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A STEFAN/MULLINS-SEKERKA TYPE
PROBLEM WITH MEMORY

A. NOVICK-COHEN

ABSTRACT. Existence is proven for the system
(0.1)

t
a1us + agw; = / k(t —s)Au(s)ds (z,t) € 2 x (0,T)

azws = Ap (x,t) € 2 x (0,T)

pw+2u € dl(w) (z,t) €Qx(0,T)

where
fQ [Vw| < oo |w| <1 ae.
[(w) :=

[eS) otherwise

for arbitrary 7" > 0 on a smooth bounded domain Q2 C R",
n = 1,2, or 3 via the inclusion of a relaxation dynamic, for
initial data (u,w) € L2() x BV(Q) and for “prehistory”
up, € L2(R™; H2(Q2)). Here u denotes the temperature field,
w a conserved phase variable, and p the chemical potential.
Neumann boundary conditions are assumed for g and the
heat flux or normal derivative of the temperature field is
prescribed. The kernel k is assumed to be of positive type.
The system (0.1) represents a coupled Stefan/Mullins-Sekerka
type problem which has recently been derived by formal
asymptotics from a formulation of the conserved phase-field
equations which allows for memory effects in the temperature
field, [7].

1. Introduction. In this paper we study existence and uniqueness
for the following Stefan/Mullins-Sekerka problem in which memory
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114 A. NOVICK-COHEN

effects have been incorporated into the temperature field:

t
a1ug + agwy = / k(t — s)Au(s)ds (x,t) € Q2 x (0,T)

aswy = Ap (z,t) € 2 x (0,T)
(1.1) p+2u € dl(w) (z,t) € Qx(0,T)
n-Vu=2, n-Vp=0 (z,t) €9Qx(0,7)
u(z,0) = up(z), w(z,0) =wo(z) =€
and  u(z,t) = up(z,t) (z,t) e @ xR™

where
I'(w) := {fn |[Vw| < oo |w| <1ae. in Q,

00 otherwise.

The domain 2 € R™, n = 1,2,3 is taken to be bounded, and its
boundary 92 is assumed to be smooth. The notation R~ := (—o0,0)
is used. Here u(z,t) denotes the temperature field, w(z,t) a conserved
phase variable, and p(z,t) the chemical potential. By the definition
of ', w(z,t) is constrained to lie in the interval [—1,1]: two limiting
phases are indicated in the regions in which w(z,t) = 1, and “mushy
regions” or diffuse regions correspond to regions in which |w(z,t)| < 1.
Equation (1.1c) is a generalization of the Gibbs-Thomson relation, see
[13]. The coefficients a;, az and agz are assumed to be positive. A kernel
is said to be of positive type if

(12)  Q(v,T;k):= /OT <v(t),/0t k(t — s)v(s)d5> dt >0,

for all T > 0 and v € L _(R™; L?(Q2)) where (-,-) denotes the inner

product in L#(Q2) and RT = [0, 00), and strongly positive if there exists
n > 0 such that

Q(v,T; k) = 1nQ(v, T;e)
for all v € L _(R*;L%*(Q)) and T > 0. We shall assume throughout

loc

that k is of positive type. Off hand, (1.2) does not suffice to control
either ||v||L2(q) or [|v||L2(0,1;02()); however, if

(a) k:R" — R is continuous and of positive type,
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then for each v € L (R™; L?(2?)) and T > 0,

[k D)D)y < 2HO)Qw, T3 ),
and if
(b) k, k' € LY(R™) and k is strongly positive,

then
1k % vl|720,7;22(0)) < cxQ(v, T; k),

where ¢;, > 0 is a constant which depends only on ||k||p1, ||k']|L: and
n. See [11]. By the differential inclusion it is implied that p + 2u is a
subgradient of I" at w € X i.e.,

/(p+2u)(n—w)dmdt+/ \Vw|dacdt§/ |Vn| dz dt
Q Q Q

|lw] <1 ae. in@

(1.3)

for all h € X, where X is taken to be the Banach space L(0,7; BV (Q))
and Q :=Q x (0,7).

It was demonstrated in [7], where the following system of conserved
phase-field equations with memory

t
o / K(t - s)Au(s)ds (z,6) € x R*

o= —EAEAS+a (P ¢*) +2u) (5,t) QxR
(1.4) n-Vu=hb, n-Vo¢=n-VA¢p=0 (x,t)€0QxR"
u(z,0) = uo(z), d(z,0) = go(x) €
and
u(z,t) = up(z,t) (z,t) e A xR™

was studied, that the system (1.1) could be obtained by formal asymp-
totics under the assumption that

¢ =cf r=ef, a=e (§,7=0(1),

where 0 < € < 1 and for initial conditions such that the domain € is
initially partitioned into large domains dominated by one of two phases
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¢ = %1 which are separated by slowly varying smooth thin interfaces
whose curvature is assumed to be large.

As noted in [7], the memory system (1.1) obtained in this particular
asymptotic limit contains an “unresolved” chemical potential, i.e., in
the classical Stefan problem formulation the chemical potential has
evolved to a uniform equilibrium, and as such no longer appears
explicitly. The present formulation may be considered to correspond
to an “earlier” quasi-steady state time scale in which these effects have
vet to resolve themselves. These additional effects will be seen here to
be stabilizing.

Although memory effects have been considered in numerous formu-
lations in the past, e.g., [3, 4, 5, 9, 12, 13], to our knowledge this
particular formulation has not been considered previously. For exam-
ple, in [9] hyperbolic effects are considered both in the internal energy
and in the latent heat. Similarly, in [3] memory effects are taken into
account in the internal energy and in the heat flux in a model for two-
phase Stefan problems with memory. Our approach is based on a fixed
point argument and the solution of a differential inclusion by a time
discretization method. The treatment of the differential inclusion we
present follows roughly the treatment of Visintin [12, 13]; however,
relaxational chemical potential terms which we mentioned above do
not appear in these papers, though the Gibbs-Thomson curvature ef-
fects accounted for in the latter of these papers [13] is included in the
present formulation. The energy balance equation is resolved via the
application and weak limit of a resolvent formula.

Existence of a weak solution is proven under the assumptions that
(ug,wp) € L?(Q) x BV(Q), |wo| < 1 almost everywhere in Q, uy, €
L*(R™;H2(Q)), [°_ k(t — s)Aup(s)ds € L2, (RT;L3(Q)) and b €
H! (RT;L*(8Q)), [,,bds = 0, via the inclusion of a “relaxation
dynamic” [12, 13], i.e., existence is proven for the original system by
first proving existence for a relaxed system of equations which in the
present case is given by
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¢
ajus + aswy = / E(t — s)Au(s)ds (x,t) € 2 x (0,T)

aswy = Ap (z,t) € 2 x (0,T)
uA+2u — agwy € T (w)  (z,t) € 2 x (0,T)
n-Vu =y, n-Vu=0 (z,t) €9Qx(0,T)
u(z,0) = uo(z), w(z,0) = wo(z) z€Q.

(1.5)

More explicitly, the relaxed problem may be formulated as:

Problem P,,. Under the assumption that k is a kernel of positive
type such that k € L _(R"), (ug,wp) € L*(Q) x BV(Q), up €

loc

LAR; HA(Q)), [°k(t — s)Aup(s)ds € L2, (R*; L*(Q)), |wo| < 1

loc

almost everywhere in Q and b € H\ (RT; L*(09)), [,,bds = 0, for
T > 0 find w € C([0,T); H (), w € C([0,T]; L*(?)), such that
u € L%(0,7;L%Q)), u, € L*0,T; H 2(Q)), w € L*>(0,T; BV(R)),
w, € L0, 75 HH(Q)), ay*w, € L2(0,T; L3(Q)), p € L*(0,T; H'(Q)),
which satisfy

T
- / (a1u + asw, &) dt — (a1ug + azwy, £(0))
0

- /OT { /01t K(t — )b(s)ds,€ ) ) dt
- /OT ( /Ot B(t - s)u(s) ds, A¢) dt

v/ o / k(e - S)un(s) ds, A€ )

(oo}

- a3/0 (w, p¢) dt — az(wo, p(0)) + /0 (Vu, V) dt =0,

(1.6)

/(p+2u—a4wt)(n—w)dacdt+/ |Vw| dz dt
Q Q

S/ |Vn| de dt, |lw| <1 a.e. in Q,
Q
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for any & € H'([0,T[;H*(Q)), ¢ € H'([0,T[;H'(Q)) and n €
LY(0,T; BV(R)), |n| < 1 almost everywhere in Q, where Q = Qx(0,T).
If k satisfies (a) or (b), find u which satisfies additionally k *x u €
L*(0,T; HY(Q)) or k*u € L*(0,T; H'(Q)), respectively, and (1.6a)
holds in the stronger sense, i.e.,

T
- / (a1u + agw, &) dt — (a1up + azwo, £(0))
0

/ (/’”‘S d3>,V£>
/ (/’”‘3 ds>,£>>dt
+/0 </_oo k(t_s)A“h(S)dS,£> dt,

for any € € HY([0,T[; H*(Q)), where ((-,-)) denotes the inner product
in L2(0Q) and u; € L*(0,T; H~1(Q)).

We remark here that to guarantee that fix) k(t — s)Aup(s)ds €
Li . (RT; L3(R)), it suffices to assume that k£ € L!(R™) in addition to
the assumption u;, € L2(R™; H%(2)). A solution to the system (1.1),
that is to Problem Py, is then obtained by examining the solutions to
Problem P,, in the limit as — 0.

We introduce the following definition:

Definition 1. A weak solution (u,w) of (1.5a) (a solution in the
sense of Problem Py) will be said to be moreover a weak-mild solution
of the energy balance equation (1.5a) if

/ <a1u+a2w—a1u0—a2w0—/ / (s — s")Aup(s") ds' ds
0
—A(a*u),§>dt:0,

for every & € L?(0,T; L*(Q2)) where aft fo s) ds, and if u is weakly
continuous in L?(Q) with respect to tlme
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The main result of this paper can be summarized in the following
theorem.

Theorem 1. There exists a global solution (u,w) to Problem Py.
Moreover, (u,w) constitutes a weak-mild solution of (1.5a) (in the sense
of Definition 1 above).

We outline below the plan of the paper. In Section 2 by making an
appropriate substitution, a formulation with homogeneous boundary
conditions and where “prehistory” effects have been separated out is
obtained. Next, by solving for the chemical potential y in terms of w,
a system consisting of two equations results. The resultant system is
then solved by first freezing the temperature field and demonstrating
in Section 3 that for any 7" > 0 the resultant differential inclusion for
w has a solution, and by then returning in Section 4 to prove local
existence of a weak solution for the full system of equations by a fixed
point argument. Within this formulation, the chemical potential u
is found only up to a spatially constant function. This, however, is
reasonable as p is a “potential.” For simplicity, we shall set

(1.7) /Qud:v =0.

In Section 5 it is first demonstrated that the solution obtained in
Section 4 may be extended to exist globally and is unique. Afterwards,
the limit a4 — 0 is considered and the solution to (1.1) indicated in
Theorem 1 is obtained.

2. The reduced formulation. Let us introduce the notation

ke i= /Ot k(t — s)u(s) ds,

in terms of which we may rewrite the convolution as

t
(2.1) / k(t — s)Au(s) ds = k * Au + yy,
where yy = ono k(t — s)Aup(s)ds. Here yg represents “prehistory”
effects. We assume that yo € LZ_(RT;L?(Q)) (and that u, €

loc
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L?(R™; H%(Q2))). In order to obtain a homogeneous formulation, let
u be the solution to the time-dependent boundary value problem

0=Au (x,t)eQ2x(0,T)
n-Vi=>b (z,t) € 0Q x (0,T).

It follows from standard elliptic theory that if b € H} (R™T; L?(9Q))
and [,,bds = 0, then @ € H} (RT;HY(Q)). (Actually @ €
HL_ (R*; H*?(Q)), but this additional regularity will not be needed
here.) Thus, defining v = u — @ and employing the notation of (2.1),
the system (1.5) may be written as

ayvy + agwy = kxAv+y; (x,t) € Q2 x (0,7T)
asw; = Ap (z,t) € X x (0,T)
(2.2) 04 pu—agw; +y2 € T (w) (x,t) € 2x(0,T)
n-Vou =0, n-Vp=0 (z,t) €9Qx(0,T)
v(z,0) = ug(z) — a(z,0), w(z,0) =wo(z) =€
where y; = yo—a1t; € L, (RT; L*(Q)) and yo = 2u € L (RT; HY(Q)).

Next we express p in terms of the temperature field u. To this end,
we set

Q) = {z € HS(Q)‘/dex _ o},

for any s € R, noting that according to this definition L?(Q) = H°(1),
and we define \V to be the inverse of minus the Laplacian with Neumann
boundary conditions, i.e., let N : H*(Q) — H*t2(Q2) be defined for
s € R by the following.

Set 2 = Nw if v and w satisfy
—Az=w, xz€, n-Vz=0, z€dQ and/zd:z::(].
Q

Note that it follows from (2.2b) that [, w¢ dz = 0, hence in terms of the

above definition it follows now from (2.2) that if w;, € L2(0,T; H*(Q)),
then

(2.3) p = —azNw, € L*(0,T; H*2(Q)).
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Substituting (2.3) into (2.2b) yields

a1vp + agwy = kx Av+yr  (z,t) € 2 x (0,7)
2v — asNwy — aqwy + y2 € Ol (w)  (z,t) € 2 x (0,T)

(2.4) /dex:/gwod:v t e (0,T)

n-Vuo=0 (z,t) €02 x(0,T)
v(z,0) = vo(x), w(z,0) =wo(z) z€Q,

where vy(z) = up(z) — @(z,0). The integral constraint (2.4c) reflects
the integral constraint fQ wy dx = 0 noted above. More precisely, the
reduced relaxed formulation may be stated as

Problem 75a4. Under the assumption that k is a kernel of positive
type, k € Li,, (RY), (vo, wo) € L*(Q) x BV(Q), y1 € Lf,. (R*; L*(Q)),

loc loc

yo € L& (RT;HYQ)), |wo| < 1 almost everywhere in Q, and

loc

b € H (RT;L*(09Q)) such that [,,bds = 0, for T > 0 find v €
C([0,T); H71(Q)), w € C([0,T); L3(2)) such that v € L?(0,T; L*(Q2)),
v € L2(0,T; H2(Q)), w € L®(0,T; BV(Q)), wy € L2(0,T; H (),
a}lﬂwt € L%(0,T; L*(R2)), which satisfies

T
- / (a1v + agw, &) dt — (ayvo + azwo, £(0))
0
T T
— [ wrvagas [ g
0 0
/ (2v — asNw — aqwi + y2)(n — w) dz dt
Q

+/ |Vw| dzx dt §/ |Vn| dz dt,
Q Q
/wdx:/wodm te(0,7),
Q Q
|lw| <1 a.e in@Q,
for any € € H*([0,T[; H*()), and n € L*(0,T; BV (), Jondz =0,
)

[n| <1 almost everywhere in Q, where @ = Q x (0,T). If k satisfies
(a) or (b), find u such that additionally k x v € L>(0,T; H*(Q)) or
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kxwv e L?(0,T; HY()), respectively, and (1.6a) holds in the stronger
sense, i.€.,

T
- / (a1v + agw, &) dt — (ayvo + azwo, £(0))
0

T T
+/0 <V(k*v),V§)dt:/0 (y1,€) dt,

for any € € HY([0,T[; HY(2)), where ({-,-)) denotes the inner product
in L?(09).

The equivalence of Problems 75(14 and P,, follows from the well-
posedness of the inverse operator N in L?(Q). It is the relaxed
formulation Problem P,, which we solve locally in Sections 3 and 4. In
Section 5, it is demonstrated that solutions to Problem P,, (and hence
P.,) may be extended to exist globally. The limit ay — 0 is then taken
employing estimates obtained in Sections 3 and 4, producing by this
method the solution described in Theorem 1.

3. Solution of the differential inclusion. In order to solve
the system (2.4), we “freeze” the perturbed temperature field v in the
following sense. Let T' > 0 be arbitrary and fixed. Then set

Kr = {ve L*(0,T; L*(Q)) | [[vllL2(0,7:22(2)) < R}

where R > 0 is arbitrary, and let v in (2.4b) be fixed as an element of
Kpg. Thus, the system which we wish to solve is

2v — asNwy — aqwy + y2 € Ol (w)  (z,t) € 2 x (0,T)
(3.1) / wdr = / wodz te€(0,T)
Q Q

w(z,0) = wo(z) z€Q

in L'(0,T; BV(2)) where v € Kp and yo € L?(0,T;H(Q)) are
assumed to be known, though only the L?(0,T; L*()) regularity of
y2 will be used. More precisely, we wish to solve Problem Py, .

Problem ﬁ;4 Let k be a kernel of positive type, k € LL_(RT),

loc

wo € BV(Q), |wo| < 1 almost everywhere in Q, v,yo € L*(0,T; L*(Q)),
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find w € C([0,T); L*(R?)) such that w € L°(0,T;BV(Q)), w: €
L%(0,T; H 1(Q)) and aiﬂwt € L2%(0,T; L*(Q)), which satisfies

/ (2v — asNwi — agwt + y2)(n — w) dz dt
Q

+/ \Vw|da:dt§/ |Vn| dz dt,
Q Q

/wdx:/wodw te (0,T),
Q Q

|lw| <1 ae in @,

for any n € L*(0,T; BV(Q)), such that |n| < 1 almost everywhere in Q
and fQ ndx =0 for almost every t € (0,T).

We turn now to solve the differential inclusion. As in [12, 13], we
introduce a discretized time variable,

0=t <tl <t? <. <th=T,

where t7, = nh, 0 < n < m and h = T/m, and we denote by w], the
approximants of the function w(z,t) at the times ¢?,. Thus, we may
write

n as n n—1 a4 n n—1 n n
(32) 2vm - ? (wm - Wy, ) - F(wm — Wy ) + Y2, € 8F(wm)’
where the definition of the differential inclusion is as in (1.3) except

now the integrals are understood to be taken over the domain 2 and
not over Q@ = Q x (0,7). Furthermore,

1 [tm 1/2 1
n . 2 —
o = [ﬁ/t v dt] = sz e,

n
m

and y3  is defined similarly. Equivalently, defining wy, := wy, —wo for
0<n<mand [(@%) :=T(@7 + wp),

(3.3) 2o +h™MasNuwp, t + agily, ) + yh
€ O (™) + h~H(asNa", + agil) == M(a7,).

m
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_Noting that ['(w) is a convex functional, as is the functional v (w) :
L?(Q) — R where
aq

_ Q4 2 az 1/2, 12
=3 Qw dm+2h/ﬂ(./\/ w)* dz,

it follows that if we define
¢: BV(Q) — R, p:=L+v

where
BV(Q) := BV(Q) N L*(Q),

then ¢ is convex. Then, by the sum rule for convex functionals, see,
e.g., [14, Theorem 47.B],

M=0)p+00 =0 +T) (= 09)

on B'V(Q). Thus, M is the subdifferential of a convex functional.
Since BV () is a real locally convex space, solutions of the differential
inclusion correspond to solutions of the minimization problem:

inf ¢(u) e gy (o) = &

see [14, Proposition 47.12]. But because ¢(u) is weakly coercive and
lower semicontinuous on BV (£2), and since the unit ball in BV (Q) is
weak-star sequentially compact (for a characterization of BV*(Q2), see,
e.g., [15]) and BV (Q) is the dual of a separable Banach space, it follows
from [14, Proposition 38.12] that such a minimizer exists. Thus, for
every n and m, 1 < n < m, there exists a solution in B'V(Q) to the

differential inclusion (3.3).

We proceed now to obtain estimates needed to take the appropriate
limits to obtain a solution to Problem P,,. It follows from (3.3) that,
for any n € BV (),

34) o) 2 o)+ | (204 PNl 4 Sha g, ) ot
Q
From (3.4) it follows that

Hmszm+/

Q

(m;;; T “—}f/\/wzgl n %wzjl

as ~n _% ~n n _mn
—%N(Wrwm) 2h(n+wm)+y2m>(n yy,)-
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Setting = w? ! and returning to the original variables, we obtain

Dwh ) - ) 2 - [ (2o + 03, )(wh - wh )
Q
a3 1/2(, n _ . n—1y]2
+ 5o [N, =)

a4 n _ , n—1y2

Summing over n from 1 to m, for m € Z*, 1 < m < m, and cancelling
intermediary terms,

g 2 IV i
g 20 [ i D) - D)

n=1

8h o 2hﬁ‘/n2
< — Jl i B

570 3Y KGRSO KN

A
2|
\E
—
33
e
+
2=
—
S
o
e
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Employing the definitions of vy, and y3 , we obtain that

2 n=1

(35) + i D0k~ wh P+ T(R) — D)
8 2
< a”vu%?(O,T;LZ(Q)) + a—4||y2||2L2(o,T;L2(Q))-

Hence,

9 5~ [, — ity < S

4h  Jo m m = a4 L2(0,T;L?(2))
(3.6)

2 2
+ a||y2||L2(O,T;L2(Q))
+ lwoll Bv(@)-

Denoting by {wy, } the linear time-interpolants of the functions {w,}
obtained above, (3.6) yields

C
Wi, 220,722 () < — - [Ivllz2(0,7522()) + lv2llz2(0,1522(02))
(3.7) a4
1/2 1/2
+ a5 *lwoll iy (o)
where C is a constant which is independent of a;, i = 1,... ,4. Since,

for every m and n, 1 <n < m, w? —w?~' € BV(Q), it follows that

(3.8) / W, dz = 0.
Q

Moreover, by construction
(3.9) Wi Lo (0,752 () < 1.
Returning, from (3.5) and (3.9),

[[wm|| oo 0,7;8v () < [llwollBv () + 2]
(3.10) + 2 Bl

+ 2||y2||2LZ(o,T;L2(Q))]-
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Therefore, there exists a subsequence denoted here again by {w,,} and
a function w such that

(3.11) Wy — wy,  weakly in L2(0,T; L%(2)),
and
(3.12) Wy —wo — w —wo weakly* in L=(0,T; BV).

From the compact embedding of BV (£2) in L?(2), it follows from (3.7)
and (3.10) that

(3.13) wy, — w  strongly in L?(0, T; L*()).
From (3.7)-(3.8) and the embedding of L2(Q) in H2(Q)
(3.14) Nw,,y — Nw,  weakly in L*(0, T; L()).

Note by construction that

/wtdx:O, /wdm:/wodw a.e. t€(0,T).
Q Q Q

Integrating (3.2) from 0 to 7', it follows that, for each w,, and for any
n € L'(0,T; BV (),

/ (2vy, — asNwp, — agwm, + ya,, )(n — wy,) dz dt
Q
+/ |Vwy, | dzdt < / |Vn| dx dt.
Q Q
By lower semicontinuity,
/ |Vw| dx dt < liminf/ |Vwp,| dz dt.
Q m—ro0 Q
By the definition of vy, and y2,, 2v;, + y2,, converges strongly in
L*(0,T; L*()). Since n € L*(0,T; BV (R)), it follows from the defini-
tion of BV (Q) that n € L?(0,7; L?(£2)). Therefore, by (3.13), n — wp,

converges strongly in L%(0,T; L%(€2)). Hence,

/(2vm+y2m)(n—wm)dwdt—>/(2v+y2)(77—w)da:dt.
Q Q
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By (3.7)—(3.8), we obtain that a subsequence az N wy,, +aswp,, is weakly
convergent in L?(0,7; L?(2)), and hence using the strong convergence
of n — wy, in L?(0,7; L*(Q)) noted above we find that

(3.15)

/ (asNwm, + agwm, )Wy, dz dt — / (asNw; + agwy)wy, dz dt.
Q Q

Thus,

/(2v—a3./\fwt—a4wt+y2)(n—w)dxdt+/ |Vw| dz dt
Q Q

< / V| dw dt
Q

for all n € L'(0,T; BV(Q)) such that |y| < 1 almost everywhere
in Q, [,ndx = 0 for almost every t € (0,7). From the weak
convergence of w,,, in L*(0,T; L*(f2)), and the strong convergence of
Wy, in L%(0,T; L?(Q)), it follows [10] that w € C([0,T]; L*(£2)). Hence,
w is a solution of the differential inclusion (3.1).

Thus we have proven

Theorem 2. For any T' > 0 and v € Kg, there exists a solution to
Problem P, .

4. A fixed point argument. In order to complete the proof
of existence for Problem Pay; i.e., for the system (2.4), which for
convenience we rewrite below as,

a1v + agwy = kx Av+yr  (z,t) € Q x (0,7),
n-Vo=0 (z,¢) €9 x(0,1),
2v — agNwy — aqwy + y2 € OL'(w)  (z,t) € Q x (0,T),

/wdwz/wgdx te (0,7),
Q Q

v(z,0) = vo(z), w(z,0) =wo(z) =€,

(4.1)

we employ a fixed point argument.
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To proceed, we consider the linear Volterra integro-differential equa-
tion

=K+ A+ f (z,t) € Qx(0,T),
(4.2) n-Vy=0 (z,¢t) €0Qx(0,T),
Y(x,0) = = €Q,

where f € LL (R*;L*(Q)). Setting B(t) = [, x(s)ds and g(t) =
Yo + fot f(s)ds and letting A denote the Laplacian operator with
Neumann boundary conditions, we define

Definition 2. A function ¢ € C([0,T]; L%(£2)) is called

(i) a strong solution of (4.2) on [0,T] if ¥ € C([0,T]; H*()),
Yy € L*(0,7;L2(Q)) and v satisfies (4.2a,b) almost everywhere on
[0,7] and (4.2¢),

(i) a mild solution of (4.2) on [0,T] if k x ¢ € C([0,T]; H*(2)) and
h(t) = g(t) + A(B +1)(t) on [0, T].

A function ¢ € L%(0,T; L?(2)) is called
(iii) a weak-mild solution of (4.2) on [0,T] if

/0 (6(8) — g(t) — A(B %), €) dt = 0

for every £ € L%(0,T; L%*()), and if ¢ is weakly continuous in L?({2)
with respect to time.

Clearly in terms of these definitions, a strong solution constitutes a
mild solution, and a mild solution constitutes a weak-mild solution.

Remark 1. A weak-mild solution as defined here does not correspond
to a “weak solution” of ¥ = g + A(B * ¢) as defined in [8, Chapter 1].

Remark 2. Tt is easy to demonstrate that if 1 is a weak-mild solution
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of (4.2) on [0,T], then on [0, T],
- / (W(8),25) dt — (9(0), 2"(0))
T T
- / (5% 9)(£), Aa*) dt + / (F(t), 2% di

for each z* € HY([0,7[; H%()), i.e., ¥ is a weak solution by which
we mean a weak solution in the sense employed in the statement
of Problem P,,. Similarly, if ¢ is a weak solution of (4.2) and if
Bx1 € L?(0,T; H*(R)), then it is also straightforward to demonstrate
that ¢ is moreover a weak-mild solution of (4.2).

Remark 3. Clearly, a strong solution constitutes a weak solution. It
is also possible to demonstrate that a mild solution constitutes a weak
solution by regularizing the initial data and f and passing to the limit.

In terms of existence and uniqueness of solutions to (4.2), it follows
from [8, Chapter 1]

Proposition 3. If xk € L{,_ (R") and « is a kernel of positive type,
then

(i) if o € H*(Q) and f € L'(0,T7;H?*(R)), there exists a unique
strong solution to (4.2), and

(ii) if o € L3(Q2) and f € L*(0,T; L*(QQ)), there exists a unique mild
solution to (4.2).

Moreover, following [8], we define

Definition 3. A family {S(¢)}:>0 C L£(L*(2)) of bounded linear
operators in L?(Q) is called a “resolvent” of
P(t) = g(t) + A(B * ) ()
for t > 0 if
(S1) S(t) is strongly continuous on R™ and S(0) = I;

(S2) S(t) commutes with A, which means that S(t)H?*(Q) C H?()
and AS(t)z = S(t)Ax for all x € H*(Q) and ¢ > 0;
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(S3) the resolvent equation holds
¢
S(t)r = m—i—/ B(t — s)AS(s)xds x € H*(Q), t>0,
0

and obtain

Proposition 4. Equation (4.2) admits a resolvent such that

ISl ez < 1.
Moreover, for each v € L?(Q) and f € L*(0,T; L*()),

(4.3) W) = S(E0o + /0 S(t — ) f(s) ds

is a mild solution of (4.2). If Yo € H*(Q) and if f € L*(0,T; H*(2)),
then (4.3) yields the unique strong solution of (4.2).

Let us define

¢ 1 a9
(4.4) Fo = S(t)vo + /(; S(t—s) (a—lyl — a—lwt> (s)ds,
te0,T).

From (4.3) and (4.4), it is easy to see that

1
1FollL2(0,7;L2(0)) < %T [a_1 ly1llz20,m502 ()

a2
+ 2wz |
ay

+ T2 [||vol 2 o)-

Employing (3.7), it then follows that

ag 1
1Follz2 07522 () < €T 0]l z20,752200)) + — w1l L2 0,22 ()
a1G4 a
az 1/2 az
+ —7illw + — 2007 L2
ala};/z I OHBV(Q) a1a4||y2”L (0,T;L2(Q))

+ T2 [vol 2 (@)
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where C is a constant which is independent of a;, ¢+ = 1,...,4.
Therefore, for any 0 < 1" < Ty where

Ty = CR[1+ ||lwol gy o) + o]l L2 (o)
+ ly1llz2 0,522 () + Hy2||L2(0,T;L2(Q))]72a

and C = C'(al,ag,ag,a4), F, maps Kr into Kg.
Next, for any v € Kg, let {v*} € K be a sequence such that

v —~ v weakly in L?(0,T; L*(Q)).

Consider now the solutions {w*} to the “frozen” system (3.1) corre-
sponding to the sequence {v*}, which by virtue of (3.7)—(3.10) satisfy

l[w* || Lo 0,738V () < C
waHLZ(QT;LZ(Q)) <C

|w* || Lo (0,21 (@)) < 1,

/wkdm:/wodw.
Q Q

Thus, without loss of generality, taking subsequences,

and

wh =~ w  weak* in L>°(0,T; BV(Q)),
wf — w, weakly in L?(0, T; L? (Q)),
wh = w  weak* in L*°(0,T; L>(Q)),

/wkdw—>/wdw.
Q Q

With these estimates in hand, we return to find as in the existence
proof given in Section 3 that (v,w) satisfy the differential inclusion.
From the definition of F,, and noting that

wF — w, weakly in L*(0,T; L*()),
we obtain that

For — F, weakly in L?(0,T; L*(Q)).
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It now follows from the Schauder-Tychonoff fixed point theorem that,
for 0 < T < Ty, F, has a fixed point v € Kg such that (v, w) satisfy
Proposition 4 in L?(0,7;L*(R)), i.e., (v,w) is a mild solution in the
sense of (4.3), and (v, w) satisfy (4.1c)—(4.1d) in the sense prescribed
in Section 3. Returning, we find by the uniqueness of mild solutions
(Proposition 3) that v is, moreover, a mild solution in the sense of
Definition 2. Thus v € C([0,7]; L?(£2)) and the initial conditions are
satisfied. Since w € L*(0,7;BV(Q2)) and w; € L%*(0,T;L?(Q?)), it
follows also [10] that w € C([0,T]; L*(R)). Since, as we have remarked,
a mild solution also constitutes a weak solution, we obtain that (v, w)
satisfies the weak formulation (2.5) of Problem P,,.

Thus, we have proven:

Theorem 5. For T' > 0 sufficiently small, there exists a solution
(u,w) to Problem P,,. Moreover, (v, w) constitutes a mild solution of
(1.6a) (in the sense of Definition 2).

Returning and combining the estimates obtained for # in Section 2,
and setting v = v + @ and solving (2.2b) for p, we obtain that (u,w)
satisfies the weak formulation (1.6) of Problem P,,.

Theorem 6. For T > 0 sufficiently small, there exists a weak
solution (u,w) to Problem P,,.

The discussion of a weak-mild formulation of (1.6a) for Problem P,,
is postponed until after global existence is proved in Section 5.

5. The memory Stefan/Mullins-Sekerka problem. Now that
we have proven local existence for the relaxed problem, Problem P,,,
we return to obtain additional estimates in order to obtain first a
global solution for Problem P,, and then for the unrelaxed problem,
Problem Py, as well. To this end, we consider again the auxiliary
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system (Problem P,,)

avy + agwy = kxAv+y; (x,t) € 2 x (0,7T)
20 — agNwy — agwy + y2 € 0T (w)  (z,t) € X x (0,7)

(5.1) /deac:/gwodm t e (0,T)

n-Vuo=0 (z,t) €02 x(0,T)
v(z,0) = vo(z), w(z,0) = wo(z) z€Q
which was solved in Section 4. Here T € [Ty, Trnax ), where [0, Thax) in-
dicates the maximal time interval over which a given solution obtained
in Section 4 may be extended to exist. We multiply the first equation

by v and the second equation by wy, and integrate over time and space
to obtain

T
(5.2) —(U(T),U(T))—i—az/o (v, wy) dt

< "2_1<v(o),v(o)>+/0 (v,91) dt,

T T
7/ (2v, wy) dt+a3/ (N2, NV 2y dt
0 0

T T
(5.3) —|—a4/ (wy, wy) dt — / (y2, wy) dt
0 0
4 / V(T do < / Vw(0)] da.
Q Q
Since the solution obtained in Section 4 yielded v, w, y1 € L2(0,T; L?(2)),
to justify (5.2), vg, w; and y; must first be regularized so that the mul-

tiplication and integration may be carried out in terms of a strong
solution. For the strong solution, since k is a positive kernel,

T
(5.4) Q(Vu, T;k) = /0 /QVU -V(k xv)dzdt > 0.

Passing to the limit, it follows from (5.4) that (5.2) also holds for weak
and mild solutions. Equation (5.3) may be justified as in Section 4.



STEFAN/MULLINS-SEKERKA TYPE PROBLEM 135

Adding together twice equation (5.2) and ag times equation (5.3),
and noting that by the Cauchy-Schwartz inequality,

T
1 1
/0 (v,y1) dt < 5””“%2(0,T;L2(Q)) + §||yl||2L2(o,T;L2(Q))

and

T
1 as
/0 (y2, wy) dt < EHZDH%F(O,T;H%Q)) + ?HNlmth%?(O,T;LZ(Q))

yields

a2a3

2

+a2a4||wt||2L2(07T;Lz(Q)) +(12/ |VUJ(T)|d$
Q

(5.5) axllo(T)|[Z2(0 + ||N1/2wt||2L2(o,T;L2(Q))

< ay[|v(0)|[Z2 () + 1022 (0,722 (0

+ a2/ Vw(0)| da
Q
az
+ lvallZ20.7:22(0)) + %Hyzniz(o,nm(n))-

From (5.4) and (5.5), by employing Gronwall’s lemma we ascertain
now a number of estimates. Let

p= [az||wo||BV(Q) + a1||vo\|i2(n) + ||Z/1Hil206 (R+;L2(Q))
az 1/2
+ —2a3\|y2||L1205 ®+sma))

Then for w we obtain that

(i) lwell 20,7 1-1(2)) < V/azas /272 p,

and

(ii) a1/2 HthL2(0 T;L2(Q2)) < LeT/Qalp.
4 [ \/@

By the definition of T, solutions (v, w) of (5.1) satisfy

llwl| Lo (0,732 (2)) < 1.
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Therefore, by (5.5),

L 170, 2

(111) Hw||Loo(07T;Bv(Q)) < (1,_26 p + 1.
Similarly, for v we obtain from (5.5) that

. 1 @
(iv) V]| oo 0,7;22(02)) < ——eT2mp,

var
Therefore by (5.1a),

(V) llarvy + a2wel| 20,1352 () < C1(R) <||y1|Lfoc (RH+;L2(2)

1 T/2a
+\/—a—1\|k||L110C(R+)€ / 10)-

Hence, using (i),

(i) llarerll oo sy < CalS) (|y1||Lz

loc

1 a
+ [\/ ajas + \/—a—l“’“”%c (R+)]€T/2 1P>,

where C;(2),i = 1,2 are geometric constants. Moreover, if {v,} is an
approximating sequence for v such that v, (0) € H*(Q) and v,,(0) — vo
in L2(Q), it follows by retracing steps (5.2)—(5.5) that

(RF;L2(2))

1

(vii) liminf Q(Vu,,T; k) < EeT/alp.
n—oo

Since the solution we have obtained for Problem P,, is a mild solution,

it follows that

A(B*v) +g(t) = v(t),
where
g(t) =wvo + /Ot L—llyl - Z_iwt] (s)ds

1
v + o /s y1(s)ds o (w(t) — wo)
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and where 8 = a_11 fot k(s)ds, which implies by incorporating the Gron-
wall estimates that

(viii)
a a
IAB * )| L2022 () < T2 |[|vollz2(a) + a,—j”wOHLZ(Q) + a—j
T/2a1

T 1
+ \/TTl||y1”L2(O,T;L2(Q)) + \/—a_le p-

In order to obtain a global extension of a given solution (&, ?), let us
proceed by contradiction to assume that Ty, < 0o. Set

R> \/§H17||L2(0,Tmax;L2(Q))’

and, employing the notation of Section 3, let

KR = {U S L2(07 2T max; LQ(Q)) ‘ ||v||L2(072Tmax3L2(Q)) < R}’
and define
Kjp={ve K| v(t) =0(t) for t €0, Tmax)}-

Following the discussion in Section 3, for any v € K ; it is possible to
obtain a solution w of the differential inclusion (5.1a) in the sense of
Problem P, , on the interval [0, 2T.y] such that

w(t) =w(t) fort e [0, Tmax-

Moreover, this solution will satisfy the estimate (3.7) on the interval
[0, 2T max]-
To complete the argument, we employ again the fixed point method

of Section 4. Let T = Tax + A for some 0 < A < Tiax, and let us
define

T
1
Fo(t) = S(t)vo + / S(t—s) <—y1 - %wt> (s)ds
0 ai ajy
for t € [0,T], setting w(t) = w,(t) and hence F,(t) = o(t) for
t € [0,Tmax). To demonstrated that F : Kz — Ky, we proceed as
follows.
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Letting

we note that
Tmax T
||'7:v||22(0,T;L2(Q)) = /0 ”]:vHZLZ(Q) dt +/ ||~7:vH%,2(Q) dt

max

||U||L2(0 Tinax; L2(2)
t)v

Q))
+/ 0 /St—S d

< ”vHL?(O,TmaX;L?(Q)) + 2A||UO||L2(Q)

+2/Tix /OtS(ts)h(s)ds ’

dt.
To estimate these terms, note that, by construction

dt

Trmax

101172 (0, 1ymnsz2(0y) < B2/3,
and by taking A sufficiently small,
24 [vo|72(q) < B*/3.
Estimating the third term, we note that

/T
TII]B.X

2

T
/ S(t — s)h(s)ds|| dt
0

——

=f 1 2 a3 2
< QAT{y”y”LZ(o,T;LZ(n)) + 2 llwellzz 0,72 (0))
1 1
By employing the a priori estimate (3.7), we obtain that

/T
Tmax

2

T
/ S(t— s)h(s)ds| dt
0

< ATCln Iz msse2o + 192112z @iz

+ ||UH%2(0,T;L2(Q)) + wollBv (o)
< ATC[HZ/lHilZOC ®R+;22(Q)) ||?/2||2Lﬁ,c (R+;L2(9))
+ R? + |lwo By ()]
R2
< 5 (for A sufficiently small),
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where C' is a generic constant. Summing the contributions from the
three terms, it follows that for A sufficiently small,

(5.6) 1Foll 20,2200 < B,

and hence F, maps f(ﬁ: into RR-

Proceeding as in Section 4 allows us to conclude that v* — w; weakly
in L2(0,T; L*(Q)) implies that F,x« — F, weakly in L?(0,T; L?(2)),
and the Schauder-Tychonoff fixed point theorem indicates the exis-
tence of a solution to Problem 756,4 on the interval [0, Tiax + A) in
contradiction to the maximality of the interval [0, Tinax)-

We conclude
Theorem 7. There exists a global solution to Problem P,, .

Finally we let 7' > 0 be arbitrary and we take a subsequence of
solutions (v,,,w,,) to obtain in the limit a4 — 0 a global solution
to the unrelaxed Stefan/Mullins-Sekerka memory problem, Problem
Po. From (i), (iii) and (iv), it follows that a weak solution to (5.1a) is
obtained in the limit a4 — 0. In order to obtain a solution (in the sense
of Problem P,,) to (5.1b) in the limit, we continue now by noting that
by lower semicontinuity,

/ [Vo|de < liminf/ [Vw,,| dx.
Q ags—0 Q

With regard to the other terms in (5.1b), from the assumptions on ys
and from the estimates (i), (ii) and (iv), we get that

(5.7)  ||2vay — a3NWayt — GaWaye + Y2l L2(0,1502(0))

2 a
< [\/—aT +4/a2a3C(Q) + (14/612]€T/2 Yo+ vl w2 )
hence, 2u,, — asNwa,t — a4Wwa,t + Y2 contains a subsequence_ which is
weakly convergent in L*(0,7; L*(Q)). Since n € L'(0,T; BV (Q)) it
follows from the definition of BV (Q) that n € L?(0,T; L*(Q2)). From
(i) and (iii), it follows as in Section 3 that there exists a subsequence
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w,, which is strongly convergent in L%(0,T’; L%(£2)). Thus, it is also
possible to pass to the limit in the second term in (5.1b).

Since by (iii) and (i), {wg, } is uniformly bounded in L>°(0, T; BV (1))
and {w,,:} is uniformly bounded in L?(0,7; H~'(Q)), it follows [10,
Corollary 4] taking subsequences, that w € C([0,T];L*(Q2)) and
w € L*(0,T; BV()). Similarly, since {v,,} is uniformly bounded in
L>(0,T; L?(2)) and {v,,} is uniformly bounded in L%(0,T; H 2(f)),
taking subsequences yields that u € C([0,T); H~1()) and v is
weakly continuous in L?(Q2) with respect to time. From the estimate
(viii), we obtain moreover that A(S * v,,) is uniformly bounded in
L?(0,T; L?(2)); therefore, we may conclude by Remark 2 in Section 4
that (v, w) constitutes a weak-mild solution of P, in the sense of Defi-
nition 1. If k satisfies additionally conditions (a) or (b), then it follows
from (vii) that k xv € L>(0,T; H(Q)) or kv € L*(0,T; H'(2)),
respectively. In either case, employing (i), we conclude that v; €
L?(0,T; H (). In this manner, a solution to Problem P is found.
Setting u = v + % and g = Nw;, a solution to Problem Py is also
attained. Clearly, as in the discussion in Remark 2, a weak solu-
tion (u,w) constitutes a weak-mild solution (in the sense of Definition
1) if A(B*u) € L*(0,T;L*(2)). Since we have demonstrated that
A(B *v) € L*(0,T; L*(Q2)) and since by construction A(S * @) = 0
we obtain that (u,w) is a weak-mild solution of (1.5a) (in the sense of
Definition 1), and Theorem 1 is proved.
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