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ABSTRACT. In this paper, we study the existence and
uniqueness of solutions for fractional integrodifferential equa-
tions with nonlocal initial condition in a Banach space. The
results are established by the application of the contraction
mapping principle and the Krasnoselkii fixed point theorem.
An application is also given.

1. Introduction. In this paper, we consider an initial boundary
value problem (IBVP for short) for a fractional integrodifferential
equation with a nonlocal initial condition, of the form

(1.1)

{
cDqx(t) =

∫ t

0
k(t, s, x(s)) ds t ∈ I = [0, 1],

x(0) =
∫ 1

0 g(s)x(s) ds,

where cDq is the standard Caputo fractional derivative of order 0 <
q < 1, and x : I → E for a Banach space, E. We assume that
g ∈ L1([0, 1], R+) with g(t) ∈ [0, 1), and k is a given E-valued function
satisfying some conditions that will be specified later.

Fractional differential equations have gained considerable importance
due to their application in various sciences, such as physics, mechanics,
chemistry, engineering, etc. In fact, fractional differential equations
are considered as providing alternative models to nonlinear differential
equations [4]. For more details on the geometric and physical interpre-
tation of fractional derivatives of the Caputo type, see [5].
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In recent years, there has been a significant development in ordinary
and partial differential equations involving fractional derivatives, see
the monographs of Kilbas et al. [9], Lakshmikantham et al. [10], Miller
and Ross [13], Samko et al. [18], Podlubny [17] and the papers in [1 3,
8, 9, 11, 12, 14 16, 19] and the references therein. In [1], Ahmad
and Nieto obtain results for a nonlinear boundary value problem of
fractional integro differential equations with integral boundary condi-
tions. In [2, 3], Anguraj et al. proved the existence of solutions of
a Cauchy problem for a semilinear integrodifferential equation with a
nonlocal initial condition. In [6], the authors have discussed ω periodic
solutions to fractional integrodifferential equations with infinite delay.

Recently, N’Guerekata [15, 16] studied the existence of solutions of
fractional abstract differential equations with nonlocal initial condi-
tions. In [8], Jaradat et al. discussed the mild solution for fractional
semilinear initial value problems. In [14], Mophou et al. investigated
existence results for some fractional differential equations with nonlo-
cal initial conditions. In [19], Tidke studied global solutions to nonlin-
ear mixed Volterra-Fredholm integrodifferential equations with nonlo-
cal initial conditions. Lakshmikantham and Vatsala [11] initiated the
basic theory of fractional differential equations. Lv et al. [12] proved
the existence of solutions to fractional differential equations with nonlo-
cal initial conditions in Banach spaces. Motivated by [7, 20], we study
in this paper the existence of solutions to fractional integrodifferential
equations with nonlocal initial conditions in Banach spaces by using
fractional calculus and fixed point theorems.

2. Preliminaries. In this section, we introduce definitions and
preliminary facts which are used throughout this paper. Let E be a
real Banach space with zero element θ. Denote by C = C([0, 1], E)
the Banach space of all continuous functions x : [0, 1] → E with
norm ‖x‖c = supt∈[0,1] ‖x(t)‖. Let L1([0, 1], E) be the Banach space
of measurable functions x : [0, 1] → E which are Lebesgue integrable,

equipped with the norm ‖x‖L1 =
∫ 1

0 ‖x(s)‖ ds. Let

μ =

∫ 1

0

g(s) ds, R+ = (0,∞), R+ = [0,∞).

A function x ∈ C([0, 1], E) is called a solution of (1.1) if it satisfies
(1.1).
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Definition 2.1. A real function f is said to be in the space Cα,
α ∈ R, if there exists a real number p > α such that f(t) = tpg(t) for
some g ∈ C[0,∞), and f is said to be in the space Cm

α if f (m) ∈ Cα,
m ∈ N .

Definition 2.2. The fractional integral of the function f ∈
L1([a, b], R+) of order q ∈ R+ is defined by

Iqaf(t) =

∫ t

a

(t− s)q−1

Γ(q)
f(s) ds,

where Γ is the Gamma function. When a = 0, we write Iqf(t) =
f(t) ∗ϕq(t), where ϕq(t) = tq−1/Γ(q) for t > 0 and ϕq(t) = 0 for t ≤ 0.
Note that ϕq(t) → δ(t) as q → 0, where δ is the delta function.

Definition 2.3. The Riemann-Liouville fractional integral of order
q > 0, of a function f ∈ Cμ, μ ≥ −1, is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s) ds, for q > 0 and t > 0,

and in the case q = 0 we put I0f(x) = f(x).

Definition 2.4. The Riemann-Liouville fractional derivative of order
q > 0, of a function f , is defined by

Dqf(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0

f(s)

(t− s)q−n+1
ds,

for n − 1 < q < n and n ∈ N , where the function f(t) has absolutely
continuous derivatives up to order n− 1.

Definition 2.5. The Caputo derivative of fractional order q for a
function f(t) is defined by

(cDqf)(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q−n+1
ds,



186 A. ANGURAJ AND P. KARTHIKEYAN

for n− 1 < q < n and n = [q] + 1, where [q] denotes the integer part of
the real number q.

Remark 2.1. The Caputo derivative of a constant is equal to 0.

Lemma 2.1. Let q > 0. Then we have cDq(Iqf(t)) = f(t).

Lemma 2.2. Let q > 0 and n = [q] + 1. Then

Iq(cDqf(t)) = f(t)−
n−1∑
k=0

f (k)(0)

k!
tk.

Lemma 2.3. If Q(τ) =
∫ 1

τ g(s)(s − τ)q−1 ds for τ ∈ [0, 1], and if
g ∈ L1([0, 1], R+) satisfies 0 ≤ g(s) ≤ 1 for 0 ≤ s ≤ 1, then

Q(τ)

Γ(q)
< e and

∫ t

0 (t− s)q−1 ds

Γ(q)
< e.

Proof. A direct computation shows

Q(τ)

Γ(q)
=

∫ 1

τ
g(s)(s− τ)q−1ds∫∞
0 sq−1e−sds

≤
∫ 1

τ
(s− τ)q−1ds∫∞

0 sq−1e−sds

=

∫ 1−τ

0
sq−1ds∫∞

0
sq−1e−sds

≤ e
∫ 1−τ

0
sq−1e−sds∫∞

0
sq−1e−sds

< e

and ∫ t

0 (t− s)q−1ds

Γ(q)
=

∫ t

0 s
q−1ds∫∞

0 sq−1e−sds
≤ e

∫ t

0 sq−1e−sds∫∞
0 sq−1e−sds

< e.

Theorem 2.4 (Krasnoselkii). Let M be a closed convex and
nonempty subset of a Banach space X. Let A and B be two opera-
tors such that
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1. Ax+By ∈ M whenever x, y ∈ M ;

2. A is compact and continuous;

3. B is a contraction mapping.

Then there exists a z ∈ M such that z = Az +Bz.

3. Main results. Before stating and proving the main results, we
introduce the notation

Δ = {(t, s) : 0 ≤ s ≤ t ≤ 1},

and make the following hypotheses.

(H1) k : Δ×E → E is continuous, and there exists a constant K1 > 0
such that

‖k(t, s, x1)− k(t, s, x2)‖ ≤ K1‖x1 − x2‖ for x1, x2 ∈ E.

(H2) For any positive number r there exists an hr ∈ L1(I) such that

sup
‖x‖≤r

‖k(t, s, x)‖ ≤ hr(t) for all (t, s, x) ∈ I ×Δ× E.

Lemma 3.1. If (H1) holds, then problem (1.1) is equivalent to the
following integral equation:

x(t) =
1

(1 − μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds

for t ∈ [0, 1].

Proof. By Lemma 2.2 and (1.1), we have

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds,
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so

x(0) =

∫ 1

0

g(s)x(s) ds

=

∫ 1

0

g(s)

[
x(0) +

1

Γ(q)

∫ s

0

(s− τ)q−1

∫ τ

0

k(τ, η, x(η)) dη dτ

]
ds

=

∫ 1

0

g(s) ds x(0)

+
1

Γ(q)

∫ 1

0

g(s)

∫ s

0

(s− τ)q−1

∫ τ

0

k(τ, η, x(η)) dη dτ ds.

Therefore,

x(0) =
1

(1− ∫ 1

0 g(s) ds)Γ(q)

×
∫ 1

0

g(s)

∫ s

0

(s− τ)q−1

∫ τ

0

k(τ, η, x(η)) dη dτ ds

=
1

(1− μ)Γ(q)

∫ 1

0

×
∫ τ

0

k(τ, η, x(η)) dη

[ ∫ 1

τ

g(s)(s− τ)q−1 ds

]
dτ

=
1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ,

and then

x(t) =
1

(1 − μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds.

Conversely, if x is a solution of (3.1), then for every t ∈ [0, 1], according
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to Lemma 2.1 and Remark 2.1, we have

cDqx(t) = cDq

[
1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ))d τ ds

]

= cDq

[
1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ

]

+ cDq

[
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds

]

= θ + cDq

(
Iq

∫ t

0

k(t, s, x(s)) ds

)

=

∫ t

0

k(t, s, x(s)) ds.

It is obvious that x(0) =
∫ 1

0
g(s)x(s) ds. This completes the proof.

Theorem 3.2. If (H1) and (H2) hold with

K1 ≤ Γ(q + 1)

2T q
,

then (1.1) has a unique solution.

Proof. Define F : C → C by

(Fx)(t) =
1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds,

for t ∈ [0, 1], and recall that Δ = {(s, t) : 0 ≤ τ ≤ s ≤ t ≤ 1}. Choose

r ≥ 2

(
eM

(1− μ)
+

K2T
q

Γ(q + 1)

)
,
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and let K2 = max{‖k(s, τ, 0)‖ : (s, τ) ∈ Δ}. To show that FBr ⊂ Br,
where Br := {x ∈ C : ‖x‖ ≤ r}, let x ∈ Br. Applying Lemma 2.3, we
get

‖Fx(t)‖ ≤ 1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

‖k(τ, η, x(η))‖ dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

‖k(s, τ, x(τ))‖ dτ ds

≤ 1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

‖k(τ, η, x(η))‖ dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

(‖k(s, τ, x(τ)) − k(s, τ, 0)‖

+ ‖k(s, τ, 0)‖) dτ ds
≤ e

(1− μ)

∫ 1

0

∫ τ

0

‖k(τ, η, x(η))‖ dη dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

(K1‖x(τ)‖ +K2) dτ ds

≤ eM

(1− μ)
‖x(τ)‖ + 1

Γ(q)

∫ t

0

(t− s)q−1(K1‖x(s)‖+K2) ds

≤ eM

(1− μ)
‖x(τ)‖ + (K1r +K2)

1

Γ(q)

∫ t

0

(t− s)q−1 ds

≤ erM

(1− μ)
+ (K1r +K2)

T q

Γ(q + 1)
≤ r,

by the choice of K1, K2 and r. Now we take x, y ∈ C. Then we get

‖(Fx)(t) − (Fy)(t)‖ ≤ eM

(1− μ)

∫ 1

0

K1‖x(τ) − y(τ)‖ dτ

+
1

Γ(q)

∫ t

0

(t− s)q−1

×
∫ s

0

‖k(s, τ, x(τ)) − k(s, τ, y(τ))‖ dτ ds
≤ ΩM,K1,T,q‖x− y‖ where

ΩM,K1,T,q :=
eM

(1− μ)
+

K1T
q

Γ(q + 1)
,
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and ΩM,K1,T,q depends only upon the parameters of the problem.
The result follows by the contraction mapping principle, because
ΩM,K1,T,q < 1.

Theorem 3.3. If (H1) and (H2) hold with eM < 1 − μ, then the
IBVP (1.1) has at least one solution.

Proof. Choose

r ≥ eM

(1− μ)
+

T q‖hr‖L1

Γ(q + 1)
,

and consider Br := {x ∈ C : ‖x‖ ≤ r}. Now define on Br the operators
A and B by

(Ax)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds,

and

(Bx)(t) =
1

(1− μ)Γ(q)

∫ 1

0

Q(τ)

∫ τ

0

k(τ, η, x(η)) dη dτ.

Let us observe that, if x, y ∈ Br, then Ax + By ∈ Br. Indeed, it is
easy to check the inequality

‖Ax+By‖ ≤ eM

(1− μ)
+

T q‖hr‖L1

Γ(q + 1)
≤ r.

We have to show that B is a contraction mapping. If x, y ∈ Br, then

‖(Bx)(t)− (By)(t)‖ ≤ eM

(1− μ)

∫ τ

0

K1‖x(η)− y(η)‖ dτ
≤ ΩM,K1‖x− y‖,

where ΩM,K1 := eMK1/(1−μ) < 1 depends only upon the parameters
of the problem, and hence B is contraction. Since x is continuous, so
is Ax in view of (H1). Let us now note that A is uniformly bounded
on Br. This follows from the inequality

‖(Ax)(t)‖ ≤ T q‖hr‖L1

Γ(q + 1)
.
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Now let us prove that (Ax)(t) is equicontinuous. Let t1, t2 ∈ I and
x ∈ Br. Using the fact that f is bounded on the compact set I × Br

(thus sup(s,τ)∈I×Br
‖k(s, τ, x(τ))‖ := c0 < ∞), we will get

‖Ax(t1)−Ax(t2)‖ =
1

Γ(q)

∥∥∥∥
∫ t1

0

(t1 − s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds

−
∫ t2

0

(t2 − s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds

∥∥∥∥
=

1

Γ(q)

∥∥∥∥
∫ t1

t2

(t1 − s)q−1

∫ s

0

k(s, τ, x(τ)) dτ ds

−
∫ t2

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
×
∫ s

0

k(s, τ, x(τ)) dτ ds

∥∥∥∥
≤ c0

Γ(q + 1)
|2(t1 − t2)

q + tq2 − tq1|

≤ 2c0
Γ(q + 1)

|t1 − t2|q,

which does not depend upon x. So A(Br) is relatively compact. By
the Arzela-Ascoli theorem, A is compact, and the result of the theorem
follows by the Krasnoselkii theorem above.

4. Example. Consider the following fractional integrodifferential
equation:

(4.1)

cDqx(t) =

∫ t

0

e−(t−s)

49
x(s) ds, t ∈ I = [0, 1],

x(0) =

∫ 1

0

|x(s)|
5 + |x(s)| ds,

where q = 1/5 ∈ (0, 1]. Set

k(t, s, x(s)) =
e−(t−s)

49
x(s) and g(x) =

|x|
5 + |x| ,

and let x, y ∈ X and t ∈ I. Then we have

‖k(t, s, x)− k(t, s, y)‖ ≤ 1

49
|x− y|,
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and hence conditions (H1) (H2) hold with K1 = 1/49. Choose M =
1/20 and μ = 1/5, so that

eM

(1− μ)
+

K1

Γ(q + 1)
<

e

16
+

1

49Γ(6/5)
= 0.19211964327988085< 1,

and so, by Theorem 3.2, problem (4.1) has a unique solution on [0,1].
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