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SYMM’S LOG KERNEL INTEGRAL OPERATORS
SUSUMU OKADA

ABSTRACT. The Bochner integral is applied to prove
the compactness of Symm’s log kernel integral operators on
L1, £%° and weighted £P spaces when 1 < p < co. Moreover,
the ranges of these operators on weighted LP spaces are
determined, and this is applied to solve singular integral
equations.

1. Introduction. The integral equation

(1.1) w‘l/_lf(s)ln|t—s|ds:g(t), tel-1,1[,

for a given function g is called Symm’s integral equation by I.H. Sloan
and E.P. Stephan [15], who named it after G.T. Symm [16]. This
integral equation arises in many areas in analysis and has applications
to potential theory and scattering theory (see [4, 16], for example,
and the references therein). In [4, Section 3], the integral equation
(1.1) is solved when g is suitably smooth. In the present paper the
equation (1.1) is considered from the viewpoint of operator theory, as
in [7, Section 13].

To be more precise, let A denote the Lebesgue measure in the open
interval |—1,1[. Symm’s log kernel integral operator L, on the Banach
space LP()) is defined by

(1.2) Lp(f)(t):w‘l/_lf(s)ln\t—s|ds, tel-1,1],

for each f € £P(\) whenever 1 < p < 0.

According to [7, Section 13|, the operator L, is compact, whenever
1 < p < oo, the proof of which is based upon the Hille-Tamarkin
theorem. Furthermore, the range of L, in the case in which 1 < p < 2
has been described there, but note that the description in [7, Section
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13] of the range of L, for 2 < p < oo is not correct. The main aim of
this paper is to extend these results to weighted L£P-spaces; the correct
description of the range of L,, 2 < p < oo, will be given also (see
Proposition 5.2). Symm’s integral equations in special weighted £P-
spaces have been solved in terms of Chebyshev-Fourier series; see [1]
and [15], for example.

In Section 3 operators Ly, , are introduced which have the same form
as L, (see (1.2)) and are defined on the space L£P(\) with weight p,
when 1 < p < oco. In the case where p = (1 — x)%*(1 + x)? with
a,B € |-1,p—1], it is shown that L, , is compact (see Proposition
3.4). Since the Hille-Tamarkin theorem is not applicable to weighted
LP-spaces in an obvious way, we shall instead use Bochner integrals as
in [3, Chapter III]. Our method applies even to the case when p = 1 (see
Proposition 3.5). The operator Lo, will be shown to be the transpose
operator of Ly so that it also is compact (see Proposition 5.4).

Section 4 collects results on finite Hilbert transforms for use in Section
5.

In Section 5 we shall determine the range of L, , (see Proposition
5.2). As an application, a singular integral equation more general than
(1.1) will be solved in a simpler manner than that done originally by
M. Schleiff [13]; see (5.12).

2. Preliminaries. Let Q denote the open interval |—1,1[. The
Lebesgue measure in 2 is denoted by A; the domain of A is the o-
algebra S of Lebesgue measurable subsets of (2. The identity function
on Q is denoted by x; that is, x(t) = ¢ for each ¢t € Q. We denote the
constant function one by 1.

Let 1 < p < oo. Let a and B8 be real numbers. Define p =
(1 —x)*(1+x)?. Let LP(p)) denote the space of all Lebesgue mea-
surable functions f on €2 with values in the complex plane C such that
|f|Pp is A-integrable, and equip £P(pA) with the seminorm |- |, , given
by

1/p
1 lp.p = </Q f|ppd)\> ,  feLP(pA).

In other words, LP(p)) is the usual LP-space with respect to the
measure pA given by (pA)(E) = [, pd) for each E € S. The semi-
normed space LP(pA) is complete. To make the presentation simpler,
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we shall identify £P(pA) with its quotient space with respect to the
closed subspace of A-null functions. So LP(p)) is then regarded as a
Banach space with norm | - |, ,. When the weight function p is 1, we
write £P(1)) simply as £P(X) and |- |p1 as |- |p-

Let £>°(A) denote the space of C-valued, A-measurable, A-essentially
bounded functions on 2. As above, £°(\) will be regarded as a Banach
space with A-essential supremum norm.

Lemma 2.1. Let 1 < p < 0o, and let p = (1 —x)*(1 +x)? with real
numbers o and (3.
(i) L2(A) C LP(pA) if and only if « > —1 and B > —1.
(if) LP(pA) C L"(N) for some r € |1,p] if and only if « < p—1 and
B<p—1.

Proof. Statement (i) is straightforward. Statement (ii) follows from
the generalized Holder inequality. Indeed, if either @ > 0 or 5 > 0,
then r < p(1 + max{a, 3})7!, and if not then we can take r =p. O

From now on, we always assume that «,8 € |-1,p— 1] when
1 < p < oo. This condition guarantees also that the finite Hilbert
transform on £P(pA) is continuous (see Lemma 4.2).

The dual space of the Banach space LP(pA) is identified with
L£3((1/p9/P)X\) with ¢ = p/(p — 1) so that the duality is given by

/gfdAZ/(g/pl/”)(fpl/”) dA
Q Q

for each g € £4((1/p%/P))\) and f € LP(pA).

Let X be a complex Banach space with norm |- | and X’ its dual
space. The bilinear form associated with the duality between X and
X' is denoted by (-,-), that is, (z',z) = 2'(x) for each 2’ € X’ and
x € X. Let S: X — X be a continuous linear operator and define its
transpose ¢S : X' — X' by

(*Sz',z) = (2',Sz), 2’ €X', zeX
(cf. [18, Chapter 18]). The null space and range of S are defined by

N(8)=57"({0}) and R(S)=S(X),



146 S. OKADA

respectively. The operator S is called a Noether or Fredholm operator if
it has closed range and if both N'(S) and NV (*S) are finite-dimensional.
The index x(S) of such an operator S is defined by

5(S) = dimN(S) — dim N (*S).

In this case N'(*S) = dim X/R(S) (cf. [9, p. 1]).

A function from €2 into X is called strongly A\-measurable if it is the
limit of a sequence of X-valued S-simple functions on 2. A strongly
A-measurable function @ :  — X is said to be Bochner A-integrable if
the scalar function |®| : t — |®(t)/, t € Q, is A-integrable.

Suppose that @ : 2 — X is Bochner A-integrable. Then, given a set
E € S, there is a unique vector zg € X such that

<m',wE>:/E<x',<I>(t)>dt, 2 €X',

/(I)dAsz
E

is called the Bochner A-integral of ® over E. Further properties of
Bochner integrals can be found in [3, Chapter II], for example.

The vector

3. Compactness. Let A be the Lebesgue measure on the o-algebra
of Lebesgue measurable subsets of the open interval Q =]—1,1].

Let f € £'()\). It follows from the Fubini theorem that the integral

(Lif)(t) = 7= /_1 £(s)Int — 5| ds

exists A-almost every t € 2, and the resulting function L;f belongs
to £1(X). Moreover, the so-defined linear operator Li : f + Lif,
f € LY(N), is a continuous linear operator on the Banach space £!()).

The following example shows that there are functions f € L!()),
which are defined everywhere in Q such that (L;f)(t) does not exist
for some point t € Q.
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Example 3.1. Let f(t) = ¢t '(Int)"2 for each ¢t € ]0,1/2] and
f(t) = 0 for each t € Q\]0,1/2[. The so-defined function f belongs
to LY(X) but Ly (£)(0) = —co and

(3.1) lim (Lif)(—n~ 1) = —oo.
In fact, (3.1) is a consequence of the Fatou lemma (cf. [6, (12.23)]) as
follows:

limsup Ly (f)(—n ') = liminf(—L; f)(—n 1)

n—0o n—o0

1
< —71'*1/ liminf(—f(s)In| —n"! — s|) ds
_q1 m—o©
1/2
=x! (s)lnsds
0

1/2
= / (slns) tds = —c0.
0
Note that
(3.2) —(Lif)(—n"1) = O(Inlnn)

for a large n € N, which has been proved by D. Elliott (personal
communication).

According to K. Jorgens [7, Example 11.2], we have L;(LP()\)) C
LP(A) and the restriction L, of Ly to £P(\) is a compact operator
whenever 1 < p < co. However, his proof does not seem to apply to
the case when p = 1 or that of weighted LP-spaces, 1 < p < co. So we
shall present a totally different proof which also covers those cases, by
using Bochner integrals.

Given t € Q, define a function G(t) : Q\{t} — C by

Gt)(s)=n"tIn|t—s|, s Q\{t}.

Lemma 3.2. Let1 < p < co. Let p = (1 — x)%(1 + x)? with
a,fe]-1,p—1].
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(i) Given t € Q, the function G(t) belongs to the space LP(p)).

(ii) The so-defined vector-valued function G : @ — LP(pA) is contin-
uous and has relatively compact range.

(i) Let f € LP(pA). Then the function fG :t — f(t)G € LP(pA),
t € Q, is Bochner \-integrable and

(3.3) /QfG dA\=Lyf (as elements of LP(p])).

Proof. Let r € |1,00[ be a number such that o, € ]77"71,00[’ in
which case p € L7(\). Let ' = r/(r —1). Let Q denote the closed
interval [—1,1]. Given ¢t € Q, by the Holder inequality
(3.4)

1 1/p 1 , 1/r’ 1/p
(/|mw—ﬂ%@mQ ._K/'ww—ﬂWdQ |mﬂ
—1 —1

> V)
g(/|mwmw) VP < o0,
_2

(i) Apply (3.4) to each t € Q.

(i) By (3.4) we can extend G to Q and shall denote the extension
by G. Statement (ii) will follow at once if we establish that Q — G :
LP(p)) is continuous because ) is compact. To this end, fix a point
tg € 2 and a positive number ¢. Choose a § > 0 such that

25 , 1/(pr')
(/ In |s]7" ds> <e
—24

Let X4 denote the characteristic function of the set A = {s € Q :
|s —to| < 0}. It then follows from the above inequity that

A

(3.5) IXAG(t)|pr < €
for every t € Q) satisfying |t — ¢o| < 6/2. In particular,

(3.6) X 4G (t0)|pr < €.
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Moreover,
|In|s —t| —In|s — to|| < 2max{In2,|Ind|,|In(6/2)|}

whenever |t — tg| < 6/2 and s € Q\A. The Lebesgue dominated
convergence theorem implies that there exists a &y € ]0,6/2[ such that

A\ V)
(3.7) (/ In |s — £ — In|s — to|["" ds> <e
o\

for every t € Q satisfying |t — to| < dy. By the Hélder inequality
together with (3.5), (3.6) and (3.7), we have

G(t) = G(to)lp,p < lply/P1G(t) = G(to)lpr
< |P|i/p(‘XAé(t)|pr’ + |XAé(t0)|pr’

+ [Xa\a(G(t) — G(to)|pr)
< 3|p|/Pe,

which implies that G is continuous at tg.

(iii) Since L£P(pA) is separable the continuous function G is strongly A-
measurable (see [17, pp. 67-68], for example). Let K = sup{|G(¢)|p, :
t € Q} which is finite by (ii). If ¢ = p/(p — 1), then

/Q FOG ) dt < K / £ (0)] dt

S K|flpp-1p7Plg < 00

(3.8)

and hence fG is Bochner A-integrable. Furthermore,

(39) [ e i [ 11 pan

(cf. [8, Theorem I1.2.4]).

In view of Lemma 2.1 (ii), let J : £P(pA\) — L(\) denote the natural
injection. Since the measure A is finite, we have

J(/Qde)\> :/QJo(fG)d)\
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(cf. [3, Theorem II1.2.6]). To show (3.3), let h € £L>(A). Then

<h,J</Qde)\>> = (h, L1 f),

which follows from the Fubini theorem. Thus (3.3) holds because J is
injective. ]

By Lemma 3.2 (iii), we have L;(LP(p))) C LP(pA). So let
(3.10) Ly £(pN) — £7(p))

denote the restriction of Ly to LP(pA). If p = 1, then we write L, 1 as
L,.

Corollary 3.3. The linear operator L, , is continuous.

Proof. This follows from (3.8) and (3.9) applied to each f € LP(p]).
]

Proposition 3.4. Let p, p and G be as in Lemma 3.2. Then the
linear operator Ly , : LP(p\) — LP(pA) is compact.

Proof. Since the range of the function G is relatively compact in
LP(p]), there exist Borel simple functions G,, : @ — LP(pA), n € N,
such that

lim sup |G(t) — Gn(t)|p,, = 0.

n—o0 teQ

Let n =1,2,.... The linear operator K, : LP(pA) — LP(p\) defined
by

an:/QfGnd)\, feLP(on),

is compact because its range is finite-dimensional. Let ¢ = p/(p — 1).
The Holder inequality implies that

f|p,p|P_1/p|q-

|(Lp,p = Kn)flpp < jgg |G (t) = Gn(t)lp,p



LOG KERNEL INTEGRAL OPERATORS 151

Consequently, the operator L, ,, which is the limit of compact operators
K,, n € N, in the operator norm, is compact. u]

Proposition 3.5. The operator Ly : L}(G) — L1(G) is compact.

Proof. Let p,p and G be as in Lemma 3.2 and J : LP(p)) — L1(N)
the natural injection. Then J o G : Q — L1()\) is strongly M-
measurable, and a routine computation shows that, given f € £1()),
the function f(J o G): Q — L()\) is Bochner \-integrable such that
Lif = [ f(JoG)dX\ In the terminology of [3, Chapter III], the
operator L; is Bochner representable. Since JoG has relatively compact
range, it follows from [3, Theorem II1.2.2] that L; is compact. o

We can prove the compactness of L; also by taking the Borel simple
functions G, n € N, as in the proof of Proposition 3.4 because
J(Gn(t)) = J(G(t)) in L*(A\) as n — oo uniformly with respect to
teQ.

We shall show in Proposition 5.4 that Symm’s log kernel integral
operator on £>()\) is compact.

4. Finite Hilbert transforms. Throughout this section let A
denote the Lebesgue measure in the open interval Q =]—1,1][.

Let f € £(\). The Cauchy principal value

(4.1) (TH)(t) _1im1[/t15+/t;}%ds,

el0 T

exists for A-almost every t € €2, and the resulting function T f defined
A-almost everywhere in ) is A-measurable; see [2, Theorem 8.1.6], for
example. We call T'f the finite Hilbert transform of f.

If f is the function defined in Example 3.1, then T f does not belong
to L1(\); see [8, Proof of Theorem 1(b)].

Let w be the function on 2 defined by

(4.2) w=(1-x2)12
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Lemma 4.1. Let 1 < p < oco. Then the following statements hold
on a function f € LP(X).

(i) Tf = 0 if and only if f = C/w for some C € C (with C =0
when p > 2).

(ii) (1/w)T(wf) € L"(X) whenever 1 < r < min{2,p} and

/ (1/w)T(wf) dA = 0.

(iif) T((1/w)T(wf)) = = f-

Proof. Statement (i) can be found in [19, p. 176] and (ii) in [9,
Theorem 11.4.4], for example. For (iii), see [10, Proof of Proposition
2.4)]. u]

It would be interesting to know whether or not Lemma 4.1 can be
extended to the case when p = 1.

Let 1 < p < oo. It follows from the M. Riesz theorem (cf. [2,
Proposition 8.1.9]) that T(LP (X)) C LP()).

Let p = (1 — x)*(1 + x)? with o, 8 € ]-1,p — 1[. Then
(4.3) T(LP(pA)) € LP(pA)
and the restriction
(4.4) Tp,p : LP(pA) — LP(pA)

of T to the weighted space LP(pA) is continuous. This is a result
by B.V. Khevedelidze and can be found, for example, in [9, Theorem
I1.3.7]. Further results are given in the following lemma. The linear
span of a vector a is denoted by span {a}.

Lemma 4.2. Let 1 < p < co. Let p = (1 — x)%(1 + x)? with
a,B €]-1,p — 1[. Then the following statements hold.

(i) Let ¢ = p/(p — 1). Then the Parseval identity

[ rs+ Ty an=o
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holds for each f € LP(p)\) and g € LI((1/p?/P)N). In other words, if
p* = 1/p¥/P, then the identification (LP(p)))" = LI(p*\), cf. Section 2,
gives

(4-5) tTp,p = _Tq,p

* .

(ii) N(Tp,,) = LP(pA) Nspan {1/w}.
(iii) dim N (T, ,) =1 if and only if both o and (3 belong to |p/2—1,p—1].
(iv) The operator Ty, , is injective if and only if either o or 3 belongs
to]—1,p/2 —1].
(v) dimN(*"T,,) = 1 if and only if both o and B belong to
(vi) The transpose T}, , is injective if and only if either o or 8 belongs
to [p/2 — 1,p—1].

Proof. Statement (i) has been given in [9, Theorem I1.4.2], for
instance. Statement (ii) follows from Lemma 2.1(ii) and Lemma 4.1(3).
Statements (iii) and (iv) are immediate consequences of (ii) which also
implies (v) and (vi) because of (4.5). O

Let T, denote T}, ; whenever 1 < p < oo.

When 1 < p < 2, the operator T}, is a Noether operator with
k(Tp) = 1 (see [7, Section 13] or [10, Proposition 2.4], for example).
The following proposition generalizes this.

Proposition 4.3. Let 1 < p < co. Let p = (1 —x)*(1 + x)? with
a,B€lp/2—1,p—1[. Then

(i) N(Zp,p) = span{1/w} and N'(*T;,,) = {0}; and

(ii) Tp,, is a surjective Noether operator, with (T}, ,) = 1, satisfying
that

T,,({f}) = —~(1/w)T(wf) +span {l/w}, f € LF(pA).

Proof. (i) See Lemma 4.2(i), (ii).
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(ii) Let f € LP(pA). Since wf € LP((p/wP)N), it follows from (4.3)
that T'(wf) € LP((p/wP)N), and hence (1/w)T(wf) € LP(pA). Now (ii)
is a consequence of (i) and Lemma 4.1(iii). O

The following result has been given in [19, p. 179].

Lemma 4.4. If f : Q — C is a A-measurable function such that
f/w e L)), then

wT'(f /w) = (1/w) {T(wf)—i—wlx/ﬂéd)\—i-wl/ﬂ);—fd)\]

holds A-almost everywhere.

Proposition 4.5. Let 1 < p < co. Let p = (1 —x)%(1 + x)? with
a,B €]-1,p/2 — 1[. Then the following statements hold.

(i) N(Tp,,) = {0} and N(*T},,) = span{1/w}.
(ii) The range of the linear operator T, , : LP(pA) — LP(pA) is given
by

(4.6) R(T,,) = {f € LP(p)) : /Q gd)\ - o}.
Moreover, given f € R(Lyp ),
47)  T,0(f) = —wl(f/w) = —(1/w) [T(wf) +7! /Q % dA].

Hence, T, , is a Noether operator with k(1} ,) = —1.

Proof. (i) See Lemma 4.2(i), (ii).

(i) Let f € R(T},) and g = T, }(f). It then follows from Lemmas
4.1(i) and 4.2(i) that

/dixz/ﬂ%rﬂ:—/ﬂﬂ(l/w)dkzo-

Conversely, let f be an arbitrary element of the righthand side of
(4.6). Then wT(f/w) € LP(p\), which follows from (4.3). Lemma 4.4
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implies the second identity in (4.7) so that f = T(—wT(f/w)) by
Lemma 4.1(iii). Therefore, f € R(I},,) and T, }(f) = —wT(f/w).
]

A special case of the above proposition is when 2 < p < oo and
p = 1, which has been presented, for example, in [7, Section 13] and
[10, Proposition 2.6].

Let g = (1—x)"2(1+x)~1/2. We shall generalize M. Schleiff’s result
(14, p. 149] which asserts that T3, : £2(u)) — L(u)) is bijective.

Proposition 4.6. Let 1 < p < co. Let p = (1 —x)%(1 + x)? with
a, B satisfying o € Ip/2 —1,p — 1] and 8 € |-1,p/2 — 1[. The operator
Tp,p : LP(pX) = LP(pA) is bijective and

I, ,(f) = =(1/WT(f)

(4.8) = —(1/w) [T(wf) — ! /Q fu d)\], f e LP(pA).

Proof. By Lemma 4.2(iv), the operator T}, , is injective. To show
the surjectivity of T}, ,, let f € LP(p)). The second identity in (4.8)
is straightforward. That (1/p)T(uf) € LP(pA) follows from (4.3).
Therefore, T'(—(1/u)T(nf)) = f by Lemma 4.1(iii), which establishes
(4.8). Hence, T}, , is surjective. o

The proof of the following proposition, which is similar to that of
Proposition 4.6, will be omitted.

Proposition 4.7. Let 1 < p < co. Let p = (1 —x)*(1 + x)? with
a, B satisfying a € |-1,p/2 — 1] and B € |p/2 — 1,p — 1[. The operator
Tp.p 2 LP(pX) — LP(pA) is a bijection and

f

T () = —uT(f /) = (1) [T(fw) e [ d)\},
£ e Lr(pN).

If either & = p/2—1 or B = p/2—1, then it is known that T}, , is not
a Noether operator (cf. [5, Theorem 9.5.3]), and accordingly its range
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is not so well characterized as in the cases discussed in Propositions
4.3, 4.5, 4.6 and 4.7. However, we have the following result.

Proposition 4.8. Let 1 < p < co. Let p = (1 —x)*(1 + x)? such
that either a =p/2—1 or 8 =p/2 —1.
(i) The linear operator T, , : LP(pA) — LP(pA) is injective and its
range is a proper dense subspace of the Banach space LP(p)) so that

(4.9) N(Tpvp) = {0} and N(tTpvp) = {0}.

(ii) There is a linear functional A : R(Ty ,) — C such that

T, ,(f) = ~1/w)T(wf) + A(f)/w, f€R(Lp,).

(iil) If either a = p/2—1 and B € |-1,p/2 —1] or a € |—-1,p/2 — 1]
and B = p/2 — 1, then the constant function 1 does not belong to
R(Tp,p)-

(iv) If either « = p/2 — 1 and B € Ip/2—1,p—1] or a €
Ip/2—1,p—1] and B = p/2 — 1, then R(T}p,,) contains all polynomial
functions on S.

Proof. (i) We have (4.9) by Lemma 4.2(iv), (vi). Consequently,
R(Tp,,) is dense in LP(pA). Since T}, , is not a Noether operator (cf.
[5, Theorem 9.5.3]), it follows that R(T}, ,) # LP(pA).

(ii) By Lemma 2.1(ii) we have L£P(pA) C L"(\) for some r € |1,2].
Since T, , is injective, statement (ii) follows from Proposition 4.3(ii)
applied to 7.

(iii) The function 1 does not belong to R (T} ,) because T'(x/w) =1
and (x — C)/w ¢ LP(p)) for any constant C.

(iv) Suppose that @ = p/2 — 1 and B8 € |p/2—1,p—1[. Let
n = 0,1,2,.... Define Chebyshev polynomial functions of first and
second kind by

sin(né + &)

Ty (cos§) =cosng and U, (cos§) = sin¢
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for each £ € |0, [, respectively. There is a constant C' such that the
factor 1 — ¢ divides T,,(t) — C so that

T, ()—C T,t)—C[(1-t\"" feo
wt) — 1-—t 1+t ’ '

Then (T,, — C)/w € LP(pA) because (T,, — C)/(1 — x) € L>®()A) and
(1 —x)2(1 +x)7Y/2 € £P(p)). Hence U,, € R(T},), which follows
from Lemma 4.1(i) and the fact that T(T,4+1/w) = U, (cf. [19, p.
180]).

The remaining case when « € |p/2—1,p—1[ and 8 = p/2 — 1 can
be handled similarly. O

Remark 4.9. If p = 2 and p = 1, then the linear functional A in
Proposition 4.8 has been obtained explicitly in [10, Theorem 3.2 and
Corollary 3.3].

5. Range of Symm’s log kernel integral operator. We now
come to the main aim of this paper which is to determine the range of
Symm’s log kernel integral operator L, ,. To be precise, let A be the
Lebesgue measure in the open interval @ = ]—1,1[. Let 1 < p < o0
and p the weight function (1 —x)®(1+x)? with o, 3 € |-1,p — 1[. Let
Ly, : LP(pX) — LP(pA) be the linear operator defined by

(5.1) (L,,,pf)(t):w—l/ﬂf(s)mu—t\ds, teQ,

for each f € LP(p]). Let Wé}p) (©) denote the domain of the differen-
tiation operator D, , : f — f’' in the Banach space L£P(p)). Recall
that Tp, , : LP(pA) — LP(pA) is the operator defined by finite Hilbert
transforms (see (4.4)). We then have

(52 R(Ly0) € WE(O)

p,p

and
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These results when p = 1 have been given in [7, Section 13]. The
general case can be proved similarly by using the fact that the operator
D, , is closed.

When we do not need to emphasize the fact that D, ,(f) belongs to

LP(pA) for a function f € W,S},} (), we may write D, ,(f) simply as
Df.

The domain of a linear operator S is denoted by D(S).
Lemma 5.1. Let 1 < p < co. Let p = (1 —x)*(1 + x)# such that

a,B € |-1,p—1[. Then the operator Ly, : LP(pA) — LP(pA) is a
continuous linear injection satisfying (5.2) and (5.3) such that

L (g) = 1 T(wDg) — 7~ *(In 2)_1/ g d)\],
(5.4) PP w QW
9 € R(Lp,p)-

Moreover, if T}, , is injective, i.e., either a or 3 belongs to |—1,p/2 — 1]
by Lemma 4.2, then the operator —Tp_,; oD, , is a proper extension of

71‘ .
L, 7; in other words,

— -1
(5.5) LS -1, oD,

Proof. By (5.3) and Lemma 4.2(ii), we have
N(Lp,) CN(Tp,) = LP(pA) Nspan {1/w}.
Therefore, L,, , is injective because
(5.6) —(In2) 'Ly (1/w) =1,

cf. [11, Corollary, p. 138]. The inverse formula (5.4) for L, , is due to
[4, Section 3].

Finally, suppose that 7, , is injective. It then follows from (5.3) that

(7Tp7,p1 °oDp,)oLy,= ij;} 0 Tpp-
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Since 1/w ¢ LP(pA), it follows from (5.6) that
1€ D(T, ) o Dp,)\D(L,});
that is, (5.5) holds. O

Consider the special case in which 2 < p < oo and p = 1. By the
above lemma, the range R(L, 1) of the operator L, 1 : LP(A) — LP())
is strictly smaller than the domain D(Tp_i 0D, 1) of Tpfll oD, 1. This

corrects the claim in [7, Section 13] that R(L, 1) = D(TI;1 oDypq).

The following proposition determines the range of the operator L, , :
LP(pX) — LP(pA).

Proposition 5.2. Let 1 < p < 0o, and let p = (1 —x)%(1 +x)? with
a,B €]-1,p —1[. Then the following statements hold.

(i) If &, 8 € Ip/2 — 1,p — 1, then R(Ly,,) = W) (2).

(ii) If a, B € |-1,p/2 — 1], then R(Lyp,,) consists of those functions

g€ W,S,lp) (Q) such that

D 1
(5.7) /—gd)\zo and /—[ng+(ln2)_1g]d)\.
Q w Qw

(iii) Suppose that o € |p/2—1,p—1[ and B € |—1,p/2 —1[. Let
p=(1-x)"3(1+x)"2 Then

R(Lp.,) = {g e W(Q): /Q (ng - (mz)%) d\ = o}.

(iv) Suppose that « € |-1,p/2 — 1] and B € |p/2 — 1,p — 1[. Then

R(Lp,) = {g e WH(Q) /Q <% + (m)*%) dr = o}.

(v) If either o« = p/2 —1 or B = p/2 — 1, then R(Ly ,) consists
of those functions g € W,§1,2(Q) such that Dg € R(Tp,), (ie., g €
'D(ij oD,,)), and

(5.8) A(Dg):nfl(an)*l/ﬂgdA,
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where A @ R(Tp,) — C is the linear functional given in Proposi-
tion 4.8(ii).

Proof. (i) Let g € W,E},? (Q). Then (5.3) implies that

(5-9) L;,,l;(g +N(Dp,p)) = _Tpi,}({Dp,pg}) +o

because T}, , is surjective by Proposition 4.3. Since 1/w € LP(pX), we
have 1 € R(Ly,,) by (5.6). Consequently,

(5.10) L, (N(Dy,)) =span{L, (1)} = span{1/w}.

P.p
Now (i) follows from (5.2), (5.9) and (5.10).
(i) Let g € W;S}p) (©). It follows from Lemma 4.4 that

(5.11) % T(ng)wl(an)l/Q%d)\]

_wT(&> _ﬂ-*lf/ &d)\
w w Jq w

- 7r—11</Q l[ng + (In2)~'g] d)\>

w w

holds A-almost everywhere. Lemma 5.1 implies that g € R(L,,,) if and
only if the lefthand side of (5.11) belongs to £LP(pA). This is equivalent
to (5.7) because wI'((Dg)/w) € LP(pA) by (4.3) and the linearly
independent functions x/w and 1/w are not members of LP(pA).

(iii) Let g € W, (). Tt follows from Proposition 4.6 that the identity

% T(ng)_fl(an)*l/ idx]

Qw

1 1
= —T(uDg) + 7r_1—/ (,uDg —(In 2)_1£> d\
] w Jq w

holds A-almost everywhere, and hence statement (iii) holds because
1/w ¢ £2(p2) and (1/u)T(uDg) € LP(p).

(iv) Adapt the proof of (iii) by applying Proposition 4.7 instead of
Proposition 4.6.
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(v) Proposition 4.8(i) asserts the injectivity of T}, ,. Let g €
D(T,,} o D, ). By Proposition 4.8(ii) it follows that

Qw

% T(ng)_fl(an)*l/ idx]

~ T (D9 + L [a(Dg) — w2 [ La].

Qw

Thus, g € R(Ly,,) if and only if (5.8) holds, because 1/w ¢ LP(pA);
Lemma 5.1 has been used again. o

Finally, let us apply our results to singular integral equations. Fix
a function m € L%(w)). Given a function h € £L?(w]), consider the
singular integral equation

(5.12) ~Towf+mLaywf="h, feL*(w)).

By (5.2) we have mLs ., f € L*(w]) for each f € L2(w)). The resulting
linear operator mLy, on L2(w)) is continuous by the closed graph
theorem.

M. Schleiff [14] has given a method of finding solutions f of (5.12).
However, his method is rather complicated, and we shall solve (5.12)
in a simpler manner by applying the earlier results of this section.

Rewrite (5.12) as
(DZ,w + mIZ,w) © L2,w(f) = h7 f € EZ(W)‘)’

where I, is the identity operator on £2(w)). Let V be the Volterra
operator on £?(w)\) given by

vno=[ ran teq

for each f € L£L%(w)); then R(V) C D(D2,4). Let a be the function
given by
alt) = exp—-(Vm)()], t€ Q.

The differential operator Ds ., + mlz,, in £2(w)) is surjective so that

(5.13) (D2, +mIz.) *({h}) = aV(h/a) + span {a}
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because

(5.14) N(Ds,y + mls,,) = span{a}.

Proposition 5.3. Let m € L2(w)). Then the linear operator
(5.15) —Tb,u +mL2 4y = (D2 +mIzy) 0 Loy o L2(w)) — L2 (w)
s a continuous surjection such that
(5.16) N (=Ts,p +mLs,,) = span {L;}U (a)}.

Moreover, given h € LP(w]),

(=2 +mLaw) ™ ({h})
= Ly, (aV(h/a)) +span{Ly,,(a)}

= % [T(wh —wmaV (h/a)) — 7~ (In2)~* /Q w dA}
+ span {% [T(wma) + 7 (In2)~! /Q % dA] }

Proof. The operator (5.15) is continuous because so are 15, and
mLo . It is surjective because Dy, + mls,, is surjective and

R(L2,w) = D(D3, +mls,) (see Proposition 5.2(1)).

The identity (5.16) is a consequence of (5.14). The last part of the
proposition follows from Lemma 5.1 and (5.13). o

In view of Proposition 5.2(i), the above result can be automatically
extended to the case where 1 < p < oo and p = (1 — x)%(1 + x)? with

aaﬁ € ]p/2 - lap - 1[
If either o or B belongs to |—1,p/2 — 1], then it is possible to solve
the equation

(5.17) (—Tpp +mLp,)f=h
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when m, h € LP(p)) are given, by determining R(—T} , + mLy ,).

In the remaining case, when either « = p/2 —1 or 8 = p/2 — 1, it
seems to be difficult to determine R(—T), , +mLy ,) explicitly, because
T}, is not a Noether operator. Such difficulty occurs even when m = 0,
see Proposition 4.8.

Finally, we shall discuss Symm’s log kernel integral operator L, on
the Banach space £°°()\); this problem was suggested by T. ter Else.
We have Ly (L£>®(X)) C L>(A) by (5.2). Let Lo, be the restriction of
L1 to L ()\)

Proposition 5.4. The operator Lo, : LX) — L®(N) is the
transpose of the compact operator Ly : LY(A\) — LY(\) and is compact.

Proof. The fact that L., = 'L; is a consequence of the Tonelli
theorem. The transpose Lo, of the compact operator L; is again
compact by the Browder theorem, cf. [12, Theorem VI.12]. O
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