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EXISTENCE A N D CONVERGENCE RESULTS FOR 
INTEGRAL INCLUSIONS IN BANACH SPACES 

NICOLAS S. PAPAGEORGIOU 

ABSTRACT. The existence of solutions is established for 
multivalued Volterra integral equations (integral inclusions) 
defined in a separable Banach space and governed by convex 
and nonconvex orientor fields. Also we prove a convergence 
result for such integral inclusions. In doing that we obtain 
some new interesting results about multifunctions, including 
a new set valued version of Fatou's lemma. 

Introduction-preliminaries. Several problems in applied mathe
matics (control theory, mathematical economics, mechanics, etc.) in
volve various types of ambiguity, indeterminacy, or uncertainty (which 
in particular includes the impossibility of a comprehensive description 
of the dynamics of the system under consideration). This leads to 
mathematical models that involve differential and integral inclusions. 
In recent years the study of this more general class of equations has 
received considerable attention and many mathematicians have con
tributed interesting results, mostly in the direction of differential inclu
sions. 

The main purpose of the present paper is to study the problem of 
existence of solutions for Volterra type integral inclusions defined in a 
separable Banach space. We prove two existence theorems; one for con
vex orientor fields and the other for nonconvex ones. Then we present a 
convergence result for the family of integral inclusions that we consider. 
The convergence property is one of the most important properties in 
differential and integral equations. As was shown by Strauss-Yorke 
[20], much of the fundamental theory of ordinary differential equations 
follows directly from a convergence theorem. In the process of obtaining 
that convergence result we also prove a multivalued version of Fatou's 
lemma that generalizes earlier results of Artstein [1] and Schmeidler 
[19] and which is interesting in its own because of its important poten
tial applications in control theory and mathematical economics. 

Let (n, J2) be a measurable space and X a separable Banach space. 
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266 INTEGRAL INCLUSIONS 

Throughout this paper we will use the following notations: 

Pf(c){X) = {A Ç X : nonempty, closed, (convex)} 

P(w)k(c){X) = {A Ç X : nonempty, (w)-compact, (convex)}. 

for A G 2X \{0} we set \A\ = supx(EA\\x\\(norm of A), <JA(X*) = 
supa.€yl(x*,x),x* G X* (the support function of A) and CIA(Z) = 
ÌIIÌX£A\\Z — x\\,z G X (the distance function from A). Also if B, C G 
2X\{$} the excess of B over C is defined as h*(B, C) = supyeBdc(y). 

A multifunction F : ft —> Pf(X) is said to be measurable if it satisfies 
any of the following three equivalent conditions: 

i) for all x G X,u) —• djp^(x) is measurable, 

ii) there exist {fn{')}n>i measurable selectors of F(-) s.t., for all 
eu G ÎÎ, F(Ü;) = cl{/n(ct;)}n>i (Castaing representation of F(-)), 

iii) F~(U) = {(J G ft : F(w) H C/ ^ 0} G E f o r all U Q X open. 

For more details concerning measurable multifunctions the reader 
can consult any of the following three excellent references: Castaing-
Valadier [4], Rockafellar [16], Wagner [21]. 

Let F : O —> 2X \{0} be a multifunction. We introduce the set 

S^ = {/(•) G L i ( ï î ) : f(u>) G F{o>)v - a.e.}. 

If GrF = {(u,x) G fix X : x G F(CJ)} G E xB(X), the 5^ is 
nonempty if and ony if inf^^^H^II G L1(fì). Also if F(-) is closed 
valued, then it is easy to see that Sp if a strongly closed subset of the 
Lebesgue-Bochner space L^-(^). Having this set, we can now define an 
integral for the multifunction F(-). So we set 

J F(w)dn(u) = { J f{w)dn{u) : /(•) e S1,.}, 

where fn f{uü)d^{uj) is understood as a Bochner integral. This set 
valued integral was first introduced by Aumann [3] as the natural 
generalization of the integral of a point valued function and of the 
Minkowski sum of sets. 

We will say that a multifunction F : ft —• Pf(X) is integrably 
bounded if it is measurable and \F(-)\ G L1(fì). 
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Suppose that F, Z are Hausdorff topological spaces and F : Y —> 
2Z \{0}. We say that F(-) is upper semicontinuous (u.s.c.) (resp. 
lower semicontinuous (l.s.c)) if, for all U Ç Z open, we have that 
{?/ € y : F (y) C 17} (resp. {?/ G F : F (y) fi Î7 ^ 0}) is open too. 
If Z is a metric space and Fi : Y —• 2Z \{0}, i G 7, we will say that the 
family {-Fi(-)}t€/ is equi-h*-u.s.c. at y if, for every e > 0, there exists 
a neighborhood F of y such that, for 2 G V, h*(Fi(z), Fi(y)) < £ for all 
i G 7. We say that {Fi(-)} i€j is equi-h*-u.s.c. if it is equi-h*-u.s.c. at 
every y G Y. 

Finally we would like to introduce a mode of set convergence, different 
from the Hausdorff convergence, which we are going to use in the 
sequel. So let {Kn}n>i be a sequence of nonempty subsets of X and r 
a topology on X. We say that Kn r-converges to K in the Kuratowski 
sense if r — lin^^oo Kn Ç K Ç r — limn_^oo Kn, where 

T - lim Kn = {x = r - lim xnfc, xnk G ÜTnfc, k > 1} 
n—»oo fc—»oo 

and 
r — lim 7Cn = {x = r — lim xn , xn G üTn5 n > 1}. 

Since we always have that r — limn_xec Kn Ç r — limn^oo 7sTn, we 
deduce that 7Cnr-converges to K in the Kuratowski sense if and only 
if r - limn_oo Kn = K = r - l imn^o o Kn. When w - limn_^oo Kn = 
k = s — limn_^oc Kn, where w denotes the weak topology on X and s 
the strong (norm) topology, then we say that Kn converges to K in the 
Kuratowski-Mocso sense and we write that Kn —> K as n —> 00. For 
details we refer to Mosco [12] and Salinetti-Wests [18]. 

2. Existence theorems. Let [0,T] be a compact interval in R with 
the Lebesgue measure dt and X a separable Banach space. We will 
study the Volterra integral inclusion 

(*) x(t)ep{t)+ I K(t,s)F(s,x(s))ds, 
Jo 

where F(-, •) is a multifunction (orientor field). 
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Before going into the first existence theorem, we need to state an 
auxiliary functional analytic result. This result is also very interesting 
in its own because it appears to be the most general theorem for 
weak compactness in the Lebesgue-Bochner space L^(O). It was first 
obtained by the author in [14]. For completeness we include it here 
together with its proof. 

Assume that (ÎÎ, ^ , /x) is a complete cr-finite measure space and X a 
separable Banach space. 

THEOREM 2.1. If F : Q —> Pwkc{X) is integrably bounded, then Sp 
is a nonempty convex, w-compact subset of L1

X{Q). 

PROOF. Nonemptiness and convexity follow immediately from the 
fact that F(-) is integrably bounded and has convex values. 

So it remains to show that Sp is a ^-compact in L^ (ÎÎ). For that 
purpose we are going to use James' theorem (see Floret [6, p. 59]). 
Thus we have to show that every element of [L^(îî)]* achieves its 
supremum on SF. From the Dinculeanu-Foias theorem (see Ionescu-
Tulcea [10]) we know that [L^(ÎÎ)]* = L%%(Si). Let #(•) G L$%(SÌ). 
We have 

sup ( # , / ) = sup (g(üj)J(u))dfi(uj). 
fes\, /es*, Jn 

From Theorem 2.2 of Hiai-Umegaki [8] we know that 

sup (g(u),f((j))dfj,(u)= / sup (g(u),x)dfi(uj). 
fes^Jn JQX£F(UJ) 

Let M(v) = {z e F(ÜJ) : (g(u),z) = supx<EF{(jj)(g(w),x)}. Since 
F(-) is w-compact valued for all UJ £ CI,M(LJ) i=- 0. Also it is easy 
to see that M(-) is closed valued. Let m(u) = supxEF^(g(uj)x). 
If {fn(')}n>i is a Castaing representation of F(-) we can write that 
m{uj) — supn>1(#(u;), fn(uj)), which shows that ra(-) is measurable. Let 
r(uj,z) = (g(oj),z) — m(u>). Clearly r(-,-) is a Caratheodory function 
and so it is jointly measurable. Then note that 

M(u) = {ze F{u) : r{u, z) = 0} 

GrM = {(w, z) e ft x X : r{uj, z) = 0} D GrF. 
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Recalling that GrF G £ xB(X) we deduce that GrM G E x £ ( X ) 
and so applying Aumann's selection theorem we can find f : £1 —* X 
measurable such that f{uj) G M (a;) for all a; G ft. Thus we have 

/ sup (g(u),x)diJ,(uj)= (g(uj)J(uj))d^(uj) 
Jn XEF(UJ) J Ci 

=* sup (g J) = (# , / ) . 

Since #(•) G L^* (ft) = [L^(f2)]* was arbitrary, invoking James' theo

rem, we conclude that Sp is w-compact in L]ç(Ç}). DOpt 

REMARK. 1) If X is also weakly sequentially complete, then the 
converse of the above theorem is true. Namely given F : £1 —• Pf(X) 
integrably bounded if S^ is a convex and ^-compact subset of L^-(O), 
then, for all u G Çl,F{u)) G Pwfcc(X). This was proved by the author 
in [15]. 

2) An immediate important consequence of the theorem is that 
JQF(u)dß(u)ePwkc(X). 

Now we are ready for the first existence result for the integral 
inclusion 

(*) v(t)ep(t)+ / K(t,s)F(s,x(s))ds. 
Jo 

Here F(-, •) is a multifunction (orientor field) and K : {(£, s) : 0 < s < 
t < T} -+ £(X) = Continuous linear operators from X into itself. By 
a solution to equation (*) we understand an x(-) G Cx(T) satisfying 
(*) for all t G T. 

THEOREM 2.2. Ifl)F:TxX-+ Pfc{X) is a multifunction such 
that 

(a) F(-, •) is jointly measurable and for all x G X,F{t,x) Ç G(t) a.e. 
with G : T —• Pwkc{X) integrably bounded, 

(b) for all t G T , F(t, •) : Xw —• Xw is u.s.c; 
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2) for all t G T,K(t, •) is essentially bounded on [0,t], 

3) l i n v _ ^ 0 + (j*' \\K(t',s)\\ \G(s)\ds+f* \\K*(f,8)-K(t,a)\\ \G(s)\da) 

= 0 for fixed t or t, 

A)p(t)€Cx(T), 

then (*) admits a solution. 

PROOF. Consider the set W C CX(T) defined by 

W = {x(.) G Cx(T) : x(t)=p(t)+ [ K(t,x)g(s)ds,g(.) G S^t G T}. 

Our claim is that W is a compact subset of Cxw(T). First note that, 
for all x(-) G W and all £ G T, we have 

z(t) G p(t) -f / #(*, s)G(s)ds. 
Jo 

Since if (£, •) G £(X), it is also weakly continuous and so we have 
that K(t,s)G(s) G Pwkc(X) for all s G [0,t],t G T. Furthermore, for 
all x* G X* we have 0\fir(t,s)G(s)(#*) = °~G(s)(K*(t,s)x*), and using 
Theorem 3.8.1 of Hille-Phillips [19], we see that s —> cr^(t>s)G(s)(x*) 
is measurable on [0, i\. Thus, invoking Theorem III-37 of Castaing-
Valadier [4], we conclude that s —• K(t,s)G(s) is a P^fccPO-valued 
integrably bounded multifunction on [0,£]. Then, using Theorem 2.1, 
we get that /0* #(*, s)G(s)ds G P ^ X ) , t G T. 

Thus, for every t G T, we have that 

M*)}x(.)€^ e Fwfc(X). 
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Also, for £, t G T, t > £, we can write that 

\x(t)-x(t)\\ < \\p(t') -p(t)\\ + II / K(t,s)g(s)ds 

I 
Jo 

K(t, s)g(s)ds 

t' 

<\\p(t')-p(t)\\ + £ \\Ktf,s)\\ \\g(s)\\ds 

+ f\\K{tf,s)-K{t,s)\\ \\g{s)\\ds 
Jo 

<\W)-P{t)\\ + ft \\K(t',s)\\\G(s)\ds 

+ f \\K(t',s)-K(t,s)\\\G(s)\ds. 
Jo 

Passing to this limit as t' —* t, we get that 

\\x(t')-x(t)\\^0 

uniformly in x(-) G W. So we deduce that W is equicontinuous, a 
fortiori, and then w-equicontinuous. 

Finally we will show that W is closed in Cxw(T). Then, invoking 
the Arzela-Ascoli theorem, we will have our claim. So let {xa{')}aeA 

be a net in W such that xa(-) - ^ x(-). Then, for all t G T, we have 

xa(t)=p(t) + J K{t,s)ga{s)ds 
Jo 

with ga(-) G SQ, a e A. But recall that SQ is a w-compact subset of 
Ll

x(T) (Theorem 2.1). So, by passing to a subnet, if necessary, we may 

assume that ga(-) —̂ » g(-) G SQ. Then we can write 

/ K{t,s)ga{s)ds^ [ K{t,s)g{s)ds (since \\K{t,-)\\ G L°°) 
Jo Jo 

=> Xa(t)2>p(t) + [ K(t,s)g{s)ds. 
Jo 

I 
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On the other hand we already have by hypothesis that 

xa(t)^x(t) 

for all £ G T. Since weak limits are unique (the weak topology being 
Hausdorff) we deduce that, for all t £T, 

x(t)=p(t) + / K(t,s)g{s)ds 
Jo 

with g(-) e S£- H e n c e x(') € W-
Therefore W is closed in Cxw (T). An application of the Arzela-Ascoli 

theorem tells us that W is a compact subset of Cxw(T). 

Now consider the multifunction 

defined by 

$(x) = {*(•) e Cx(T) : z(t) = p(t) + j K(t,s)f(s)ds,/(•) 

€ ^ F ( . , a 5 ( - ) ) ' * e T)' 

Since F(-, •) is jointly measurable for every x : T —• X measurable, 
5 —• F(s,x(s)) is measurable (just note that s —• c?F(s,a:(s))(^) is 
measurable for all z € X). So SjL / ^ ^ 0. Hence we see that 
$(•) has nonempty, convex closed values in W. Also note that W is 
metrizable, since the topology of W is equal to the topology of pointwise 
convergence on a countable dense subset of T. 

Now we will show that Gr3> Ç W x W is closed and, since W is 
a compact subset of Cxw(T), this will imply that $(•) is u.s.c. (see 
Theorem 7.1.16 of Klein-Thompson [11]). So consider a sequence 

K ( ' ) , l / n ( ' ) } n > i Ç G r k t j n ( - ) x-^ x(') and yn{-) ^-> y(-). 

Then, for every n > 1, we have 

Vn(t)=p(t)+ I K(t,s)fn{s)ds, 
Jo 



N.S. PAPAGEORGIOU 273 

for all t G r , with /n( . ) G S^{.ìXn(m)y Since {/n(-)}n>i Ç S<k and the 
latter is ^-compact in L^(T), by passing to a subsequence, if necessary, 
we may assume that 

/.(•r^(r)/(o e sh. 
Applying Mazur's lemma we can find 

hm(') G convU n>m / n ( - ) 

s—L1 (T) 

such that hm(') -^ /(•), and by passing to a further subsequence 
we may assume that 

hm(s)-^f(s) a.e. 

For every x* G I * we have 

(X*,hm(s)) < (TCOIW ^n>m F(S, Xn(x)){xn 

= aUn>mF(Sixn(x)){^) = SUp O - F ^ ^ n W ) ^ * ) a ' e -
n>77 i 

=> lim (a;*,hm(s)) = (x*,f(s)) < lim o-F(S)Xn(s))(x*) a.e. 
m—toc n—KX> 

But, by hypothesis for all t G T, F(t, •) is u.s.c. from X^ into X^. So 
Proposition 2 of Aubin-Ekeland [2, p. 122] tells us that x —*• crp(tja.)(#*) 
is u.s.c. from Xw into R. So, for all x* G X*, we have 

}}^o
aF(s,xn(x)){x*) < CTF(S,X(S))(X*) a .e . 

=* (^%/(5)) < ̂ («^(«»OO a.e. 
=>• / (s) G F(s,x(s)) a.e. 

Then, for all * G T, y(t) = p(t) + J* K(t, s)f(s)ds with /(•) G ̂ (-,*(.)) • 
Hence (#(•), ?/(•)) G Gr$, which proves that Gr3> is a closed subset 
of W x W. Thus we deduce that $(•) is u.s.c. Applying the infinite 
dimensional version of Kakutani's fixed point theorem (see [2], p. 344) 
we get that there exists x(-) G W such that x(•) G $(£(•)). Clearly, 
then, x(-) is the desired solution of (*). DOpt 
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Next we will state an existence theorem for integral inclusions in 
which the multifunction is l.s.c. The remarkable feature of that result 
is that the orientor field need not be convex valued. 

Assume that T = [0, T] is as before and that X is a separable Banach 
space. 

THEOREM 2.3. Ifl)F:TxX-+ Pf(X) is a multifunction such 
that : 

(a) F(-,-) is jointly measurable and, for all x G X,\F(t,x)\ < 
ip(t)a.e.with ip(-) G L1, 

(b) for all t G T, F(t, •) is l.s.c; 

2) K(t, s) is compact, linear and \\K(t, s)\\ < M; 

3 ) t . J S o + ( / WK(t''s)Ms)ds + J \\K(t,s)-K(t',S)Ms)ds) 

= 0 for fixed t' or t; and 

4) p : T —> X is continuous] 
then (*) admits a solution. 

PROOF. Again consider the set W Ç Cx(T) defined by 

W = {x(-) G Cx(T) : x(t) = p(t) + / K(t, s)g(s)ds, 
Jo 

g(-) measurable, ||^(5)|| < ip(s) a.e.,t G T}. 

As in the proof of Theorem 2.2, using hypotheses 2) and 3), we ge 
that W is compact in Cx(T) (Arzela-Ascoli theorem). 

Let L : X - • 2L* - {0} be defined by 

L(x) = Si 
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We claim L(-) is l.s.c. So let xn —• x in VF, and /(•) G L(#). A 
straightforward application of Aumann's selection theorems (see [21]) 
gives us / n( . ) G 5,F(.,xn())

 s-t- \\fn{s) - f{s)\\ = dF{SiXn{s))(f(s)). But 
since F(s, •) is l.s.c. we have 

F(s,x(s)) Ç lim F(S)Xn(s)) 
n—+00 

=*/(«) G lim F(s,rrn(s)) 
n—*oo 

=» lim d(f(s)) = 0 a.e. 
F(s,zn(s)) 

=» | | /n(s) - / (a) | | - 0 a.e. and / n G ^(.,*n(.)) 

Hence L(x) Ç lim^, ^ and so we get that L(-) is l.s.c. Apply 
Theorem 3.1 of Fryszkowski [7] to get v : W —> -^x(T) continuous 
s.t. v(x) G L(x). Let fc(x)(-) G C x ( r ) be defined by 

k(x)(t) =p(t)+ / ÄX*,5)v(a;)($)d$. 
./o 

Clearly k : W —+ W and is continuous. Apply the Schauder fixed 
point theorem to get x(-) G W s.t. x = k(x). It is easy to see that #(•) 
is the desired solution. DO 

3. A convergence result. Before stating and proving the con
vergence result that we have for Banach space valued differential in
clusions, we need to develop some auxiliary material, which is also 
interesting in its own as general results about measurable multifunc-
tions. 

For the first lemma assume that X is any Banach space. 

LEMMA 3.1. If {ifn}n>i Ç Pf(X) and for all n > l,Kn Ç G, G G 
Pwk(X), then, for all x* G X*,ììmn^00(TKn(x

,¥) < ^w_]^ ^.y 

PROOF. Fix x* G X*. Because the sets are ^-compact, for every 
n > 1 we can find xn G An such that x*,xn) = o~Kn(x*)- Then 
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we can find a subsequence {xnk = Xk}k>i such that (x*,Xk) —• 
limn^oo(7Kn(^*). But {xk}k>i Q G and G is w-compact (and, by 
the Eberlein-Smulian theorem, w-sequentially compact). So by passing 
to a subsequence, if necessary, we may assume that Xk~*x G G. So x G 
w -ïmin^ooKn. Thus (x*,x) < ^ _ n ^ K n ( z * ) =* l i mn^oo 07cnOO < 
^w-îïïn A: (X*)* Since x* ^ X* was arbitrary, the result follows. 
D0ptimn_+O0 

We will use that lemma to establish an important generalization of 
the Schmeidler-Artstein theorem (see [1, 19]) on weak sequential con
vergence. Assume that ( ^ X ^ A O *S a cr-finite measure space and X a 
Banach space. 

THEOREM 3.1. If{fn(w),f(w)}n>i Ç G(w) G Dwk{x) andfni-f^fi-), 
then f(u>) G cönv w - limn^oo{/n(u;)}n>i^ - a.e. 

PROOF. Using Mazur's lemma we have that, for all k > 1, 

f(uj) G cönv Un>fc {fn(uj)}fi - a.e. 

Let x* G X*. Then we have, for all k > 1, 

( s * , / M ) < ^öönvun>fc{/n(u,)}(**) 

= aun>k{fn(u;}(x*) = supOr*, fn(v))ß ~ a.e. 
n>fc 

=» ( z * , / M ) < Sm (x*,/n(u;)) = ïïm" <X{/n(u,)}n>10O-
n—>-oo n—»•oo -

Using Lemma 3.1 we can write that 

(*', / (« ) ) < ^ . s { / n ( W ) } ( i > - a.e. 

Since x* G X* was arbitrary we conclude that 

f(u) G cönv w - lim{/n(u;)}n>i. üßpt 

The importance of the above theorem lies in the fact that, starting 
from a weakly-L^(^) convergent sequence, we get a pointwise result. 
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We believe that this result will be very useful in several areas of 
pure and applied mathematics. Its first consequence is the following 
remarkable set valued version of Fatou's lemma. 

Here (12, ]T}, ji) is a nonatomic, complete, cr-finite measure space and 
X a separable Banach space. 

THEOREM 3.2. //, for all n > 1, Fn : Ü -* Pf(X) is measur
able, Fn{uj) Ç G(UJ) where G : ÎÎ -* Pwkc(X) is integrably bounded 
and w — limn-.oo Fn(uj) G Pf(X), then w — hmn_+00 fQ Fn{<jj)d^{uj) Ç 
clfnw - l imn_0 0 Fn{uj)dß{üü). 

PROOF. Let x G W — limn_+00/fiFn(o;)d/x(a;). Then there exists 
Xk G JQFnk(uj)diJ,((jü) such that Xk~*x. From the definition of the 
Aumann integral we know that 

/ fk{u)dß(üü) 

with fk(-) G S y . Since Sp C Sh and the latter is w-compact in 
nk nk 

L^(H), we can assume without any loss of generality that fk — * f. 
Hence x = f^ f(uj)dfi(uj). Also, from Theorem 3.2, we know that 

f(uj) G conv w — lim a — a.e. 
{/n(u;)}n>l 

x G / ( 

f(uj) G conv w — lim Fn(w)[j, — a.e. 
n—>oo 

conv w — lim Fn(w)dfi(u). 

Since /x(-) is nonatomic, Corollary 4.3 of [8] tells us that 

cl / convw — lim Fn{uj)dß{uü) 
JÇÎ n-*°° 

= / convw — lim Fn{<jü)dji{<jj) = cl / w — lim Fn(u)dfi(uj). 
JÇÏ n ^°° Jn *-•«> 

So we have that 

x G cl / w — lim Fn(uj)dfi(uj) 
Jçi n^°° 
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and since x G w — limn_,oo Jn Fn(üü)dfi(uj) was arbitrary we conclude 
that 

w lim / Fn(ixj)dß(u) C cl / w — lim Fn{uj)dß{uj). üßpt 

The next result provides a new, useful necessary condition for the 
Kuratowski-Mosco convergence of a sequence of convex sets. 

Assume that X is any reflexive Banach space. 

THEOREM 3.3. 7/{ifn}n>i Ç Pfc(X),sup\Kn\ < oo andKn
K^MK 

as n —• oo, then K ^ 0 and o~Kn(-) —* &k(') as n -^ oo. 

PROOF. That K ^ 0 follows immediately from the reflexivity of X 
and the definition of the Kuratowski-Mosco limit of sets. 

Also from Lemma 3.1 we know that, for all x* G X*, 

(1) ÜE aKn(x*) < <Tw_y-K (x*) = aK(x*). 
n—KX> w 11Iu^n 

Furthermore, from Theorem 3.1 of Mosco [13], we know that 

where convergence in the r-sense means that epi (JKn(') —> epi O~K(') 

as n —• oo (see [13]). But from Lemma 1.10 of [13] (see also Lemma 
1.1 of [17]) we know that 

(2) <JK(x*)< lim <TKn(x*). 
n—*oo 

From (1) and (2) we conclude that crxn(-) —• &K(') as n —• oo. DOpt 

REMARKS. 1) In finite dimensional Banach spaces we can have the 
following converse of the above theorem: "If {Kn,K} Ç Pfc(X),K is 

bounded and <JKn(') —* &!({'), then Kn^>K." This follows immediately 
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if we combine Corollary 2C of Salinetti-Wets [17], Theorem 3.1 of 
Mosco [13] and Theorem 3 of Salinetti-Wets [18]. 

2) Although Corollary 2E of Salinetti-Wets [17] appears to provide a 
converse to our Theorem 3.3 for infinite dimensional Banach spaces, 
that corollary is not valid in an infinite dimensional setting as the 
following counterexample indicates: Let X be an infinite dimensional 
reflexive Banach space and take {xn}n>i Ç X such that xn^x but 
xn-^x. Note that, for all x* G X*,cr{Xny(x*) = (x*,xn) —• (x*,x) = 
(T{x}(x*). If Corollary 2E of [17] was true for infinite dimensional spaces 
we would have had that O~{XTI}(')^KJ{X}(-) which, by Theorem 3.1 of 
[13], implies that {xn} —> {x} as n —• oo, a contradiction since xn—•£. 

The next lemma can be viewed as a converse of Lemma 3.1. Again 
X is any Banach space. 

LEMMA 3.2. If {Kn,K}n>1^_2x\{H)} and, for all x* G X%ïïmn_.oc 

o~Kn(x*) < O~K(X*), then w — limn^oo Kn Ç convK. 

PROOF. Let x e w — limn^ooKn. Then we can find Xk G Knk such 
that 

xk^x => {x*,xk) - • (x*,x) => (x*,x) < limn_^ooCrKn(^*) < vK(x*) 

=ï x G convÜT. 

Thus finally we conclude that w — limn-+00Kn Ç convÜT. DOpt 

This allows us to prove the following interesting superpositional con
vergence result. Assume that X is a reflexive Banach space. 

THEOREM 3.4. / / Fn : X —• Pfc(X) is a sequence of equi-h* -u.s.c. 
multifunctions such that, for all x G X, sup n > 1 |Fn(x)| < +00 and 

Fn{x) —• F(x), then, for any xn-^x, we have w — limn_oo Fn(xn) Ç 
F{x). 

PROOF. For every x* G B{ = {z* G X* : ||z*|| < 1}, we have 
aFn(xn){x*) - °F{x){x*) = 0~Fn(Xn)(x*) - <JFn(x)(x*) 

+ 0-Fn(x)(x*)-(TFix)(x*). 
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Prom Hörmander's formula we know that 

VFn(xn)(x*) -<TFn{x)(x*) < h*(Fn(xn),Fn(x)). 

Because of the equi-h*-u.s.c. hypothesis we have that 

h*(Fn(xn),Fn(x)) —• 0 a s n - ^ o o 

=* ^„(aîn)^*) - <rFn(x)(x*) ^ 0 as n -> oo. 

Also, since Fn(x) —> -F(a:) as n —• oo, Theorem 3.3 tells us that 

0>n(z)OE*) -> <TF(X)(**)-

So we get that 

Yim^ (<JFn(xn)(x*) - <7F(X)(X*Y) < 0 

=> }}^°Fn(xn)(x*)< <JF{X)(x*), x* e B{. 

Exploiting the fact that the support function is positively homoge
neous we get that 

lim aFn(xn)(x*) < aF{x)(x*) 
n—»-oo v ' 

for all x* € X*. Hence Lemma 3.2 tells us that 

w - lim Fn(xn) Ç F(x). 
n—»oc) 

The final auxiliary result that we will need, in order to prove the 
convergence theorem, is the following. Let X be any Banach space. By 
—• we will denote the convergence in the uniform operator topology on 
C(X). 

THEOREM 3.5. / / { £ „ , #}n>i Ç pf(x),Kn Ç G for alln>l where 
G e Pwkc(X),w - limn-^ooifn Ç K and {An,A}n>1 Ç C(X) with 
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An
 yA, then w — limn_».00 An (Kn)CA(K). 

PROOF. For any x* € X* and n > 1 we have that 

<TAn(Kn)(x*) = aKn(Alx*) and aA(K){x*) = aK{A*x*). 

Then 

<TAn(Kn){x*) - crA{K)(x*) = oKn{A*nx*) - <TK(A*X*) 

= aKn(A>*)-°Kn(A*x*) 

+ oKn{A*x*)-°K{A*x*). 

But 

aKn(A*nx*)-<TKn(A*x*)<*Kn(A*nx*-A*x*) 

<\Kn\\\A*nx*-A*x*\\ 

<\G\\\A*nx*-A*x*\\, 
because 

An™A =• A*n™A* =• \\A*nx* - A*z*|| ^ O a s n ^ o o . 

Also from Lemma 3.1 and the hypothesis that w - iimn-^ooKn Ç K we 
get that 

ÏÏm" <r*n(A*x*) < a TT- (A***) < M A * * * ) . 
n—»oo it;—limKn 

So we have that 

UHI VAn(Kn)(x*) < °A(K)(X*) 

which, by Lemma 3.2, implies that 

w - ÏÏm An(Kn) Ç A(üC). DOpt 

Now we are ready for the promised convergence result. 
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Again, T = [0, T] with the Lebesgue measure dt, while X is a sepa
rable, reflexive Banach space. First we will prove a closure theorem. 

We consider the following sequence of integral inclusions 

/ x ( xn(t) Gpn(t) +f*Kn(t,s)Fn(s,x(s))ds 

[n) \x(.)eCx(T). 

and 

u) lx(t)ep(t) + j*K(t,s)F(s,x(s))ds 
v ; \x{.)ecx(t). 

THEOREM 3.6. Ifl)Fn:TxX^ Pfc{X) are multifunctions such 
that : 

(a) for all n > l ,Fn(-,-) is jointly measurable and, for all x G 
X,\Fn(t,x)\ < t/>(t) a.e. with ip(-) G L1, 

(b) for all t ET , {Fn(£, -)}n>i is equi-h*-u.s.c, 

(c) For all (t, x) G T x X, Fn(t, x)K^MF(t, x) and F(t, x) ^ 0; 

(2) {pn(0,P(0}n>i Ç C x(T)and, /or all t € T,p n ( t )^p( t ) ; 

(3)forallteT,Kn(t,s)-^K(t,s) a.e. on [0,*] and supn>! ||üTn(t, -)|| 
€L°°([<M]); 

and z/ {xn(-)}n>i is a sequence of solutions of (*n),n > 1 such that, 
for all t e T,xn{t)-^x{t),x(-) e CX(T)\ then x(>) solves (*). 

PROOF. By hypothesis, for all n > 1 and all t E T, we have 

xn(t)epn(t) + / #n(M)^n(s,#nO0)ds 

= » X ( « ) G Ì Ì ; - lim [pn(t)+ / # n ( M / • ^ n l ^ Xn[S))uS I 

Ç w - limpn(£) + w - lim / Kn(t, s)Fn(s,xn(s))ds. 
n—•oo n—»oo J Q 
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Using our multivalued version of Fatou's lemma (Theorem 3.2), we 
can write that 

w - lim / Kn(t, s)Fn(s,xn(s))ds 
n-oo J0 

Ç cl / w - limn^00i ;fn(t, s)Fn(s, xn(s))ds. 
Jo 

An application of Theorems 3.4 and 3.5 gives us 

w— lim Kn(t,s)Fn(s,xn(s))ds Ç / K(t,s)F(s,x(s))ds 
Jo n-+°° Jo 

^x(t)ep(t)+ K(t,s)F(s,x(s))ds, teT. 
Jo 

Thus x(-) G Cx(T) solves (*). DOpt 

If we impose additional assumptions on {Fn(-, -)}n>i and {Kn(-, -)}n>i» 
we can have a convergence result analogous to Theorem 1 of Strauss-
Yorke [20]. 

THEOREM 3.7. / / the orientor fields {Fn(-, -)}n>i take values in 
Pfc(X),forallxeX,n> l,\Fn(t,x)\ < xj)[t) a.e. with </>(•) G L°°, for 

allt G T,supn>1 | |i ;Cn(t,5)|| < M, Pn(-)^P( ') as n—> oc and the rest 
of the hypotheses of Theorem 3.6 hold, then if {xn(-)}n>i are solutions 
of the {(*n)}n>i) we can find a subsequence converging tox(-) G Cx{T), 
a solution of (*). 

PROOF. Let D = {pn('),p(')}n>i Ç CX(T). Note that 

{*»(•)}»>! Ç W = {*(') G Cx(T) : z(t) = q(t) + / f(s)ds, 

H/WII^MlHIoo, qeD,teT}. 

As in the proof of Theorem 2.2 we can show that W is a compact 
subset of Cxw{T). So, by passing to a subsequence if necessary, we 
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may assume that xn{-) -*°x(-) G W =^ xn(t)^>x(t),t G T. An applica
tion of the closure result (Theorem 3.6) proves this theorem. DOpt 
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