WEAKLY SINGULAR INTEGRAL OPERATORS AS MAPPINGS BETWEEN FUNCTION SPACES

JORGE PUNCHIN

ABSTRACT. Weakly singular integral operators K are investigated as mappings between function spaces of the Hilbert-Sobolev type defined on Riemannian manifolds M_n with boundary ∂M_n . The results obtained from this analysis are applied to the determination of function spaces for which the Fredholm integral equation of the first kind, Ku = f, admits solutions, and conditions on these function spaces are studied for which the boundary value problem Ku = f in $M_n, u = g$ on ∂M_n has meaning.

1. Introduction. Let Ω_n be a bounded and open subset of \mathbf{R}_n , lying on one side of its boundary. The boundary of Ω_n , denoted by $\partial\Omega_n$, will be considered to be an infinitely differentiable manifold of dimension n-1.

Let K be the weakly singular integral operator K defined on the Sobolev space $H^s(\Omega_n), s \in \mathbf{R}$, by

$$(Ku)(x)=\int_{\Omega_n}k(x,y)u(y)dy,$$

where $0 \le \alpha < n$ and $k(x, y) = 1/|x - y|^{\alpha}$.

The main purpose of this paper is to establish properties of weakly singular integral operators K as mappings between function spaces of the Hilbert-Sobolev type, and apply them to the study of the boundary value problem:

(1.1)
$$Ku = f \text{ in } \Omega_n$$

(1.2)
$$u = g \text{ on } \partial \Omega_n.$$

The action of K on certain subspaces H of $H^s(\Omega_n)$ is characterized, and these subspaces are shown to be mapped by K into $H^p(\Omega_n), q < 0$ $(n-\alpha)+s$. The function space of the boundary values of Ku for $u \in H$ is then determined.

The mapping properties of weakly singular integral operators K are shown to remain the same in the case when the function spaces are defined on Riemannian manifolds M_n with boundary ∂M_n , where M_n is assumed to be orientable, imbedded in \mathbf{R}_{n+1} , and homotopically equivalent to the unit ball D_n in \mathbf{R}_n with homotopy equivalence $\phi \in C^{\infty}(D_n)$.

2. Preliminary results.

LEMMA 2.1. The function $u(\xi) = (1 + |\xi|^2)^{s/2} \in L^2(\mathbf{R}_n)$ for all s < -n/2.

PROOF.

$$||u||_{L^{2}(\mathbf{R}_{n})} = \left(\int_{\mathbf{R}_{n}} |u(\xi)|^{2} d\xi\right)^{1/2} = \left(\int_{\mathbf{R}_{n}} |1+|\xi|^{2}|^{s} d\xi\right)^{1/2} < \infty$$

if and only if s < -n/2. $\Box 0$

LEMMA 2.2. Let Δ be the Laplace operator in *n* variables. The fundamental solution γ of the operator $(1 - \Delta)$ is in $H^{s+2}(\mathbf{R}_n)$ for all s < -n/2.

PROOF. $(1 - \Delta)\gamma = \delta \Rightarrow (1 + |\xi|^2)\hat{\gamma} = 1 \Rightarrow \hat{\gamma} = 1/(1 + |\xi|^2)$. Lemma 2.1 $\Rightarrow (1 + |\xi|^2)^{(s+2)/2}\hat{\gamma} \in L^2(\mathbf{R}_n)$ for all $s < -n/2 \Rightarrow \gamma \in H^{s+2}(\mathbf{R}_n)$ for all s < -n/2. $\Box 0$

The following result can be found in [3].

LEMMA 2.3. If $f \in H^s(\mathbf{R}_n)$ and $g \in H^t_0(\mathbf{R}_n)$, where s and t are arbitrary real numbers, then $f * g \in H^{s+t+(n/2)}_{loc}(\mathbf{R}_n)$.

LEMMA 2.4. Let $f(x) = |x|^{-\alpha}$ where $0 \le \alpha < n$ and $x \in \mathbf{R}_n$. Then $f \in H^s(\mathbf{R}_n)$ for all $s < (n/2) - \alpha$.

PROOF. $\hat{f}(\xi) = 2^{n-\alpha} \pi^{n/2} \Gamma < ((n-\alpha)/2)/\Gamma(\alpha/2))(1/|\xi|^{n-\alpha})$ (see [2]). Then

$$(1+|\xi|^2)^{s/2} \cdot \hat{f}(\xi) = 2^{n-\alpha} \pi^{n/2} \frac{\Gamma((n-\alpha)/2)}{\Gamma(\alpha/2)} \cdot (1+|\xi|^2)^{s/2} \cdot \frac{1}{|\xi|^{n-\alpha}}.$$

Lemma 2.1 implies $(1 + |\xi|^2)^{s/2} \cdot \hat{f}(\xi) \in L^2(\mathbf{R}_n)$ if $s - n + \alpha < -n/2$, i.e., $s < (n/2) - \alpha$. This implies $f \in H^s(\mathbf{R}_n)$ for all $s < (n/2) - \alpha$. $\Box 0$

LEMMA 2.5. Let

$$\chi_{\Omega_n}(y) = \begin{cases} 1 & \text{if } y \in \overline{\Omega}_n \\ 0 & \text{if } y \in \mathbf{R}_n - \overline{\Omega}_n \end{cases}$$

Then $\chi_{\Omega_n} \in H^s(\mathbf{R}_n)$ for all s < 1/2.

PROOF. Case 1. Let n = 2 and let Ω_2 be the unit disc. Let $x = (x_1, x_2) \in \Omega_2$ and $\xi = (\xi_1, \xi_2) \in \mathbf{R}_2$. Then $\hat{\chi}_{\Omega_2}(\xi) = \int_{\Omega_2} \int e^{-i(\xi, x)} dx = \int_{\Omega_2} \int e^{-i[\xi_1 x_1 + \xi_2 x_2]} dx_1 dx_2$. Using polar coordinates: $x_1 = r\cos\theta, x_2 = r\sin\theta$, we have $\hat{\chi}_{\Omega_2}(\xi) = \int_0^{2\pi} \int_0^1 e^{-ir|\xi|\cos(\alpha-\theta)} r dr d\theta$ where $\xi_1 = |\xi| \cos \alpha$ and $\xi_2 = |\xi| \sin\alpha$.

Consider the generating function for Bessel's functions of integral order (see [5]):

$$e^{(z/2)(t-1/t)} = \sum_{m=-\infty}^{\infty} J_m(z)t^m.$$

Letting $t = e^{-i(\theta + \pi/2)}$, we obtain

$$e^{-iz\sin(\theta+\pi/2)} = e^{-iz}\cos\theta = \sum_{m=-\infty}^{\infty} J_m(z)e^{-im(\theta+\pi/2)}.$$

Using this and Fubini's theorem, we get

$$\begin{split} \hat{\chi}_{\Omega_2}(\xi) &= \int_0^1 \Big(\sum_{m=-\infty}^\infty \int_0^{2\pi} J_m(r|\xi|) e^{-im[\alpha-\theta+\pi/2]} d\theta \Big) r dr \\ &= \int_0^1 \Big(\sum_{m=-\infty}^\infty J_m(r|\xi|) \int_0^{2\pi} e^{-im[\alpha-\theta+\pi/2]} d\theta \Big) r dr \\ &= 2\pi \int_0^1 J_0(r|\xi|) r dr. \end{split}$$

The last equality follows since $\int_0^{2\pi} e^{-im[\alpha-\theta+\pi/2]} d\theta = 0$ for all $m \neq 0$. Letting $y = r|\xi|$, we get $rdr = ydy/|\xi|^2$, and hence

$$2\pi \int_0^1 J_0(r|\xi|) r dr = \frac{2\pi}{|\xi|^2} \int_0^{|\xi|} J_0(y) y dy$$

From the recursion formula $J'_n(x) = J_{n-1}(x) - \frac{n}{x}J_n(x)$, we have

$$J_{1}'(x) = J_{0}(x) - \frac{1}{x}J_{1}(x)$$

$$\Rightarrow J_{1}'(x) + \frac{1}{x}J_{1}(x) = J_{0}(x)$$

$$\Rightarrow xJ_{1}'(x) + J_{1}(x) = xJ_{0}(x)$$

$$\Rightarrow (xJ_{1}(x))' = xJ_{1}'(x) + J_{1}(x) = xJ_{0}(x)$$

Hence,

$$\frac{2\pi}{|\xi|^2} \int_0^{|\xi|} J_0(y) \cdot y dy = \frac{2\pi}{|\xi|^2} \Big(|\xi| \cdot J_1(|\xi|) \Big)$$
$$= \frac{2\pi}{|\xi|} \cdot J_1(|\xi|) = \frac{2\pi}{|\xi|} \Big(\frac{\sqrt{2}}{\sqrt{\pi}\sqrt{|\xi|}} \Big) \Big(\cos\Big(|\xi| - \frac{\pi}{2} - \frac{\pi}{4}\Big) + 0(|\xi|^{-1}) \Big).$$

Using the symbol "~" to denote asymptotic behavior in the variable ξ , we have

$$(1+|\xi|^2)^{s/2}\hat{\chi}_{\Omega_2}(\xi) \sim (1+|\xi|^2)^{s/2} \cdot \frac{1}{|\xi|^{3/2}}.$$

Then Lemma 2.1 \Rightarrow $(1 + |\xi|^2)^{s/2} \hat{\chi}_{\Omega_2}(\xi) \in L^2(\mathbf{R}_2)$ for all s such that s - 3/2 < -1, and this implies $\chi_{\Omega_2}(y) \in H^s(\mathbf{R}_2)$ for all s < 1/2.

Case 2. Let Ω_2 be any bounded, open subset of \mathbf{R}_2 with boundary $\partial \Omega_2$.

By enclosing $\partial \Omega_2$ between two circles and using Case 1, we arrive at the same result.

Case 3. Let Ω_n be a bounded and open subset of \mathbf{R}_n , lying on one side of its boundary $\partial \Omega_n$, an infinitely differentiable manifold of dimension n-1.

The asymptotic behavior of $\hat{\chi}_{\Omega_n}(\xi)$ in the variable ξ is given by $\hat{\chi}_{\Omega_n}(\xi) \sim 1/|\xi|^{(n+1)/2}$. This implies $\chi_{\Omega_n} \in H^s(\mathbf{R}_n)$ for all s such that s - ((n+1)/2) < -n/2, i.e., for all s such that s < 1/2. $\Box 0$

LEMMA 2.6. Let
$$v_p(y) = \chi_{\Omega_n}(y) \cdot e^{\langle p, y \rangle}$$
. Then:
(i) $v_p \in H^s(\mathbf{R}_n)$ for all $s < 1/2$,
(ii) $v_p \in N(1 - \Delta) \cap H^s(\mathbf{R}_n)$ for all $s < 1/2$ and if $|p|^2 = 1$.

PROOF.

(i).

$$\begin{split} \hat{v}_p(\xi) &= \int_{\mathbf{R}_n} v_p(y) e^{-i \langle y, \xi \rangle} dy = \int_{\mathbf{R}_n} \chi_{\Omega_n}(y) e^{\langle y, p \rangle} e^{\langle y, i\xi \rangle} dy \\ &= \int_{R_n} \chi_{\Omega_n}(y) e^{\langle y, p+i\xi \rangle} dy = \int_{R_n} \chi_{\Omega_n}(y) e^{\langle y, i(\xi-ip) \rangle} dy \\ &= \int_{\mathbf{R}_n} \chi_{\Omega_n}(y) e^{-i \langle y, \xi-ip \rangle} dy = \hat{\chi}_{\Omega_n}(\xi-ip). \end{split}$$

Therefore,

$$\hat{v}_p(\xi)(1+|\xi|^2)^{s/2} = \hat{\chi}_{\Omega_n}(\xi-ip)(1+|\xi|^2)^{s/2} \sim 1/|\xi-ip|^{(n+1)/2}.$$

$$(1+|\xi|^2)^{s/2}.$$

Lemma 2.1 $\Rightarrow \hat{v}_p(\xi) \cdot (1 + |\xi|^2)^{s/2} \in L^2(\mathbf{R}_n)$ for all s such that s - ((n+1)/2) < -n/2, i.e., for all s < 1/2. Hence, $v_p \in H^s(\mathbf{R}_n)$ for all s < 1/2.

(ii). This is immediate from (i) and because $|p|^2 = 1 \Rightarrow v_p \in N(1-\Delta)$. $\Box 0$

LEMMA 2.7. Let f be defined by $f(x) = |x|^{-\alpha}, 0 \le \alpha < n$, for $x \in \mathbf{R}_n$. Let $v_p(y) = \chi_{\Omega_n}(y) \cdot e^{< p, y >}$. If $w_p(x) = f * v_p$ then $w_p \in H^s(\mathbf{R}_n)$ for all $s < (n - \alpha) + (1/2)$.

PROOF. $\hat{w}_p(\xi) = \hat{f}(\xi) \cdot \hat{v}_p(\xi) = \hat{f}(\xi) \cdot \hat{\chi}_{\Omega_n}(\xi - ip)$. Lemmas 2.4 and 2.5 imply

$$\hat{w}_p(\xi) = \hat{f}(\xi) \cdot \hat{\chi}_{\Omega_n}(\xi - ip) \sim \frac{1}{|\xi|^{n-\alpha}} \cdot \frac{1}{|\xi - ip|^{(n+1)/2}}.$$

Then Lemma 2.1 implies

$$(1+|\xi|^2)^{s/2} \cdot \hat{w}_p(\xi) \in L^2(\mathbf{R}_n)$$

for all s such that $s - n + \alpha - ((n + 1)/2 < -n/2)$, i.e., for all $s < (n - \alpha) + (1/2)$.

3. Singular integral operators on subspaces of $H^{s}(\Omega_{n})$.

LEMMA 3.1. Let $v_p(y) = \chi_{\Omega_n}(y) \cdot e^{\langle p, y \rangle}$. The operator K maps $v_p \in N(1-\Delta) \cap H^s(\mathbf{R}_n), s < 1/2$ and $|p|^2 = 1$, into $Kv_p \in H^q(\mathbf{R}_n)$ for all $q < (n-\alpha) + (1/2)$.

PROOF. Let $w_p = Kv_p$. Then $w_p(x) = (Ke^{\langle p,y \rangle})(x) = \int_{\Omega_n} f(x - y)e^{\langle p,y \rangle} dy = f * v_p$ implies, by Lemma 2.7, that $w_p \in H^q(\mathbf{R}_n)$ for all $q < (n - \alpha) + (1/2)$. \square

LEMMA 3.2. If $u \in H_0^s(\Omega_n)$, then $Ku \in H_{loc}^q(\mathbf{R}_n)$ for all $q < (n-\alpha) + s$.

PROOF. Since $u \in H_0^s(\Omega_n)$, we can write Ku = f * u. Lemma 2.4 implies $f \in H^t(\mathbf{R}_n)$ for all $t < (n/2) - \alpha$. Lemma 2.3 implies $Ku = f * u \in H_{\text{loc}}^{s+t+(n/2)}(\mathbf{R}_n)$ for all $t < (n/2) - \alpha$, i.e., $Ku \in H_{\text{loc}}^q(\mathbf{R}_n)$ for all q such that $q = s+t+(n/2) < s+((n/2)-\alpha)+(n/2) = (n-\alpha)+s$.

In order to analyze the existence and nature of the boundary values of the image of $u \in H^s(\Omega_n)$ under the operator K, the action of Kon certain subspaces \mathcal{H} of $H^s(\Omega_n)$ is studied, and these subspaces are shown to be mapped by K into $H^q(\Omega_n), q < (n-\alpha) + s$. The function space of the boundary values of Ku for $u \in H$ is then determined.

308

A few terms needed in the sequel are introduced in the following definitions.

DEFINITION 3.1. Consider the equation $(1 - \Delta)u = u_0$. If $u \in N(1 - \Delta)$ in $\overline{\Omega}_n^c$ takes on boundary values $\phi = (\gamma_0 u, \gamma_1 u)^T = (u|_{\partial\Omega_n}, -\frac{\partial u}{\partial n}|_{\partial\Omega_n})^T = (\phi_1, -\phi_2)^T$ on $\partial\Omega_n$, then u is said to be outgoing with respect to $\partial\Omega_n$ if $u = 1/2L(\phi)$, where $L(\phi)$ is expressed in terms of the single layer operator S and the double layer operator D by $L(\phi) = D\phi_1 - S\phi_2$.

DEFINITION 3.2. Let u be a function that takes on boundary values $\phi = (u_+|_{\partial\Omega_n}, -\frac{\partial u}{\partial n_+}|_{\partial\Omega_n})^T$ on $\partial\Omega_n$. Then u is said to be incoming with respect to $\partial\Omega_n$, if $u \in N(1-\Delta)$ in Ω_n and $u = -1/2L(\phi)$.

DEFINITION 3.3. Let the operator Γ be defined by $\Gamma = \begin{pmatrix} K & Q \\ -\tilde{Q} & -K^T \end{pmatrix}$ where, for $\gamma(x) = (\Gamma(n/2)/\pi^{n/2}) \cdot (e^{ik|x|}/|x|^{(n-1)/2}),$

$$\begin{split} & K\theta = \text{P.V.} \int_{\partial\Omega_n} \frac{\partial}{\partial n_y} \gamma(x-y) \theta(y) d\omega_y, \\ & K^T\theta = \text{P.V.} \int_{\partial\Omega_n} \frac{\partial}{\partial n_x} \gamma(x-y) \theta(y) d\omega_y, \end{split}$$

$$\begin{split} Q\theta &= \text{P.V.} \int_{\partial\Omega_n} \gamma(x-y)\theta(y)d\omega_y, \\ \tilde{Q}\theta &= \text{P.V.} \int_{\partial\Omega_n} \frac{\partial^2}{\partial n_x \partial n_y} \gamma(x-y)\theta(y)d\omega_y \end{split}$$

For the properties of the above operators, see [4]. The proof of the following lemma can be found in [3].

LEMMA 3.3.

(i) u is outgoing in Ω_n with respect to $\partial \Omega_n$ if and only if the boundary values ϕ satisfy $(-I + \Gamma)\phi = 0$.

(ii) u is incoming with respect to $\partial \Omega_n$ if and only if $(I + \Gamma)\phi = 0$.

(iii) if u takes on boundary ϕ where $u \in N(1 - \Delta)$, then $\phi = 1/2(I + \Gamma)\phi + 1/2(I - \Gamma)\phi$.

DEFINITION 3.4. $u \in N(1-\Delta) \cap H^s(\Omega_n)$ will be said to have smooth boundary values if the image of u under the trace operators γ_j is in $H^{\infty}(\partial\Omega_n) = \bigcap_{s \in \mathbf{R}} H^s(\partial\Omega_n) \subset \mathbf{C}^{\infty}(\partial\Omega_n).$

LEMMA 3.4. If K is defined on $H^s(\Omega_n)$ by $(Ku)(x) = \int_{\Omega_n} k(x, y)u(y)dy$, then the transpose of K, denoted K^T , is defined on $(H^q(\Omega_n))'$ by

$$(K^T v)(x) = \int_{\Omega_n} \overline{k(y,x)} v(y) dy, \text{ where } q < (n-\alpha) + s.$$

Furthermore, $K^T : H_0^{\sigma}(\Omega_n) \to H_{loc}^{\sigma'}(R_n)$ for all $\sigma' < \sigma + n - \alpha$.

PROOF. Let $u \in H^s(\Omega_n)$ be such that $Ku \in H^q(\Omega_n), q < (n-\alpha) + s$. Let $v \in (H^q(\Omega_n))' = H_0^{-q}(\Omega_n)$. Then

$$\begin{split} \langle K^T v, u \rangle_{\Omega_n} &= \langle v, Ku \rangle_{\Omega_n} = \int_{\Omega_n} \int_{\Omega_n} \overline{k(x, y)} \,\overline{u(y)} v(x) dx dy \\ &= \int_{\Omega_n} \overline{u(y)} \Big(\int_{\Omega_n} \overline{k(x, y)} v(x) dx \Big) dy \\ &= \int_{\Omega_n} \overline{u(x)} \Big(\int_{\Omega_n} \overline{k(y, x)} v(y) dy \Big) dx \\ &\Rightarrow (K^T v)(x) = \int_{\Omega_n} \overline{k(y, x)} v(y) dy. \end{split}$$

In our case, $k(x,y) = 1/|x - y|^{\alpha} = \overline{k(y,x)}$. Hence Lemma 3.2 $\Rightarrow K^T : H_0^{\sigma}(\Omega_n) \to H_{loc}^{\sigma'}(\mathbf{R}_n)$ for all $\sigma' < \sigma + n - \alpha$. \Box

REMARK. As a matter of convenience, the following notation will be used: $\langle f, g \rangle_{\Omega_n} = \int_{\Omega_n} f(x)g(x)d\omega(x)$, where ω is a measure on Ω_n , shall indicate the inner product of two elements f and g in some Hilbert function space defined on the set Ω_n .

 $B^s, s \in \mathbf{R}$, shall denote the cross-product space $H^{s-1/2}(\partial \Omega_n) \times H^{s-3/2}(\partial \Omega_n)$ of Sobolev spaces defined on the boundary $\partial \Omega_n$ of Ω_n .

 B_{-}^{s} shall denote the space of boundary values of incoming functions taking on boundary values in B^{s} . Likewise, B_{+}^{s} shall denote the space of boundary values of outgoing functions taking on boundary values in B^{s} .

THEOREM 3.1. Let $u \in N(1 - \Delta) \cap H^s(\Omega_n)$, $s \in \mathbf{R}$, be incoming with respect to $\partial \Omega_n$. Then $Ku \in H^q(\Omega_n)$ for all $q < (n - \alpha) + s$.

PROOF. Let ϕ denote the boundary values of u on $\partial\Omega_n$. From Lemma 3.4, we have $K^T : H_0^{\sigma}(\Omega_n) \to H_{\text{loc}}^{\sigma'}(\mathbf{R}_n)$ for all $\sigma' < \sigma + n - \alpha$. Let $p \in H_0^{-q}(\Omega_n)$ where $-q > (\alpha - n) - s$. Then $K^T p \in H_{\text{loc}}^{\sigma'}(\mathbf{R}_n)$ for all $\sigma' < (-q) + n - \alpha$.

In particular, $-s < (-q) + n - \alpha$ implies

(3.1)
$$K^T p \in H^{-s}_{\text{loc}}(\mathbf{R}_n).$$

Let $\eta = \phi K^T p$ where $\phi = 1$ on $\overline{\Omega}_n$ and $\phi \in C_0^\infty(\mathbf{R}_n)$. Then

(3.2)
$$\eta \in H_0^{-s}(\mathbf{R}_n).$$

Let γ be the fundamental solution of $(1-\Delta)$ such that $\hat{\gamma}(\xi) = 1/1 + |\xi|^2$. We then have

(3.3)
$$\gamma \in H^t(\mathbf{R}_n) \text{ for all } t < 2 - (n/2).$$

From (3.2), (3.3), and Lemma 2.3, we obtain

$$\gamma * \eta \in H^{t-s+(n/2)}_{\text{loc}}(\mathbf{R}_n) \quad \text{ for all } t < 2 - (n/2)$$

and

(3.4)
$$\gamma * \eta \in H^{2-s}_{\text{loc}}(R_n).$$

Let $v = \gamma^* \eta$ and let ψ denote the boundary values of v on $\partial \Omega_n$. Since $u \in N(1 - \Delta)$ is incoming with respect to $\partial \Omega_n$, we have $(I + \Gamma)\phi = 0$. Hence $\phi = 1/2(I + \Gamma)\phi + 1/2(I - \Gamma)\phi = 1/2(I - \Gamma)\phi$ and $[\phi, \psi] = [1/2(I - \Gamma)\phi, \psi] = [\phi, 1/2(I + \Gamma)\psi]$. Therefore $\psi = 1/2(I + \Gamma)\psi$. This implies $v = \gamma * \eta$ is outgoing in $\overline{\Omega}_n^c$ with respect to $\partial \Omega_n$ since

 $1/2(-I+\Gamma)\psi = 0$. Hence, $v \in N(1-\Delta) \cap H^{2-s}_{\text{loc}}(\overline{\Omega}_n^c)$ takes on boundary values $\psi \in B^{2-s}_+ = H^{(3/2)-s}(\partial\Omega_n) \times H^{(1/2)-s}(\partial\Omega_n)$ by the trace theorem (see [7, pp. 41-43] or [1, pp. 189-200]).

Case 1. s > 1/2. The trace theorem implies $\phi \in B^s = H^{s-1/2}(\partial\Omega_n) \times H^{s-3/2}(\partial\Omega_n)$. We also have $(\Delta - 1)u = 0$ and $(\Delta - 1)v = \eta$ in Ω_n . Then $\langle \Delta v, u \rangle_{\Omega_n} - \langle u, v \rangle_{\Omega_n} = \langle u, \eta \rangle_{\Omega_n} = \langle u, \eta \rangle_{\Omega_n}$ and $\langle \Delta u, v \rangle_{\Omega_n} - \langle u, v \rangle_{\Omega_n} = \langle 0, v \rangle_{\Omega_n} = 0$ implies $\langle \Delta v, u \rangle_{\Omega_n} - \langle \Delta u, v \rangle_{\Omega_n} = \langle u, \eta \rangle_{\Omega_n}$.

Green's theorem implies $\langle u,\eta\rangle_{\Omega_n} = \int_{\partial\Omega_n} \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right)d\omega$, i.e., $\langle u,\eta\rangle_{\Omega_n} = \int_{\partial\Omega_n} (\phi_1\psi_2 - \psi_1\phi_2)d\omega$. We use the notation $[\phi,\psi]$ to denote the functional on $\partial\Omega_n$ defined by the boundary integral. Then $\langle Ku,p\rangle_{\Omega_n} = \langle u,K^Tp\rangle_{\Omega_n} = \langle u,\eta\rangle_{\Omega_n} = [\phi,\psi]$. By transposition (see [6, p. 164] or [7, p. 166]), $Ku \in (H^{-q}(\Omega_n))' = H^q(\Omega_n), q < (n-\alpha) + s$.

Case 2. $s \leq 1/2$. If ϕ is smooth, then we have $\langle Ku, p \rangle_{\Omega_n} = \langle u, \eta \rangle_{\Omega_n} = [\phi, \psi]$, and, by transposition, $Ku \in (H_0^{-q}(\Omega_n))' = H^q(\Omega_n), q < (n-\alpha) + s$.

If ϕ is not smooth, let ϕ_{ν} be a sequence of smooth boundary values of $u_{\nu} \in N(1-\Delta) \cap H^{s}(\Omega_{n})$ converging to ϕ in the Hilbert space B^{s} , and where u_{ν} converges to u in $H^{s}(\Omega_{n})$. Such a sequence of smooth boundary values ϕ_{ν} exists since $H^{\infty}(\partial\Omega_{n})$ is dense in $H^{s}(\Omega_{n})$ and B^{∞} is dense in B^{s} .

We have $(\Delta - 1)u_{\nu} = 0$ and $(\Delta - 1)v = \eta$ in Ω_n . Green's theorem implies $\langle u_{\nu}, \eta \rangle_{\Omega_n} = [\phi_{\nu}, \psi]$. But $[\phi_{\nu}, \psi] \to [\phi, \psi]$ and $\langle u_{\nu}, \eta \rangle_{\Omega_{\eta}} \to \langle u, \eta \rangle_{\Omega_n}$ as $\nu \to +\infty$ implies $\langle u, \eta \rangle_{\Omega_n} = [\phi, \psi]$.

Hence, $\langle Ku, p \rangle_{\Omega_n} = \langle u, K^T p \rangle_{\Omega_n} = \langle u, \eta \rangle_{\Omega_n} = [\phi, \psi]$. By transposition, $Ku \in (H_0^{-q}(\Omega_n))' = H^q(\Omega_n), q < (n-\alpha) + s$. \Box

THEOREM 3.2. Let $u \in N(1 - \Delta) \cap H^s(\Omega_n)$ be incoming with respect to $\partial \Omega_n$. Let ϕ denote the boundary values of u on $\partial \Omega_n$, and let ψ denote the boundary values of Ku on $\partial \Omega_n$. Then $\psi \in B^q$, for all $q < (n-\alpha)+s$.

PROOF. By Theorem 3.1, we have that $Ku \in H^q(\Omega_n)$ for all $q < (n-\alpha) + s$.

Case 1. If q > 1/2, then the trace theorem implies Ku has boundary values $\psi \in B^q$.

Case 2. If $q \leq 1/2$, then $2 - q \geq 3/2$. By definition, there exists $v \in H^q_{\text{loc}}(\mathbf{R}_n)$ such that $Ku = r_{\Omega_n}v$. If γ is the fundamental solution of $(1-\Delta)$ such that $\gamma \in H^t(\mathbf{R}_n)$ for all t < 2 - (n/2), then there exists $w \in H^{q-2}_0(\mathbf{R}_n)$ such that $v = \gamma * w$.

Let ψ_1 denote the boundary values of $\gamma * w$. Let $\phi \in N(1 - \Delta) \cap H^{2-q}(\Omega_n)$ take on boundary values χ . Since $2 - q \geq 3/2$, the trace theorem implies $\chi \in B^{2-q}$. Since $(\Delta - 1)v = w$ and $(\Delta - 1)\phi = 0$ on Ω_n , an application of Green's theorem yields

(3.5)
$$\langle \phi, w |_{\Omega_n} \rangle = [\chi, \psi_1],$$

where $\phi \in N(1-\Delta) \cap H^{2-q}(\Omega_n), w \in H_0^{q-2}(\mathbf{R}_n), \chi \in B^{2-q}$, and ψ_1 denotes the boundary values of $\gamma * w$ on $\partial \Omega_n$. From (3.5), we have that $\psi_1 \in B^q$. But v takes on boundary values ψ_1 , and since Ku and v take on the same boundary values on $\partial \Omega_n$, we have that $\psi = \psi_1 \in B^q$. \Box

THEOREM 3.3. Let $H_{\overline{\Omega}_n}^{-q}(\mathbf{R}_n) = \{f/f \in H^{-q}(\mathbf{R}_n), f \text{ with support in } \overline{\Omega}_n\}$. Then $K^T : H_{\overline{\Omega}_n}^{-q}(\mathbf{R}_n) \to (H^s(\Omega_n))'$ for all s such that $-s < -q + (n - \alpha)$.

PROOF. Let $u \in N(1 - \Delta) \cap H^s(\Omega_n)$. Using the same notation and terminology as in the proof of Theorem 3.1, and using the fact that there exists a $w \in H^q(\mathbf{R}_n)$ such that $Ku = r_{\Omega_n} w$, we have

(3.6)
$$\langle Ku, p \rangle_{\Omega_n} = \langle r_{\Omega_n} w, p \rangle_{\Omega_n} = \langle w, r_{\Omega_n}^T p \rangle \mathbf{R}_n = \langle Ku, r_{\Omega_n}^T p \rangle_{\overline{\Omega}_n} = \langle u, K^T r_{\Omega_n}^T p \rangle_{\overline{\Omega}_n},$$

where $r_{\Omega_n}^T$ is an isomorphism of $H_0^{-q}(\Omega_n) = (H^q(\Omega_n))'$ onto $H_{\Omega_n}^{-q}(\mathbf{R}_n)$, i.e., $r_{\Omega_n}^T$: $H_0^{-q}(\Omega_n) \rightarrow H_{\overline{\Omega}_n}^{-q}(\mathbf{R}_n)$ (see [7]). But (3.6) implies $K^T r_{\Omega_n}^T p H_0^{-s}(\Omega_n) = (H^s(\Omega_n))'$. We conclude that $K^T : H_{\overline{\Omega}_n}^{-q}(\mathbf{R}_n) \rightarrow H_0^{-s}(\Omega_n)$ where $q < (n-\alpha) + s$, or equivalently, $-s < -q + (n-\alpha)$.

COROLLARY. K maps $H^s_{\overline{\Omega}_n}(\mathbf{R}_n)$ into $H^q_0(\Omega_n)$ for all $q < (n-\alpha) + s$.

Of importance in the study of the boundary value problems for differential operators defined on a domain Ω is the determination of spaces of functions defined on the boundary of Ω containing the traces $\gamma_0 u = u|_{\partial\Omega}$ of functions u in $H^s(\Omega)$. The problem of characterizing the image of $H^s(\Omega)$ under the operator $\gamma_0 : u \to u|_{\partial\Omega}$ has been studied by many authors; for example Lions [6]. This idea is extended to the boundary value problem (1.1), (1.2) for the weakly singular integral operator K, where the Fredholm integral equation of the first kind

$$(3.7) Ku = f$$

is considered.

The problem of existence of solutions of (3.7) is considered by viewing the operator K as a mapping between function spaces, and the results of this paper show that if equation (3.7) has a solution u for given $f \in H^q(\Omega_n), q < (n-\alpha) + s$, then the solution u must be in $H^s(\Omega_n)$.

In addition, the boundary value problem (1.1), (1.2) has meaning in the following sense.

If (1.1) has solutions for $f \in \mathcal{F} = H^q(\Omega_n), q < (n - \alpha) + s$, then the set of solutions

$$\mathcal{U} = \{ u = K^{-1}f + u_0 : Ku_0 = 0 \} \subset H^s(\Omega_n)$$

must take on boundary values in the set

 $\mathcal{G} = \{g = g_1 + g_0 : g_1 \text{ is the boundary value of } K^{-1}f \\ \text{and } g_0 \text{ is the boundary value of } u_0 \text{ on } \partial\Omega_n\} \\ \subset H^{s-(1/2)}(\partial\Omega_n).$

Hence, if (1.1), (1.2) is to have a solution $u \in \mathcal{U}$ for given $f \in \mathcal{F}$, then $g \in \mathcal{G}$.

On the other hand, if we let $g \in \mathcal{G} = H^{s-(1/2)}(\partial \Omega_n)$ and require (1.2) to be satisfied by solutions of (1.1) which are in the set

 $\mathcal{U} = \{ u_{\alpha} : Ku_{\alpha} = f, u_{\alpha} \text{ takes on the boundary value } g, \text{ and } \\ \text{is in some indexing set } A \} \subset H^{s}(\Omega_{n}), \text{ then } F = \{ f : f = \\ \sum_{\alpha \in A} a_{\alpha} Ku_{\alpha}, \sum_{\alpha \in A} a_{\alpha} = 1 \} \subset H^{q}(\Omega_{n}), \ q < (n - \alpha) + s. \end{cases}$

Hence, if (1.1), (1.2) is to have a solution $u \in \mathcal{U}$ for given $g \in \mathcal{G}$, then $f \in \mathcal{F}$.

These results regarding the Fredholm integral equation of the first kind can be extended to function spaces defined on Riemannian manifolds M_n with boundary ∂M_n .

4. Singular integral operators on subspaces of $\mathbf{H}^{s}(\mathbf{M}_{n})$. Let M_{n} denote a Riemannian manifold of dimension n with boundary ∂M_{n} , assumed to be an infinitely differentiable manifold of dimension n-1.

Let \mathcal{A} be a complete atlas of M_n consisting of the collection of local charts (also called local coordinate systems) $(U_{\alpha}, \phi_{\alpha})$ on M_n , where α is in some indexing set A. If $p \in U_{\alpha}$ and $\phi_{\alpha}(p) = (x_1(p), \ldots, x_n(p)) \in \mathbf{R}_n$, then the open set U_{α} will be called a coordinate patch or coordinate neighborhood of p and the numbers $x_i(p), 1 \leq i \leq n$, will be called local coordinates of p. The mapping $\phi_{\alpha} : p \in U_{\alpha} \to (x_1(p), \ldots, x_n(p))$ will in general be denoted by (x_1, \ldots, x_n) .

We assume M_n is orientable, i.e., we can find a collection of local charts $(\mathcal{U}_{\alpha}, \phi_{\alpha})$ such that $\{U_{\alpha}\}_{\alpha \in A}$ is a covering of M_n and such that for any $\alpha, \beta, \in A$, the mapping $\phi_{\beta} \cdot \phi_{\alpha}^{-1}$ has strictly positive Jacobian determinant in its domain of definition $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$.

DEFINITION 4.1. Let M_n be an orientable Riemannian manifold of dimension n, imbedded in \mathbf{R}_{n+1} and homotopically equivalent to the unit ball $D_n = \{\xi \in \mathbf{R}_n : |\xi| < 1\}$. Let ∂M_n denote the boundary of M_n , assumed to be a C^{∞} -manifold of dimension n-1, and let ∂D_n denote the boundary of D_n . If ϕ is a homotopy equivalence of M_n with D_n , then we define the function space $H^s(M_n), s \in \mathbf{R}$, by

 $u \in H^s(M_n)$ if and only if $u \cdot \phi^{-1} \in H^s(\phi(M_n)) = H^s(D_n)$.

DEFINITION 4.2. Let M_n , ∂M_n , D_n and ∂D_n be manifolds satisfying the same conditions as in Definition 4.1. By means of the Riemannian metric on the Riemannian manifold M_n , we can obtain a distance function p between two points of M_n in such a way that p is metrically equivalent to the usual Euclidean distance function d(x, y) = |x - y|.

We define the weakly singular integral operator K on $H^s(M_n), s \in \mathbf{R}$, by

$$(Ku)(x) = \int_{M_n} \frac{1}{[p(x,y)]^{\alpha}} u(y) dm_y,$$

where $0 \leq \alpha < n$, and *m* is a measure on M_n which gives the surface area, volume element, etc. (depending on the appropriate dimension), locally equivalent to Lebesgue measure.

REMARK. In the sequel, we shall use $(Ku)(x) = \int_{M_n} \frac{1}{|x-y|^{\alpha}} u(y) dm_y$, since the action of K on $H^s(M_n)$ is unchanged as a mapping between function spaces due to the equivalence of the metrics p and d.

Let ϕ be a homotopy equivalence of D_n with M_n such that $\phi \in C^{\infty}(D_n)$. Denote by (x_1, \ldots, x_n) the coordinates in M_n and by (ξ_1, \ldots, ξ_n) the coordinates in K_n . If $y = (y_1, \ldots, y_n) \in M_n$, then there exists $\eta = (\eta_1, \ldots, \eta_n) \in D_n$ such that $\phi(\eta) = y$, i.e.,

$$\begin{cases} y_1 = \phi_1(\eta_1, \dots, \eta_n) \\ y_n = \phi_n(\eta_1, \dots, \eta_n) \end{cases}$$

We use ϕ to perform a change of variables in the integral as follows:

$$\begin{split} (Ku)(x) &= \int_{M_n} \frac{1}{|x-y|^{\alpha}} u(y) dm_y \\ &= \int_{D_n} \frac{1}{|\phi(\xi) - \phi(\eta)|^{\alpha}} (u \cdot \phi)(\eta) |J_{\phi}(\eta)| d\omega_{\eta}, \end{split}$$

where ω is Lebesgue measure on D_n and

$$J_{\phi}(\eta) = \det \begin{pmatrix} \frac{\partial \phi_1}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_1}{\partial \xi_n} |_{\xi=\eta} \\ \vdots & & \vdots \\ \frac{\partial \phi_n}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_n}{\partial \xi_n} |_{\xi=\eta} \end{pmatrix}$$

By Definition 4.1, $u \in H^s(M_n)$ if and only if $u \cdot \phi \in H^s(\phi^{-1}(M_n)) = H^s(D_n)$.

We now let

- (i) $q(\xi,\eta) = |J_{\phi}(\eta)| \frac{|\xi-\eta|^{\alpha}}{|\phi(\xi)-\phi(\eta)|^{\alpha}},$
- (ii) $v = u \cdot \phi$,
- (iii) $(Qv)(\xi) = \int_{D_n} \frac{q(\xi,\eta)}{|\xi-\eta|^{\alpha}} v(\eta) d\omega_{\eta}.$

We then have $(Ku)(x) = (Qv)(\xi)$, where $\phi(\xi) = x$.

LEMMA 4.1. If M_n is orientable, then $q(\xi, \eta) = |J_{\phi}(\eta)| \frac{|\xi - \eta|^{\alpha}}{|\phi(\xi) - \phi(\eta)|^{\alpha}}$ is bounded and smooth for all $(\xi, \eta) \in D_n \times D_n$.

PROOF. Denote by (x_1, \ldots, x_n) the coordinates in M_n and by (ξ_1, \ldots, ξ_n) the coordinates in D_n .

If $x = (x_1, \ldots, x_n) \in M_n$ and $\xi = (\xi_1, \ldots, \xi_n) \in D_n$, by $\phi(\xi) = x$ we mean

$$\begin{cases} x_1 = \phi_1(\xi_1, \cdots, \xi_n) \\ x_n = \phi_n(\xi_1, \cdots, \xi_n) \end{cases}$$

Since M_n is orientable, we have that ϕ has strictly positive Jacobian determinant in its domain of definition $\phi^{-1}(M_n) = D_n$, i.e.,

$$J_{\phi}(\xi) = \det \begin{pmatrix} \frac{\partial \phi_1}{\partial \xi_1} & \cdots & \frac{\partial \phi_1}{\partial \xi_n} \\ \vdots & & \vdots \\ \frac{\partial \phi_n}{\partial \xi_1} & \cdots & \frac{\partial \phi_n}{\partial \xi_n} \end{pmatrix} > 0 \text{ for all } \xi \in D_n$$

and hence

$$J_{\phi}(\eta) = \det \begin{pmatrix} \frac{\partial \phi_1}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_1}{\partial \xi_n} |_{\xi=\eta} \\ \vdots & \vdots \\ \frac{\partial \phi_n}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_n}{\partial \xi_n} |_{\xi=\eta} \end{pmatrix} > 0$$

Denote by (J) the Jacobian matrix corresponding to the above Jacobian determinant $J_{\phi}(\eta)$.

To prove that $q(\xi,\eta)$ is bounded for all $(\xi,\eta) \in D_n \times D_n$, we need only show that $|\phi(\xi) - \phi(\eta)|/|\xi - \eta|$ is bounded away from zero, i.e., $|\phi(\xi) - \phi(\eta)|/|\xi - \eta| > 0$. Using Taylor's theorem for several variables, we have $\phi(\xi) - \phi(\eta) = \sum_{k=1}^{\infty} \frac{1}{k!} ((\xi - \eta) \cdot \nabla)^k (\phi(\eta)$ for all ξ in a neighborhood of η , say $\eta_{\delta} = \{\xi \in D_n : |\xi - \eta| < \delta\}$. Writing out explicitly the first term of the expansion we have

$$\begin{split} \phi(\xi) - \phi(\eta) &= (\xi_1 - \eta_1) \frac{\partial \phi}{\partial \eta_1} \Big|_{\xi = \eta} + (\xi_2 - \eta_2) \frac{\partial \phi}{\partial \xi_2} \Big|_{\xi = \eta} \\ &+ \dots + (\xi_\eta - \eta_n) \frac{\partial \phi}{\partial \xi_n} \Big|_{\xi = n} + \sum_{k=2}^{\infty} \frac{1}{k} ((\xi - \eta) \cdot \nabla)^k \phi(\eta) \\ &= (\xi_1 - \eta_1) \left(\frac{\partial \phi_1}{\partial \xi_1} \Big|_{\xi = \eta} , \dots , \frac{\partial \phi_n}{\partial \xi_1} \Big|_{\xi = \eta} \right) \\ &+ \dots + (\xi_n - \eta_n) \left(\frac{\partial \phi_1}{\partial \xi_n} \Big|_{\xi = \eta} , \dots , \frac{\partial \phi_n}{\partial \xi_n} \Big|_{\xi = \eta} \right) \\ &+ \sum_{k=2}^{\infty} \frac{1}{k!} ((\xi - \eta) \cdot \nabla)^k \phi(\eta) \\ &= (J)(\xi - \eta) + \sum_{k=2}^{\infty} \frac{1}{k!} ((\xi - \eta) \cdot \nabla)^k \phi(\eta), \end{split}$$

where

$$(J) = \begin{pmatrix} \frac{\partial \phi_1}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_1}{\partial \xi_n} |_{\xi=\eta} \\ \vdots & & \vdots \\ \frac{\partial \phi_n}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_n}{\partial \xi_n} |_{\xi=\eta} \end{pmatrix}$$
$$(J)(\xi - \eta) = \begin{pmatrix} \frac{\partial \phi_1}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_1}{\partial \xi_n} |_{\xi=\eta} \\ \vdots & & \vdots \\ \frac{\partial \phi_n}{\partial \xi_1} |_{\xi=\eta} & \cdots & \frac{\partial \phi_n}{\partial \xi_n} |_{\xi=\eta} \end{pmatrix} \begin{pmatrix} \xi_1 - \eta_1 \\ \xi_n - \eta_n \end{pmatrix}$$

In fact, if we use multi-index notation, the Taylor series expansion takes the form $\phi(\xi) - \phi(\eta) = \sum_{|\alpha| \ge 1} \frac{D^{\alpha} \phi(\eta)}{\alpha!} (\xi - \eta)^{\alpha} = \sum_{|\alpha| = 1} \frac{D^{\alpha} \phi(\eta)}{\alpha!} (\xi - \eta)^{\alpha} + o(\xi - \eta)^2$.

Hence $|\phi(\xi) - \phi(\eta)|/|\xi - \eta| = |(J)(\xi - \eta)/|\xi - \eta| + o(|\xi - \eta|)|$ for all $\xi \in \eta_{\delta}$. But det $(J) \neq 0 \Rightarrow (J)(\xi - \eta)/|\xi - \eta| \neq \vec{0}$ since $(\xi - \eta)/|\xi - \eta|$ is a unit vector. Then $|\phi(\xi) - \phi(\eta)|/|\xi - \eta| > 0$ for all $\xi \in \eta_{\delta} = \{\xi \in D_n : |\xi - \eta| < \delta\}$. Obviously, $|\phi(\xi) - \phi(\eta)|/|\xi - \eta| > 0$ for all $\xi \in \{\xi \in D_n : |\xi - \eta| \ge \delta\}$.

Since $|\phi(\xi) - \phi(\eta)|/|\xi - \eta|$ is bounded away from zero for all $(\xi, \eta) \in D_n \times D_n$, we conclude that $q(\xi, \eta)$ is bounded for all $(\xi, \eta) \in D_n \times D_n$, and also smooth since $\phi \in C^{\infty}(D_n)$.

318

THEOREM 4.1. Let $u \in H^s(D_n)$, $s \in \mathbf{R}$, be such that $Ku \in H^q(D_n)$ where

$$(Ku)(\xi) = \int_{D_n} \frac{1}{|\xi - \eta|^{\alpha}} u(\eta) d\omega_{\eta} \text{ and } q < n - \alpha + s, \quad 0 \le \alpha < n.$$

Let $(Qu)(\xi) \int_{D_n} \frac{q(\xi,\eta)}{|\xi-\eta|^{\alpha}} u(\eta) d\omega_{\eta}$ where $q(\xi,\eta)$ is bounded for all $\xi,\eta) \in D_n \times D_n$. Then $Qu \in H^q(D_n)$.

PROOF. Let v = Ku and w = Qu. We know by hypothesis that $u \in H^s(D_n)$ implies $v = Ku \in H^q(D_n)$. We suppose $w \in \mathcal{H}(D_n)$. We wish to show $w = Qu \in H^q(D_n)$, i.e., $\mathcal{H}(D_n) \subset H^q(D_n)$.

Suppose not. Then, for all M > 0 and for all $w \in \mathcal{H}(D_n)$, there exists $v' \in (H^q(D_n))'$ such that $|\langle w, v' \rangle_{D_2}| > M$. We will obtain a contradiction by showing that there exists $M_1 < 0$ such that $|\langle w, v' \rangle| \leq M_1$ for all $w \in \mathcal{H}(D_n)$ and for every $v' \in (H^q(D_n))'$.

Note that $|\langle w, v' \rangle| = \left| \int_{D_n} v'(\xi) . w(\xi) d\omega_{\xi} \right| = |\int_{D_n} v'(\xi) \int_{D_n} \frac{q(\xi, \eta)}{|\xi - \eta|^{\alpha}} u(\eta) d\omega_{\eta} d\omega_{\xi}|$. Let $|q(\xi, \eta)| \le A$ for every $(\xi, \eta) \in D_n \times D_n$. Then $|\langle w, v' \rangle| \le A |\langle v, v' \rangle| \le AN$ for some N > 0. Hence we can choose $M_1 = AN$ to get the contradiction and conclude that $\mathcal{H}(D_n) \subset H^q(D_n)$, i.e.,

$$Qu \in H^q(D_n)$$
 if $Ku \in H^q(D_n)$.

COROLLARY. Let $\mathcal{H}^{s}(M_{n}) = \{u \in H^{s}(M_{n}) : u \circ \phi \in H^{s}(D_{n}) \cap N(1 - \Delta) \text{ is incoming with respect to } \partial D_{n}\}.$ Then $Ku \in H^{q}(M_{n}) \text{ for all } q < n - \alpha + s.$

REMARK. The problem of investigating the action of weakly singular integral operators on function spaces of a Riemannian manifold with boundary has in effect been reduced to a problem already investigated in the previous sections, namely the action of weakly singular integral operators as mappings between Sobolev spaces on Euclidean manifolds.

REFERENCES

1. J.P. Aubin, Approximation of Elliptic Boundary Value Problems Wiley -Interscience, New York, 1972.

2. I.M. Gel'fand and G.E. Shilov, *Generalized Functions*, Volume 1, Academic Press, New York, 1964.

3. R.F. Goodrich, Generalized solutions of boundary value problems for the Helmholtz equation, Applied Mathematics Institute Technical Report # 28. University of Delaware, Newark, DE, 1977.

4. ——, Properties of the boundary integral operators arising from the Helmholtz equation, Applicable Analysis, 7 (1977-78), 161-163.

5. H. Hochstadt, The Functions of Mathematical Physics, Wiley-Interscience, New York, 1971.

6. J.L. Lions, Problemes Aux Limites Dans Les Equations Aux Derivees Partielles, Les Presses de L'Université de Montréal, Canada, 1965.

7. ——— and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Volume 1, Springer-Verlag, New York, 1972.

Department of Mathematics, University of Puerto Rico, Rio Piedras, Puerto Rico00931