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ABSTRACT. This paper surveys several important prop
erties of linear integro-differential equations (1) of Barbashin 
type (2), especially those related to the geometric structure 
of the underlying function space. In contrast to Barbashin's 
classical results, discontinuous data (e.g. kernel functions) 
are also allowed. After discussing several classes of suitable 
kernels, the resolvent operator (Cauchy function) generated 
by the operator (2) is described. Moreover, stability results 
for equation (1) are proved. Finally, representation formulas 
for the corresponding Green's function are given; a perturbed 
version of such formulas applies to averaging procedures of 
Bogolyubov-Krylov type. 

This paper is concerned with the linear differential equation 

(1) g = A(t)u 

in Banach spaces of continuous or measurable functions over some 
interval [a, 6], where the operator A(t) is given for t G J (a bounded or 
unbounded interval in R) by 

(2) A(t)x(s) = c(t, s)x(s) + / fe(t, 5, a)x{a)da. 
Ja 

Here and in what follows, c(t, s) and k{t, s,a) are measurable real 
functions on J x [a, 6] and J x [a, b] x [a, 6], respectively. Appropriate 
function spaces for the operator (2) are, for instance, the space X = 
C[a, b] of continuous functions or the space X = Lp[a, b] of p -summable 
functions (1 < p < oo) over [a, 6]; more generally, X may be an ideal 
space (see e.g. [50]) of measurable functions. 
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Equations of the form (1) are natural "infinite-dimensional ana
logues" of finite systems of scalar differential equations. However, while 
the literature on general infinite linear systems is vast (see, e.g., the 
monograph [47] and the references therein), integro-differential equa
tions like (l)/(2) have not been given much attention in the literature, 
although they occur in many fields of applied analysis (especially in 
control theory and in some parts of probability theory). Some early 
results in this direction may be found in the papers [4-17], [22-24], 
[39], [45 ], [53], for more recent results see, e.g., [18-21], [25], [33], 
[34], and [36]. The first essential achievements seem to be due to E.A. 
Barbashin and his pupils which refer to operators of type (2) with con
tinuous functions c(t, s) and k(t,s,o~). After these papers appeared, 
equations of the above type were usually called Barbashin equations. 

The purpose of this paper is two-fold. On the one hand, we shall 
apply the general theory of differential equations in Banach spaces 
(see, e.g., the book [27]) for studying the problem (1). On the other 
hand, we shall make extensive use of the very advanced theory of 
linear integral operators in function spaces (see, e.g., [40], [52]) taking 
into account the specific structure of the operator A(t) in (1). This 
"combined approach" allows us not only to get the basic classical 
results on Barbashin equations as consequences of general theorems 
on both differential and integral operators in function spaces, but 
also to obtain essential generalizations and improvements of previous 
results; in particular, our approach allows us to consider discontinuous 
data c(t, s) and &(£, s, a) as well, and to point out the influence of 
the geometric properties of the underlying function space X on the 
"analytical behaviour" of problem (1). 

The plan of this paper is as follows. In the first section, we obtain 
minimal conditions for c(£, s) and k(t, s, a) under which the equation 
(1) may be successfully studied in a specific given function space X. 
Afterwards, we describe the structure of the resolvent operator (Cauchy 
function) associated with equation (1). In the third section, we prove 
some results on the stability and well-posedness of problem (1) with 
respect to various scalar parameters. Finally, we give existence condi
tions and representation formulas for the Green's function with respect 
to bounded solutions on the whole real line; such conditions are partic
ularly useful for applying the Bogolyubov-Krylov averaging principle to 
(both linear and nonlinear) integro-differential equations of Barbashin 
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type. 

1. Estimates for kernel functions 

Let X be some Banach space of real functions on [a, 6], and denote 
by L(X) the space of all bounded linear operators in X. By Lo{X) we 
denote the subspace of all operators A G L(X) which are representable 
in the form 

(3) 
fb 

Ax(s) = c(s)x(s) + / k(s,a)x(a)da. 
Ja 

The natural problem arises to find conditions on the functions c(s) and 
k(s,a) under which (3) is in fact a bounded operator in X. It turns 
out that the solution to this problem heavily relies on the structure of 
the underlying space X. 

In the case X = C[a, b] it is useful to introduce the auxiliary functions 

(4) 

(5) 

fb 

a(s) = c(s) + / h(s,a)do~, 
Ja 

ß{z,*)= \ [c(s)xs(<r) + (z - o-)k(s,a)]d(T, 
Ja 

where x s(c) is the characteristic function of the unbounded interval 
[5,00), and 

(6) 7(«) = |c(*)|+ / \k(s,a)\da. 
Ja 

By the classical results of F. Riesz and I. Radon (see, e.g., [29]), the 
following characterization holds true. 

LEMMA 1. The linear operator (3) belongs to LQ(C) if and only if the 
functions (4) and (5) are continuous, and the function (6) is bounded; 
the norm of A is then given by 

(7) P | | = sup0<.<5|7(*)|. 
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Lemma 1 implies that LQ(C) is a closed subspace of L(C); moreover, 
the representation (3) for operators A G LQ(C) is unique, and the set 
Li(C) of integral operators in C (i.e., operators (3) with c(s) = 0 is an 
ideal in LQ(C). 

It is interesting to note that the operator (3) may act in the space 
C even in the case when the single components of (3) do not. The set 
Ld{C) of all operators (3) for which both terms belong to L(C) is, by 
Lemma 1, a closed subspace of L(C). The subspaces Li(C),LiC(C) and 
Liw(C) of all integral operators, compact integral operators, and weakly 
compact integral operators, respectively, are also closed in L(C). 

Now let X be an ideal space of measurable functions on [a, b] (for the 
terminology see, e.g., [48-50]). In this case, there do not exist simple 
conditions (both necessary and sufficient) for c(s) and k(s,a) under 
which the operator (3) belongs to L(X). Nevertheless, it turns out 
that the basic results for integral operators in ideal spaces (see, e.g., 
[40], [49], [52]) carry over to operators of the form (3). 

Some definitions are in order. Recall (see, e.g., [50]) that the associate 
space X' of X consists of all measurable functions y on [a, 6] with 
(x, y) < oc for all x G X, where 

(8) (x,y) = / x(s)y(s)ds. 
Ja 

The space X' is, of course, a (possibly proper) subspace of the usual 
adjoint space X*. The associate operator A' G L(X') of A G L{X) 
is defined by the relation (Ax,y) = {x,A'y)\A' is, of course, the 
restriction of the usual adjoint operator A* to X'. We remark that 
the associate operator A' exists if and only if A preserves X'-weakly 
convergent sequences. 

A linear operator A in an ideal space X is called regular if A 
preserves order-bounded subsets of X. Any regular operator A may be 
represented as a difference of two positive operators. Given a regular 
operator A, we may define its modulus \A\ as the minimal of all positive 
linear operators B in X such that 

(9) \Ax\ < B\x\ (x G X). 

Finally, the operator A gives rise to the operators 

fb 

(10) A*x{s) = c(s)x(s) + / k(a, s)x(a)da 
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and 

(11) [A]x(s) = \c(s)\x(s) + / \k(s,a)\x(a)da. 
Ja 

By adapting the corresponding proof for general linear integral opera
tors (see, e.g., [40], [49]), one proves the following 

LEMMA 2. Suppose that the operator (3) acts in an ideal space 
X. Then A is continuous and admits an associate operator A!, and 
A'x = A#x for each x for which A#x is defined. Moreover, the operator 
(3) is regular if and only if [A] G L{X)\ in this case, \A\ = [A] and 
A' = A#. 

Lemma 2 implies that a regular operator A is bounded in X if and only 
if both of its components are bounded in X, hence Lr(X) Ç Ld(X) Ç 
L(X). We remark that the subspace Lr(X) is, in general, not closed in 
L(X); however, equipped with the stronger norm 

(12) P||r = ||H||, 

Lr(X) becomes a Banach space. In this space, the sets Lri{X), LriC(X), 
and Lriw(X) of all regular integral operators, compact regular integral 
operators, and weakly compact regular integral operators, respectively, 
are closed ideals. 

In order to formulate (sufficient) conditions, in terms of the functions 
c(s) and k(s,a), under which the operator (3) acts in an ideal space X 
and has "nice" properties, we recall another important notion [49]. 

Let X and Y be two ideal spaces. We denote by R{X, Y) the set of 
all measurable functions k(s,o~) on [a, b] x [a, b] for which the norm 

(13) \\k(3,a)\R(X,Y)\\= sup / f \k(s,a)x(a)y{s)\dads 
ll*|x||<i Ja Ja 
\\V\Y'\\<1 

is finite; by R° (X, Y) we denote the subset of all functions from R(X, Y) 
with absolutely continuous norms. Every kernel k(s, a) in R(X, Y) gives 
rise to a regular linear integral operator from X into Y; in case k(s,o~) 
belongs to R°(X, Y), this operator is even compact. 
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Lemma 2 implies that the operator A is regular if and only if c(s) 
belongs to L ^ and k(s,a) to R(X,Y). This criterion, however, is not 
very suitable for applications, since calculating (or even estimating) the 
norm (13) for a given function k(s,a) is, in general, a hard problem. It 
is therefore useful to have a more explicit description of (at least some 
subspaces of) R(X, Y) at hand. 

Given again two ideal spaces X and Y, by U(X, Y) and V(X, Y) we 
denote the set of all measurable functions k(s,a) on [a, b] x [a, 6] for 
which the "iterated norms" 

(14) \\k(s,a)\U(X,Y)\\ = \\u(s)\Y\\ (u(s) = \\k(s,-)\X\\) 

and 

(15) \\k(s,a)\V(X,Y)\\ = \\v(a)\Y\\ (v(a) = \\k(-,a)\X\\), 

respectively, are finite; both sets U(X,Y) and V(X,Y) are ideal Ba-
nach spaces. 

LEMMA 3. Let X be an ideal space. Then U(X',X) is continuously 
imbedded in R(X, X) and 

(16) \\k{s,o)\R{X,X)\\ < \\k(s,a)\U(X',X)\\. 

LEMMA 4. Let X be an (almost) perfect ideal space. Then V(X,X') 
is continuously imbedded in R(X, X) and 

(17) \\k(s,a)\R(X,X)\\ < \\k(s,a)\V(X,X')\\. 

Both lemmas are contained implicitly in [48], [49] for general ideal 
spaces; for special spaces (for example, Lebesgue and Orlicz spaces) 
they are of course well known. 

In this connection, we mention that there exists a large literature on 
necessary and sufficient conditions for a linear operator A in Lp to be 
representable as a (Carleman) integral operator, i.e. A G Li(Lp); such 
conditions are usually given in terms of one of the norms (14) and (15) 
(see, e.g., [32], [37], [38]). 
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We point out that the statements of Lemmas 3 and 4 are sharp in 
the sense that equality U(X',X) = R{X,X) or V{X,Xf) = R{X,X) 
may in fact occur; for instance, the first equality always holds in case 
X = LQO, the second one in case X = L\. Another easily tractable case 
is that of dégénérait kernels, i.e., 

(18) *(«, a) = (t>(s)^(a) (</> G F, i/> G X'). 

Here we get immediately 

U(S) = U\X'\\\<P(S)\, t,(<7) = | | 0 y | | | # T ) | , 

hence 

||*(*,<r)|£/(X,r)|| = \\k(s,a)\V(X,Y)\\ = \\</>\Y\\ U\X% 

and the estimate (16)/(17) is just Holder's inequality. There is an
other feature in the general theory of integral operators which is worth 
mentioning. If the kernel function k(s,o~) does not belong to the space 
fi°(X, X), the corresponding operator (3) may be non-compact. How
ever, it may happen that the operator (3) satisfies a Darbo condition 

(19) a(AM) < ka(M) 

for some k > 0, where 

a(M) = inf{r/ : n > 0, M has a finite r/ — net in X} 

denotes the H aus dorff measure of noncompactness (see, e.g., [2], [44]) 
in the space X. If the estimate (19) holds we write A G L%(X); in 
particular, Lff(X) n U{X) = Lic(X). 

Consider again, for example, the degenerate kernel function (18) in 
the case X = Y = Lp(l < p < oc). Let 

aaib(t)= [J \<t>(8)\pda\ [J M*)\qdv\ , 

where 1/p + 1/q = 1, and let 

ä = lim£^o[supa < t<a + £aa > a + e(^) + supò_£< t<ba6_e,b(^)]. 
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Then the operator (3) belongs to Lic(Lp) if and only if a = 0; more 
generally, from estimates of C.A. Stuart and R.K. Juberg ([35], [46], 
see also [1]) it follows that A e L%(LP)\L?(LP) for A; > p^q^m and 
1 < ( | )1 + 1 /P ä. 

We point out that the minimal constant k in (19) (which is sometimes 
denoted by a(A)) is closely related to the radius of the essential 
spectrum of A (see [43]) and may be essentially smaller than the norm 
of A. The (singular) Hilbert kernel 

(20) k(s,a) = -- 1 

7T S — a 

for example, gives rise to an integral operator (3) (with c(s) = 0) whose 
norm ||-4||p in the space X = Lp[—1,1](1 < p < oo) satisfies the two-
sided estimate 

- cot - < \\A\\P < t an^- if 1 < p < - , 

l < | | i 4 | | p < t a n ^ i f ^ < p < 2 , 

1 < \\A\\P < t a n ^ - if 2 < p < 4 , 
2p 

7T 7T 

c o t - < \\A\\p < cot— if 4 < p < oo. 

In particular, this norm is minimal for p = 2, and tends to infinity if 
either p —• 1 or p —• oc (see [28], [30]). On the other hand, A fulfills 
the estimate (19) (with k = 1) in any of the spaces Lp (see [3]), since 
A has only eigenvalues on the circumference |A| = 1. 

Let us return to the space R(X,Y) defined in (13). In order to 
formulate more precise conditions for k(s, a) to belong to some kernel 
class R(X,Y), we shall need a special construction which is useful in 
the general interpolation theory of linear operators (see, e.g., [26], [41], 
[42]). Given an ideal space Z, we denote by Zp(0 < p < oo) the ideal 
space of all functions Z for which the norm 

(21) \\Z\Zp\\ = \\\z\t>\Z\\l/r 

is finite; for example, Zp = Lp if Z = L\. 
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LEMMA 5. Let X be an ideal space, and choose numbers &o, fci, lo, h £ 
(0, oo) and À, ji G [0,1] such that X^Q and X^ are Banach spaces and 

1 — À À 1 — a a 
H = + — = 1. 

ko &i lo h 

Let U = U(X'ko,Xlo) and V = V{Xh,X
f
ki). Then the space W = 

(7(i_/i)/(i_A) H Vp/\ is continuously imbedded in R(X, X) and 

(22) \\k(s,a)\R(X,X)\\ < Wkia^U^^y^x^-^kia^V^. 

We remark that, apart from Lemma 5, there exist other conditions 
for k(s,o~) to belong to R(X,X), mostly for the case X = L — p [40]. 
For general ideal spaces, however, very little is presently known in this 
direction. 

The Lemmas 3-5 given above allow us not only to find appropri
ate spaces for fc(s,cr), but also to study the continuous dependence of 
k(s,cr) of various parameters; in this connection, the basic estimates 
(16), (17) and (22) are particularly useful. 

2. The resolvent operator. Let us return to the Barbashin-
type integro-differential equation (1). The notion of a solution to this 
equation essentially depends on whether we consider it as an integro-
differential equation or a differential equation in a Banach space X 
(the latter is possible, of course, if (2) defines an operator function 
with values in L(X)). This problem is discussed in some aspects in 
the monograph [31]. As usual, a classical solution of (1) in X is a 
continuously differentiate function with values in X which satisfies 
the equation (1) for all t G J. A sufficient condition for the existence 
of such solutions, as is well known, is the (strong) continuity of the 
operator function (2) in the space L(X). In this case, one may define 
the resolvent operator (or Cauchy function) U(t, r) with values in L(X) 
which depends continuously on (£, r) G J x J . This operator may be 
defined as a solution of the linear integral equation 

(23) U(i,T) = I+ [ A(s)U(s,r)ds. 
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As a consequence, the existence of the Cauchy function follows from 
the strong continuity of the operator function (2) in the space under 
consideration. 

To attack the problem of characterizing the strong continuity of (2) 
in the space C, for instance, we consider the functions 

(24) a(t, s) = c(t, s)+ I k(t, s, a)da, 
Ja 

(25) ß(t, z,s)= I [c(t, s)xs (<T) + (z-a)k(t,s, a)]da, 
Ja 

and 

(26) 7 ( M ) = \c(t,8)\ + / \k(t,s,a)\dv 
Ja 

which are of course parallel to (4), (5), and (6). Lemma 1 and general 
results on operator valued functions imply the following 

THEOREM 1. The operator function (2) is strongly continuous in 
L(C) if and only if the following two conditions are satisfied: 

(a) the functions (t, s) —• a(£, s) and (t, z, s) —» ß(t, z, s) are continu
ous on J x [a,b] and J x [a, 6] x [a, 6], respectively; 

(b) for each T > 0, the function (t,s) —• j(t,s) is bounded on 
( [ - r , T ] n J ) x [ a , 6 ] . 

Similarly, the operator function (2) is norm continuous in L(C) if 
and only if the following four conditions are satisfied: 

(a) for each t € J and z € [a,b]f the functions s —» a(t,s) and 
s —• ß{t,z,s) are continuous on [a,b]; 

(b) for each t G J, the function s —» j(t, s) is bounded on [a, 6]; 

(c) the function t —• c(£, s) is continuous on J, uniformly with respect 
to s £ [a, 6]; 

(d) the function t —+ k(t, 5, •) is continuous from J into L\, uniformly 
with respect to s £ [a, 6]. 
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Theorem 1 gives conditions for the existence of the Cauchy function 
in C which are both necessary and sufficient. In case of an ideal space 
X, the situation is much more complicated. We confine ourselves to 
indicating just one sufficient condition. 

THEOREM 2. Let X be an ideal space and suppose that, for each 
t G J, the function s —• c(t, s) belongs to L^ and the function 
(s,a) —• k(t, 5,cr) to R{X,X). Then the operator function (2) is 
strongly continuous in L(X) if the following two conditions are satisfied: 

(a) the function t —» c(£, •) is continuous from J into LQO (resp. the 
function t —• c(t, •) is locally bounded from J into L^, and continuous 
from J into Li); 

(b) the function t —> k(t, -, •) is continuous from J into R(Li,X) 
(resp. the function t —• k(t, -, •) is locally bounded from J into R(X, X), 
and continuous from J into i?(Loo,X)). 

Similarly, the operator function (2) is norm continuous in L(X) if 
the following two conditions are satisfied: 

(a) the function t —» c(£, •) is continuous from J into L ^ ; 

(b) the function t —• k(t, -, •) is continuous from J into R(X,X). 

In contrast to Theorem 1, the conditions given in Theorem 2 are 
only sufficient in general. However, they become also necessary if 
L(X) is replaced by Lr(X). Consequently, in case L(X) = Lr(X) 
Theorem 2 gives necessary and sufficient conditions; this holds, as 
already observed, for X = L\ or X — L^. 

The verification of the hypotheses of Theorem 2 is, generally speaking, 
not difficult, except for the assertions concerning the kernel space 
R(X,X). Here the results contained in Lemmas 2 - 5 are of course 
useful to guarantee, say, the continuity of the map £—+&(£,-,•) from J 
into Ä(X, X). 

Let us return to the resolvent operator U(t,r). By definition (2), the 
operator A{t) is for each t G J the sum of a multiplication operator 

(27) C(t)x(s) = c(t,s)x(s) 

and an integral operator 

(28) K(t)x(s)= I k(t,s,a)x{a)d(j. 
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It seems therefore reasonable to expect that also the Cauchy function 
U(t,r) is the sum of a "multiplicative part" and an "integral part". 
It turns out that, under the hypotheses of Theorems 1 and 2, one 
can prove even more; in fact, the integral part of U(t,r) shares many 
properties with K(t). We call a Banach algebra M of integral operators 
an X-ideal if the following holds: in case X = C, M is a Banach ideal 
in Lo(C) and continuously imbedded into L»(C); in case X is an ideal 
space, M is a Banach ideal in Lr(X) and continuously imbedded into 
Lri{X). 

For instance, the sets Li(C), LiC(C) and LiW(C) introduced above are 
C-ideals. Similarly, in case X is an ideal space, the sets Lri(X), Lric(X) 
and LriW(X) are X-ideals; other examples in this case are operators 
with kernels from U{X',X),V{X,X'), or even t/(X£o ,Xj0) (1_M)/ (1_A) 

flVX-X ,̂ X[ )y,/\ (see Lemmas 3-5). On the other hand, the linear sub-
space L%(X) of Lo(X) (see (19)) is not an X-ideal in general. 

THEOREM 3. Suppose that the hypotheses of either Theorem 1 or 
Theorem 2 hold. Then the resolvent operator U(t, r) may be represented 
as a sum 

(29) U(t,T) = V(t,T) + W(t,r) 

of a multiplication operator 

(30) V(t, r)x(s) = v(t, r, s)x{s) 

and an integral operator 

fb 

(31) W(t,r)x(s) = / w(t,T,s,a)x(a)da. 
Ja 

Moreover, if the integral part K(t) of A(t)(—oo < t < co) belongs to 
some X-ideal M, then the integral part W(t, r) ofU{t, r)(—oo < t,r < 
co) also belongs to M. 

We remark that the explicit form of the multiplication part (30) is 
always known; simply 

(32) v(t, T, s) = exp / c(£, s)d£. 
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Moreover, it follows from the integral representation [27] 

tf(t,r) = I + J T / J' " j n * A(t1)A(t2)...A(tn)dt1---dtn 
n=1Jr JT JT 

that one may also obtain an analytic expression for the kernel w(t, r, s, a) 
of the integral part (31) in terms of a series which converges in the norm 
of M (in particular, in the norm of C7(Li,Loo) if X — C, and in the 
norm of R(X, X) if X is an ideal space). 

As an application of Theorem 3, we consider the Floquet - Lyapunov 
theory for equation (1) in the case when J is the whole real line and 
the operator (2) is ^-periodic in t. As a matter of fact [27], this the
ory applies if and only if the logarithm of the operator U(u, 0) may 
be defined; this is the case, in particular, if the spectrum a(U(u),0)) of 
U(u, 0) is bounded away from 0 and oo. Now, if we suppose in addition 
that K(t) G Lic(X) for all t G R , all limit points of cr(C/(a;,0)) coincide 
with the closure of the essential range of the function V(LJ,0,S) (see 
(32)); since this set is contained in the positive real half-axis, the entire 
spectrum of U(LJ,0) is in fact bounded away from 0 and oo, and thus 
the Floquet - Lyapunov theory applies. Similar results on the stability 
of A(t) will be given in the following section. 

3. Some stability results. Suppose now that J is the whole 
axis (—00,00), or the half-axis (0, 00). In this section we shall be 
concerned with stability results for the trivial (and hence any) solution 
of the integro-differential equation (1), considered as a linear differential 
equation in some Banach space X. As is well known [27], a basic notion 
is here the so called Lyapunov - Bohl exponent ^[A{t)\ of the operator 
(2) defined by 

(33, * , < « ) ] - . i ta « " " 
t,T,t-T—»-OO \t — T\ 

More precisely, the inequality 7[A(£)] < 0 is necessary, and the strict 
inequality 7[A(£)] < 0 is sufficient for the stability of the trivial solution 
of( l ) . 

The problem of calculating the Lyapunov - Bohl exponent (33) is very 
difficult, even in the case of a finite dimensional system. If the operator 
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(2) does not depend on t, however, 7 [A] is just the least upper bound 
of the real part of the spectrum a (A), i.e., 

(34) j[A] = sup{ReA : A G a(A)}. 

In our case, this applies if A is of the stationary form (3), i.e., the 
functions c(s) and k(s, a) are independent of t. If we suppose again 
that K E Lic(X), the representation formula (29) yields the important 
estimate 

(35) 7[A] > ess supc(s) 
a<s<b 

From (35) it follows, in turn, that the inequality c(s) < 0 is necessary 
for the stability of the trivial solution of (1). The strict inequality 
c(s) < 0 alone is, of course, not sufficient for stability; one must require 
in addition that all eigenvalues of A have strictly negative real part. 

A fairly convenient sufficient stability condition which generalizes 
corresponding conditions from [5], [8], [10], [11], [15] may be obtained 
by means of perturbation techniques for the Lyapunov - Bohl exponent 
[27] which are based on the following observation: if the operator 
(2) does not contain an integral part (28), but just reduces to the 
multiplication operator (27), its Lyapunov - Bohl exponent is simply 

1 r* 
(36) 7[C(t)]= lim r ess sup / c(£, *)d£. 

t.Tjt-T—»00 \t — T\ a<s<b JT 

This leads to 

THEOREM 4. Suppose that the hypotheses of either Theorem 1 or 
Theorem 2 hold. Assume, moreover, that 

lim ——— ess^ sup / c(£, s)d£ 
_1 

t,r,t—r—»-00 |£ — 7-1 a<s<b 

( 3 7 ) t 

+ ÎÏÏÏÏ -r-1— I | |K(0 |X|K<0. 
t,T,t-T-^00 \t — T\ JT 

Then the trivial solution of the integro - differential equation (1) is 
stable in the space X. 
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The above approach to the investigation of stability properties of 
(1) is closely related to the so called first Lyapunov method. In 
the case of a finite dimensional system, the second Lyapunov method 
(which builds on certain properties of the Lyapunov function) is equally 
important. However, in case of integro - differential equations like 
(1), the second Lyapunov method seems to be far less suitable, since 
equation (1) exhibits various typical "infinite dimensione! features". 
On the one hand, this leads to serious difficulties in the study of 
Lyapunov functions which are hard to overcome, at least by presently 
available techniques. On the other hand, the set of Lyapunov functions 
themselves is essentially reduced in this case. The only exception is the 
Hilbert space case, where almost all results carry over from the finite 
dimensional case (see, e.g., [27]). 

We point out that specific properties of Lyapunov functions related 
with integro - differential equations like (1) are practically unknown 
and should merit a more detailed investigation in future. 

In order to illustrate this situation for equation (1) we restrict our
selves to the stationary case, i.e., when A has the form (3). Recall that 
the Lyapunov function (resp. the strong Lyapunov function) for equa
tion (1) in a space X is a real functional 0 on X such that <j>(x) > 0 
for x ^ 0, 4>(x) —> 0 implies | |x|X|| —> 0, and V(x,Ax) < 0 (resp. 
V(x,Ax) < 0 and V(x,Ax) —• 0 implies that | |x|X|| —• 0), where 

V(x,h)= Urn -[</>(x + t(h + z)) - </>(x)]. 
t,z—+0 t 

The basic Lyapunov theorem states that the existence of a Lyapunov 
function (resp. strong Lyapunov function) for equation (1) implies the 
stability (resp. asymptotic stability) of the trivial solution of (1). 

From the definition of a Lyapunov function it is clear that its existence 
depends essentially on geometric properties of the function space X (in 
particular, the existence of smooth functionals on X). If one can find 
a functional (p on X satisfying the first two conditions given above, 
the problem arises to describe all linear operators A in X (if there are 
any) for which the third condition is also satisfied. Such a description, 
however, is easy to carry out [27] only in case X is the Hilbert space 
1/2 and <j>(x) = (Tx,x), where T is some uniformly positive selfadjoint 
operator on X. The condition V(x,Ax) < 0 means in this case that 
the operator TA* + A*T is negative definite or, equivalently, that 
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Re {Tx,Ax) < 0 for all x G X. In the special case when T — 1 
and A is defined by (3), this condition may be written in the form 

nb pb f>b 

(38) / c(s)x2(s)ds+ I j ksym(s,o~)x(cr)x(s)dcrds < 0 
Ja Ja Ja 

(x G L2), where ksyTn(s,cr) = |[fc(s,cr) + k(a,s)] is the symmetrization 
of the kernel k(s,a). Condition (38) holds, in turn, if c(s) < —Ao < 0, 
and the spectrum cr(Ksyrn) of the integral operator Ksyrn = ^(K + K*) 
defined by the kernel ksym(s, a) lies entirely on the left side of Ao- Sim
ilar criteria may be obtained in the case when T is a uniformly positive 
definite operator in LQ(C) or Lr(X) with X being an ideal space. 

4. The Green's Function The Theorems 1 - 3 allow us to ex
tend the basic results on linear differential equations (such as the La
grange formula for the solution of inhomogeneous equations, several 
results on the continuous dependence of the Cauchy function on param
eters, existence and representation theorems for the Green's function 
for boundary value problems, or existence results for u;-periodic and 
other bounded solutions) to integro-differential equations of Barbashin 
type. In what follows, we give two results which are particularly useful 
for applying the Bogolyubov - Krylov averaging principle to (linear and 
nonlinear) Barbashin - type integro - differential equations. 

THEOREM 5. Suppose that the operator (3) belongs to LQ{X) for 
X = C (resp. to Lr(X) for X being an ideal space). Assume 
that the essential range of the function c(s) does not contain 0, and 
that the operator A has neither 0 as eigenvalue, nor purely imaginary 
eigenvalues. Then the differential equation ^ = Au admits a Green's 
function G(t, r ) G Lo(C) (resp. G(t, r ) G Lr(X)) for bounded solutions, 
and G(t, r) may be represented as a sum 

(39) G(t, T) = G0(t, r ) + H{t, r) (-00 < t, r < 00) 

of a multiplication operator 

(40) G0(t,T)x(s) = g0(t,T,s)x(s) 
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and an integral operator 

(41) H{t,r)x{s) = h{t,T,s,a)x{a)da. 
Ja 

Moreover, the function go{t,r,s) in (40) is given explicitly by 

(42) 0 O ( * , T , * ) - | O i{c{s){t-r)>0. 

Finally, if the integral part K of A {see (28)) belongs to some X-ideal 
M, then the integral part H{t,r) of G{t,r) (—oc < t,r < oo) belongs 
also to M. 

We point out that, if the integral part K of A is compact, the con
ditions given in Theorem 5 are also necessary for the existence of the 
Green's function. 

THEOREM 6. Suppose that the hypotheses of either Theorem 1 or 
Theorem 2 hold for the operator (2), and those of Theorem 5 hold for 
the operator (3). Moreover, assume that 

t+T 
" = 0 (43) limT^00sum_00<t<0011 - / c(£,x)d£ - c{s)\L 

and 

111 f^T 

(44) l im r - .ooSup_ 0 0 < t < 0 0 | | - / k{£,s,<j)-k{s,a)\N 
t+T 

t 

where N = £/(^i?^oo) m case X = C, and N = R(X,X) in case 
X is an ideal space. Then for sufficiently small e the differential 
equation ^ = eA{i)u admits a Green's function G{eìtìr) G LQ{C) 
{resp. G{e,t,r) € Lr{X)) for bounded solutions, and G{e,t,r) may be 
represented as a sum 

(45) G(e, t, r) = G0{e, t, r) + H {e, t, r) 

of a multiplication operator 

(46) Go(e, t, T)X{S) = g0{e, t, r, s)x(s) 
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and an integral operator 

(47) H(e,t,r)x(s) = / h(e,t,T,s,a)x(a)do: 
Ja 

Moreover, the function go(e,t,r,s) in (46) is given explicitly by 

(48) 9o(e, t,T,,) = { " * £ £ c ^ * W « * ) ( ' - T\ < °> 
[0 it c{s)(t — T) > 0. 

Finally, if the integral part K(t) of A(t)(—oo < £ < CXD) belongs to some 
X-ideal M, then the integral part H(e,t,T) of G(e,t,r) (—OD < £,r < 
oo) belongs also to M. 

We remark that the proof of both Theorems 5 and 6 follows the 
idea of [51]. Under the hypotheses of Theorem 6, the Green's function 
G{e,t,r) for the equation 

du t 
•dt=A{-£

)u 

tends uniformly to the Green's function G(£, r) for the equation 

du 
— = Au 
dt 

a s e —• 0. 
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