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COMPACTNESS OF LINEAR INTEGRAL OPERATORS
IN IDEAL SPACES OF VECTOR FUNCTIONS
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ABSTRACT. Estimates for the measure of noncompactness
of linear integral operators of vector functions in ideal spaces
are obtained. When the kernel function is compact, no ad-
ditional uniformity or measurability hypotheses are needed;
however, noncompact nonmeasurable kernel functions are also
treated.

1. Introduction. Throughout this paper, let T and S be σ-finite
measure spaces. Under some continuity or growth assumptions for f ,
it is well known that

(1) Ax(t) :=

∫
S

f(t, s, x(s)) ds (t ∈ T )

is continuous and compact in C (if T and S are compact subsets of
Rn) or in Lp or, more generally, in ideal spaces, respectively, see e.g.,
[6, Part I, Theorems 3.1, 3.2], [7, Sections 5, 19] or [18].

It is natural to conjecture that, in the case of vector functions x
and f , i.e., if f :T × S × U → V with Banach spaces U and V , one
obtains similar results. More precisely, one might conjecture that if
f(t, s, ·) is a compact operator for almost all (t, s) ∈ T × S and if
f is a Carathéodory function (i.e., u �→ f(t, s, u) is continuous for
almost all (t, s) and (t, s) �→ f(t, s, u) is (strongly) measurable for each
u ∈ U) then under natural additional hypotheses the corresponding
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operator A will be continuous and compact in the corresponding spaces
of continuous vector functions or in ideal spaces of vector functions.

For the space of continuous functions, this is indeed easy to see, if
one assumes in addition that the compactness is uniform in a certain
sense with respect to (t, s), e.g., that f(t, s, B) is for bounded B ⊆ U
contained in a compact set which is independent of t and s. Actually,
under reasonably mild equicontinuity hypotheses, the independence
of such a set (for the integrals) with respect to t follows from a
vector-valued version of the Arzelà-Ascoli theorem. However, the
independence of a compact set as above from s (which follows, e.g.,
from uniform continuity of f) remained an artificial assumption in
several publications until Mönch (see, e.g., [10, Proposition 1.4] or
[11, Proposition 2]) succeeded in showing that, for each compactly
generated space V and each bounded sequence fn ∈ C(S, V ),

(2) χV

{∫
S

fn(s) ds : n = 1, 2, . . .

}
≤

∫
S

χV {fn(s) : n = 1, 2, . . .} ds.
Here, χV (M) denotes the Hausdorff measure of noncompactness of
M ⊆ V , i.e., the infimum of all ε > 0 such that M has a finite ε-
net in V . For later usage, let us also introduce the related notation
χ◦(M) := χM (M) for the inner Hausdorff measure of noncompactness,
i.e., the infimum of all numbers ε > 0 such that M has a finite ε-net in
itself, the Kuratowski measure of noncompactness α(M) which is the
infimum of all δ > 0 such that M can be divided into finitely many sets
of diameter at most δ, and the Istrǎţescu measure of noncompactness
β(M) which is the supremum of all d ≥ 0 such that M contains a
sequence whose elements have pairwise distance at least d.

Mönch’s original proof of (2) contained a small mistake, but this was
fixed later (see e.g., [5], [1, Section 4.2] or [14, Proposition 11.12]),
and moreover, the result was generalized to measurable functions with
equicontinuous L1-norm, uncountable sets of functions, and for general
Banach spaces V (in the last two cases one should insert the factor
2 or 4 into the right-hand side of the above equation), see e.g., [14,
Corollary 11.19]. Roughly speaking, these results, combined with a
vector-valued Arzelà-Ascoli theorem, allow us to prove the required
compactness of operator A in spaces of continuous vector functions
without requiring any artificial “uniformity” hypotheses. Thus, in
the space of continuous vector functions with compact f(t, s, ·), this
problem can be considered solved.
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However, in Lp spaces or, more generally, in ideal spaces, the problem
about getting rid of the “uniformity” hypotheses remained. Another
way to implement such “uniformity” hypotheses is to consider instead of
Carathéodory functions only functions which satisfy this Carathéodory
condition “uniformly” in a sense. By measurability we always mean
strong (Bochner) measurability.

Definition 1. A function f :T ×S×U → V is a strict Carathéodory
function if (t, s) �→ f(t, s, ·) is measurable as a function from T × S
into C(U, V ) where the latter space is equipped with the topology of
uniform convergence on bounded sets.

The name is explained by the fact that each strict Carathéodory
function is a Carathéodory function; the converse holds if dimU < ∞,
see [14, Theorem 8.15] (cf. also [2]).

For linear k(t, s) = f(t, s, ·), the function f is a strict Carathéodory
function if and only if k is measurable considered as a function from
T × S into the space L(U, V ) of bounded linear operators from U into
V , equipped with the operator norm.

If one assumes that f is a strict Carathéodory function, then a certain
variant of a compactness proof for the scalar case can be modified
to show that (under some growth hypotheses for f) operator A is
continuous and compact in ideal spaces of vector functions if f(t, s, ·)
is compact, see [14, Theorem 9.10].

We point out that the crucial difference between a Carathéodory
function and a strict Carathéodory function is the separability of the
(essential) range of the latter; actually this is exactly the difference
if U is separable, see [14, Theorem 8.5]. Unfortunately, for infinite-
dimensional U , the space C(U, V ) is never separable, and so the
hypothesis that f is a strict Carathéodory function is usually only
satisfied in very special situations. (However, it is typically satisfied
in the important situation when f(t, s, ·) is itself a Urysohn operator,
see [14, Theorem 10.4].)

The strict Carathéodory condition cannot be omitted, in general. In
[16] even a linear example of a compact (jointly in all variables) kernel
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k(t, s) = f(t, s, ·) was given where

(3) Ax(t) :=

∫
S

k(t, s)x(s) ds (t ∈ T )

fails to be compact from Lp(S,U) into every Lq(T,R). In this example,
U∗ is nonseparable. The latter is not surprising, since it was also shown
in [16] that if the natural candidate for the adjoint operator

(4) A′x(s) :=
∫
T

k(t, s)∗x(t) dt (s ∈ S)

has a kernel generated by a Carathéodory function (which would be
the case for separable U∗) and k is “uniformly” compact, then (3) is
compact in ideal spaces. However, even for separableU∗, the uniformity
of compactness remained a severe restriction.

The main aim of the current paper is to obtain compactness re-
sults without assuming that f is a strict Carathéodory function. As
remarked, this hypothesis is very restrictive, and even in those cases
where it is satisfied, this is often very hard to see.

We will show that, in the linear case k(t, s)u = f(t, s, u), the situation
is much better as one might expect by the above-mentioned results. In
fact, the purpose of this paper is two-fold: In Section 2, we show that,
in the compact case, i.e., if k(t, s) is linear and compact, the above-
mentioned uniformity hypothesis of [16] is actually superfluous in a
sense, i.e., actually the separability of U∗ is already sufficient for the
compactness. Although the proof is rather simple, this came to the
author as a big surprise. However, roughly speaking, this is due to
the fact that the space K(U, V ) of linear compact operators from U
into V is surprisingly small compared to the nonlinear or noncompact
situation. For the case that k(t, s) is noncompact, we cannot get rid of
some uniformity hypothesis, but in Section 3 we show for this case a
quantitative variant of [16] in terms of measures of noncompactness.

2. The compact case. In order to keep the notation analogous to
the familiar notation of integral operators of scalar functions, we will
throughout use the notation | · | for the norms in U and V . The same
symbol will be used for the norm of bounded functionals or of bounded
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linear operators U → V . In contrast, the norm of function spaces or of
operators in function spaces will be denoted by ‖ · ‖.
By M (T, V ), we denote the space of all (equivalence classes of) mea-

surable functions y:T → V . Recall that a pre-ideal space (sometimes
also called Köthe space) Y ⊆ M (T, V ) is a normed space with the prop-
erty that the relations x ∈ Y , y ∈ M (T, V ) and |y(t)| ≤ |x(t)| almost
everywhere imply that y ∈ Y and ‖y‖ ≤ ‖x‖. If Y is also complete, it
is called an ideal space (or sometimes also Banach function space). For
the general theory of pre-ideal spaces, we refer to, e.g., [13, 19, 20]
or the last section of [17]. Each pre-ideal space has a corresponding
real form YR ⊆ M (T,R), defined in the obvious way by means of the
relation ‖|y|‖YR = ‖y‖, see e.g., [13, Section 2.1].

The regular part of Y is the set of those y ∈ Y for which ‖PEny‖ → 0
whenever En ⊆ T are measurable with En ↓∅ where PEy(t) :=
χE(t)y(t). The regular part is always a closed subspace of Y .

Together with (3), we also consider the operator

|A|x(t) :=
∫
S

|k(t, s)|x(s) ds (t ∈ T );

recall that |k(t, s)| denotes the operator norm of k(t, s). Note that,
under the hypothesis of the following theorem, since the separability of
U is one of the hypotheses, the kernel function |k| of this operator is
automatically measurable, see e.g., [16].

Recall that A is said to be regular from a pre-ideal space X ⊆
M (S,U) into a pre-ideal space Y ⊆ M (T, V ) if |A| acts from XR

into YR.

Motivated by this notion, we call the integral operator (3) regularizing
if there is a sequence xn ∈ M (S,R) with 0 ≤ xn(s) → ∞ (n → ∞)
with the property that, for each n and each measurable set D ⊆ S with
PDxn ∈ XR we have that |A|PDxn belongs to the regular part of YR.
This is satisfied, in particular, if |A| maps integrable simple functions
from XR into the regular part of YR.

Recall that our given measure space S is more verbosely a triple
(S,Σ, μ) with Σ being the σ-algebra of measurable sets and μ: Σ →
[0,∞] the measure. A normalized measure ν on this measure space is
a measure ν: Σ → [0, 1] which has the same null sets as μ but satisfies
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ν(S) = 1. Since we assume that (S,Σ, μ) is σ-finite, such a normalized
measure always exists.

Theorem 1. Let U∗ be separable, and let k:T × S → K(U, V ) be
such that, for each u ∈ U , the function (t, s) �→ k(t, s)u is measurable
as a function from T × S into V .

Let X ⊆ M (S,U) and Y ⊆ M (T, V ) be pre-ideal spaces such that
the corresponding integral operator (3) is regularizing. Then, for each
bounded set B ⊆ X and each normalized measure ν on S, we have the
estimate

(5) α(A(B)) ≤ 2 · lim sup
δ→0

sup
ν(D)≤δ

sup
x∈B

‖APDx‖.

In particular, A(B) is precompact if the right-hand side of (5) vanishes.

Recall that α in (5) denotes the Kuratowski measure of noncompact-
ness of A(B) ⊆ Y .

The hypothesis that (t, s) �→ k(t, s)u is measurable is equivalent to the
statement that the kernel f(t, s, u) := k(t, s)u in (1) is a Carathéodory
function. Recall that this is the least reasonable requirement under
which one can expect to find useful statements about operator A, since
otherwise one could not apply Fubini-Tonelli’s theorem, and thus even
the measurability of Ax (x ∈ B) would be a very delicate problem. For
scalar functions, it is even known that every linear integral operator
in Lp can be written in the form (3) where f(t, s, u) = k(t, s)u is
a Carathéodory function, see e.g, [12], but it seems to be unknown
whether an analogous result holds for vector-valued functions.

Remark 1. An analogous result holds even if X and Y are only
quasinormed, i.e., if instead of the triangle inequality we have only
‖x+ y‖ ≤ q(‖x + ‖y) with a finite constant q: One just has to insert
the factor q2 (with q corresponding to the space Y ) on the right-hand
side of (5). Moreover, B need not necessarily be bounded in X but
only in the space M (S,U) of measurable functions, considered as a
topological vector space with the topology of convergence in measure
on sets of finite measure.
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The term on the right-hand side of (5) should not be too surprising:
It measures in a sense how “singular” the kernel k is. Theorem 1 and
various generalizations thereof are contained in [3] under the additional
hypothesis that k:T ×S → K(U, V ) is measurable. The following result
states that, surprisingly, this hypothesis is satisfied automatically.

Theorem 2. Let U∗ be separable, and let k:T × S → K(U, V )
be such that (t, s) �→ k(t, s)u is measurable for each u ∈ U , i.e.,
f(t, s, u) := k(t, s)u defines a Carathéodory function f :T ×S×U → V .
Then f is a strict Carathéodory function, i.e., k is measurable as a
function with values in K(U, V ) (equipped with the operator norm).

Note in this connection that, in view of, e.g., [14, Corollary 2.4],
the measurability of k depends actually only upon the topology, i.e.,
the measurability of k:T × S → K(U, V ) is equivalent to that of
k:T × S → L(U, V ) or of k:T × S → C(U, V ) (with the topology
of uniform convergence on bounded sets).

The crucial point in the proof of Theorem 2 is the following observa-
tion which was pointed out to the author by D. Werner (with a more
cumbersome proof).

Lemma 1. Let U and V both be nontrivial. Then K(U, V ) is
separable if and only if U∗ and V are both separable.

Proof. If K(U, V ) is separable, fix g0 ∈ U∗ and v0 ∈ V with
|g0| = |v0| = 1. Then the subspaces {g0(·)v ∈ K(U, V ) : v ∈ V }
and {g(·)v0 ∈ K(U, V ) : g ∈ U∗} are separable and isometric to V and
U∗, respectively.

For the converse, let U∗ and V be separable. Since V is a separable
normed space, it is isometric to a subspace of C([0, 1]). Hence, increas-
ing V if necessary, we may assume without loss of generality that V
has the approximation property. Then the finite rank operators are
dense in K(U, V ). It now suffices to observe that the separability of U∗

and of V obviously implies that the subset of finite rank operators is
separable.
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In view of Lemma 1, one might conjecture that it is also necessary
to assume in Theorem 2 that V is separable. However, the range of
Carathéodory functions is automatically separable if U is separable. In
fact, this holds even in a more general setting of metric spaces.

Lemma 2. Let U and V be metric spaces, and let f :T ×S×U → V
be a Carathéodory function. If U is separable, then there is a null set
N ⊆ T × S such that f(((T × S) \N)× U) is separable.

Proof. Let N0 ⊆ T × S be a null set such that f(t, s, ·) is continuous
for (t, s) /∈ N0, and let {u1, u2, . . . } be dense in U . Since f(·, ·, un) is
measurable, there are null sets Nn ⊆ T×S such that f((T×S)\Nn, un)
is separable, i.e., contained in the closure of a countable set Vn :=
{vn,1, vn,2, . . . } ⊆ V . Put N := N0 ∪

⋃
n Nn. Then

⋃
n Vn is dense in

f(((T × S) \ N) × U). Indeed, for each (t, s, u) ∈ (T × S) \ N) × U
and each ε > 0, we find by the continuity of f(t, s, ·) some n with
d(f(t, s, un), f(t, s, u)) < ε/2 and some k with d(f(t, s, un), vn,k) < ε/2,
and so d(f(t, s, u), vn,k) < ε.

Proof of Theorem 2. In view of Lemma 2, there are a separable closed
subspace V0 ⊆ V and a null set N such that k((T × S) \N)(U) ⊆ V0.
Hence, modifying k on the null set N and replacing V by V0, we may
assume without loss of generality that V is separable. Lemma 1 thus
implies that k(T ×S) is a separable subset of L(U, V ). Theorem 2 now
follows from [14, Theorem 8.5].

3. The noncompact case. For noncompact k(t, s), one cannot
expect a result which is similarly simple as that of Section 2. In fact,
the crucial point of Section 2 was the separability of K(U, V ). For
L(U, V ) no analogous result is available under reasonable hypotheses
for U and V , as we make clear by the following Proposition 1.

Recall that a Schauder basis (en)n in a Banach space U is called
unconditional if, for each u ∈ U , the corresponding expansion u =∑∞

n=1 λnen converges unconditionally; most classical Banach spaces
possess such a basis.

Proposition 1. If U is an infinite-dimensional Banach space with
an unconditional basis, then L(U,U) fails to be separable (with respect
to the operator norm).
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Proof. If (en)n is an unconditional basis, we can define for each
N ⊆ N a corresponding projection operator PN ∈ L(U,U) by

PN

∞∑
n=1

λnen :=

∞∑
n=1
n∈N

λnen.

If N,M ⊆ N differ, say n ∈ N \M , then we have (PN − PM )en = en,
and so ‖PN − PM‖ ≥ 1. Hence, we have found an uncountable family
of elements of L(U,U) with pairwise distance at least 1 which implies
that L(U,U) fails to be separable.

We now give a positive result which, however, will require some
“uniformity” in a compactness estimate with respect to t. We consider
the situation of Section 2 with the difference that we now assume
only k:T × S → L(U, V ). We assume that f(t, s, u) = k(t, s)u is a
Carathéodory function, i.e., (t, s) �→ k(t, s)u is measurable for each
u ∈ U . We also assume that (t, s) �→ |k(t, s)| and (t, s) �→ k(t, s)∗v∗ (for
each v∗ ∈ V ∗) are measurable (these are not additional requirements if
U or U∗ are separable, respectively, see [16]).

LetX ⊆ M (S,U) and Y ⊆ M (T, V ) be pre-ideal spaces. Since S and
T are σ-finite, these spaces have a support, i.e., there is an (up to null
sets) smallest set suppX which contains the support of all functions
from X . Recall that the associate space X ′

R is the pre-ideal (actually
even ideal) space of all functions y ∈ M (S,R) vanishing outside suppX
for which the norm

‖y‖X′
R
:= sup

‖x‖XR
≤1

∫
S

|y(s)||x(s)| ds

is finite. Together with (3), we consider the associate operator (4) as
well as

|A|′x(s) :=
∫
T

|k(t, s)|x(t) dt (s ∈ S)

and the nonlinear operator

|A|0x(t) :=
∫
S

|k(t, s)x(s)| ds (t ∈ T )
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and introduce for bounded B ⊆ X the numbers

γ0
S(k,B) := sup

S⊇Dn ↓∅

lim sup
n→∞

sup
x∈B

‖|A|0PDnx|‖YR ,

γ0
T (k,B) := sup

T⊇En ↓∅

lim sup
n→∞

sup
x∈B

‖PEn |A|0x‖YR ,

γS(k) := sup
S⊇Dn ↓∅

lim sup
n→∞

‖|A|PDn‖L(XR,YR),

γT (k) := sup
T⊇En ↓∅

lim sup
n→∞

‖PEn |A|‖L(XR,YR),

γ′
S(k) := sup

S⊇Dn ↓∅

lim sup
n→∞

‖PDn |A|′‖L(Y ′
R
,X′

R
),

γ′
T (k) := sup

T⊇En ↓∅

lim sup
n→∞

‖|A|′PEn‖L(Y ′
R
,X′

R
).

The above characteristics have been introduced in [16]. Their occur-
rence should not be too surprising since it is well-known that they
vanish if and only if |A| and |A|′ are compact (if all involved spaces are
regular), see e.g., [9]. Roughly speaking, the above quantities measure
in a sense how singular the kernel k is, and they are actually rather
related.

To make the latter more precise, we recall that Y is called cY -almost
perfect if YR has the property that the relations 0 ≤ yn(t)↑ y(t) almost
everywhere and y ∈ YR imply that ‖y‖ ≤ cY supn ‖yn‖. Most ideal
spaces occurring in applications are cY -almost perfect with cY = 1; for
instance, all Orlicz and Lebesgue-spaces (even weighted) and all regular
pre-ideal spaces have this property (see e.g., [13, Corollary 3.3.4] for
the latter). If A is regular, i.e., |A| ∈ L(XR, YR), then (under our
measurability hypotheses) automatically A ∈ L(X,Y ) and |A|′ ∈
L(Y ′

R, X ′
R), see e.g., [16]; more precisely,

(6) ‖|A|′‖L(Y ′
R
,X′

R
) ≤ ‖|A|‖L(YR,XR),

and if Y is cY -almost perfect also the converse estimate

(7) ‖|A|L(YR,XR) ≤ cY ‖|A|′‖L(Y ′
R
,X′

R
)

holds. Applying these estimates with the auxiliary integral operator
with kernel function k̃(t, s) := |k(t, s)|χD(s) or k̃(t, s) := χE(t)|k(t, s)|,
we obtain the estimates

(8) γS′(k) ≤ γS(k
′) and γT ′(k) ≤ γT (k),
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respectively and, if Y is cY -almost perfect, we obtain similarly the
converse estimates

(9) γS(k) ≤ cY γS′(k′) and γT (k) ≤ cY γT ′(k).

Putting BX := {x ∈ X : ‖x‖ ≤ 1}, one can easily verify that

(10) γ0
S(k,B) ≤ γS(k) and γ0

T (k,B) ≤ γT (k) if B ⊆ BX ,

with equality at least if k is a scalar function and B = BX . If Y is
regular, then the quantities γS(k), γT (k), γS′(k) and γT ′(k) vanish if
and only if |A| is compact; more precisely, several estimates exist (from
above and below) which relate these characteristics to various measures
of noncompactness of |A|(BX), see e.g., [3, 16] for such estimates. In
some cases, it is possible to calculate the above quantities explicitly,
e.g., for the Hardy operator:

Example 1. Let X = Y = Lp([0, 1]) (1 < p < ∞) and |k(t, s)| =
(1/t)χ[0,t](s), i.e., |A|x(t) = (1/t)

∫ t

0
x(s) ds. Then

(11)
γS(k) = γT (k) = γS′(k) = γT ′(k)

= ‖|A|‖L(XR,YR) = ‖|A|′‖L(Y ′
R
,X′

R
) =

p

1− p
,

and by the remark after (10) also γ0
S(k,BX) = γ0

T (k,BX) = p/(1− p).
Indeed, the estimate ‖|A|‖L(XR,YR) ≤ p/(1− p) is the well-known
Hardy inequality. Note that, trivially, γS(k), γT (k) ≤ ‖|A|‖L(XR,YR).
For the converse, we consider the sequences Dn = En = [0, 1/n]
and xn(t) := χDn(t)t

−cn with 0 < cn↑ 1/p. Then |A|PDnxn(t) ≥
PEn |A|xn(t) = 1/(1− cn)xn(t) which implies ‖|A|PDn‖, ‖PEn |A|‖ ≥
1/(1− cn) → p/(p− 1). Hence, γS(A), γT (A) ≥ p/(p− 1). Combining
the estimates obtained with (6), (7), (8) and (9) (with cY = 1), we
obtain (11).

Note that the fourth equality sign in (11) is somewhat exceptional:
in general, the characteristics are smaller than the norm. In fact, in a
sense, only the “singularities” of k are responsible for the size of these
quantities:
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Example 2. Wemodify the previous example by assuming |k(t, s)| =
(1/t)χ[0,t](s)+C with C>p/(p− 1). Then ‖|A|‖L(XR,YR), ‖|A|′‖L(Y ′

R
,X′

R
)

≥ C while all the other characteristics are the same as for the kernel
function k0(t, s) := (1/t)χ[0,t](s). Indeed, putting kC(t, s) := C, we
have γ0

S(k,B) ≤ γ0
S(k0, B)+γ0

S(kC , B), and the last summand vanishes
for bounded B ⊆ X since Hölder’s inequality (with (1/p)+ (1/p′) = 1)
implies that ‖CPDnx‖L1 ≤ C‖χDn‖Lp′‖x‖X → 0 uniformly in x ∈ B
as Dn ↓∅. The argument for the other characteristics is analogous.

Now we are in a position to formulate a result which yields an
estimate for the measure of noncompactness of A(B). This estimate
depends on the one hand on the quantities considered above (i.e., on the
“singularities” of |k|). On the other hand, the estimate for the measure
of noncompactness of A(B) also depends upon, roughly speaking, the
measure of noncompactness of the set of all

∫
S k(t, s)x(s) ds (in V )

where t and x vary. To deal with singularities of k and x, for the latter
actually some auxiliary “weight” functions λn,x and sets Rn ⊆ T × S
are allowed in this integral in the formulation of the theorem. (And t
varies only in Tj where (Tj) is a partition of suppY .)

We will discuss in a moment how this technical hypothesis can
be replaced by a much simpler hypothesis, namely, by a hypothesis
which requires only knowledge of the measure of noncompactness for
k(t, s)x(s) (when t and x vary but s is fixed) instead of their integrals:
The latter is possible by using a Mönch type theorem.

Theorem 3. Let Y be cY -almost perfect, and assume the measur-
ability hypotheses mentioned after Proposition 1. Assume in addition
that A:X → Y is regular and that |A|′ sends Y ′

R into the regular part
of X ′

R. Let B ⊆ X be bounded. For an at most countable index set
J , let Tj ⊆ suppY (j ∈ J) be measurable with

⋃
j Tj ⊇ suppA(B).

Let Pn,j ⊆ V (j ∈ J) be such that there is a sequence Rn↑T × S (up
to null sets) and for each x ∈ B and each n a measurable function
λn,x:S → [0, 2] satisfying

(12) λn,x(s) = 1 a.e. on {s : |x(s)| ≤ n}
and such that, for all j ∈ J ,

(13)

∫
S

χRn(t, s)λn,x(s)k(t, s)x(s) ds ∈ Pn,j for almost all t ∈ Tj.
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If χj , ρj ∈ [0,∞) satisfy

(14) ρj > 2χj ,

(15) sup
n

χ{v∈V :|v|≥ρj}({v ∈ Pn,j − Pn,j : |v| ≥ ρj}) ≤ χj ,

and ρ :=
∑

j ρjχTj ∈ Y ′′
R, then we have the estimates

(16)

χY (A(B)) ≤ γ0
S(k,B) + γ0

T (k,B)

+ sup
j∈J

cY diamB

1− 2ρ−1
j

χj

(γ′
S(k) + γ′

T (k)) + cY ‖ρ‖Y ′′
R
.

If J is finite and if even the choice λn,x = 1 and Rn = T ×S is possible
for some n, i.e., Ax(t) ∈ Pn,j almost everywhere on Tj for each x ∈ B,
then we even have the stronger estimate

(17) χ◦(A(B)) ≤ max
j∈J

cY diamB

1− 2ρ−1
j

χj

(γ′
S(k) + γ′

T (k)) + cY ‖ρ‖Y ′′
R
.

Before we prove Theorem 3, we make some remarks.

First, we will show in Proposition 2 below that we can get rid of
the strange dependency of χj on ρj in (15) when we use a different
(although in a sense less optimal) measure of noncompactness instead.

The second remark concerns what we mentioned before. Let us
assume the hypothesis (19) described below (this is a mild hypothesis
which is satisfied if, roughly speaking, |k| is not “extremely singular”).
Then we can apply a Mönch type result to verify all hypotheses
(12) (15) with small constants χj , ρj . More precisely, in the subsequent
Proposition 2 we will show that, instead of requiring estimates for the
measure of noncompactness of integrals, it suffices to know for fixed s
estimates rn,j(s) for the measure of noncompactness of the set of points
k(t, s)x(s) (where t ∈ Tj and x vary), and to integrate rn,j . Here,
singularities of |x| are treated by ignoring points s with |x(s)| > n, and
the sets Rn can still be used to treat singularities of |k|.
Recall that for M ⊆ V the quantities β(M), χV (M), and χ◦(M)

denote the Istrǎţescu, Hausdorff, or inner Hausdorff measure of non-
compactness of M , respectively.
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Proposition 2. Hypotheses (14) and (15) in Theorem 3 are satisfied
if

(18) χj ≥ 2 sup
n

β(Pn,j) and ρj > 2χj .

Moreover, given Rn↑T × S (up to null sets), this and all hypotheses
(12) (15) hold with appropriate Pn,j and λn,x under the following
assumptions.

(1) For each j ∈ J , each n and each sequence of measurable sets
Dk ↓∅:

(19) lim
k→∞

sup
x∈B

sup
t∈Tj

∫
Dk∩{s:|x(s)|≤n}

χRn(t, s)|k(t, s)x(s)| ds = 0.

(2) The estimates

(20) χj ≥ 4 sup
n

∫
S

rn,j(s) ds and ρj > 2χj

hold with measurable functions rn,j :S → [0,∞] satisfying

(21) rn,j(s) ≥ χ◦({k(t, s)x(s) : (x, t) ∈ C, |x(s)|
≤ n, (t, s) ∈ Rn}) for almost all s ∈ S

for all countable C ⊆ B × Tj. If V is separable, one can replace χ◦ in
(21) by χV .

We understand the estimate (21) of course in the sense of choosing
one function x for every equivalence class considered. Since we consider
only countable sets C, the estimate (21) is (up to null sets) independent
of the choice of the representing functions.

Remark 2. Our proof will show that, if V has the L-retraction
property in the sense of [14, Definition 11.8], one can replace χ◦ in
(21) by L · χV . Using the axiom of choice, it can be shown that
every weakly compactly generated space has the 1-retraction property
[14, Theorem 11.10]; in particular, also for reflexive spaces V , one can
replace χ◦ in (21) by χV .
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Proof of Proposition 2. For the first assertion, it suffices to note that
the left-hand side of (15) is bounded from above by

χ◦({v ∈ Pn,j − Pn,j : |v| ≥ ρj}) ≤ β({v ∈ Pn,j − Pn,j : |v| ≥ ρj})
≤ 2β(Pn,j).

For the second assertion, we put λn,x := χ{s:|x(s)|≤n} and Pn,j :=
{∫

S
y(s) ds : y ∈ Bn,j} with

Bn,j := {yn,x,t ∈ M (S, V ) : yn,x,t(s)

= χRn(t, s)λn,x(s)k(t, s)x(s), x ∈ B, t ∈ Tj}.
Then (18) follows from [14, Theorem 11.17] with f(s, u) = u.

Note that the particular choices χj := 2 supn β(Pn,j) in (18) or
χj := 4 supn

∫
S
rn,j(s) ds in (20), respectively, are independent of

ρj . Hence, for this (in a sense almost optimal) choice of χj , the
corresponding ρj in Theorem 3 is only subject to condition (14). On
the other hand, the estimates (16), (17) obtained consist essentially of
two summands which can be weighted to some extent by this choice
of ρj . Roughly speaking, the first summand measures the singularity
of |k|, and the second summand measures the noncompactness of the
operators k(t, s) (which is somewhat weighted on Tj by ‖ · ‖Y ′′

R
). Thus,

not too surprisingly, the singularity and noncompactness of k determine
the measure of noncompactness ofA(B), and by our choice of ρj , we can
define to some extent which of these two properties is more important
to us for estimates (16), (17).

Our final remark is that one can formulate the estimates in Theorem 3
also without using quantities which refer to the associate operator |A|′.

Remark 3. Estimate (16) implies in the case B ⊆ BX that

(22) χY (A(B)) ≤ sup
j∈J

(
1 +

cY diamB

1− 2ρ−1
j

χj

)
(γS(k) + γT (k)) + cY ‖ρ‖Y ′′

R
.

This follows from (8), (10).

Proof of Theorem 3. First we show the last assertion. Let dj > χj ,
and let ej ∈ (0, 1) be such that (1+ e−1

j )dj < ρj . Put Pj := Pn,j −Pn,j
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(with n as in the last claim), and let {vj,k : k = 1, . . . , kj} be a finite
dj-net for Mj := {v ∈ Pj : |v| ≥ ρj} such that |vj,k| ≥ ρj . For each
j, k, there are gk,j ∈ V ∗ with |gj,k| = 1 and |gj,k(vj,k)| ≥ ej|vj,k|. Let
V ′ ⊆ V ∗ be the finite-dimensional subspace spanned by all gj,k. For
each v ∈ Mj , we find some k with |v − vj,k| ≤ dj , and so

|gj,k(v)| ≥ |gj,k(vj,k)| − |v − vj,k|
≥ ej|v| − (1 + ej)|v − vj,k|
≥ ej|v| − (1 + ej)dj .

Since (1 + ej)dj ≤ (1 + ej)dj |v|/ρj , we conclude for cj := ej − ρ−1
j (1 +

ej)dj > 0 that

sup
g∈V ′
|g|≤1

|g(v)| ≥ cj |v| (v ∈ Pj , |v| ≥ ρj).

If i:V → (V ′)∗ denotes the canonical evaluation embedding, the above
inequality means |i(v)| ≥ cj |v|, and so we have for all y ∈ A(B − B)
with c0 := minj cj that

|i(y(t))|+ c0ρ(t) ≥ max{|i(y(t))|, c0ρ(t)} ≥ c0|y(t)|.

Hence, proceeding completely analogous to the proof of the main result
of [16], essentially just replacing ρ0χE in that proof by the function ρ,
we can conclude that, for each c1 ∈ (0, 1),

χ◦(A(B)) ≤ max

{
cY diamB

c0c1
(γ′

S(k) + γ′
T (k)),

cY ‖ρ‖Y ′′
R

1− c1

}
.

Since inf {max{a/c1, b/(1− c1)} : 0 < c1 < 1} = a+ b for a, b ≥ 0 (the
infimum being attained for c1 = a/(a+b) in case a, b > 0), we conclude

χ◦(A(B)) ≤ max
j∈J

cY diamB

ej − ρ−1
j (1 + ej)dj

(γ′
S(k) + γ′

T (k)) + cY ‖ρ‖Y ′′
R
.

Observing that we can choose dj and ej arbitrarily close to χj and 1
respectively, we obtain (17).

For the proof of the first assertion, observe that it may be assumed
without loss of generality that each Rn is contained in a set of the form
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T0×S where T0 is a union of only finitely many of the sets Tj . Indeed,
if J = {j1, j2, . . . } is countably infinite, one can just replace Rn by

R̃n := Rn ∩ ((Tj1 ∪ · · · ∪ Tjn)× S)

to arrange this. Hence, (16) follows from (17) in the same manner as
in [16], i.e., by using the approximation theorem of nonlinear Urysohn
operators from [15] and applying (17) to the approximating operators.
Indeed, in view of our additional hypothesis on Rn, we can really
apply (17) for the approximating operators (since we can choose a
corresponding finite set J).

Remark 4. All results in this paper hold if the axiom of choice (AC)
is replaced by the so-called axiom of dependent choices (which, roughly
speaking, allows countably many recursive choices) under the following
small changes: in Lemma 1 we assume U∗ �= {0} instead of U �= {0}
(thanks to a referee for pointing this out), in Theorems 1 and 2, besides
the separability of U∗, we also require the separability of U , and in
Theorem 3, we additionally require

(23) |v| ≤ α sup
|g|V ∗≤1

|g(v)| (v ∈ V )

with some constant α ≥ 1; in the proof of Theorem 3, we must then re-
quire ej ∈ (0, 1/α). Correspondingly, the requirement ρj > 2χj in (14),
(18) and (20) must be replaced by ρj > (1+α)χj , and in the estimates
obtained, (16), (17) and (22), the fractions [(cY diamB)/(1− 2ρ−1

j
χj)]

have to be replaced by [(cY αdiamB)/(1− ρ−1
j (1 + α)χj)].

In the presence of AC, all of these additional hypotheses (with
α = 1) are satisfied automatically by the Hahn-Banach theorem.
However, without AC, it cannot be excluded in general that there are
nonseparable Banach spaces U with U∗ = {0} (see [8]), and for every
α0 > 1, Banach spaces V for which (23) holds exactly for α ≥ α0 (see,
e.g., [4]).
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