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FOR STIFF DELAY-
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ABSTRACT. This paper deals with the unique solvability
of numerical methods for stiff delay-integro-differential equa-
tions (DIDEs). Several unique solvability conditions of the
extended general linear methods for DIDEs are derived. The
conclusions obtained are applied to some common numerical
methods such as the extended linear multistep methods and
the extended Runge-Kutta methods. In the end, concrete ex-
amples illustrate the utility of the theory.

1. Introduction. Delay-integro-differential equations (DIDEs)
arise widely in the mathematical modelings of physical and biological
phenomena. Significant advances in the research of theoretical solutions
and numerical solutions for such equations have been made in recent
years (see, e.g., [8, 9, 10]). A survey of the related results refers to
Brunner’s monograph (cf. [1]). The existing research deals mainly with
stability, dissipativity, convergence and computational implementation
of the numerical methods. When numerically computing a stiff DIDE,
generally speaking, an implicit algebraic equation needs to be solved.
In order to obtain highly effective numerical methods, the concept of
algebraic stability is often used. The algebraic stability, unfortunately,
cannot guarantee the existence of numerical solutions. For example,
Crouzeix, Hundsdorffer and Spijker [3] constructed a counterexample,
which shows that the fourth order Runge-Kutta method
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is algebraically stable but has no solution.

What is the condition to guarantee the unique solvability of the
implicit algebraic equation in the numerical methods for stiff DIDEs?
This is an important problem for numerical methods. For the unique
solvability of the numerical methods applied to stiff ordinary differential
equations (ODEs), as we know, there have been a lot of results. Among
these findings, unique solvability of Runge-Kutta methods were studied
in the papers [2-5] and their references. Several very general results
of multivalue multiderivative methods for solving stiff ODEs have been
obtained by Li [6].

However, so far, no result deals with the unique solvability of numer-
ical methods for stiff DIDEs. In view of this, in the present paper,
we will extend the related research to stiff DIDEs and hence derive
the unique solvability conditions of the general linear methods for stiff
DIDEs. Also, the derived conclusions can cover many common numer-
ical methods such as the extended linear multistep methods and the
extended Runge-Kutta methods. In the end, some concrete examples
are given to illustrate the utility of the obtained theory.

2. DIDEs of the class GRI(«,3,0,7) and their numerical
methods. Let X denote a real or complex Hilbert space with the
inner product (-,-) and the induced norm || - ||, and let f: [ty,+00) %
XxXxX — X andg: [t,+o0) x D x X — X be two sufficiently
smooth functions, where D = {(¢,v) : t € [tg, +00),v € [t — 7, t]}.

Consider the system of stiff DIDEs with constant delay 7 > 0 and
initial function ¢(t):

(2.1)
{ y'(t) = f(ty(t) 7),J,_, 9(t,v,9(v)) dv) € [to, +00),
y(t) = () t € [to — 7, o],
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where the functions f, g are assumed to satisfy the following conditions

(22) §R<f(tal‘a y,Z) - f(taia ga g)vl‘ - §>
< an - %||2 + /BHy - @/||2 + U||Z - gHZa T, Y, Z,%, g’ zZ€ Xa

(23) ||g(t,’l},$) - g(t,v,E)H < ’YHLE - §||7 (t,’l)) € Da zeX

and such that system (2.1) has a unique solution. a, 3,0 and + are real
constants independent of t, v, z,y, 2, Z, ¥, 2. Problems of type (2.1) with
(2.2)—(2.3) will be called the class GRI («, 3, 0,7). Some examples of
the class GRI (o, 8, 0,7) can be found in reference [10].

The system (2.1) can be discretized by the extended general linear
methods (cf. [10])

(2. 4)
n n n—m n 12 n—1
hZ] 1 zg ( ( ) Y( )Y( ) Z( )+Zj 1 Eg )yj( )7
1=1, 2 s,
n 21 n n n—m) n 1
() hzjlgj)(() ()Y( )_’_211” )7
1=1, 2 LT

where CEJI-J) (I,J = 1,2) are some real coefficients, stepsize h = 7/m,
tn = to+nh, t;") = t,+cjh, Yi(") and ygn) are approximations to y(tl("))
and H;(t,~+v;h), respectively, in which each H;(t,+v;h) denotes a piece
of information about true solution y(t), and ZJ(-n)

to

is an approximation

()
(") = (£, v,y(v)) dv

tn—m) I
J

and computed by a uniform repeated rule (cf. [10])

(2.5) Z = b gt 10 YTy =12, s

The method {(2.4), (2.5)}, for the class GRI(«, 3,0,7), has been
testified as being quite effective in Zhang and Stefan’s paper [10]. In
particular, we have the extended Runge-Kutta methods
(2.6)

{Y( =g+ RS a T, Y Y Y =12, s,

Yntl = Un + th:l b]-f( jn)’y}(n),yj_(n m)’ZJ(_n))
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and the extended linear multistep methods
k k
(2.7) Syt =0 Bif (tnsis Yntio Yntjmmr 25",
j=1 j=1
where y,, is an approximation to y(t,) and

(28) Z](n) - hZ ng(tn-l-ja tn-i-j—qa yn+j—q)7 J=L2,... k.
q=0

3. Some lemmas. In this section, we will distill some conclusions
from reference [10] as lemmas. These conclusions have been used
successfully to deal with the unique solvability of the implicit multivalue
multiderivative methods for stiff ODEs (cf. [6]). Here, again, we will use
them to study the unique solvability of the implicit numerical methods
induced in Section 2.

For convenience of the statement, we define some notations. A linear
mapping £ : X* — X" corresponding to matrix L := (l;;) € R"*" is

given by
LU = <lejuj, Zlgj’l,tj, ceey Zl”juj>’
j=1 j=1 j=1
VYU := (uy,us,...,u,) € X"

On space X*, an inner product and the induced norm are defined as

follows:

(U, v) = Z<uiv ;) Ul = v(U, U),
i=1
where U := (ug,us,...,u,), V= (v1,v2,...,v,) € X*. If a matrix D
is real symmetric positive definite (respectively semi-positive definite),
it will be written as D > 0 (respectively D > 0). Moreover, the
symbols AP, AP denote the minimum and the maximum eigenvalues

min’ “‘max

of matrices D, respectively.

Consider the nonlinear equation

(3.1) Qz) =z —&Y(z) —w=0, zeX°
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where w € X? is a given vector, £ is a linear mapping corresponding
to a given nonzero matrix E = (e;;) € R***, and the mapping ¢ (z) is
continuous on X?° and subject to
(32) §R<M[¢($)—’¢(§)], x_§> < <$—§,N[$—§]>, x,%EXS,
where M, N are the linear mappings corresponding to the matrices
M, N € R**¢ with NT = N.
Let
Py=P-N, P=MYE+E*M -2ETPE,
A(Po, Py, E) = A8, + A/ I EIR),
where P € R®*® is a given symmetric matrix and ||E||2 denotes the
spectral norm of the nonzero matrix F, that is the square root of the
largest eigenvalue of the matrix E*E. For the unique solvability of
equation (3.1) with (3.2), Li [7] derived the following conclusions.

Lemma 3.1 (cf. [7]). Assume that there is a real symmetric matric
P such that one of the following conditions is fulfilled:

(i) Py >0, P, > 0;
(i) Py > 0, P, > 0;
(iii) Pp > 0, P; > 0 and (3.2) holds strictly whenever x # .

Then equation (3.1) has at most one solution.

Lemma 3.2 (cf. [7]). Assume that the condition (i) or (ii) (in
Lemma 3.1) holds and the matrices M, E are invertible. Then equation
(3.1) has a unique solution x, € X° with

2+ — ol < [IMET1Q(wo)lI/A(Po, P1, E), Vo € X7,

where ME~L denotes the linear mapping corresponding to matriz

ME-!.

Lemma 3.3 (cf. [7]). Assume that X is a finite-dimensional space,
the matriz E # 0, M s invertible, and there exist an invertible matriz
B € R***, a symmetric matriv P € R*** and real numbers a;, b;

(i=1,2,3), d with

o~

(3.3) Gobs — a3y #0, 0 < sgn(as)+sgn(bs) <1
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such that
3 3 N
FPy,>0, P >0, Zaijzo, ijPjZO,
j=1 j=1

where
P, =M"B+ BTM - 2(BT"PE + ETPB — dE” PE),
Py =d(M"B+ B"M) - 2B"PB.
Then equation (3.1) has a unique solution z. € X° with
2. — wl| < [[MPp(w)[I/A(Po, Pr, E),

where M denotes the linear mapping corresponding to matriz M.

4. Unique solvability of numerical methods. In this section, we
will apply the previous lemmas to the extended general linear methods
(2.4) and its special cases (2.6), (2.7). This will lead to the unique
solvability of the methods.

With the defined linear mapping, the implicit equations in (2.4) can
be rewritten in a more compact form:

(41)  Qu(Y™) =Y —hCy F(Y™) — Cipy™ ) =0,
where Cy; and Cio are the linear mappings corresponding to the matri-

D)

i ) and Cy2 = (0(12)), respectively, and

ces C11 = ( i
y(nq) _ <y§n—1)’yén—1),m ’y£n71)> ’
Yy = <Y'1(n)’y'2(n)’ . ’Y;(n)> ’

F(Y(n)) = (fl, n(le(n))afZ n();Z(n))’ . 7fs, n(}/;(n))) )

with

fi (Y = f <t§.”), Y Y b g (tg">, {n-o), lfi(nf@) ) ’

q=0
1=1,2,...,s.
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In particular, for the extended Runge-Kutta methods (2.6) we have

Cll =A:= (aij)) C112 = €= (17 la N ’l)Ta y(nil) = Yn;
———

S

and for the extended linear multistep methods (2.7) we have

1
Cu= &, Cr2 = —(—ao,—a1,...,—_1,B80,P1,--+ ,Br-1),
(697 (697
y("fl) = (yn,yn-i—la- . ayn-i—k—lahfnahfn-i—la- . ,hfn-l—k—l),
Y(n) = Un+k;
F(Y(n)) = f(tn+k7yn+k7y’ﬂ+k5m7 hZng(tn+katn+kqayn+kq)>'

q=0

It is clear that the extended general linear method (2.4) has a unique
solution if and only if the equation (4.1) is uniquely solvable. Hence,
in the following, we will say the method (2.4) has a unique solution
whenever the equation (4.1) is uniquely solvable.

Let D be a linear mapping corresponding to the diagonal matrix
D = diag(di,da,...,ds) > 0. Then, for any z = (z1,22,...,Zs),
z = (%1,T2,...,Ts) € X®, it follows from (2.2)—(2.3) that
(42) R(DIF(x) - F@), © )

= Zdi R(fi, n(x:i) — fi, n(Ti), @i —T3)
i=1
< Y dilallei = F|* + Wofllg(t™ 1" 2) — gt 1, F)IP
i=1
< (a+ h?ody?) Z dil|z; — )|
i=1
= (x -7, (a+ RPoviy?)D(z — T)).
This shows that condition (3.2) holds with

M=D, N =hla+hey)D, v(z)=hF(z).
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Taking advantage of Lemmas 3.1 and 3.2, the following theorem can
be obtained.

Theorem 4.1. Assume that there exist a real symmetric matrix
P € R**® and a nonnegative diagonal matriz D € R**® such that one
of the following conditions is fulfilled:

] Py := P — h(a+ h%ov3y?)D > 0,
® { Py := DCyy + CL D - 20T, PCyy > 0;
(i) Py>0, P, > 0;
Py>0, o,>0,D>0
S { (4.2) holds strictly whenever Y™ £ Y (™)
Then the extended general linear method (2.4) for the class GRI(«, 8,0,
v) has at most one solution. If the above condition (i) or (ii) holds,

matric D > 0 and Cy1 is invertible, the extended general linear method
(2.4) for the class GRI (o, B8, 0,7) has a unique solution and its implicit

equation’s solution Y*(n) € X°® satisfies
(43) Y = Yol < [DC Qu(¥o)ll/A(Bo, P1, Cra), VYo € X7,
where DCﬁ1 denotes the linear mapping corresponding to matriz DCfll.

When we set P = ID (I € R) in Theorem 4.1, an interesting
conclusion can be derived as follows.

Corollary 4.2. Assume that C11 is invertible, and there exist a
positive diagonal matrix D = diag(dy,da,... ,ds) and a real number |
such that one of the following conditions are fulfilled:

(i) h(a+h*ov3y?) <1, DCy1 + CHD —21CE, DCyy > 0;
(i) h(a+ h*ovgy®) <1, DCyy + C1{D —21C{;DCyq > 0.
Then the extended general linear method (2.4) for the class GRI(«a, 8,0,

v) has a unique solution and its implicit equation’s solution Y*(n) e X?

satisfies (4.3) with
Py = [l — h(a + h*oviy*)|D, P, = DCy; +C{D —2iC];DCy;.
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Applying Lemma 3.3 to equation (4.1) yields

Theorem 4.3. Assume that X is a finite-dimensional space, matriz
Ci1 # 0 and there exist a positive diagonal matrix D € R***, an
invertible matriz B € R**%, a symmetric matrizv P € R**° and real
numbers a;, b; (i =1,2,3), d with (3.3) such that

3 3
FPy,>0, P >0, Zﬁij >0, Z/b\ijZO,
Jj=1 Jj=1

where Py, Py are indicated in Theorem 4.1 and

P, = DB+ BTD - 2(BTPCy, + CLPB - dCt,PCyy),
P; = d(DB + B*D) — 2B"PB.

Then the extended general linear method (2.4) for the class GRI(«o, 8,0,

v) has a unique solution and its implicit equation’s solution Y*(n) e X?
satisfies

(4.4) 1Y — Cray™ V| < h||DF(Ciay™ V)| /A(Po, P1, Cuy),

where D denotes the linear mapping corresponding to matriz D.

Let R R
Zil:d:2l, agzbgzl, 6320,

by =-202, by,=-I, P=IP, B=P'D,

where P € R¥*¢ is a symmetric-positive-definite matrix and D € R5*¢
is a positive diagonal matrix. Then, by Theorem 4.3 we have

Corollary 4.4. Assume that X is a finite-dimensional space, matriz
Ci1 # 0, and there exist a positive diagonal matriz D € R**°, a
symmetric-positive-definite matriz P € R**® and a real number | such
that _ N

Py :=1P — h(a + h*ov3y*)D > 0,

P, := DCyy + CLD — 21CT PCyy > 0.
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Then the extended general linear method (2.4) for the class GRI(«, 8,0,
v) has a unique solution, and its implicit equation’s solution Y*(n) e X?
satisfies (4.4) with P, = P; (i =0,1).

In particular, when set P = D, the above theorem can be reduced
into a simple criterion.

Corollary 4.5. Assume that X is a finite-dimensional space,
matrix C11 # 0, and there exist a positive diagonal matric D =
diag (dy,ds, ... ,ds) and a real number | such that

h(a+ h2ovdy?) <1, DCyy + CL D —21C{;DCy; > 0.

Then the extended general linear method (2.4) for the class GRI(«, 8, 0,

v) has a unique solution and its implicit equation’s solution Y*(") e X*
satisfies (4.4) with

Py = [l — h(a + h?ov@y?)]D, P, = DCy, +CHLD —21CLDCy;.

Corollary 4.2 is quite similar to Corollary 4.5. The difference be-
tween the two is that the latter can cover the case where Cj; is a
nonzero singular matrix when X is a finite-dimensional space. More-
over, it is interesting that when we apply these two corollaries to the
extended Runge-Kutta methods, respectively, the conclusions obtained
can be viewed as extensions to those in the references [2, 3, 5], where
the unique solvability of Runge-Kutta methods for stiff ODEs was con-
cerned.

Corollary 4.6. Assume that A is invertible, and there exist a positive
diagonal matriz D = diag (dy,da, ... ,ds) and a real number | such that
one of the following conditions is fulfilled:

(i) h(a+h’ov3y?) <1, DA+ ATD-2ATDA > 0;
(ii) h(a+h’orgy?) <1, DA+ ATD-2A"DA > 0.

Then the extended Runge-Kutta method (2.6) for the class GRI (o, 83, o,
v) has a unique solution and its implicit equation’s solution Y*(n) e X*®
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satisfies (4.3) with

{012 =e, Ci1 = A, y b =y,,
Py = [l — h(a + h2013~4%)|D, P, = DA+ ATD — 21ATDA.

Corollary 4.7. Assume that X is a finite-dimensional space,
matrix A # 0, and there exist a positive diagonal matric D =
diag (dy,ds, ... ,ds) and a real number | such that

h(a+ h?ovdy?) <1, DA+ ATD —21ATDA > 0.

Then the extended Runge-Kutta method (2.6) for the class GRI (o, 8, o,

v) has a unique solution and its implicit equation’s solution Y*(n) e X?

satisfies (4.4) with (4.5).

Furthermore, when applying Corollary 4.2 to the extended linear
multistep methods (2.7), we have the following conclusion.

Corollary 4.8. Assume that apfBr # 0, and there exists a real
number [ such that one of the following conditions is fulfilled:

(i) h(a+h?ovgy?) <l Brler — Bil) > 0;
(i) h(a+h?oviy®) <1, PBrlar — Bil) > 0.

Then the extended linear multistep methods (2.7) for the class GRI(«,
B,0,7) has a unique solution y,1r € X, which satisfies

ap
ar — hBk(ak + h2ovgy?)
Vg € X,

[1Qn (o),

etk — <
(4.6) ||y +k CE0||_

where

k—1 k—1
1
On(wo) = wo — hg—zF(xo) “a < Y ojynrg + hZﬁjfnﬂ-),
j=0 j=0
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F(wO) - f(tn—i-ka Z0y Ynt+k—m> hllog(tn-‘rka tn-‘rka 1170)

m
+h Z ng(tn+k7 tn+k7q7 yn+k7q)> .
qg=1

When applying Corollary 4.5 to the extended linear multistep meth-
ods (2.7), the result obtained will be covered by Corollary 4.8, hence
we omit it. In fact, for the extended Runge-Kutta methods and the
extended linear multistep methods, besides the above-presented results
we may also get more general results by application of Theorem 4.1,
Theorem 4.3 and Corollary 4.4. Since the general results will involve
only some changes in the symbols for those of the extended general
linear methods, it is unnecessary to rewrite them.

5. An illustration with concrete examples. In order to give
an illustration for the results obtained, we consider several concrete
examples as follows.

Example 5.1. Consider an extended Runge-Kutta method com-
posed by the two-stage four-order Gauss method

1 V3 1 1 V3

6 1 4 6

1
(5.1) 6 6 1
| 1 1
2 2
with the four-order compound Simpson quadrature rule
n h n
zi" = 319(tn +cihtn + csh, Y™
m/2
+ 4 Zg(tn + th, tn—2q+1 + th, Yj(n—2q+1))
g=1
(5.2) (m—2)/2

+2 Z g(tn + C]'h, tnfzq + th, ij(n72q))
qg=1

+9(tn + cjhytn—m + cjh, Yj(nim))]a
7=12; m>4.
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For the above method, one easily verifies that matrix

( 1 1_ﬁ>
A= Z! 4776
b

is invertible. Moreover, when we set D = diag (1,7 — 4v/3), Cooper [6]
has shown that

DA+ ATD —21ATDA >0 if and only if < 3,

where DA + ATD — 21ATDA = 0 if and only if [ = 3. Hence,
by Corollary 4.6, we know that the method (5.1)—(5.2) for the class
GRI (o, 8,0,7) has a unique solution and its implicit equation’s solu-

tion Y, € X2 satisfies (4.3) with (4.5), whenever
1 1
h(a + §h20’yz> <l<3or h(a + §h20’y2> <l<3.
It is well known that the above-mentioned Gauss method is alge-

braically stable. In fact, our result is also applicable for the methods
that are not algebraically stable. The following is just such an example.

Example 5.2. Consider the extended Runge-Kutta method com-
posed by the two-stage third order method (cf. [3])

115 L
6 | 42 21
3|1, 3
(53) 4|28 14

with the three-order compound Gregory rule
z" = %[59(% +cihytn + cih, Vi)
+13g(tn + cjhy tuy +c;h, Y, V)
(5.4) +12 mZ_Zg(tn + cjhytn—q + cjh, Y]-("_q))

q=2
+13g(tn + ¢jhy tn—mir + b, YY)
+59(tn + ity + R, Y], G =1,2.
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Although the underlying method (5.3) is not algebraically stable and
det (A) = 0, we still give the unique solvability criteria of the extended
method on a finite-dimensional space X. Set D = diag (1, (4/45)); it
can be shown that

DA+ ATD —21ATDA >0 if and only if I < 3.

Therefore, we conclude from Corollary 4.7 that the method (5.3)—(5.4)
for the class GRI(a,f,0,7) has a unique solution, and its implicit

equation’s solution Y\ € X? satisfies (4.4) with (4.5), whenever

25 5 o
- < 3.
h<a+144h 0")/><l_3

In the end, we give an example for the extended linear multistep
methods.

Example 5.3. Consider an extended linear multistep method which
composed by the two-step second order BDF method and the com-
pound trapezoidal rule:

2 4 1
(5.5) Ynt2 = ghf(tn+2ayn+27yn+2fm; Z(n)) + gyn+1 - gym

where z(") is computed by the compound trapezoidal rule:
m—1

h
2 = 5 |:g(tn+2atn+27yn+2) +2 Z 9(tnt2 tnt2—q, Yn—q+2)
(56) g=1

+ g(tn+27 tn+27m7 yn7m+2):| -

Since for the method (5.5) it holds that

Ba(ce —1B2) >0 if and only if [ <

NO| o

where By(az — I82) = 0 if and only if [ = 3/2, it follows from
Corollary 4.8 that the method (5.5)—(5.6) for the class GRI (e, 3, 0,7)
has a unique solution y,+r € X with (4.6), whenever

3

h(a—i— %h2072> << ; or h(a+ %h2072> <l< 2"
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