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EXISTENCE, UNIQUENESS AND SMOOTHNESS
RESULTS FOR SECOND-KIND VOLTERRA EQUATIONS

WITH WEAKLY SINGULAR KERNELS

WEIMIN HAN

ABSTRACT. We consider second-kind Volterra equations
with weakly singular kernels. When the kernels assume simple
forms, we find analytic solution expressions and prove exis-
tence, uniqueness and smoothness properties. Similar results
for some general cases are then proved by using an idea of
Professor Kendall Atkinson [1].

1. Introduction. The purpose of this paper is to study second-kind
Volterra equations with weakly singular kernels of the forms

(1.1) y(t) +
∫ t

0

K(t, s)p(t, s)y(s) ds = f(t), t ∈ (0, T ]

and

(1.2) y(t) −
∫ t

0

K(t, s)q(t, s)y(s) ds = g(t), t ∈ (0, T ].

In these equations the weakly singular kernels are expressed as the
product of a smooth part, K(t, s), and a singular part, p(t, s) or q(t, s),
with

p(t, s) =
1√
π

1√
ln(t/s)

(
s

t

)μ 1
s

q(t, s) =
(

s

t

)μ 1
s

for some μ > 0.

Special cases of the equations of the types (1.1) and (1.2) arise from
certain practical applications (cf. [2, 6]). The case when the smooth
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part of the kernels K(t, s) = 1 has been considered by several authors.
In particular, solutions in weighted Lp-spaces are considered in [5] and
[4].

We confine ourselves to the space of real-valued continuous functions
for solutions of integral equations (1.1) or (1.2). In other words, a
function is a solution of an integral equation on (0, T ] if the function
is continuous on [0, T ] and satisfies the integral equation. For T > 0
and m a nonnegative integer, Cm[0, T ] denotes the space of the real-
valued continuous functions whose derivatives of order up to m are
continuously extendable to the end points t = 0 and T . For y ∈
Cm[0, T ], we use the usual norm

||y||m = max
0≤j≤m

max
0≤t≤T

|y(j)(t)|.

When m = 0, we will simply write C[0, T ] instead of C0[0, T ].

We first mention some results on simpler integral equations corre-
sponding to the case when K(t, s) = 1 in (1.1) and (1.2) for μ > 1.

Theorem 1.1. Assume that μ > 1. For any f ∈ C[0, T ], the integral
equation

(1.3) y(t) +
∫ t

0

p(t, s)y(s) ds = f(t), t ∈ (0, T ]

has a unique solution y ∈ C[0, T ]. Furthermore, if for an integer m ≥ 1,
f ∈ Cm[0, T ], then y ∈ Cm[0, T ].

For any g ∈ C[0, T ], the integral equation

(1.4) y(t) −
∫ t

0

q(t, s)y(s) ds = g(t), t ∈ (0, T ]

has a unique solution y ∈ C[0, T ]. Furthermore, if for an integer m ≥ 1,
g ∈ Cm[0, T ], then y ∈ Cm[0, T ].

Moreover, if g is defined in terms of f through the relation

(1.5) g(t) = f(t) −
∫ t

0

p(t, s)f(s) ds
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then the solution of (1.3) is also the solution of (1.4).

Proof. In [3] it is proved that for any nonnegative integer m, if f ∈
Cm[0, T ], the equation (1.3) has a unique solution y(t), y ∈ Cm[0, T ],
which also solves the equation (1.4) if g and f are related by (1.5).
Since f ∈ Cm[0, T ] implies g ∈ Cm[0, T ] for the function g defined by
(1.5) (cf. Lemma 2.3 below), it remains to prove that for an arbitrary
nonnegative integer m, (1.4) has a unique solution y ∈ Cm[0, T ] for any
given g ∈ Cm[0, T ]. We follow the proof method used in [3].

For any v ∈ Cm[0, T ] we define u = S (v) through the relation

u(t) =
∫ t

0

q(t, s)v(s) ds + g(t).

By a change of variables s = λt, we have
∫ t

0

q(t, s)v(s) ds =
∫ 1

0

λμ−1v(λt) dλ.

Thus,

u(j)(t) =
∫ 1

0

λμ−1+jv(j)(λt) dλ + g(j)(t), 0 ≤ j ≤ m.

Now if v1, v2 ∈ Cm[0, T ] and u1 = S (v1), u2 = S (v2), then

|u(j)
1 (t) − u

(j)
2 (t)| ≤

∫ 1

0

λμ−1+j |v(j)
1 (λt) − v

(j)
2 (λt)| dλ

≤ 1
μ + j

||v1 − v2||m, 0 ≤ j ≤ m.

Hence,

||u1 − u2||m ≤ 1
μ
||v1 − v2||m.

Since μ > 1, the above inequality implies that S is a contraction
mapping on the Banach space Cm[0, T ]. Therefore, S has a unique
fixed point y on Cm[0, T ]. Obviously, y is the solution of (1.4).

Smoothness property of solutions is important for theoretical analysis
of integral equations, as well as for error analysis when numerical
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methods are used to solve the equations. The smoothness property of
solutions y(t) of (1.3) and (1.4) for the case 0 < μ ≤ 1 is not available
from [3].

We will provide the smoothness result for solutions y(t) of (1.3) and
(1.4), covering all the cases for μ > 0 in the next section. When μ ≤ 0,
to make the integration meaningful, a solution of (1.3) or (1.4) must,
together with its certain derivatives, vanish at t = 0. This requirement
in turn can be used to reduce the case of μ ≤ 0 to that of μ > 0.
Hence, in this paper, we will always assume μ > 0. We will discuss the
relationship between (1.3) and (1.4) for the case of μ ∈ (0, 1]. We will
look at the equation (1.4), find an analytic expression for its solution,
and draw conclusions on the smoothness property of the solution y(t).
In Section 3 we employ a technique of Professor Atkinson [1] to study
the existence, uniqueness and smoothness of a solution to the general
problem (1.2) or (1.1), when K satisfies K(t, t) = 1. In the last section
we will remark on various generalizations of the results of the previous
section. We notice that, unlike the special case when K(t, s) = 1, in
general (1.1) and (1.2) are no longer equivalent even when μ > 1, no
matter how the right side g(t) of (1.2) is adjusted.

2. The special case when K(t, s) = 1. As a first step, we consider
the equation (1.4) for both cases when 0 < μ ≤ 1 and μ > 1.

Lemma 2.1. (a) In the case 0 < μ ≤ 1, assume g ∈ C1[0, T ]. Then
the solutions of (1.4) are

(2.1)
y(t) = c0t

1−μ + g(t) +
1

μ − 1
g(0)

+ t1−μ

∫ t

0

sμ−2(g(s) − g(0)) ds, c0 ∈ R.

(b) In the case μ = 1, assume g ∈ C1[0, T ] and g(0) = 0. Then the
solutions of (1.4) are

(2.2) y(t) = c0 + g(t) +
∫ t

0

s−1g(s) ds, c0 ∈ R.
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(c) In the case μ > 1, assume g ∈ C[0, T ]. Then the unique solution
of (1.4) is

(2.3) y(t) = g(t) + t1−μ

∫ t

0

sμ−2g(s) ds

and we have the regularity estimate

(2.4) ||y||0 ≤ c||g||0.

Proof. First we find a relation between g(0) and y(0) for a solution
y ∈ C[0, T ] of (1.4). By a change of variables s = tτ , we have

∫ t

0

q(t, s)y(s) ds =
∫ 1

0

τμ−1y(tτ ) dτ → 1
μ

y(0) as t → 0 + .

Letting t → 0+ in (1.4), we obtain

y(0) − 1
μ

y(0) = g(0).

Hence,

(2.5) y(0) =
μ

μ − 1
g(0) if μ �= 1,

and, when μ = 1, g(0) = 0 is a necessary condition for the existence of
a solution to (1.4).

Let us prove the solution formulas (2.1), (2.2) and (2.3) under the
assumptions g ∈ C1[0, T ] and g(0) = 0. Since a solution y ∈ C[0, T ],
g ∈ C1[0, T ], it is easy to verify from

y(t) =
∫ t

0

q(t, s)y(s) ds + g(t), t ∈ (0, T ]

that y′ ∈ C(0, T ]. We can differentiate (1.4) with respect to t ∈ (0, T )
to find

y′(t) +
μ − 1

t
y(t) = g′(t) +

μ

t
g(t).
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Multiply the equation by tμ−1 to obtain

(2.6) (tμ−1y(t))′ = tμ−1g′(t) + μtμ−2g(t).

Integrate (2.6) from t0 to t for some t0 ∈ (0, T ),

tμ−1y(t) = tμ−1
0 y(t0) +

∫ t

t0

(sμ−1g′(s) + μsμ−2g(s)) ds ≡ z(t).

Obviously, z(0) = limt→0+ z(t) exists. Denote c0 = z(0) =
limt→0+ tμ−1y(t). Now we integrate (2.6) from 0 to t to obtain

(2.7)
tμ−1y(t) = c0 + tμ−1g(t) +

∫ t

0

sμ−2g(s) ds,

c0 = lim
t→0+

tμ−1y(t),

from which part (b) of the lemma follows.

Now we prove part (a) of the lemma. For g ∈ C1[0, T ], let us write

g(t) = g(0) + h(t)

and
y(t) =

μ

μ − 1
g(0) + z(t).

Then z ∈ C[0, T ] satisfies

z(t) −
∫ t

0

q(t, s)z(s) ds = h(t), t ∈ (0, T ]

with h ∈ C1[0, T ] and h(0) = 0. Using the formula (2.7), we find

z(t) = c0t
1−μ + h(t) + t1−μ

∫ t

0

sμ−2h(s) ds.

Back to the variables y and g, we get the formula (2.1).

When μ > 1 the derivation of (2.7) is valid without assuming g(0) = 0.
Also, c0 = limt→0+ tμ−1y(t) = 0. So we have the solution formula (2.3)
and, as a simple consequence of (2.3), we have the estimate (2.4). Since
C1[0, T ] is dense in C[0, T ], by a standard approximation argument,
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we know from (2.4) that (2.3) is true under the mere assumption
g ∈ C[0, T ], and once again we have the estimate (2.4).

Based on the solution formulas given in Lemma 2.1, we get the
following main result for the equation (1.4).

Theorem 2.2. When μ > 1 for any g ∈ Cm[0, T ] (m ≥ 0 an integer),
the integral equation (1.4) has a unique solution y, y ∈ Cm[0, T ] and
||y||m ≤ c||g||m.

When 0 < μ ≤ 1, for any g ∈ Cm[0, T ] (m ≥ 1 an integer), with
g(0) = 0 if μ = 1, the integral equation (1.4) has a family of solutions
depending on a parameter. Out of the family of solutions, there is one
particular solution y with C1-continuity. Such a solution is unique, and
||y||m ≤ c||g||m.

Proof. By Lemma 2.1 we only need to prove the regularity estimate
||y||m ≤ c||g||m, which follows from the solution formulas

y(t) = g(t) +
∫ 1

0

τμ−2g(tτ ) dτ, μ ≥ 1

and

y(t) = g(t) +
1

μ − 1
g(0) +

∫ 1

0

(g(tτ ) − g(0)) dτ, 0 < μ < 1

for the C1 solution in the case 0 < μ ≤ 1.

In order to apply the results on (1.4) to the integral equation (1.3),
we need to use (1.5) to study the relations for properties between g and
f .

Lemma 2.3. Let g be defined by f through (1.5). Let m ≥ 0 be an
integer. Then f ∈ Cm[0, T ] implies g ∈ Cm[0, T ], and

(2.8) ||g||m ≤ c||f ||m
for some constant c independent of f . For μ �= 1, g(0) = (1 −
1/
√

μ)f(0). For μ = 1, g(0) = 0.
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Proof. The first property is a simple consequence of the equality

(2.9) g(t) = f(t) −
∫ 1

0

1√
π

1√
ln(1/τ )

τμ−1f(tτ ) dτ

obtained from (1.5) by the change of variables s = tτ .

To prove the other two properties, we use the integral identity

∫ 1

0

τμ−1√
ln(1/τ )

dτ =
√

π

μ
.

Letting t → 0+ in (2.9), we obtain

g(0) = f(0) − f(0)
1√
π

∫ 1

0

τμ−1√
ln(1/τ )

dτ

=
(

1 − 1√
μ

)
f(0).

We then consider equation (1.3).

Lemma 2.4. Assume f ∈ C[0, T ]. In the case 0 < μ ≤ 1, we further
assume f ∈ C1[0, T ] and f(0) = 0. Then (1.3) has a unique solution
y ∈ C[0, T ],

(2.10) y(t) = g(t) + t1−μ

∫ t

0

sμ−2g(s) ds,

where g(t) is defined in terms of f(t) through (1.5). The following
regularity estimates hold:

||y||0 ≤ c||f ||0 if μ > 1(2.11)
||y||1 ≤ c||f ||1 if 0 < μ ≤ 1.(2.12)

Proof. The part of the result for the case when μ > 1 follows from
Theorem 1.1 and Lemma 2.1. So we need only to consider the case
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when μ ∈ (0, 1]. We will use a unique solvability result of (1.3) from
[4]. Noticing that the equations studied in [4] are defined for t ∈ (0,∞),
we extend f by zero for t > T ,

f̃(t) =
{

f(t), 0 ≤ t ≤ T ,
0, t > T ,

and consider the equation

(2.13) ỹ(t) +
∫ t

0

p(t, s)ỹ(s) ds = f̃(t), t > 0.

By Theorem 4.1 (a) in [4], for p > 1/(μ + 1), if
∫ ∞
0

|t−1f̃(t)|p dt < ∞,
then there is a unique function ỹ satisfying (2.13) and

∫ ∞
0

|t−1ỹ(t)|p dt <

∞. From the assumptions on f ,
∫ ∞
0

|t−1f̃(t)|p dt < ∞ for all p > 0.
Obviously, y(t) = ỹ(t) for t ≤ T . Thus, there is a unique function y
satisfying the equation (1.3) and

(2.14)
∫ T

0

|t−1y(t)|p dt < ∞, ∀ p >
1

μ + 1
.

From

y(t) = f(t) −
∫ t

0

p(t, s)y(s) ds, t ∈ (0, T ]

we have y ∈ C1(0, T ]. Now let us choose p > max{1, 1/μ} and denote
by q > 1 the conjugate of p defined by 1/q + 1/p = 1. Since

∣∣∣∣tμ−1

∫ t

0

p(t, s)y(s) ds

∣∣∣∣
≤ tμ−1

{∫ t

0

|s−1y(s)|p ds

}1/p{∫ t

0

|sp(t, s)|q ds

}1/q

= tμ−1/p

{∫ t

0

|s−1y(s)|p ds

}1/p 1√
π

{∫ 1

0

λqμ

(ln(1/λ))q/2
dλ

}1/q

→ 0 as t → 0+
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and
tμ−1f(t) → 0 as t → 0+

we find that
lim

t→0+
(tμ−1y(t)) = 0.

From the proof of Lemma 2 in [3], the function y satisfies (1.4).
Hence, y(t) satisfies the differential equation (2.6). Since c0 =
limt→0+ tμ−1y(t) = 0, following the proof of Lemma 2.1, we find

tμ−1y(t) = tμ−1g(t) +
∫ t

0

sμ−2g(s) ds, t ∈ (0, T ],

where g is defined by (1.5). Hence, we have the solution formula (2.10).
In particular, y ∈ C[0, T ] and is the solution of (1.3).

When μ = 1, we rewrite (2.10) in the form

y(t) = g(t) +
∫ t

0

ln(t/s)g′(s) ds.

When 0 < μ < 1, we rewrite (2.10) in the form

y(t) = g(t) +
t1−μ

1 − μ

∫ t

0

(sμ−1 − tμ−1)g′(s) ds.

From these latter formulas and Lemma 2.3, the estimate (2.12) is
obviously seen to be true.

Similar to the proof of Theorem 2.2, we then have the following main
result for the problem (1.3).

Theorem 2.5. Assume f ∈ C[0, T ] if μ > 1, f ∈ C1[0, T ] and
f(0) = 0 if 0 < μ ≤ 1. Then the integral equation (1.3) has a unique
solution y ∈ C[0, T ] which satisfies

||y||0 ≤ c||f ||0 if μ > 1
||y||1 ≤ c||f ||1 if 0 < μ ≤ 1.
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If, for some integer m ≥ 1, f ∈ Cm[0, T ], then the solution y ∈
Cm[0, T ], and

||y||m ≤ c||f ||m.

Now we provide several remarks concerning the results on the equa-
tion (1.3). Similar remarks can be stated for equation (1.4).

Remark 2.6. For the case 0 < μ < 1, the assumption f ∈ C1[0, T ] can
be replaced by a weaker one, namely, f ∈ C0,1−μ+ε[0, T ] for any ε > 0.
We will then still have the analytic expression (2.10) for the solution,
and the estimate (2.12) will be replaced by

||y||0 ≤ c||f ||1−μ+ε if 0 < μ < 1,

where the constant c depends only on μ and ε. We will not, however,
delve into such minimal possible smoothness assumptions on right sides
of integral equations.

Remark 2.7. When 0 < μ ≤ 1, the estimate (2.12) can be modified
into the following form

||y||0 ≤ c1||f ||C1[0,ε] + c2||f ||C[ε,T ]

for any ε > 0. A simple consequence of the above estimate is that, for
the case 0 < μ ≤ 1, the assumption f ∈ C1[0, T ] can be replaced by
the condition that f(t) is continuously differentiable in a neighborhood
of t = 0 and f(t) is continuous away from t = 0. However, we will not
pursue this kind of improvement.

Remark 2.8. We observe that (1.3) and (1.4) are equivalent in the
following sense: If μ > 1, then a C[0, T ] function is a solution of (1.3)
if and only if it is a solution of (1.4); and such a solution is unique.

If 0 < μ ≤ 1, then a C1[0, T ] function is a solution of (1.3) if and only
if it is a solution of (1.4); and such a C1[0, T ] solution is unique.

3. The general case with K(t, t) = 1. We now consider the
solvability of (1.1) and (1.2) and the smoothness of solutions. We will
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give a detailed proof only for the results concerning the equation (1.2),
since the results for the equation (1.1) can be proved similarly.

Assume K(t, t) = 1, K(t, s) is twice continuously differentiable for
0 ≤ s ≤ t ≤ T , i.e., K and its derivatives up to order 2 are continuous
over the set Ω = {(t, s) ∈ R2 : 0 < s < t < T} and are continuously
extendable to ∂Ω, the boundary of Ω. In the next section, we will
discuss various cases where K(t, t) �= 1. We define

(3.1) H(t, s) =

⎧⎪⎨
⎪⎩

K(t, s) − K(s, s)
t − s

, if s < t,

∂K(t, s)
∂t

, if s = t.

Then H(t, s) is continuously differentiable for 0 ≤ s ≤ t ≤ T .

The equation (1.2) can be rewritten in the equivalent form

(3.2)
y(t) −

∫ t

0

q(t, s)y(s) ds

−
∫ t

0

H(t, s)(t − s)q(t, s)y(s) ds = g(t), t ∈ (0, T ].

Let us define an operator

(3.3) A y(t) = y(t) −
∫ t

0

q(t, s)y(s) ds.

By Theorem 2.2, A is an isomorphism from E[0, T ] to E[0, T ],

||A ||E[0,T ]→E[0,T ] ≤ c,

where

E[0, T ] =

⎧⎨
⎩

C[0, T ], ||y||E[0,T ] = ||y||0, if μ > 1,
{y ∈ C1[0, T ] | y(0) = 0}, ||y||E[0,T ] = ||y||1, if μ = 1,
C1[0, T ], ||y||E[0,T ] = ||y||1, if 0 < μ < 1.

We assume for the right side of (1.2), g ∈ E[0, T ].

We remark that we seek a solution y of (1.2) in E[0, T ]. So, in the
case of μ ∈ (0, 1], we only consider C1[0, T ] a solution for (1.4), and
such a solution is unique ensuring the existence of A−1.
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Define

(3.4) H y(t) =
∫ t

0

H(t, s)(t − s)q(t, s)y(s) ds.

We observe that
(3.5)

d

dt
H y(t) =

∫ t

0

(
∂K(t, s)

∂t
+ (−μ)H(t, s)

t − s

t

)
q(t, s)y(s) ds

=
∫ 1

0

(
∂K(t, s)

∂t

∣∣∣∣
s=tz

+ (−μ)H(t, tz)(1 − z)
)

zμ−1y(tz) dz.

Obviously,

(3.6) H : C[0, T ] → E[0, T ], and H y(0) = 0.

Now (3.2) can be written in the equivalent form

(3.7) (I −A−1H )y = A−1g,

where the equation at t = 0 is defined by continuity.

Following the idea of [1], we use the Neumann series to solve the
above equation. We define

(3.8) yj = (A−1H )jA−1g, j = 0, 1, 2, . . . .

Obviously, yj ∈ E[0, T ]. We will prove that

(3.9) y =
∞∑

j=0

yj

is the solution of (3.7). First, let us inductively bound the sequence
{yj(t)}. Denote

M = max
0≤s≤t≤T

|H(t, s)|
G = max

0≤t≤T
|A−1g(t)| ≤ c||g||E[0,T ].
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We have

y0(t) = A−1g(t)
|y0(t)| ≤ G, 0 ≤ t ≤ T.

Assume, for i ≤ j,

|yi(t)| ≤ Gdit
i, 0 ≤ t ≤ T

for some constants di, i ≤ j, d0 = 1. Note that

yj+1(t) = A−1H yj(t) ∈ E[0, T ]

and

|H yj(t)| =
∣∣∣∣
∫ t

0

H(t, s)(t − s)q(t, s)yj(s) ds

∣∣∣∣
≤ M

∫ t

0

(t − s)q(t, s)Gdjs
j ds

= MGdj
tj+1

(μ + j)(μ + j + 1)
.

Thus, since H yj(0) = 0, applying Lemma 2.1, we obtain

yj+1(t) = H yj(t) + t1−μ

∫ t

0

sμ−2H yj(s) ds,

and so

|yj+1(t)| ≤ MGdj
tj+1

(μ + j)(μ + j + 1)

+ t1−μ

∫ t

0

sμ−2MGdj
sj+1

(μ + j)(μ + j + 1)
ds

= G
Mdj

(μ + j)2
tj+1, 0 ≤ t ≤ T.

Therefore, if we define a sequence {dj} by

(3.10) d0 = 1, dj+1 =
Mdj

(μ + j)2
, j = 0, 1, . . . ,
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then we have the estimates

(3.11) |yj(t)| ≤ Gdjt
j , 0 ≤ t ≤ T, j = 0, 1, . . . .

From (3.10) and (3.11), we see that the series (3.9) converges uniformly
on [0, T ]. Hence, by a standard argument, y =

∑∞
j=0 yj ∈ C[0, T ] and

satisfies equation (3.7). We further have y = A−1H y+A−1g ∈ E[0, T ].
Hence, y is a solution of (3.7).

For the uniqueness of a solution of (3.7), it is equivalent to prove
that the homogeneous equation admits only the trivial solution. Let
y ∈ E[0, T ] solve

y −A−1H y = 0.

Then
y = (A−1H )jy

for any positive integer j. Using the same technique as above, we then
have the estimate |y(t)| ≤ Gdjt

j for any positive integer j. Since dj → 0
as j → ∞, we conclude immediately that y(t) = 0.

Therefore, we have the existence and uniqueness of a solution y ∈
E[0, T ] of the integral equation (1.2).

For higher order regularity of the solution, y, we assume for some
integer m ≥ 1,

g ∈ E[0, T ] ∩ Cm[0, T ], K ∈ Cm+1, 0 ≤ s ≤ t ≤ T.

From (3.5) it is immediate that H is a continuous mapping from
Cj [0, T ] to Cj+1[0, T ], 0 ≤ j ≤ m − 1. Using the property that A−1

maps Cj [0, T ] to Cj [0, T ], 1 ≤ j ≤ m, and a simple induction argument
on y = A−1 (H y + g), we then have the regularity y ∈ Cm[0, T ].

In conclusion, we have proved

Theorem 3.1. Assume K(t, s) is twice continuously differentiable
for 0 ≤ s ≤ t ≤ T , K(t, t) = 1 and g ∈ E[0, T ]. Then (1.2) admits a
unique solution y ∈ E[0, T ], and we have

||y||E[0,T ] ≤ c||g||E[0,T ].
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If we further assume, for some integer m ≥ 1, g ∈ Cm[0, T ], K(t, s)
is (m + 1) times continuously differentiable for 0 ≤ s ≤ t ≤ T , then
y ∈ Cm[0, T ], and

||y||m ≤ c||g||m.

Similar results are true for the integral equation (1.1). The proof is
also similar, and hence is omitted here. We notice that, in general, the
equations (1.1) and (1.2) (with a suitably chosen right side) are not
equivalent.

4. Some remarks. In the previous section we considered the
equations (1.1) and (1.2) under the restriction K(t, t) = 1. As a first
attempt to remove the restriction, we consider the equation

(4.1) y(t) − β

∫ t

0

q(t, s)y(s) ds = g(t), t ∈ (0, T ].

We note that when the parameter β = 1, we get back to the equation
(1.4). We have the following generalization of Lemma 2.1.

Lemma 4.1. Let kβ,μ be the smallest integer greater than β − μ,
lβ,μ = max{0, kβ,μ}. Assume that g ∈ Clβ,μ [0, T ] and g(i)(0) = 0,
0 ≤ i ≤ kβ,μ − 1 when kβ,μ ≥ 1. When μ > β, (4.1) has a unique
solution y ∈ C[0, T ], given by

(4.2) y(t) = g(t) + βtβ−μ

∫ t

0

sμ−β−1g(s) ds

which satisfies
y ∈ Clβ,μ [0, T ]

and
||y||lβ,μ

≤ c||g||lβ,μ
.

When μ ≤ β, (4.1) has a family of C[0, T ] solutions given by

y(t) = c0t
β−μ + g(t) + βtβ−μ

∫ t

0

sμ−β−1g(s) ds, c0 ∈ R.
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To remove the restriction on the initial values of g, we use Taylor’s
expansions

y(t) =
kβ,μ−1∑

j=0

y(j)(0)
j!

tj + ȳ(t)

g(t) =
kβ,μ−1∑

j=0

g(j)(0)
j!

tj + ḡ(t),

where y(j)(0) and g(j)(0) are related by

(4.3) y(j)(0)
(

1 − β

μ + j

)
= g(j)(0), 0 ≤ j ≤ kβ,μ − 1.

Then ȳ satisfies

ȳ(t) − β

∫ t

0

q(t, s)ȳ(s) ds = ḡ(t), t ∈ (0, T ].

We have an analytic expression for ȳ(t) by using Lemma 4.1. Back
to the original variable y, we then get the following generalization of
Theorem 2.2.

Theorem 4.2. Assume that g ∈ Clβ,μ [0, T ]. If β−μ is a nonnegative
integer, we also assume that g(β−μ)(0) = 0. Then, when μ > β, the
integral equation (4.1) has a unique C[0, T ] solution y(t), y ∈ Clβ,μ [0, T ]
and satisfies

||y||lβ,μ
≤ c||g||lβ,μ

.

If, furthermore, for some m > lβ,μ, g ∈ Cm[0, T ], then the solution
y ∈ Cm[0, T ], and

||y||m ≤ c||g||m.

When μ ≤ β, (4.1) has a family of C[0, T ] solutions depending on a
parameter.

Now we turn our attention to a generalization of the equation (1.3).
We consider

(4.4) y(t) + α

∫ t

0

p(t, s)y(s) ds = f(t), t ∈ (0, T ].



382 W. HAN

It is easy to verify that (4.4) is transformed into (4.1) with

(4.5) β = α2

and

(4.6) g(t) = f(t) − α

∫ t

0

p(t, s)f(s) ds.

From (4.6), one can prove that

g(j)(0) = f (j)(0)
(

1 − α√
μ + j

)
, j ≥ 0.

A simple consequence is that if α2 − μ is a nonnegative integer, then
automatically we have g(α2−μ)(0) = 0. In the case where μ ≤ β, one can
similarly prove that c0 = limt→0+ tμ−βy(t) = 0. Thus, from Theorem
4.2, we get the following result for the equation (4.4).

Theorem 4.3. Let β = α2. Assume that f ∈ Clβ,μ [0, T ]. Then
the integral equation (4.4) has a unique solution y ∈ Clβ,μ [0, T ], which
satisfies

||y||lβ,μ
≤ c||f ||lβ,μ

.

If, furthermore, for some m > lβ,μ, f ∈ Cm[0, T ], then the solution
y ∈ Cm[0, T ], and

||y||m ≤ c||f ||m.

Remark 4.4. With Theorems 4.2 and 4.3 and the technique used in
Section 3, it is straightforward to generalize the results of Theorem 3.1
for the existence, uniqueness and smoothness of solutions of the integral
equations (1.2) (and (1.1)), under the less restrictive assumption that
K(t, t) = constant. Since a presentation of the results and the proof
are similar to what we have and what we do in the previous section,
we omit the detail here.

In principle, one can discuss the integral equations (1.1) and (1.2)
for the most general case when K(t, s) is smooth, and K(t, t) = h(t)
is a smooth function of t. As noted in the above remark, any results
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for such general cases can be derived in a straightforward manner from
corresponding results on integral equations of forms

(4.7) y(t) + h(t)
∫ t

0

p(t, s)y(s) ds = f(t), t ∈ (0, T ]

and

(4.8) y(t) − h(t)
∫ t

0

q(t, s)y(s) ds = g(t), t ∈ (0, T ].

Let us consider (4.8), for example. If we follow the derivation presented
in the proof of Lemma 2.1, we find that a solution y(t) (if it exists and
makes the derivation meaningful) solves

(4.9) y′(t) −
(

h′(t)
h(t)

+
h(t) − μ

t

)
y(t) = g′(t) −

(
h′(t)
h(t)

− μ

t

)
g(t).

It would be a mess to write down an analytic expression of a general
solution of the above ordinary differential equation, and hence it is
doubtful if such a complicated solution formula for the most general
case will be useful. For practical applications, however, we can expect
to have a less general function h(t), and we can obtain a simple-minded
formula for solutions of the equation (4.9). Then we can proceed
similarly as above to draw conclusions on the existence, uniqueness and
smoothness properties of a solution of the equation (1.2). Similar work
can be done on the integral equation (1.1). In our future work, we will
employ the idea presented here to study the integral equations (1.1) and
(1.2) in various other cases. Finally, let us notice that, in order to obtain
results on the integral equations (1.1) and (1.2), by using the technique
presented here, it is not necessary to have an analytic expression for
solutions of the equation (4.9). It will be sufficient if we can prove the
existence, uniqueness, smoothness and regularity estimate for solutions
of the equations (4.7) and (4.8) directly. This way may be proved to be
successful to study the integral equations (1.1) and (1.2) for the most
general case.
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