[∂νuT (t)]] = 0,

γTuT = 0, for all t ≥ 0.

Noting that ‖v0(t)‖BT ≤ CT ‖∇v0(t)‖BT , and using (43), (44) and (46),
it follows that uT satisfies bounds (39) and (40).

The delicate point of this proof lies in showing that uT can be
identified with the YT -valued distributional solution of (37), since v0 is

not a continuous YT -valued function. However, w0(t) :=
∫ t

0 v0(τ) dτ is a
continuous function with values in H2(BT )∩H1

0 (BT ) (see Proposition
8.2) and therefore in YT . We can then define ûT := Eu0 + (Ew0)

′,
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which is a causal YT -valued distribution for which we can easily prove
that

[[γûT ]] = E[[γu0]] + (E[[γw0]])
′ = −Eϕ|(0,∞) = −ϕ,

and similarly [[∂ν ûT ]] = 0. Since w0 ∈ C2([0,∞);L2(BT ))∩C([0,∞);YT )
and w0(0) = ẇ0(0) = 0, it follows that (Ew0)

′′ = Eẅ0 = EΔw0 =
ΔEw0 and therefore û′′T = (Eu0)

′′ + (EΔw0)
′ = ΔEu0 + Δ(Ew0)

′ =
ΔûT . Thus, ûT satisfies (37). Finally, since w0 ∈ C1([0,∞);H1

0 (BT ))
and w0(0) = 0, it is clear that, as an H1

0 (BT )-valued distribution
(Ew0)

′ = Eẇ0 = Ev0 and thus, as an H1(BT \ Γ)-valued distribution
ûT = EuT and the bounds (39) and (40) are satisfied by the solution
of (37).

Proposition 5.2. For ϕ ∈ W4
0 (R;H1/2(Γ)), the unique solution of

(37) satisfies

(47) uT ∈ C2([0,∞);L2(BT ))

∩ C1([0,∞);H1(BT \ Γ)) ∩ C([0,∞);YT )),

and the bounds for all t ≥ 0,

(48) ‖ΔuT (t)‖BT \Γ ≤ CL

(
4‖ϕ(t)‖1/2,Γ + 2‖ϕ̈(t)‖1/2,Γ +B

1/2
4 (ϕ, t)

)
.

Proof. Now consider the solution of the problems

−Δu1(t)+u1(t) = L(ϕ̈(t)−ϕ(t)) in BT \Γ [[γu1(t)]] = −ϕ(t),(49a)

γTu1(t) = 0, [[∂νu1(t)]] = 0,(49b)

for each t ≥ 0, where L is the lifting operator of (15). Using the
variational formulation of (49) and the fact that u1(t) + Lϕ(t) ∈
H1

0 (BT ), it follows that

‖u1(t) + Lϕ(t)‖1,BT \Γ ≤ ‖Lϕ(t)‖1,BT \Γ + ‖L(ϕ̈(t)− ϕ(t))‖BT

≤ CL(2‖ϕ(t)‖1/2,Γ + ‖ϕ̈(t)‖1/2,Γ),
and therefore

(50) ‖u1(t)‖1,BT \Γ ≤ CL(3‖ϕ(t)‖1/2,Γ + ‖ϕ̈(t)‖1/2,Γ).
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Using (49) and (50), it also follows that

(51)
‖Δu1(t)‖BT ≤ ‖u1(t)‖BT + ‖L(ϕ̈(t)− ϕ(t))‖BT

≤ CL(4‖ϕ(t)‖1/2,Γ + 2‖ϕ̈(t)‖1/2,Γ).

Differentiating (50) twice with respect to t, it follows that

(52) ‖ü1(t)‖1,BT \Γ ≤ CL(3‖ϕ̈(t)‖1/2,Γ + ‖ϕ(4)(t)‖1/2,Γ).

Consider next the evolution equation that looks for v1 : [0,∞) → YT
such that

(53) v̈1 = Δv1(t) + f(t) for all t ≥ 0, v1(0) = v̇1(0) = 0,

where

f(t) := u1(t)− ü1(t) + L(ϕ(t)− ϕ̈(t)) = Δu1(t)− ü1(t).

Note that [[γf(t)]] = 0 for all t, and that f : [0,∞) → H1
0 (BT ) is

continuous. Moreover, by (50) and (52), we can bound

(54)
‖∇f(t)‖BT ≤ ‖f(t)‖1,BT

≤ CL

(
4‖ϕ(t)‖1/2,Γ + 5‖ϕ̈(t)‖1/2,Γ + ‖ϕ(4)(t)‖1/2,Γ

)
.

By Proposition 8.1, problem (53) has a unique (strong) solution, and
we can bound

(55) ‖Δv1(t)‖BT ≤
∫ t

0

‖∇f(τ)‖BT dτ ≤ CLB4(ϕ, t).

If we finally define uT := u1+ v1, the smoothness of u1 : [0,∞) → YT
(directly inherited from that of ϕ) and the regularity of v1 that is
derived from Proposition 8.1 prove that (47) holds. The bound (48) is
a direct consequence of (51) and (53). The fact that the extension EuT
is the YT -valued causal distributional solution of (37) can be proved
with the same kind of arguments that were used at the end of the
proof of Proposition 4.2.
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Proof of Theorem 3.2. With exactly the same arguments that allowed
us to prove (34), (35) and (36) as a consequence of Proposition 4.2, we
can prove that, for all t ≥ 0,

‖(D ∗ ϕ)(t)‖1,Rd\Γ ≤ CL

(
‖ϕ(t)‖1/2,Γ +

√
1 + C2

t B
1/2
2 (ϕ, t)

)
,

(56)

‖∇(D ∗ ϕ)(t)‖Rd\Γ ≤ CL

(
‖ϕ(t)‖1/2,Γ +B

1/2
2 (ϕ, t)

)
,

(57)

‖Δ(D ∗ ϕ)(t)‖Rd\Γ ≤ CL

(
4‖ϕ(t)‖1/2,Γ + 2‖ϕ̈(t)‖1/2,Γ +B

1/2
4 (ϕ, t)

)
,

(58)

as a consequence of Propositions 5.1 and 5.2. The bounds of Theo-
rem 3.2 are now straightforward. Inequality (20) is just (56), while
the fact that K ∗ ϕ = {{γ(D ∗ ϕ)}} and the trace inequality (14) prove
(20). Finally, the bound for the normal derivative (16), the definition
of W ∗ ϕ = −∂±ν (D ∗ ϕ) and inequalities (57), (58) prove (22).

6. Exterior Steklov-Poincaré operators. In this section we
include bounds on the exterior Dirichlet-to-Neumann and Neumann-
to-Dirichlet operators that can be obtained with the same techniques
as in the previous sections. We give some details for the easier case
(the Neumann-to-Dirichlet operator, whose treatment runs in parallel
to that of the single layer retarded potential) in order to emphasize the
need of dealing with some slightly different evolution problems as part
of the analysis process.

Let us consider the bounded open set B+
T := BT ∩Ω+ and the spaces

VT := {u ∈ H1(B+
T ) : γTu = 0},

(59)

DT := {u ∈ VT : Δu ∈ L2(B+
T ), ∂+ν u = 0}

(60)

= {u ∈ VT ∩H1
Δ(B

+
T ) : (∇u,∇v)Ω+ + (u, v)Ω+ = 0

for all v ∈ VT }.
We can then consider the associated Poincaré-Friedrichs inequality

(61) ‖u‖B+
T
≤ ET ‖∇u‖B+

T
for all u ∈ VT .
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Recalling that BT is a ball with radius R + T , it is possible to take
ET ≤ 2(R + T ) (see [7, Chapter II, Section 1]). Since the exterior
trace operator γ+ : V0 → H1/2(Γ) is surjective, it has a bounded right-

inverse. By extending this right-inverse by zero to Ω+ \ B+
0 , we can

construct L+ : H1/2(Γ) → H1(Ω+) satisfying

(62)
‖L+ϕ‖1,Ω+ = ‖L+ϕ‖1,B+

T
≤ C+

L ‖ϕ‖1/2,Γ,
γ+L+ϕ = ϕ for all ϕ ∈ H1/2(Γ).

Note that, in particular, γTL
+ϕ = 0 for all T ≥ 0 and all ϕ.

Theorem 6.1. For λ ∈ W2
0 (R;H−1/2(Γ)), the unique causal

H1
Δ(Ω+)-valued Laplace transformable distribution such that

(63) u′′ = Δu, ∂+ν u = λ,

satisfies the bounds
(64)

‖u(t)‖1,Ω+ ≤ CΓ

(
‖λ(t)‖−1/2,Γ +

√
1 + E2

t B
−1/2
2 (λ, t)

)
for all t ≥ 0.

Finally, the associated Neumann-to-Dirichlet operator NtD (λ) := γ+u
(where u is the solution of (63)) satisfies the bounds

(65) ‖NtD (λ)(t)‖1/2,Γ
≤ C2

Γ

(
‖λ(t)‖−1/2,Γ +

√
1 + E2

t B
−1/2
2 (λ, t)

)
for all t ≥ 0.

Proof. The proof is very similar to the one of Theorem 3.1. By
solving steady state problems, we first construct u0 : [0,∞) → H1(B+

T )
satisfying

(66)
−Δu0(t) + u0(t) = 0 in B+

T ,

∂+ν u0(t) = λ(t), γTu0(t) = 0.

A simple argument allows us to bound
(67)
‖u0(t)‖1,B+

T
≤ CΓ‖λ(t)‖−1/2,Γ and ‖ü0(t)‖1,B+

T
≤ CΓ‖λ̈(t)‖−1/2,Γ.
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This function feeds the evolution equation looking for v0 : [0,∞) → DT

that satisfies

(68) v̈0(t) = Δv0(t) + u0(t)− ü0(t), t ≥ 0, v0(t) = v̇0(t) = 0.

We now apply the general result on the wave equation with mixed
boundary conditions (Proposition 8.3) that guarantees the existence of
a strong solution of (68) satisfying the bounds
(69)

‖v0(t)‖B+
T
≤ ETCΓB

−1/2
2 (λ, t), ‖∇v0(t)‖B+

T
≤ CΓB

−1/2
2 (λ, t).

Adding the solutions of (66) and (68), we obtain a function uT :=
u0+v0 : [0,∞) → H1

Δ(B
+
T )∩VT satisfying ü(t) = Δu(t), ∂νuT (t) = λ(t)

and vanishing initial conditions at t = 0. The extension EuT is then
an (H1

Δ(B
+
T ) ∩ VT )-valued causal distributional solution of (63) (with

the Laplace operator acting only in the bounded domain B+
T ). The

arguments of Proposition 4.1 and at the beginning of the proof of
Theorem 3.1 can be applied verbatim in order to identify the function
that extends uT (t) by zero to the exterior of BT with the H1

Δ(Ω+)-
valued distributional solution of (63) for t ≤ T + δ/2. Finally, the
bound (64) for t = T is a straightforward consequence of (67), (69) and
the identification of u(T ) = uT (T ), while (65) follows from (64) and
the trace inequality (14).

Theorem 6.2. For ϕ ∈ W4
0 (R;H1/2(Γ)), the unique causal

H1
Δ(Ω+)-valued Laplace transformable distribution such that

(70) u′′ = Δu, γ+u = ϕ,

satisfies the bounds
(71)

‖u(t)‖1,Ω+ ≤ C+
L

(
‖ϕ(t)‖1/2,Γ +

√
1 + E2

t B
1/2
2 (ϕ, t)

)
for all t ≥ 0.

Finally the associated Dirichlet-to-Neumann operator DtN (ϕ) := ∂+ν u
(where u is the solution of (70)) satisfies the bounds

(72) ‖DtN (ϕ)(t)‖−1/2,Γ

≤
√
2CνC

+
L

(
4‖ϕ(t)‖1/2,Γ + 2‖ϕ̈(t)‖1/2,Γ +B

1/2
4 (ϕ, t)

)
.
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Proof. This result can be proved like Theorem 3.2 by resorting to a
double decomposition of a localized version of problem (70) (obtained
by adding a boundary condition γTu = 0) as a sum of an adequate
steady-state lifting of the Dirichlet data plus the solution of an evolution
problem. The proof is almost identical to that of Theorem 3.2: the
main difference is in the evolution problem, that now contains Dirichlet
boundary conditions on Γ as well as on ∂BT (see Remark 8.1).

7. Comparison with Laplace domain bounds. The original
analysis for the layer operators and associated integral equations, given
in [2, 3], was entirely developed in the resolvent set (that is, by taking
the Laplace transform). Those results can be used to derive uniform
bounds similar to those of Theorems 3.1 and 3.2. We next show how to
obtain these estimates and show that our technique produces stronger
estimates, in terms of requiring less regularity of the densities and
having constants that increase less fast with respect to t.

Estimates in the Laplace domain can be obtained using the following
all purpose theorem, which is a refinement of Lemma 2.2 in [14].

Theorem 7.1. Let f be an L(X,Y )-valued causal distribution whose
Laplace transform F(s) exists for all s ∈ C+ := {s ∈ C : Re s > 0} and
satisfies

(73) ‖F(s)‖L(X,Y ) ≤ CF(Re s)|s|μ for all s ∈ C+,

where μ ≥ 0 and CF : (0,∞) → (0,∞) is a non-increasing function.
Let k := �μ+2�. Then, for all g ∈ Wk

0 (R;X), the Y -valued distribution
f ∗ g is a causal continuous function such that

‖(f ∗ g)(t)‖Y ≤ Cμ,k(t)CF(1/t)

∫ t

0

‖(Pkg)(τ)‖Xdτ for all t ≥ 0,

where

Cμ,k(t) ≤ αμ,k
tk−μ−1

(1 + t)k−μ−1

and

(Pkg)(t) = e−t
(
e·g

)(k)
(t) =

k∑
�=0

(
k



)
g(�)(t).
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Proof. Using the formula for the inversion of the Laplace transform
on the contour Re s = σ and condition (73), we can bound

(74)

‖(f ∗ g)(t)‖Y ≤ eσt

2π

∫ ∞

−∞
‖F(σ + ıω)G(σ + ıω)‖Y dω

≤ eσt

π
CF(σ) max

Re s=σ
‖(1 + s)kG(s)‖X

×
∫ ∞

0

|σ + ıω|μ
|1 + σ + ıω|k dω︸ ︷︷ ︸

=:C(σ)

.

Noticing that (1 + s)kG(s) = L{Pkg}, and taking σ = 1/t in (74), it
follows that

(75) ‖(f ∗ g)(t)‖Y ≤ C(1/t)

π
CF(1/t)

∫ ∞

0

‖(Pkg)(t)‖Xdτ.

Note that we can bound

C(σ) :=

∫ ∞

0

|σ + ıω|μ
|1 + σ + ıω|k dω

≤
∫ σ

0

(2σ)μ

(1 + σ)k
dω +

∫ ∞

σ

(2ω)μ

ωk
dω

= (2σ)μ(1 + σ)1−k +
2μ

k − μ− 1
σ1−k+μ

≤ 2μ
(
1 +

1

k − μ− 1

)
(1 + σ)1−k+μ.

Finally, we need to use a causality argument to reduce the integral in
the right hand side of (75) to the interval (0, t). To do this, we fix t
and define

p(τ) :=

{
g(τ) 0 ≤ τ ≤ t,

e−τ
∑k−1

�=0 (τ − t)�/
!(e·g)(�)(t) t ≤ τ <∞.

It is clear that p ∈ Wk
0 (R;X), that supp (p−g) ⊂ [t,∞) (and therefore

(f ∗g)(t) = (f ∗p)(t) by causality of the convolution) and that Pkp = 0
in (t,∞). This finishes the proof.
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TABLE 1. Bounds obtained using Theorem 7.1 and known estimates in the Laplace

domain. The first line acts as a prototype and must be read as ‖F(s)‖L(X,Y ) ≤
C × CF(σ)|s|μ and ‖(f ∗ η)(t)‖Y ≤ C × E(t)×

∫ t

0
‖(Pkη)(τ)‖Xdτ . Here σ := Re s

and σ := min{1, σ}. The last two columns contain information given by Theorems

3.1, 3.2, 6.1 and 6.2, indicating the highest order n of differentiation of η involved

in the bounds for f ∗ η and the growth of the bound as a function of t for large t.

F X → Y CF(σ)|s|μ E(t) k n O(t)

S H−1/2(Γ) → H1(Rd)
|s|
σσ2 tmax{1, t2} 3 2 O(t)

V H−1/2(Γ) → H1/2(Γ)
|s|
σσ2 tmax{1, t2} 3 2 O(t)

Kt H−1/2(Γ) → H−1/2(Γ)
|s|3/2
σσ3/2

√
t

1+t
tmax{1, t3/2} 3 2 O(1)

D H1/2(Γ) → H1(Rd \ Γ)
|s|3/2
σσ3/2

√
t

1+t
tmax{1, t3/2} 3 2 O(t)

K H1/2(Γ) → H1/2(Γ)
|s|3/2
σσ3/2

√
t

1+t
tmax{1, t3/2} 3 2 O(t)

W H1/2(Γ) → H−1/2(Γ)
|s|2
σσ

tmax{1, t} 4 4 O(1)

NtD H−1/2(Γ) → H1/2(Γ)
|s|
σσ2 tmax{1, t2} 3 2 O(t)

DtN H1/2(Γ) → H−1/2(Γ)
|s|2
σσ

tmax{1, t} 4 4 O(1)

In Table 1 we compare regularity and growth of the bounds between
what Theorems 3.1 and 3.2 prove and what can be obtained by a
systematic analysis in the Laplace domain. The bounds in the Laplace
domain are explicitly or implicitly given in [2, 3]. They are also
collected in [13, Appendix 2]. We also include the comparison of what
Theorems 6.1 and 6.2 assert about Steklov-Poincaré operators with
similar results obtained through the Laplace domain analysis.

8. Basic results on some evolution equations.

8.1. Homogeneous Dirichlet conditions. In this section we
gather some results concerning solutions of the non-homogeneous wave
equation with homogeneous initial conditions and homogeneous Dirich-
let boundary conditions on the ball BT introduced in Section 2. We
recall that CT is the Poincaré-Friedrichs constant in BT (see (13)). The
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problem under consideration is:

ü(t) = Δu(t) + f(t) t ≥ 0,(76a)

γTu(t) = 0 t ≥ 0,(76b)

u(0) = u̇(0) = 0(76c)

where, for all t, f(t) is a function defined in BT . We will deal with
two different types of solutions of this problem. A strong solution is a
function such that

(77)
u ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1

0 (BT ))

∩ C([0,∞);H2(BT )),

with the wave equation satisfied in L2(BT ) for all t. We will refer to a
weak solution as a function such that

(78)
u ∈ C2([0,∞);H−1(BT )) ∩ C1([0,∞);L2(BT ))

∩ C([0,∞);H1
0 (BT ))

and such that the wave equation is satisfied inH−1(BT ) (the dual space
of H1

0 (BT )) for all t. Note that the concept of weak solution relaxes
both time and space regularity requirements and does not exactly
coincide with the concept of mild solution given in [17], for example.

Proposition 8.1. Let f : [0,∞) → H1
0 (BT ) be continuous. Then,

problem (76) has a unique strong solution satisfying the bounds for all
t ≥ 0

‖u(t)‖BT ≤ CT

∫ t

0

‖f(τ)‖BT dτ,(79)

‖∇u(t)‖BT ≤
∫ t

0

‖f(τ)‖BT dτ,(80)

‖Δu(t)‖BT ≤
∫ t

0

‖∇f(τ)‖BT dτ.(81)

Proposition 8.2. Let f : [0,∞) → L2(BT ) be continuous. Then
problem (76) has a unique weak solution, and the bound (80) is still
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valid. Finally, the function w(t) :=
∫ t

0
u(τ) dτ is continuous from

[0,∞) to H2(BT ).

Remark 8.1. Propositions 8.1 and 8.2 still hold for the Dirichlet
problem in the domain B+

T := BT∩Ω+ with the following modifications:
the space H2(BT ) has to be substituted by H1

Δ(B
+
T ), and the constant

CT in (79) has to be substituted by the constant ET of the Poincaré-
Friedrichs inequality (61).

8.2. Mixed conditions. Let us now consider the setB+
T := BT∩Ω+

and the evolution problem

ü(t) = Δu(t) + f(t) t ≥ 0,(82a)

γTu(t) = 0 t ≥ 0,(82b)

∂+ν u(t) = 0 t ≥ 0,(82c)

u(0) = u̇(0) = 0.(82d)

We thus consider the spaces VT and DT given in (59) and (60).

Proposition 8.3. For f ∈ C([0,∞);VT ), the initial value problem
(82) has a unique solution u ∈ C2([0,∞);L2(Ω)) ∩ C1([0,∞);VT ) ∩
C([0,∞);DT ), satisfying

‖u(t)‖B+
T
≤ CT

∫ t

0

‖f(τ)‖B+
T
dτ,(83)

‖∇u(t)‖B+
T
≤

∫ t

0

‖f(τ)‖B+
T
dτ,(84)

‖Δu(t)‖B+
T
≤

∫ t

0

‖∇f(τ)‖B+
T
dτ.(85)

If f ∈ C([0,∞);L2(Ω)), there exists a unique weak solution of (82) (that
is, with the equation satisfied in V ′

T )

u ∈ C2([0,∞);V ′
T ) ∩ C1([0,∞);L2(Ω)) ∩ C([0,∞);VT ),

satisfying (84) and such that w(t) :=
∫ t

0
u(τ) dτ is in C([0,∞);DT ).
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APPENDIX

A. Wave equations by separation of variables. In this section
we are going to give a direct proof of a generalization Propositions
8.1 and 8.2. This proof will be based upon direct arguments with
generalized Fourier series and will allow us to obtain the needed uniform
estimates of non-homogeneous evolution equations of the second order
in terms of L1 norms of the data. The Hilbert structure of the
functional spaces is going to be used in depth, allowing us to obtain
strong results that cannot be easily derived with a direct application of
the best known results on the theory of semigroups of operators. This
is not to say that these results do no exist, but we think it may be of
interest (especially within the boundary integral community) to see a
direct proof of these theorems based on functional analysis tools that
are common for researchers in integral equations.

A.1. Three lemmas about series. In all the following results, X
is a separable Hilbert space and I := [a, b] is a compact interval.

Lemma A.1. Assume that cn : I → X are continuous,

(86) (cn(t), cm(t))X = 0 for all n �= m, for all t ∈ I,

and

‖cn(t)‖2X ≤Mn for all t ∈ I, for all n with

∞∑
n=1

Mn <∞.

Then the series

(87) c(t) :=

∞∑
n=1

cn(t)

converges uniformly in t to a continuous function.

Proof. Let sN :=
∑N

n=1 cn ∈ C(I;X). For all M > N ,

‖sM (t)− sN (t)‖2X =

M∑
n=N+1

‖cn(t)‖2X ≤
M∑

n=N+1

Mn,
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which proves that sN (t) converges uniformly. Continuity of the limit
is a direct consequence of the uniform convergence of the series.

Lemma A.2. Assume that cn : I → X are continuously differen-
tiable,

(88) (cn(t), cm(τ))X = 0 for all n �= m, for all t, τ ∈ I,

and
‖cn(t)‖2X + ‖ċn(t)‖2X ≤Mn for all t ∈ I,

for all n with

∞∑
n=1

Mn <∞.

Then the uniformly convergent series (87) defines a C1(I;X) function,
and it can be differentiated term by term.

Proof. Hypothesis (88) implies (86) as well as

(ċn(t), ċm(t))X = 0 for all n �= m, for all t ∈ I.

If sN :=
∑N

n=1 cn ∈ C1(I;X), then

‖sM (t)−sN(t)‖2X+ ‖ṡM (t)− ṡN(t)‖2X =
∑

m=N+1

‖cn(t)‖2X

+ ‖ċn(t)‖X2 ≤
M∑

n=N+1

Mn,

and therefore sN is Cauchy in C1(I;X) and thus convergent. The fact
that the derivatives of the series converge to the series of the derivatives
is part of what convergence in C1(I;X) means.

Lemma A.3. Let f : I → X be a continuous function, and let {φn}
be a Hilbert basis of X. Then

f(t) =

∞∑
n=1

(f(t), φn)Xφn

uniformly in t ∈ I.
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Proof. Note first that, for fixed t, f(t) ∈ X can be expanded in
the Hilbert basis, so convergence of the series is easy to prove. Next,
consider the square of the norms of the Nth partial sums

aN(t) :=

∥∥∥∥ N∑
n=1

(f(t), φn)Xφn

∥∥∥∥2
X

=

N∑
n=1

|(f(t), φn)X |2,

which are continuous functions of t. The pointwise limit is ‖f(t)‖2X ,
which is also a continuous function of t. Since the sequence aN is
increasing, by Dini’s theorem, convergence aN → ‖f(·)‖2X is uniform.
Finally

∥∥∥∥f(t)− N∑
n=1

(f(t), φn)Xφn

∥∥∥∥2
X

=

∞∑
n=N+1

|(f(t), φn)X |2

= ‖f(t)‖2X − aN (t),

which proves the uniform convergence of the series.

A.2. The Dirichlet spectral series of the Laplace operator.
Let Ω be a bounded Lipschitz domain, and consider the sequence of
Dirichlet eigenvalues and eigenfunctions of the Laplace operator:

φn ∈ H1
0 (Ω), −Δφn = λnφn.

The sequence is taken with non-decreasing values of λn and, assuming
(φn, φm)Ω = δnm for all m,n, i.e., L2(Ω)-orthonormality of eigenfunc-
tions. Thus, see for instance, [15, Theorem 2.37], {φn} is a Hilbert
basis of L2(Ω) and, consequently, for all u ∈ L2(Ω)

‖u‖2Ω =

∞∑
n=1

|(u, φn)Ω|2(89)

and

u =
∞∑

n=1

(u, φn)Ωφn,(90)
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with convergence in L2(Ω). Using the orthogonality (∇φn,∇φm)Ω =
δnmλn, we can prove that

H1
0 (Ω) =

{
u ∈ L2(Ω) :

∞∑
n=1

λn|(u, φn)Ω|2 <∞
}

and

(91) ‖∇u‖2Ω =

∞∑
n=1

λn|(u, φn)Ω|2 for all u ∈ H1
0 (Ω).

This expression gives a direct estimate of the corresponding Poincaré-
Friedrichs inequality as

‖u‖Ω ≤ 1√
λ1

‖∇u‖Ω =: C◦‖∇u‖Ω for all u ∈ H1
0 (Ω).

Moreover, if u ∈ H1
0 (Ω), the series representation (90) converges in

H1
0 (Ω).

The associated Green operator is the operator G : L2(Ω) → D(Δ)
given by

u := Gf solution of u ∈ H1
0 (Ω), −Δu = f in Ω.

Here D(Δ) := {u ∈ H1
0 (Ω) : Δu ∈ L2(Ω)}. Note that, for the case of a

smooth domain, D(Δ) = H1
0 (Ω)∩H2(Ω), although this fact will not be

used in the sequel. The space D(Δ) is endowed with the norm ‖Δ · ‖Ω.
The series representation of G is given by the expression

Gf =

∞∑
n=1

λ−1
n (f, φn)Ωφn

(with convergence in L2(Ω)). Picard’s criterion (see for instance [11,
Theorem 15.18]) can then be used to show that G is surjective and

D(Δ) =
{
u ∈ L2(Ω) :

∞∑
n=1

λ2n|(u, φn)Ω|2 <∞
}
.
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Two more series representations are then directly available, one for the
Laplacian

−Δu =

∞∑
n=1

λn(u, φn)Ωφn for all u ∈ D(Δ),

(with convergence in L2(Ω)) and another one for its norm

(92) ‖Δu‖2Ω =

∞∑
n=1

λ2n|(u, φn)Ω|2 for all u ∈ D(Δ).

A.3. Strong solutions of the wave equation. We start the
section with a reminder of one of the possible versions of Duhamel’s
principle that will be useful in the sequel. Its proof is straightforward.

Lemma A.4. Let g : [0,∞) → R be a continuous function, ω > 0,
and define

α(t) :=

∫ t

0

ω−1 sin(ω(t− τ))g(τ) dτ.

Then α ∈ C2([0,∞)), α(0) = α̇(0) = 0,

α̇(t) =

∫ t

0

cos(ω(t− τ))g(τ) dτ

and α̈(t) + ω2α(t) = g(t) for all t ≥ 0.

For notational convenience, we will write ξn :=
√
λn.

Proposition A.5. Let f : [0,∞) → H1
0 (Ω) be a continuous function,

and consider the sequence

un(t) :=

(∫ t

0

ξ−1
n sin

(
ξn(t− τ)

)
(f(τ), φn)Ω dτ

)
φn, n ≥ 1.

Then, the function

(93) u(t) :=
∞∑
n=1

un(t)
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satisfies

(94) u ∈ C2([0,∞);L2(Ω)) ∩ C1([0,∞);H1
0 (Ω)) ∩ C([0,∞);D(Δ)).

Moreover, u is the unique strong solution of the following evolution
equation:

(95) ü(t) = Δu(t) + f(t) for all t ≥ 0, u(0) = u̇(0) = 0.

Proof. As a direct consequence of Lemma A.4, it follows that
un ∈ C2([0,∞);X), where X is any of L2(Ω), H1

0 (Ω) or D(Δ). Also,
for all t ≥ 0,

u̇n(t) =

(∫ t

0

cos
(
ξn(t− τ)

)
(f(τ), φn)Ω dτ

)
φn,

ün(t) = (f(t), φn)Ωφn − λnun(t) = (f(t), φn)Ωφn +Δun(t),

and

(96)
(un(t), um(τ))Ω = (∇un(t),∇um(τ))Ω = 0

for all n �= m, for all t, τ ≥ 0.

By (92), it follows that, for t ∈ [0, T ],

‖Δun(t)‖2Ω = λ2n

∣∣∣∣ ∫ t

0

ξ−1
n sin

(
ξn(t− τ)

)
(f(τ), φn)Ω dτ

∣∣∣∣2
≤ λnt

∫ t

0

|(f(τ), φn)Ω|2dτ

≤ T

∫ T

0

λn|(f(τ), φn)Ω|2dτ

=:M (1)
n .

By the Monotone convergence theorem and (91), we easily show that

∞∑
n=1

M (1)
n = T

∫ T

0

( ∞∑
n=1

λn|(f(τ), φn)Ω|2
)
dτ

= T

∫ T

0

‖∇f(τ)‖2Ωdτ.
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Thanks to these bounds and (96) (recall that Δun(t) = −λnun(t)),
Lemma A.1 can be now applied in the space X = D(Δ) and in-
terval I = [0, T ] for arbitrary T > 0, and we thus prove that
u ∈ C([0,∞);D(Δ)) ⊂ C([0,∞);H1

0 (Ω)) ⊂ C([0,∞);L2(Ω)). Note that
the series (93) converges for all t, and therefore, using the fact that
un(0) = 0, it follows that u(0) = 0. Note also that, in particular,

(97) Δu(t) =

∞∑
n=1

Δun(t)

uniformly in t ∈ [0, T ] for arbitrary T .

In a second step, we use (91) to bound

‖∇un(t)‖2Ω + ‖∇u̇n(t)‖2Ω = λn

∣∣∣∣ ∫ t

0

ξ−1
n sin

(
ξn(t− τ)

)
(f(τ), φn)Ω dτ

∣∣∣∣2
+ λn

∣∣∣∣ ∫ t

0

cos
(
ξn(t− τ)

)
(f(τ), φn)Ω dτ

∣∣∣∣2
≤ T

∫ T

0

(1 + λn)|(f(τ), φn)Ω|2dτ

=:M (2)
n .

By the Monotone convergence theorem and the series representations
of norms (89) and (91), we obtain

∞∑
n=1

M (2)
n = T

∫ T

0

(
‖∇f(τ)‖2Ω + ‖f(τ)‖2Ω

)
dτ.

Using (96), we can apply Lemma A.2 in the space X = H1
0 (Ω)

and the intervals I = [0, T ] to prove that u ∈ C1([0,∞);H1
0 (Ω)) ⊂

C1([0,∞);L2(Ω)). From this, it follows that u̇(0) = 0.

In a third step, we notice that, by (97) and Lemma A.3,

∞∑
n=1

(
Δun(t) + (f(t), φn)Ωφn

)
= Δu(t) + f(t),

with convergence in L2(Ω) uniformly in t ∈ [0, T ] for any T . Since
ün(t) = Δun(t) + (f(t), φn)Ωφn, it follows that the series of the second
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derivatives L2(Ω)-converges, uniformly in t, to a continuous function.
Since the series of the first derivatives is t-uniformly L2(Ω)-convergent
(it is actually H1

0 (Ω)-convergent, as we have seen before), it follows
that ü(t) = Δu(t) + f(t) for all t ≥ 0, and that ü ∈ C([0,∞);L2(Ω)).

Finally, if u satisfies (94) and the homogeneous wave equation

(98) ü(t) = Δu(t) for all t ≥ 0, u(0) = u̇(0) = 0,

then, a well-known energy argument shows that u ≡ 0, which proves
uniqueness of strong solution to (95).

Proposition A.6. Let u be the function of Proposition A.5. Then,
for all t ≥ 0,

(99) ‖Δu(t)‖Ω ≤
∫ t

0

‖∇f(τ)‖Ω dτ

and

‖∇u(t)‖Ω ≤
∫ t

0

‖f(τ)‖Ω dτ.

Proof. For arbitrary t > 0, consider the functions gn(·; t) : [0, t] →
D(Δ) given by

gn(τ ; t) := ξ−1
n sin(ξn(t− τ))(f(τ), φn)Ωφn.

These functions are mutually orthogonal in D(Δ) and H1
0 (Ω). Note

that ψn := λ
−1/2
n φn is a complete orthonormal set in H1

0 (Ω), and that

(∇v,∇ψn)Ω = λn(v, ψn)Ω for all n, for all v ∈ H1
0 (Ω).

It is then easy to prove the bounds

‖Δgn(τ ; t)‖2Ω ≤ |(∇f(τ),∇ψn)Ω|2 for all τ ∈ [0, t], for all n,
(100)

‖∇gn(τ ; t)‖2Ω ≤ |(f(τ), φn)Ω|2 for all τ ∈ [0, t], for all n.
(101)
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Note that, by Lemma A.3, the series

(102a)

∞∑
n=1

|(∇f(τ),∇ψn)Ω|2 = ‖∇f(τ)‖2Ω,

and

(102b)

∞∑
n=1

|(f(τ), φn)Ω|2 = ‖f(τ)‖2Ω

converge uniformly in τ ∈ [0, t]. Using (100) and (102), it is clear that

(103) [0, t] 
 τ �−→ g(τ ; t) :=

∞∑
n=1

gn(τ ; t)

is well defined as a D(Δ)-convergent series. Since the series (102) are
uniformly convergent, it also follows that series (103) is τ -uniformly
convergent in D(Δ) and therefore in H1

0 (Ω) as well. Uniform conver-
gence then allows one to interchange summation and integral signs in
the following equalities

u(t) =

∞∑
n=1

un(t) =

∞∑
n=1

∫ t

0

gn(τ ; t) dτ

=

∫ t

0

∞∑
n=1

gn(τ ; t) dτ =

∫ t

0

g(τ ; t) dτ.

Now applying (100), (102) and Bochner’s theorem in the space D(Δ),
it follows that

‖Δu(t)‖Ω ≤
∫ t

0

‖Δg(τ ; t)‖Ω dτ ≤
∫ t

0

‖∇f(τ)‖Ω dτ.

Similarly, (101), (102) and Bochner’s theorem in H1
0 (Ω) prove that

‖∇u(t)‖Ω ≤
∫ t

0

‖∇g(τ ; t)‖Ω dτ ≤
∫ t

0

‖f(τ)‖Ω dτ,

which finishes the proof.
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A.4. Weak solutions of the wave equation. In this section we
deal with solutions of the evolution problem (95) when f : [0,∞) →
L2(Ω) is continuous. In this case, we will understand the wave equa-
tion as taking place in H−1(Ω) for all t ≥ 0. We first make some
clarifications about dual spaces and operators.

As customary in the literature, we let H−1(Ω) be the representation
of the dual space of H1

0 (Ω) that is obtained when L2(Ω) is identified
with its own dual space. If we denote by (·, ·)Ω the corresponding
representation of the H−1(Ω)×H1

0 (Ω) duality product as an extension
of the L2(Ω) inner product, then

(104) ‖v‖−1 := sup
0�=u∈H1

0 (Ω)

(v, u)Ω
‖∇u‖Ω =

( ∞∑
n=1

λ−1
n |(v, φn)Ω|2

)1/2

.

The Laplace operator admits a unique extension Δ : H1
0 (Ω) → H−1(Ω)

given by the duality product

−(Δu, v)Ω = (∇u,∇v)Ω for all u, v ∈ H1
0 (Ω),

and admitting the series representation

−Δu =

∞∑
n=1

λn(u, φn)Ωφn for all u ∈ H1
0 (Ω),

with convergence in H−1(Ω). Here Δ is just the distributional Laplace
operator.

Proposition A.7. Let f : [0,∞) → L2(Ω) be continuous. Then the
initial value problem (95) has a unique solution with regularity

(105) u ∈ C2([0,∞);H−1(Ω)) ∩ C1([0,∞);L2(Ω)) ∩ C([0,∞);H1
0 (Ω)).

This solution satisfies the bound

‖∇u(t)‖Ω ≤
∫ t

0

‖f(τ)‖Ω dτ for all t ≥ 0.

Finally the function w(t) :=
∫ t

0
u(τ) dτ is continuous from [0,∞) to

D(Δ).
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Proof. Consider first the operator

G1/2f :=
∞∑

n=1

λ−1/2
n (f, φn)Ωφn.

Because of the series representation of the norms (see (89), (91), (92)
and (104)) it is simple to see that G1/2 defines an isometric isomorphism
fromH−1(Ω) to L2(Ω), from L2(Ω) toH1

0 (Ω) and fromH1
0 (Ω) toD(Δ).

It is also clear that ΔG−1/2 = G−1/2Δ as a bounded operator from
D(Δ) to H−1(Ω).

As a simple consequence of the above, G1/2f ∈ C([0,∞);H1
0 (Ω)), and

the problem

v̈(t) = Δv(t) +G1/2f(t) for all t ≥ 0, v(0) = v̇(0) = 0

has a unique strong solution by Proposition A.5. We next define
u := G−1/2v. By the relations between the norms given by G±1/2

and by the regularity of v given by Proposition A.5, it follows that u
satisfies (105). It is also clear that u(0) = u̇(0) = 0. Additionally,

ü(t) = G−1/2v̈(t)

= G−1/2(Δv(t) +G1/2f(t))

= ΔG−1/2v(t) + f(t)

= Δu(t) + f(t) for all t ≥ 0,

which makes u a weak solution of (95). Also, by Proposition A.6,

‖∇u(t)‖Ω = ‖Δv(t)‖Ω ≤
∫ t

0

‖∇G1/2f(τ)‖Ω dτ =

∫ t

0

‖f(τ)‖Ω dτ.

To prove uniqueness of weak solution, we note that if u satisfies
(105) and the initial value problem (98) (with the equations satisfied
in H−1(Ω)), then G1/2u is a strong solution of (98) and it is therefore
identically zero.

Finally, if u is the weak solution of (95) and w =
∫ t

0
u, then

w ∈ C2([0,∞);L2(Ω)), and it satisfies

Δw(t) = ẅ(t)−
∫ t

0

f(τ) dτ for all t.
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(This is an equality as elements of H−1(Ω) for all t.) However, the
right hand side of the latter expression is a continuous function with
values in L2(Ω), and therefore w ∈ C([0,∞);D(Δ)).

A.5. A simple generalization. Consider now a closed subspace V
such that H1

0 (Ω) ⊂ V ⊂ H1(Ω) and that V does not contain non-zero
constant functions, so that there exists C◦ such that ‖u‖Ω ≤ C◦‖∇u‖
for all u ∈ V . We then consider the set

D := {u ∈ V : Δu ∈ L2(Ω), (∇u,∇v)Ω + (Δu, v)Ω = 0

for all v ∈ H1(Ω)},
endowed with the norm ‖Δ · ‖Ω. We can thus obtain a complete
orthonormal set of eigenfunctions

φn ∈ D, −Δφn = λnφn.

The entire theory can be repeated for these more general boundary
conditions, substituting H1

0 (Ω) by V , D(Δ) by D and H−1(Ω) by the
representation of V ′ that arises from identifying L2(Ω) with its dual. In
this case Δ : V → V ′ is not the distributional Laplacian since elements
of V ′ cannot be understood as distributions unless V = H1

0 (Ω). In any
case, the results of Propositions A.5, A.6 and A.7 can easily be adapted
to this new situation, namely, Proposition 8.3 is just a particular case.
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