WEAKLY SINGULAR INTEGRAL OPERATORS AS MAPPINGS BETWEEN FUNCTION SPACES

JORGE PUNCHIN

Abstract

Weakly singular integral operators K are investigated as mappings between function spaces of the HilbertSobolev type defined on Riemannian manifolds M_{n} with boundary ∂M_{n}. The results obtained from this analysis are applied to the determination of function spaces for which the Fredholm integral equation of the first kind, $K u=f$, admits solutions, and conditions on these function spaces are studied for which the boundary value problem $K u=f$ in $M_{n}, u=g$ on ∂M_{n} has meaning.

1. Introduction. Let Ω_{n} be a bounded and open subset of \mathbf{R}_{n}, lying on one side of its boundary. The boundary of Ω_{n}, denoted by $\partial \Omega_{n}$, will be considered to be an infinitely differentiable manifold of dimension $n-1$.

Let K be the weakly singular integral operator K defined on the Sobolev space $H^{s}\left(\Omega_{n}\right), s \in \mathbf{R}$, by

$$
(K u)(x)=\int_{\Omega_{n}} k(x, y) u(y) d y
$$

where $0 \leq \alpha<n$ and $k(x, y)=1 /|x-y|^{\alpha}$.
The main purpose of this paper is to establish properties of weakly singular integral operators K as mappings between function spaces of the Hilbert-Sobolev type, and apply them to the study of the boundary value problem:

$$
\begin{align*}
& K u=f \text { in } \Omega_{n} \tag{1.1}\\
& u=g \text { on } \partial \Omega_{n} . \tag{1.2}
\end{align*}
$$

The action of K on certain subspaces H of $H^{s}\left(\Omega_{n}\right)$ is characterized, and these subspaces are shown to be mapped by K into $H^{p}\left(\Omega_{n}\right), q<$
$(n-\alpha)+s$. The function space of the boundary values of $K u$ for $u \in H$ is then determined.

The mapping properties of weakly singular integral operators K are shown to remain the same in the case when the function spaces are defined on Riemannian manifolds M_{n} with boundary ∂M_{n}, where M_{n} is assumed to be orientable, imbedded in \mathbf{R}_{n+1}, and homotopically equivalent to the unit ball D_{n} in \mathbf{R}_{n} with homotopy equivalence $\phi \in C^{\infty}\left(D_{n}\right)$.

2. Preliminary results.

LEMMA 2.1. The function $u(\xi)=\left(1+|\xi|^{2}\right)^{s / 2} \in L^{2}\left(\mathbf{R}_{n}\right)$ for all $s<-n / 2$.

Proof.

$$
\|u\|_{L^{2}\left(\mathbf{R}_{n}\right)}=\left(\int_{\mathbf{R}_{n}}|u(\xi)|^{2} d \xi\right)^{1 / 2}=\left(\int_{\mathbf{R}_{n}}\left|1+|\xi|^{2}\right|^{s} d \xi\right)^{1 / 2}<\infty
$$

if and only if $s<-n / 2 . \square 0$

LEMMA 2.2. Let Δ be the Laplace operator in n variables. The fundamental solution γ of the operator $(1-\Delta)$ is in $H^{s+2}\left(\mathbf{R}_{n}\right)$ for all $s<-n / 2$.

Proof. $(1-\Delta) \gamma=\delta \Rightarrow\left(1+|\xi|^{2}\right) \hat{\gamma}=1 \Rightarrow \hat{\gamma}=1 /\left(1+|\xi|^{2}\right)$. Lemma $2.1 \Rightarrow\left(1+|\xi|^{2}\right)^{(s+2) / 2} \hat{\gamma} \in L^{2}\left(\mathbf{R}_{n}\right)$ for all $s<-n / 2 \Rightarrow \gamma \in H^{s+2}\left(\mathbf{R}_{n}\right)$ for all $s<-n / 2$. $\square 0$

The following result can be found in [3].

Lemma 2.3. If $f \in H^{s}\left(\mathbf{R}_{n}\right)$ and $g \in H_{0}^{t}\left(\mathbf{R}_{n}\right)$, where s and t are arbitrary real numbers, then $f * g \in H_{\mathrm{loc}}^{s+t+(n / 2)}\left(\mathbf{R}_{n}\right)$.

Lemma 2.4. Let $f(x)=|x|^{-\alpha}$ where $0 \leq \alpha<n$ and $x \in \mathbf{R}_{n}$. Then $f \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<(n / 2)-\alpha$.

Proof. $\left.\hat{f}(\xi)=2^{n-\alpha} \pi^{n / 2} \Gamma<((n-\alpha) / 2) / \Gamma(\alpha / 2)\right)\left(1 /|\xi|^{n-\alpha}\right)($ see $[\mathbf{2}])$. Then

$$
\left(1+|\xi|^{2}\right)^{s / 2} \cdot \hat{f}(\xi)=2^{n-\alpha} \pi^{n / 2} \frac{\Gamma((n-\alpha) / 2)}{\Gamma(\alpha / 2)} \cdot\left(1+|\xi|^{2}\right)^{s / 2} \cdot \frac{1}{|\xi|^{n-\alpha}} .
$$

Lemma 2.1 implies $\left(1+|\xi|^{2}\right)^{s / 2} \cdot \hat{f}(\xi) \in L^{2}\left(\mathbf{R}_{n}\right)$ if $s-n+\alpha<-n / 2$, i.e., $s<(n / 2)-\alpha$. This implies $f \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<(n / 2)-\alpha$. 00

Lemma 2.5. Let

$$
\chi_{\Omega_{n}}(y)= \begin{cases}1 & \text { if } y \in \bar{\Omega}_{n} \\ 0 & \text { if } y \in \mathbf{R}_{n}-\bar{\Omega}_{n}\end{cases}
$$

Then $\chi_{\Omega_{n}} \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<1 / 2$.

Proof. Case 1. Let $n=2$ and let Ω_{2} be the unit disc. Let $x=$ $\left(x_{1}, x_{2}\right) \in \Omega_{2}$ and $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbf{R}_{2}$. Then $\hat{\chi} \Omega_{2}(\xi)=\int_{\Omega_{2}} \int e^{-i(\xi, x)} d x=$ $\int_{\Omega_{2}} \int e^{-i\left[\xi_{1} x_{1}+\xi_{2} x_{2}\right]} d x_{1} d x_{2}$. Using polar coordinates: $x_{1}=r \cos \theta, x_{2}=$ $r \sin \theta$, we have $\hat{\chi}_{\Omega_{2}}(\xi)=\int_{0}^{2 \pi} \int_{0}^{1} e^{-i r|\xi| \cos (\alpha-\theta)}$ $r d r d \theta$ where $\xi_{1}=|\xi| \cos \alpha$ and $\xi_{2}=|\xi| \sin \alpha$.

Consider the generating function for Bessel's functions of integral order (see [5]):

$$
e^{(z / 2)(t-1 / t)}=\sum_{m=-\infty}^{\infty} J_{m}(z) t^{m}
$$

Letting $t=e^{-i(\theta+\pi / 2)}$, we obtain

$$
e^{-i z \operatorname{Sin}(\theta+\pi / 2)}=e^{-i z} \cos \theta=\sum_{m=-\infty}^{\infty} J_{m}(z) e^{-i m(\theta+\pi / 2)}
$$

Using this and Fubini's theorem, we get

$$
\begin{aligned}
\hat{\chi}_{\Omega_{2}}(\xi) & =\int_{0}^{1}\left(\sum_{m=-\infty}^{\infty} \int_{0}^{2 \pi} J_{m}(r|\xi|) e^{-i m[\alpha-\theta+\pi / 2]} d \theta\right) r d r \\
& =\int_{0}^{1}\left(\sum_{m=-\infty}^{\infty} J_{m}(r|\xi|) \int_{0}^{2 \pi} e^{-i m[\alpha-\theta+\pi / 2]} d \theta\right) r d r \\
& =2 \pi \int_{0}^{1} J_{0}(r|\xi|) r d r .
\end{aligned}
$$

The last equality follows since $\int_{0}^{2 \pi} e^{-i m[\alpha-\theta+\pi / 2]} d \theta=0$ for all $m \neq 0$. Letting $y=r|\xi|$, we get $r d r=y d y /|\xi|^{2}$, and hence

$$
2 \pi \int_{0}^{1} J_{0}(r|\xi|) r d r=\frac{2 \pi}{|\xi|^{2}} \int_{0}^{|\xi|} J_{0}(y) y d y
$$

From the recursion formula $J_{n}^{\prime}(x)=J_{n-1}(x)-\frac{n}{x} J_{n}(x)$, we have

$$
\begin{aligned}
J_{1}^{\prime}(x) & =J_{0}(x)-\frac{1}{x} J_{1}(x) \\
& \Rightarrow J_{1}^{\prime}(x)+\frac{1}{x} J_{1}(x)=J_{0}(x) \\
& \Rightarrow x J_{1}^{\prime}(x)+J_{1}(x)=x J_{0}(x) \\
& \Rightarrow\left(x J_{1}(x)\right)^{\prime}=x J_{1}^{\prime}(x)+J_{1}(x)=x J_{0}(x)
\end{aligned}
$$

Hence,

$$
\begin{gathered}
\frac{2 \pi}{|\xi|^{2}} \int_{0}^{|\xi|} J_{0}(y) \cdot y d y=\frac{2 \pi}{|\xi|^{2}}\left(|\xi| \cdot J_{1}(|\xi|)\right) \\
=\frac{2 \pi}{|\xi|} \cdot J_{1}(|\xi|)=\frac{2 \pi}{|\xi|}\left(\frac{\sqrt{2}}{\sqrt{\pi} \sqrt{|\xi|}}\right)\left(\cos \left(|\xi|-\frac{\pi}{2}-\frac{\pi}{4}\right)+0\left(|\xi|^{-1}\right)\right)
\end{gathered}
$$

Using the symbol " \sim " to denote asymptotic behavior in the variable ξ, we have

$$
\left(1+|\xi|^{2}\right)^{s / 2} \hat{\chi}_{\Omega_{2}}(\xi) \sim\left(1+|\xi|^{2}\right)^{s / 2} \cdot \frac{1}{|\xi|^{3 / 2}}
$$

Then Lemma $2.1 \Rightarrow\left(1+|\xi|^{2}\right)^{s / 2} \hat{\chi}_{\Omega_{2}}(\xi) \in L^{2}\left(\mathbf{R}_{2}\right)$ for all s such that $s-3 / 2<-1$, and this implies $\chi_{\Omega_{2}}(y) \in H^{s}\left(\mathbf{R}_{2}\right)$ for all $s<1 / 2$.

Case 2 . Let Ω_{2} be any bounded, open subset of \mathbf{R}_{2} with boundary $\partial \Omega_{2}$.
By enclosing $\partial \Omega_{2}$ between two circles and using Case 1 , we arrive at the same result.

Case 3. Let Ω_{n} be a bounded and open subset of \mathbf{R}_{n}, lying on one side of its boundary $\partial \Omega_{n}$, an infinitely differentiable manifold of dimension $n-1$.

The asymptotic behavior of $\hat{\chi}_{\Omega_{n}}(\xi)$ in the variable ξ is given by $\hat{\chi}_{\Omega_{n}}(\xi) \sim 1 /|\xi|^{(n+1) / 2}$. This implies $\chi_{\Omega_{n}} \in H^{s}\left(\mathbf{R}_{n}\right)$ for all s such that $s-((n+1) / 2)<-n / 2$, i.e., for all s such that $s<1 / 2$. 00

Lemma 2.6. Let $v_{p}(y)=\chi_{\Omega_{n}}(y) . e^{\langle p, y>}$. Then:
(i) $v_{p} \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<1 / 2$,
(ii) $v_{p} \in N(1-\Delta) \cap H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<1 / 2$ and if $|p|^{2}=1$.

Proof.
(i).

$$
\begin{aligned}
\hat{v}_{p}(\xi) & =\int_{\mathbf{R}_{n}} v_{p}(y) e^{-i<y, \xi>} d y=\int_{\mathbf{R}_{n}} \chi_{\Omega_{n}}(y) e^{<y, p>} e^{<y, i \xi>} d y \\
& =\int_{R_{n}} \chi_{\Omega_{n}}(y) e^{<y, p+i \xi>} d y=\int_{R_{n}} \chi_{\Omega_{n}}(y) e^{<y, i(\xi-i p)>} d y \\
& =\int_{\mathbf{R}_{n}} \chi_{\Omega_{n}}(y) e^{-i<y, \xi-i p>} d y=\hat{\chi}_{\Omega_{n}}(\xi-i p)
\end{aligned}
$$

Therefore,

$$
\begin{array}{r}
\hat{v}_{p}(\xi)\left(1+|\xi|^{2}\right)^{s / 2}=\hat{\chi}_{\Omega_{n}}(\xi-i p)\left(1+|\xi|^{2}\right)^{s / 2} \sim 1 /|\xi-i p|^{(n+1) / 2} \\
\left(1+|\xi|^{2}\right)^{s / 2}
\end{array}
$$

Lemma $2.1 \Rightarrow \hat{v}_{p}(\xi) \cdot\left(1+|\xi|^{2}\right)^{s / 2} \in L^{2}\left(\mathbf{R}_{n}\right)$ for all s such that $s-((n+1) / 2)<-n / 2$, i.e., for all $s<1 / 2$. Hence, $v_{p} \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<1 / 2$.
(ii). This is immediate from (i) and because $|p|^{2}=1 \Rightarrow v_{p} \in$ $N(1-\Delta) . \square 0$

LEMMA 2.7. Let f be defined by $f(x)=|x|^{-\alpha}, 0 \leq \alpha<n$, for $x \in \mathbf{R}_{n}$. Let $v_{p}(y)=\chi_{\Omega_{n}}(y) \cdot e^{<p, y>}$. If $w_{p}(x)=f * v_{p}$ then $w_{p} \in H^{s}\left(\mathbf{R}_{n}\right)$ for all $s<(n-\alpha)+(1 / 2)$.

Proof. $\hat{w}_{p}(\xi)=\hat{f}(\xi) \cdot \hat{v}_{p}(\xi)=\hat{f}(\xi) \cdot \hat{\chi}_{\Omega_{n}}(\xi-i p)$. Lemmas 2.4 and 2.5 imply

$$
\hat{w}_{p}(\xi)=\hat{f}(\xi) \cdot \hat{\chi}_{\Omega_{n}}(\xi-i p) \sim \frac{1}{|\xi|^{n-\alpha}} \cdot \frac{1}{|\xi-i p|^{(n+1) / 2}} .
$$

Then Lemma 2.1 implies

$$
\left(1+|\xi|^{2}\right)^{s / 2} \cdot \hat{w}_{p}(\xi) \in L^{2}\left(\mathbf{R}_{n}\right)
$$

for all s such that $s-n+\alpha-((n+1) / 2<-n / 2$, i.e., for all $s<(n-\alpha)+(1 / 2)$.

3. Singular integral operators on subspaces of $H^{s}\left(\Omega_{n}\right)$.

Lemma 3.1. Let $v_{p}(y)=\chi_{\Omega_{n}}(y) \cdot e^{\langle p, y\rangle}$. The operator K maps $v_{p} \in N(1-\Delta) \cap H^{s}\left(\mathbf{R}_{n}\right), s<1 / 2$ and $|p|^{2}=1$, into $K v_{p} \in H^{q}\left(\mathbf{R}_{n}\right)$ for all $q<(n-\alpha)+(1 / 2)$.

Proof. Let $w_{p}=K v_{p}$. Then $w_{p}(x)=\left(K e^{\langle p, y>}\right)(x)=\int_{\Omega_{n}} f(x-$ $y) e^{<p, y>} d y=f * v_{p}$ implies, by Lemma 2.7, that $w_{p} \in H^{q}\left(\mathbf{R}_{n}\right)$ for all $q<(n-\alpha)+(1 / 2)$.

Lemma 3.2. If $u \in H_{0}^{s}\left(\Omega_{n}\right)$, then $K u \in H_{\text {loc }}^{q}\left(\mathbf{R}_{n}\right)$ for all $q<$ $(n-\alpha)+s$.

Proof. Since $u \in H_{0}^{s}\left(\Omega_{n}\right)$, we can write $K u=f * u$. Lemma 2.4 implies $f \in H^{t}\left(\mathbf{R}_{n}\right)$ for all $t<(n / 2)-\alpha$. Lemma 2.3 implies $K u=$ $f * u \in H_{\mathrm{loc}}^{s+t+(n / 2)}\left(\mathbf{R}_{n}\right)$ for all $t<(n / 2)-\alpha$, i.e., $K u \in H_{\mathrm{loc}}^{q}\left(\mathbf{R}_{n}\right)$ for all q such that $q=s+t+(n / 2)<s+((n / 2)-\alpha)+(n / 2)=(n-\alpha)+s$. ㅁ

In order to analyze the existence and nature of the boundary values of the image of $u \in H^{s}\left(\Omega_{n}\right)$ under the operator K, the action of K on certain subspaces \mathcal{H} of $H^{s}\left(\Omega_{n}\right)$ is studied, and these subspaces are shown to be mapped by K into $H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$. The function space of the boundary values of $K u$ for $u \in H$ is then determined.

A few terms needed in the sequel are introduced in the following definitions.

DEFINITION 3.1. Consider the equation $(1-\Delta) u=u_{0}$. If $u \in N(1-\Delta)$ in $\bar{\Omega}_{n}^{c}$ takes on boundary values $\phi=\left(\gamma_{0} u, \gamma_{1} u\right)^{T}=$ $\left(\left.u\right|_{\partial \Omega_{n}},-\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega_{n}}\right)^{T}=\left(\phi_{1},-\phi_{2}\right)^{T}$ on $\partial \Omega_{n}$, then u is said to be outgoing with respect to $\partial \Omega_{n}$ if $u=1 / 2 L(\phi)$, where $L(\phi)$ is expressed in terms of the single layer operator S and the double layer operator D by $L(\phi)=D \phi_{1}-S \phi_{2}$.

DEFINITION 3.2. Let u be a function that takes on boundary values $\phi=\left(\left.u_{+}\right|_{\partial \Omega_{n}},-\left.\frac{\partial u}{\partial n}{ }_{+}\right|_{\partial \Omega_{n}}\right)^{T}$ on $\partial \Omega_{n}$. Then u is said to be incoming with respect to $\partial \Omega_{n}$, if $u \in N(1-\Delta)$ in Ω_{n} and $u=-1 / 2 L(\phi)$.

DEFINITION 3.3. Let the operator Γ be defined by $\Gamma=\left(\begin{array}{cc}K & Q \\ -\tilde{Q} & -K^{T}\end{array}\right)$
where, for $\gamma(x)=\left(\Gamma(n / 2) / \pi^{n / 2}\right) \cdot\left(e^{i k|x|} /|x|^{(n-1) / 2}\right)$,

$$
\begin{gathered}
K \theta=\text { P.V. } \int_{\partial \Omega_{n}} \frac{\partial}{\partial n_{y}} \gamma(x-y) \theta(y) d \omega_{y}, \\
K^{T} \theta=\text { P.V. } \int_{\partial \Omega_{n}} \frac{\partial}{\partial n_{x}} \gamma(x-y) \theta(y) d \omega_{y}, \\
Q \theta=\text { P.V. } \int_{\partial \Omega_{n}} \gamma(x-y) \theta(y) d \omega_{y}, \\
\tilde{Q} \theta=\text { P.V. } \int_{\partial \Omega_{n}} \frac{\partial^{2}}{\partial n_{x} \partial n_{y}} \gamma(x-y) \theta(y) d \omega_{y}
\end{gathered}
$$

For the properties of the above operators, see [4]. The proof of the following lemma can be found in [3].

LEmmA 3.3.

(i) u is outgoing in Ω_{n} with respect to $\partial \Omega_{n}$ if and only if the boundary values ϕ satisfy $(-I+\Gamma) \phi=0$.
(ii) u is incoming with respect to $\partial \Omega_{n}$ if and only if $(I+\Gamma) \phi=0$.
(iii) if u takes on boundary ϕ where $u \in N(1-\Delta)$, then $\phi=$ $1 / 2(I+\Gamma) \phi+1 / 2(I-\Gamma) \phi$.

DEFINITION 3.4. $u \in N(1-\Delta) \cap H^{s}\left(\Omega_{n}\right)$ will be said to have smooth boundary values if the image of u under the trace operators γ_{j} is in $H^{\infty}\left(\partial \Omega_{n}\right)=\cap_{s \in \mathbf{R}} H^{s}\left(\partial \Omega_{n}\right) \subset \mathbf{C}^{\infty}\left(\partial \Omega_{n}\right)$.

LEMMA 3.4. If K is defined on $H^{s}\left(\Omega_{n}\right) b y(K u)(x)=\int_{\Omega_{n}} k(x, y) u(y) d y$, then the transpose of K, denoted K^{T}, is defined on $\left(H^{q}\left(\Omega_{n}\right)\right)^{\prime}$ by

$$
\left(K^{T} v\right)(x)=\int_{\Omega_{n}} \overline{k(y, x)} v(y) d y, \text { where } q<(n-\alpha)+s
$$

Furthermore, $K^{T}: H_{0}^{\sigma}\left(\Omega_{n}\right) \rightarrow H_{l o c}^{\sigma^{\prime}}\left(R_{n}\right)$ for all $\sigma^{\prime}<\sigma+n-\alpha$.

Proof. Let $u \in H^{s}\left(\Omega_{n}\right)$ be such that $K u \in H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$. Let $v \in\left(H^{q}\left(\Omega_{n}\right)\right)^{\prime}=H_{0}^{-q}\left(\Omega_{n}\right)$. Then

$$
\begin{aligned}
\left\langle K^{T} v, u\right\rangle_{\Omega_{n}} & =\langle v, K u\rangle_{\Omega_{n}}=\int_{\Omega_{n}} \int_{\Omega_{n}} \overline{k(x, y)} \overline{u(y)} v(x) d x d y \\
& =\int_{\Omega_{n}} \overline{u(y)}\left(\int_{\Omega_{n}} \overline{k(x, y)} v(x) d x\right) d y \\
& =\int_{\Omega_{n}} \overline{u(x)}\left(\int_{\Omega_{n}} \overline{k(y, x)} v(y) d y\right) d x \\
& \Rightarrow\left(K^{T} v\right)(x)=\int_{\Omega_{n}} \overline{k(y, x)} v(y) d y
\end{aligned}
$$

In our case, $k(x, y)=1 /|x-y|^{\alpha}=\overline{k(y, x)}$. Hence Lemma 3.2 $\Rightarrow K^{T}: H_{0}^{\sigma}\left(\Omega_{n}\right) \rightarrow H_{\text {loc }}^{\sigma^{\prime}}\left(\mathbf{R}_{n}\right)$ for all $\sigma^{\prime}<\sigma+n-\alpha$.

REMARK. As a matter of convenience, the following notation will be used: $\langle f, g\rangle_{\Omega_{n}}=\int_{\Omega_{n}} f(x) g(x) d \omega(x)$, where ω is a measure on Ω_{n}, shall indicate the inner product of two elements f and g in some Hilbert function space defined on the set Ω_{n}.
$B^{s}, s \in \mathbf{R}$, shall denote the cross-product space $H^{s-1 / 2}\left(\partial \Omega_{n}\right) \times$ $H^{s-3 / 2}\left(\partial \Omega_{n}\right)$ of Sobolev spaces defined on the boundary $\partial \Omega_{n}$ of Ω_{n}.
B_{-}^{s} shall denote the space of boundary values of incoming functions taking on boundary values in B^{s}. Likewise, B_{+}^{s} shall denote the space of boundary values of outgoing functions taking on boundary values in B^{s}.

THEOREM 3.1. Let $u \in N(1-\Delta) \cap H^{s}\left(\Omega_{n}\right), s \in \mathbf{R}$, be incoming with respect to $\partial \Omega_{n}$. Then $K u \in H^{q}\left(\Omega_{n}\right)$ for all $q<(n-\alpha)+s$.

Proof. Let ϕ denote the boundary values of u on $\partial \Omega_{n}$. From Lemma 3.4, we have $K^{T}: H_{0}^{\sigma}\left(\Omega_{n}\right) \rightarrow H_{\text {loc }}^{\sigma^{\prime}}\left(\mathbf{R}_{n}\right)$ for all $\sigma^{\prime}<\sigma+n-\alpha$. Let $p \in H_{0}^{-q}\left(\Omega_{n}\right)$ where $-q>(\alpha-n)-s$. Then $K^{T} p \in H_{\text {loc }}^{\sigma^{\prime}}\left(\mathbf{R}_{n}\right)$ for all $\sigma^{\prime}<(-q)+n-\alpha$.

In particular, $-s<(-q)+n-\alpha$ implies

$$
\begin{equation*}
K^{T} p \in H_{\mathrm{loc}}^{-s}\left(\mathbf{R}_{n}\right) \tag{3.1}
\end{equation*}
$$

Let $\eta=\phi K^{T} p$ where $\phi=1$ on $\bar{\Omega}_{n}$ and $\phi \in C_{0}^{\infty}\left(\mathbf{R}_{n}\right)$. Then

$$
\begin{equation*}
\eta \in H_{0}^{-s}\left(\mathbf{R}_{n}\right) \tag{3.2}
\end{equation*}
$$

Let γ be the fundamental solution of $(1-\Delta)$ such that $\hat{\gamma}(\xi)=1 / 1+|\xi|^{2}$. We then have

$$
\begin{equation*}
\gamma \in H^{t}\left(\mathbf{R}_{n}\right) \text { for all } t<2-(n / 2) \tag{3.3}
\end{equation*}
$$

From (3.2), (3.3), and Lemma 2.3, we obtain

$$
\gamma * \eta \in H_{\mathrm{loc}}^{t-s+(n / 2)}\left(\mathbf{R}_{n}\right) \quad \text { for all } t<2-(n / 2)
$$

and

$$
\begin{equation*}
\gamma * \eta \in H_{\operatorname{loc}}^{2-s}\left(R_{n}\right) \tag{3.4}
\end{equation*}
$$

Let $v=\gamma^{*} \eta$ and let ψ denote the boundary values of v on $\partial \Omega_{n}$. Since $u \in N(1-\Delta)$ is incoming with respect to $\partial \Omega_{n}$, we have $(I+\Gamma) \phi=0$. Hence $\phi=1 / 2(I+\Gamma) \phi+1 / 2(I-\Gamma) \phi=1 / 2(I-\Gamma) \phi$ and $[\phi, \psi]=[1 / 2(I-\Gamma) \phi, \psi]=[\phi, 1 / 2(I+\Gamma) \psi]$. Therefore $\psi=1 / 2(I+\Gamma) \psi$. This implies $v=\gamma * \eta$ is outgoing in $\bar{\Omega}_{n}^{c}$ with respect to $\partial \Omega_{n}$ since
$1 / 2(-I+\Gamma) \psi=0$. Hence, $v \in N(1-\Delta) \cap H_{\mathrm{loc}}^{2-s}\left(\bar{\Omega}_{n}^{c}\right)$ takes on boundary values $\psi \in B_{+}^{2-s}=H^{(3 / 2)-s}\left(\partial \Omega_{n}\right) \times H^{(1 / 2)-s}\left(\partial \Omega_{n}\right)$ by the trace theorem (see [7, pp. 41-43] or [1, pp. 189-200]).

Case 1. $s>1 / 2$. The trace theorem implies $\phi \in B^{s}=H^{s-1 / 2}\left(\partial \Omega_{n}\right) \times$ $H^{s-3 / 2}\left(\partial \Omega_{n}\right)$. We also have $(\Delta-1) u=0$ and $(\Delta-1) v=\eta$ in Ω_{n}. Then $\langle\Delta v, u\rangle_{\Omega_{n}}-\langle u, v\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}$ and $\langle\Delta u, v\rangle_{\Omega_{n}}-\langle u, v\rangle_{\Omega_{n}}=$ $\langle 0, v\rangle_{\Omega_{n}}=0$ implies $\langle\Delta v, u\rangle_{\Omega_{n}}-\langle\Delta u, v\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}$.
Green's theorem implies $\langle u, \eta\rangle_{\Omega_{n}}=\int_{\partial \Omega_{n}}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) d \omega$, i.e., $\langle u, \eta\rangle_{\Omega_{n}}=\int_{\partial \Omega_{n}}\left(\phi_{1} \psi_{2}-\psi_{1} \phi_{2}\right) d \omega$. We use the notation $[\phi, \psi]$ to denote the functional on $\partial \Omega_{n}$ defined by the boundary integral. Then $\langle K u, p\rangle_{\Omega_{n}}=\left\langle u, K^{T} p\right\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}=[\phi, \psi]$. By transposition (see [6, p. 164] or [7, p. 166]), $K u \in\left(H^{-q}\left(\Omega_{n}\right)\right)^{\prime}=H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$.

Case 2 . $s \leq 1 / 2$. If ϕ is smooth, then we have $\langle K u, p\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}=$ $[\phi, \psi]$, and, by transposition, $K u \in\left(H_{0}^{-q}\left(\Omega_{n}\right)\right)^{\prime}=H^{q}\left(\Omega_{n}\right), q<$ $(n-\alpha)+s$.
If ϕ is not smooth, let ϕ_{ν} be a sequence of smooth boundary values of $u_{\nu} \in N(1-\Delta) \cap H^{s}\left(\Omega_{n}\right)$ converging to ϕ in the Hilbert space B^{s}, and where u_{ν} converges to u in $H^{s}\left(\Omega_{n}\right)$. Such a sequence of smooth boundary values ϕ_{ν} exists since $H^{\infty}\left(\partial \Omega_{n}\right)$ is dense in $H^{s}\left(\Omega_{n}\right)$ and B^{∞} is dense in B^{s}.

We have $(\Delta-1) u_{\nu}=0$ and $(\Delta-1) v=\eta$ in Ω_{n}. Green's theorem implies $\left\langle u_{\nu}, \eta\right\rangle_{\Omega_{n}}=\left[\phi_{\nu}, \psi\right]$. But $\left[\phi_{\nu}, \psi\right] \rightarrow[\phi, \psi]$ and $\left\langle u_{\nu}, \eta\right\rangle_{\Omega_{\eta}} \rightarrow$ $\langle u, \eta\rangle_{\Omega_{n}}$ as $\nu \rightarrow+\infty$ implies $\langle u, \eta\rangle_{\Omega_{n}}=[\phi, \psi]$.
Hence, $\langle K u, p\rangle_{\Omega_{n}}=\left\langle u, K^{T} p\right\rangle_{\Omega_{n}}=\langle u, \eta\rangle_{\Omega_{n}}=[\phi, \psi]$. By transposition, $K u \in\left(H_{0}^{-q}\left(\Omega_{n}\right)\right)^{\prime}=H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$.

Theorem 3.2. Let $u \in N(1-\Delta) \cap H^{s}\left(\Omega_{n}\right)$ be incoming with respect to $\partial \Omega_{n}$. Let ϕ denote the boundary values of u on $\partial \Omega_{n}$, and let ψ denote the boundary values of $K u$ on $\partial \Omega_{n}$. Then $\psi \in B^{q}$, for all $q<(n-\alpha)+s$.

Proof. By Theorem 3.1, we have that $K u \in H^{q}\left(\Omega_{n}\right)$ for all $q<$ $(n-\alpha)+s$.

Case 1. If $q>1 / 2$, then the trace theorem implies $K u$ has boundary values $\psi \in B^{q}$.

Case 2. If $q \leq 1 / 2$, then $2-q \geq 3 / 2$. By definition, there exists $v \in H_{\mathrm{loc}}^{q}\left(\mathbf{R}_{n}\right)$ such that $K u=r_{\Omega_{n}} v$. If γ is the fundamental solution of $(1-\Delta)$ such that $\gamma \in H^{t}\left(\mathbf{R}_{n}\right)$ for all $t<2-(n / 2)$, then there exists $w \in H_{0}^{q-2}\left(\mathbf{R}_{n}\right)$ such that $v=\gamma * w$.

Let ψ_{1} denote the boundary values of $\gamma * w$. Let $\phi \in N(1-\Delta) \cap$ $H^{2-q}\left(\Omega_{n}\right)$ take on boundary values χ. Since $2-q \geq 3 / 2$, the trace theorem implies $\chi \in B^{2-q}$. Since $(\Delta-1) v=w$ and $(\Delta-1) \phi=0$ on Ω_{n}, an application of Green's theorem yields

$$
\begin{equation*}
\left\langle\phi,\left.w\right|_{\Omega_{n}}\right\rangle=\left[\chi, \psi_{1}\right] \tag{3.5}
\end{equation*}
$$

where $\phi \in N(1-\Delta) \cap H^{2-q}\left(\Omega_{n}\right), w \in H_{0}^{q-2}\left(\mathbf{R}_{n}\right), \chi \in B^{2-q}$, and ψ_{1} denotes the boundary values of $\gamma * w$ on $\partial \Omega_{n}$. From (3.5), we have that $\psi_{1} \in B^{q}$. But v takes on boundary values ψ_{1}, and since $K u$ and v take on the same boundary values on $\partial \Omega_{n}$, we have that $\psi=\psi_{1} \in B^{q}$. \square

THEOREM 3.3. Let $H_{\bar{\Omega}_{n}}^{-q}\left(\mathbf{R}_{n}\right)=\left\{f / f \in H^{-q}\left(\mathbf{R}_{n}\right)\right.$, f with support in $\left.\bar{\Omega}_{n}\right\}$. Then $K^{T}: H_{\bar{\Omega}_{n}}^{-q}\left(\mathbf{R}_{n}\right) \rightarrow\left(H^{s}\left(\Omega_{n}\right)\right)^{\prime}$ for all s such that $-s<-q+(n-\alpha)$.

Proof. Let $u \in N(1-\Delta) \cap H^{s}\left(\Omega_{n}\right)$. Using the same notation and terminology as in the proof of Theorem 3.1, and using the fact that there exists a $w \in H^{q}\left(\mathbf{R}_{n}\right)$ such that $K u=r_{\Omega_{n}} w$, we have

$$
\begin{align*}
\langle K u, p\rangle_{\Omega_{n}} & =\left\langle r_{\Omega_{n}} w, p\right\rangle_{\Omega_{n}}=\left\langle w, r_{\Omega_{n}}^{T} p\right\rangle \mathbf{R}_{n} \tag{3.6}\\
& =\left\langle K u, r_{\Omega_{n}}^{T} p\right\rangle_{\bar{\Omega}_{n}}=\left\langle u, K^{T} r_{\Omega_{n}}^{T} p\right\rangle_{\bar{\Omega}_{n}},
\end{align*}
$$

where $r_{\Omega_{n}}^{T}$ is an isomorphism of $H_{0}^{-q}\left(\Omega_{n}\right)=\left(H^{q}\left(\Omega_{n}\right)\right)^{\prime}$ onto $H_{\Omega_{n}}^{-q}\left(\mathbf{R}_{n}\right)$, i.e., $r_{\Omega_{n}}^{T}: H_{0}^{-q}\left(\Omega_{n}\right) \rightarrow H_{\bar{\Omega}_{n}^{-q}}^{-q}\left(\mathbf{R}_{n}\right)$ (see [7]). But (3.6) implies $K^{T} r_{\Omega_{n}}^{T} p H_{0}^{-s}\left(\Omega_{n}\right)=\left(H^{s}\left(\Omega_{n}\right)\right)^{\prime}$. We conclude that $K^{T}: H_{\bar{\Omega}_{n}}^{-q}\left(\mathbf{R}_{n}\right) \rightarrow$ $H_{0}^{-s}\left(\Omega_{n}\right)$ where $q<(n-\alpha)+s$, or equivalently, $-s<-q+(n-\alpha)$. ᄃ

COROLLARY. K maps $H{\overline{\Omega_{n}}}_{n}^{s}\left(\mathbf{R}_{n}\right)$ into $H_{0}^{q}\left(\Omega_{n}\right)$ for all $q<(n-\alpha)+s$.

Of importance in the study of the boundary value problems for differential operators defined on a domain Ω is the determination of spaces of functions defined on the boundary of Ω containing the traces $\gamma_{0} u=\left.u\right|_{\partial \Omega}$ of functions u in $H^{s}(\Omega)$. The problem of characterizing the image of $H^{s}(\Omega)$ under the operator $\gamma_{0}:\left.u \rightarrow u\right|_{\partial \Omega}$ has been studied by many authors; for example Lions [6]. This idea is extended to the boundary value problem (1.1), (1.2) for the weakly singular integral operator K, where the Fredholm integral equation of the first kind

$$
\begin{equation*}
K u=f \tag{3.7}
\end{equation*}
$$

is considered.
The problem of existence of solutions of (3.7) is considered by viewing the operator K as a mapping between function spaces, and the results of this paper show that if equation (3.7) has a solution u for given $f \in H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$, then the solution u must be in $H^{s}\left(\Omega_{n}\right)$.

In addition, the boundary value problem (1.1), (1.2) has meaning in the following sense.
If (1.1) has solutions for $f \in \mathcal{F}=H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$, then the set of solutions

$$
\mathcal{U}=\left\{u=K^{-1} f+u_{0}: K u_{0}=0\right\} \subset H^{s}\left(\Omega_{n}\right)
$$

must take on boundary values in the set

$$
\begin{array}{r}
\mathcal{G}=\left\{g=g_{1}+g_{0}: g_{1} \text { is the boundary value of } K^{-1} f\right. \\
\text { and } \left.g_{0} \text { is the boundary value of } u_{0} \text { on } \partial \Omega_{n}\right\} \\
\subset H^{s-(1 / 2)}\left(\partial \Omega_{n}\right) .
\end{array}
$$

Hence, if (1.1), (1.2) is to have a solution $u \in \mathcal{U}$ for given $f \in \mathcal{F}$, then $g \in \mathcal{G}$.

On the other hand, if we let $g \in \mathcal{G}=H^{s-(1 / 2)}\left(\partial \Omega_{n}\right)$ and require (1.2) to be satisfied by solutions of (1.1) which are in the set $\mathcal{U}=\left\{u_{\alpha}: K u_{\alpha}=f, u_{\alpha}\right.$ takes on the boundary value g, and is in some indexing set $A\} \subset H^{s}\left(\Omega_{n}\right)$, then $F=\{f: f=$ $\left.\sum_{\alpha \in A} a_{\alpha} K u_{\alpha}, \sum_{\alpha \in A} a_{\alpha}=1\right\} \subset H^{q}\left(\Omega_{n}\right), q<(n-\alpha)+s$.
Hence, if (1.1), (1.2) is to have a solution $u \in \mathcal{U}$ for given $g \in \mathcal{G}$, then $f \in \mathcal{F}$.

These results regarding the Fredholm integral equation of the first kind can be extended to function spaces defined on Riemannian manifolds M_{n} with boundary ∂M_{n}.
4. Singular integral operators on subspaces of $\mathbf{H}^{\mathbf{s}}\left(\mathbf{M}_{\mathbf{n}}\right)$. Let M_{n} denote a Riemannian manifold of dimension n with boundary ∂M_{n}, assumed to be an infinitely differentiable manifold of dimension $n-1$.
Let \mathcal{A} be a complete atlas of M_{n} consisting of the collection of local charts (also called local coordinate systems) ($U_{\alpha}, \phi_{\alpha}$) on M_{n}, where α is in some indexing set A. If $p \in U_{\alpha}$ and $\phi_{\alpha}(p)=\left(x_{1}(p), \ldots, x_{n}(p)\right) \in \mathbf{R}_{n}$, then the open set U_{α} will be called a coordinate patch or coordinate neighborhood of p and the numbers $x_{i}(p), 1 \leq i \leq n$, will be called local coordinates of p. The mapping $\phi_{\alpha}: p \in U_{\alpha} \rightarrow\left(x_{1}(p), \ldots, x_{n}(p)\right)$ will in general be denoted by $\left(x_{1}, \ldots, x_{n}\right)$.
We assume M_{n} is orientable, i.e., we can find a collection of local charts $\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right)$ such that $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is a covering of M_{n} and such that for any $\alpha, \beta, \in A$, the mapping $\phi_{\beta} \cdot \phi_{\alpha}^{-1}$ has strictly positive Jacobian determinant in its domain of definition $\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$.

Definition 4.1. Let M_{n} be an orientable Riemannian manifold of dimension n, imbedded in \mathbf{R}_{n+1} and homotopically equivalent to the unit ball $D_{n}=\left\{\xi \in \mathbf{R}_{n}:|\xi|<1\right\}$. Let ∂M_{n} denote the boundary of M_{n}, assumed to be a C^{∞}-manifold of dimension $n-1$, and let ∂D_{n} denote the boundary of D_{n}. If ϕ is a homotopy equivalence of M_{n} with D_{n}, then we define the function space $H^{s}\left(M_{n}\right), s \in \mathbf{R}$, by

$$
u \in H^{s}\left(M_{n}\right) \text { if and only if } u \cdot \phi^{-1} \in H^{s}\left(\phi\left(M_{n}\right)\right)=H^{s}\left(D_{n}\right) .
$$

DEFINITION 4.2. Let $M_{n}, \partial M_{n}, D_{n}$ and ∂D_{n} be manifolds satisfying the same conditions as in Definition 4.1. By means of the Riemannian metric on the Riemannian manifold M_{n}, we can obtain a distance function p between two points of M_{n} in such a way that p is metrically equivalent to the usual Euclidean distance function $d(x, y)=|x-y|$.
We define the weakly singular integral operator K on $H^{s}\left(M_{n}\right), s \in \mathbf{R}$, by

$$
(K u)(x)=\int_{M_{n}} \frac{1}{[p(x, y)]^{\alpha}} u(y) d m_{y},
$$

where $0 \leq \alpha<n$, and m is a measure on M_{n} which gives the surface area, volume element, etc. (depending on the appropriate dimension), locally equivalent to Lebesgue measure.

REMARK. In the sequel, we shall use $(K u)(x)=\int_{M_{n}} \frac{1}{|x-y|^{\alpha}} u(y) d m_{y}$, since the action of K on $H^{s}\left(M_{n}\right)$ is unchanged as a mapping between function spaces due to the equivalence of the metrics p and d.

Let ϕ be a homotopy equivalence of D_{n} with M_{n} such that $\phi \in$ $C^{\infty}\left(D_{n}\right)$. Denote by $\left(x_{1}, \ldots, x_{n}\right)$ the coordinates in M_{n} and by $\left(\xi_{1}, \ldots, \xi_{n}\right)$ the coordinates in K_{n}. If $y=\left(y_{1}, \ldots, y_{n}\right) \in M_{n}$, then there exists $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in D_{n}$ such that $\phi(\eta)=y$, i.e.,

$$
\left\{\begin{array}{l}
y_{1}=\phi_{1}\left(\eta_{1}, \ldots, \eta_{n}\right) \\
y_{n}=\phi_{n}\left(\eta_{1}, \ldots, \eta_{n}\right)
\end{array}\right.
$$

We use ϕ to perform a change of variables in the integral as follows:

$$
\begin{aligned}
(K u)(x) & =\int_{M_{n}} \frac{1}{|x-y|^{\alpha}} u(y) d m_{y} \\
& =\int_{D_{n}} \frac{1}{|\phi(\xi)-\phi(\eta)|^{\alpha}}(u \cdot \phi)(\eta)\left|J_{\phi}(\eta)\right| d \omega_{\eta}
\end{aligned}
$$

where ω is Lebesgue measure on D_{n} and

$$
J_{\phi}(\eta)=\operatorname{det}\left(\begin{array}{ccc}
\left.\frac{\partial \phi_{1}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{1}}{\partial \xi_{n}}\right|_{\xi=\eta} \\
\vdots & & \vdots \\
\left.\frac{\partial \phi_{n}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{n}}{\partial \xi_{n}}\right|_{\xi=\eta}
\end{array}\right)
$$

By Definition 4.1, $u \in H^{s}\left(M_{n}\right)$ if and only if $u \cdot \phi \in H^{s}\left(\phi^{-1}\left(M_{n}\right)\right)=$ $H^{s}\left(D_{n}\right)$.

We now let
(i) $q(\xi, \eta)=\left|J_{\phi}(\eta)\right| \frac{|\xi-\eta|^{\alpha}}{|\phi(\xi)-\phi(\eta)|^{\alpha}}$,
(ii) $v=u \cdot \phi$,
(iii) $(Q v)(\xi)=\int_{D_{n}} \frac{q(\xi, \eta)}{|\xi-\eta|^{\alpha}} v(\eta) d \omega_{\eta}$.

We then have $(K u)(x)=(Q v)(\xi)$, where $\phi(\xi)=x$.

LEMMA 4.1. If M_{n} is orientable, then $q(\xi, \eta)=\left|J_{\phi}(\eta)\right| \frac{|\xi-\eta|^{\alpha}}{|\phi(\xi)-\phi(\eta)|^{\alpha}}$ is bounded and smooth for all $(\xi, \eta) \in D_{n} \times D_{n}$.

Proof. Denote by $\left(x_{1}, \ldots, x_{n}\right)$ the coordinates in M_{n} and by $\left(\xi_{1}, \ldots, \xi_{n}\right)$ the coordinates in D_{n}.

If $x=\left(x_{1}, \ldots, x_{n}\right) \in M_{n}$ and $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in D_{n}$, by $\phi(\xi)=x$ we mean

$$
\left\{\begin{array}{l}
x_{1}=\phi_{1}\left(\xi_{1}, \cdots, \xi_{n}\right) \\
x_{n}=\phi_{n}\left(\xi_{1}, \cdots, \xi_{n}\right)
\end{array}\right.
$$

Since M_{n} is orientable, we have that ϕ has strictly positive Jacobian determinant in its domain of definition $\phi^{-1}\left(M_{n}\right)=D_{n}$, i.e.,

$$
J_{\phi}(\xi)=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial \xi_{1}} & \cdots & \frac{\partial \phi_{1}}{\partial \xi_{n}} \\
\vdots & & \vdots \\
\frac{\partial \phi_{n}}{\partial \xi_{1}} & \cdots & \frac{\partial \dot{\phi}_{n}}{\partial \xi_{n}}
\end{array}\right)>0 \text { for all } \xi \in D_{n}
$$

and hence

$$
J_{\phi}(\eta)=\operatorname{det}\left(\begin{array}{ccc}
\left.\frac{\partial \phi_{1}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{1}}{\partial \xi_{n}}\right|_{\xi=\eta} \\
\vdots & & \vdots \\
\left.\frac{\partial \phi_{n}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{n}}{\partial \xi_{n}}\right|_{\xi=\eta}
\end{array}\right)>0
$$

Denote by (J) the Jacobian matrix corresponding to the above Jacobian determinant $J_{\phi}(\eta)$.

To prove that $q(\xi, \eta)$ is bounded for all $(\xi, \eta) \in D_{n} \times D_{n}$, we need only show that $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|$ is bounded away from zero, i.e., $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|>0$. Using Taylor's theorem for several variables, we have $\phi(\xi)-\phi(\eta)=\sum_{k=1}^{\infty} \frac{1}{k!}((\xi-\eta) \cdot \nabla)^{k}(\phi(\eta)$ for all ξ in a neighborhood of η, say $\eta_{\delta}=\left\{\xi \in D_{n}:|\xi-\eta|<\delta\right\}$. Writing out
explicitly the first term of the expansion we have

$$
\begin{aligned}
\phi(\xi)-\phi(\eta)= & \left.\left(\xi_{1}-\eta_{1}\right) \frac{\partial \phi}{\partial \eta_{1}}\right|_{\xi=\eta}+\left.\left(\xi_{2}-\eta_{2}\right) \frac{\partial \phi}{\partial \xi_{2}}\right|_{\xi=\eta} \\
& +\cdots+\left.\left(\xi_{\eta}-\eta_{n}\right) \frac{\partial \phi}{\partial \xi_{n}}\right|_{\xi=n}+\sum_{k=2}^{\infty} \frac{1}{k}((\xi-\eta) \cdot \nabla)^{k} \phi(\eta) \\
= & \left(\xi_{1}-\eta_{1}\right)\left(\left.\frac{\partial \phi_{1}}{\partial \xi_{1}}\right|_{\xi=\eta}, \cdots,\left.\quad \frac{\partial \phi_{n}}{\partial \xi_{1}}\right|_{\xi=\eta}\right) \\
& +\cdots+\left(\xi_{n}-\eta_{n}\right)\left(\left.\frac{\partial \phi_{1}}{\partial \xi_{n}}\right|_{\xi=\eta}, \cdots,\left.\frac{\partial \phi_{n}}{\partial \xi_{n}}\right|_{\xi=\eta}\right) \\
& +\sum_{k=2}^{\infty} \frac{1}{k!}((\xi-\eta) \cdot \nabla)^{k} \phi(\eta) \\
= & (J)(\xi-\eta)+\sum_{k=2}^{\infty} \frac{1}{k!}((\xi-\eta) \cdot \nabla)^{k} \phi(\eta)
\end{aligned}
$$

where

$$
\begin{aligned}
&(J)=\left(\begin{array}{ccc}
\left.\frac{\partial \phi_{1}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{1}}{\partial \xi_{n}}\right|_{\xi=\eta} \\
\vdots & & \vdots \\
\left.\frac{\partial \phi_{n}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{n}}{\partial \xi_{n}}\right|_{\xi=\eta}
\end{array}\right) \\
&(J)(\xi-\eta)=\left(\begin{array}{ccc}
\left.\frac{\partial \phi_{1}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{1}}{\partial \xi_{n}}\right|_{\xi=\eta} \\
\vdots & & \vdots \\
\left.\frac{\partial \phi_{n}}{\partial \xi_{1}}\right|_{\xi=\eta} & \cdots & \left.\frac{\partial \phi_{n}}{\partial \xi_{n}}\right|_{\xi=\eta}
\end{array}\right)\binom{\xi_{1}-\eta_{1}}{\xi_{n}-\eta_{n}}
\end{aligned}
$$

In fact, if we use multi-index notation, the Taylor series expansion takes the form $\phi(\xi)-\phi(\eta)=\sum_{|\alpha| \geq 1} \frac{D^{\alpha} \phi(\eta)}{\alpha!}(\xi-\eta)^{\alpha}=\sum_{|\alpha|=1} \frac{D^{\alpha} \phi(\eta)}{\alpha!}(\xi-\eta)^{\alpha}$ $+o\left(\xi-\left.\eta\right|^{2}\right)$.
Hence $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|=|(J)(\xi-\eta) /|\xi-\eta|+o(|\xi-\eta|)|$ for all $\xi \in \eta_{\delta}$. But $\operatorname{det}(J) \neq 0 \Rightarrow(J)(\xi-\eta) /|\xi-\eta| \neq \overrightarrow{0}$ since $(\xi-\eta) /|\xi-\eta|$ is a unit vector. Then $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|>0$ for all $\xi \in \eta_{\delta}=\left\{\xi \in D_{n}:|\xi-\eta|<\delta\right\}$. Obviously, $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|>$ 0 for all $\xi \in\left\{\xi \in D_{n}:|\xi-\eta| \geq \delta\right\}$.
Since $|\phi(\xi)-\phi(\eta)| /|\xi-\eta|$ is bounded away from zero for all $(\xi, \eta) \in$ $D_{n} \times D_{n}$, we conclude that $q(\xi, \eta)$ is bounded for all $(\xi, \eta) \in D_{n} \times D_{n}$, and also smooth since $\phi \in C^{\infty}\left(D_{n}\right)$.

THEOREM 4.1. Let $u \in H^{s}\left(D_{n}\right), s \in \mathbf{R}$, be such that $K u \in H^{q}\left(D_{n}\right)$ where

$$
(K u)(\xi)=\int_{D_{n}} \frac{1}{|\xi-\eta|^{\alpha}} u(\eta) d \omega_{\eta} \text { and } q<n-\alpha+s, \quad 0 \leq \alpha<n
$$

Let $(Q u)(\xi) \int_{D_{n}} \frac{q(\xi, \eta)}{|\xi-\eta|^{\alpha}} u(\eta) d \omega_{\eta}$ where $q(\xi, \eta)$ is bounded for all $\left.\xi, \eta\right) \in$ $D_{n} \times D_{n}$. Then $Q u \in H^{q}\left(D_{n}\right)$.

Proof. Let $v=K u$ and $w=Q u$. We know by hypothesis that $u \in H^{s}\left(D_{n}\right)$ implies $v=K u \in H^{q}\left(D_{n}\right)$. We suppose $w \in \mathcal{H}\left(D_{n}\right)$. We wish to show $w=Q u \in H^{q}\left(D_{n}\right)$, i.e., $\mathcal{H}\left(D_{n}\right) \subset H^{q}\left(D_{n}\right)$.
Suppose not. Then, for all $M>0$ and for all $w \in \mathcal{H}\left(D_{n}\right)$, there exists $v^{\prime} \in\left(H^{q}\left(D_{n}\right)\right)^{\prime}$ such that $\left|\left\langle w, v^{\prime}\right\rangle_{D_{2}}\right|>M$. We will obtain a contradiction by showing that there exists $M_{1}<0$ such that $\left|\left\langle w, v^{\prime}\right\rangle\right| \leq M_{1}$ for all $w \in \mathcal{H}\left(D_{n}\right)$ and for every $v^{\prime} \in\left(H^{q}\left(D_{n}\right)\right)^{\prime}$.
Note that $\left|\left\langle w, v^{\prime}\right\rangle\right|=\left|\int_{D_{n}} v^{\prime}(\xi) \cdot w(\xi) d \omega_{\xi}\right|=\left\lvert\, \int_{D_{n}} v^{\prime}(\xi) \int_{D_{n}} \frac{q(\xi, \eta)}{|\xi-\eta|^{\alpha}} u(\eta)\right.$ $d \omega_{\eta} d \omega_{\xi} \mid$. Let $|q(\xi, \eta)| \leq A$ for every $(\xi, \eta) \in D_{n} \times D_{n}$. Then $\left|\left\langle w, v^{\prime}\right\rangle\right| \leq$ $A\left|\left\langle v, v^{\prime}\right\rangle\right| \leq A N$ for some $N>0$. Hence we can choose $M_{1}=A N$ to get the contradiction and conclude that $\mathcal{H}\left(D_{n}\right) \subset H^{q}\left(D_{n}\right)$, i.e.,

$$
Q u \in H^{q}\left(D_{n}\right) \text { if } K u \in H^{q}\left(D_{n}\right)
$$

Corollary. Let $\mathcal{H}^{s}\left(M_{n}\right)=\left\{u \in H^{s}\left(M_{n}\right): u \circ \phi \in H^{s}\left(D_{n}\right) \cap N(1-\right.$ $\Delta)$ is incoming with respect to $\left.\partial D_{n}\right\}$. Then $K u \in H^{q}\left(M_{n}\right)$ for all $q<n-\alpha+s$.

REMARK. The problem of investigating the action of weakly singular integral operators on function spaces of a Riemannian manifold with boundary has in effect been reduced to a problem already investigated in the previous sections, namely the action of weakly singular integral operators as mappings between Sobolev spaces on Euclidean manifolds.

REFERENCES

[^0]2. I.M. Gel'fand and G.E. Shilov, Generalized Functions, Volume 1, Academic Press, New York, 1964.
3. R.F. Goodrich, Generalized solutions of boundary value problems for the Helmholtz equation, Applied Mathematics Institute Technical Report \# 28. University of Delaware, Newark, DE, 1977.
4. -, Properties of the boundary integral operators arising from the Helmholtz equation, Applicable Analysis, 7 (1977-78), 161-163.
5. H. Hochstadt, The Functions of Mathematical Physics, Wiley-Interscience, New York, 1971.
6. J.L. Lions, Problemes Aux Limites Dans Les Equations Aux Derivees Partielles, Les Presses de L'Université de Montréal, Canada, 1965.
7. -_ and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Volume 1, Springer-Verlag, New York, 1972.

Department of Mathematics, University of Puerto Rico, Rio Piedras, Puerto Rico 00931

[^0]: 1. J.P. Aubin, Approximation of Elliptic Boundary Value Problems Wiley Interscience, New York, 1972.
