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SINGULARITY PRESERVING GALERKIN METHODS
FOR WEAKLY SINGULAR

FREDHOLM INTEGRAL EQUATIONS

YANZHAO CAO AND YUESHENG XU

ABSTRACT. Singularity preserving projection methods are
developed in this paper for Fredholm integral equations of the
second kind with weakly singular kernels. These methods give
an optimal order of convergence for the approximate solutions.
As an application, the singularity preserving Galerkin approx-
imation for equations with logarithmic or algebraic singular
kernels is discussed in detail. This is done by deriving sin-
gularity expansions for the solutions of these equations. A
numerical example is given to illustrate the error estimates.

1. Introduction. In the last decade there has been considerable in-
terest in the numerical analysis of solutions of integral equations with
weakly singular kernels. Most of the existing numerical methods for
these equations concentrate on approximating the solutions by func-
tions without singularities, e.g., by polynomials or splines. In this work
we establish Galerkin approximations that preserve the singularities of
the solutions and possess an optimal order of convergence. This will be
done by allowing the projection subspaces to contain some known sin-
gular functions that carry the singularities of the exact solutions. The
singularities of the approximate solutions will cancel with those of the
exact solutions, and consequently, the order of convergence will achieve
the optimal rate. The regularity properties and singularity expansions
of the solutions play a central role in this work.

Let Lp = Lp[0, 1] be the Banach space of pth power integrable
functions with norm defined by ||f ||p = (

∫ 1

0
|f(t)|p dt)1/p for 1 ≤ p <∞.

In this paper we study singularity preserving projection methods for
solutions of Fredholm integral equations of the second kind that take
the form

(1.1) y(s) −
∫ 1

0

k(s, t)y(t) dt = f(s), 0 ≤ s ≤ 1,
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where k is an L1 kernel defined on [0, 1]× [0, 1] and usually having weak
singularities, and f is a given function in a function class to be specified
later. It is well known (e.g., see [1, 2]) that the integral operator defined
by

(1.2) (Kx)(s) =
∫ 1

0

k(s, t)x(t) dt, 0 ≤ s ≤ 1,

is a compact operator in L1. Assume that 1 is not an eigenvalue of
K. Then equation (1.1) has a unique solution in L1 (see [1, 2]). We
rewrite equation (1.1) in operator notation as

(1.3) y = Ky + f.

The regularity properties of the solution of equation (1.1) have
been studied extensively in the literature. If k(s, t) is of the form
|s − t|αm(s, t) for −1 < α < 0, or log |s − t|m(s, t), where m is a
smooth kernel, the regularity properties of the solution of equation
(1.1) were established in [12]. A similar result in a slightly different
setting was proved in [15]. If k(s, t) = k(|s − t|) for some k ∈ Lp,
1 ≤ p ≤ ∞, a singularity expansion of the solutions of (1.1) was
given in [4, 11]. From these results, we see that the solutions of the
weakly singular Fredholm integral equations usually have singularities
in their derivatives, reflecting the singularity of the kernel. Several
numerical methods have been designed based on this fact. A product-
integration method, a collocation method and a Galerkin method were
presented in [13, 16] and [5], respectively. In these methods, the
solutions are approximated by piecewise polynomials with a partition
defined corresponding to the singularity of the solution. This nice
idea of nonlinear approximation was first introduced by Rice [10]. A
modified collocation method was introduced in [7], where the integral
equation was recast as an integro-differential equation with a mild
singularity. All the work cited above is dependent on an appropriate
choice of the knots of the piecewise polynomials used to approximate
the solution. The approximate solutions provided by these methods are
piecewise polynomials and have no singularities at the endpoints. As
the singularities often describe certain important physical features, a
reasonable approximate solution should preserve singularities that the
exact solution possesses.
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The main purpose of this paper is to present a singularity preserving
projection approximation for the solution of equation (1.1) having an
optimal order of convergence. In Section 2 we develop some singularity
preserving projection approximation methods and establish a theorem
about their order of convergence. In Section 3 we apply the general
result obtained in Section 2 to develop the singularity preserving
Galerkin approximation. In Sections 4 and 5, we extend the singularity
expansions of [4, 11] for the simple cases where k(s, t) = log |s − t|
and k(s, t) = |s − t|α, with −1 < α < 0 to the more general
settings where k(s, t) = log(|s− t|)m(s, t) and k(s, t) = |s− t|αm(s, t),
respectively. The inclusion of the smooth factor m(s, t) into the kernel
greatly increases the relevance of the theory to the type of weakly
singular equations that arise in practice (see [5, 12]). Mathematically,
this extension is interesting and technically nontrivial. By making
use of this expansion, we define projection subspaces which contain
singular functions. This method gives the optimal order of convergence.
In Section 6 we discuss the computational implementation of the
singularity preserving Galerkin method. A numerical example is given
in Section 6 to illustrate the numerical accuracy of the current method
in comparison with the conventional Galerkin method.

2. Singularity preserving projection approximation. In this
section we develop a singularity preserving projection approximation
method for the solution of equation (1.1) and establish a general result
about the order of convergence of the approximation.

Let n be a positive integer. Let Hn denote the Sobolev space
Hn[0, 1] = {w : w(n) ∈ L2[0, 1]}, and (·, ·) denote the inner product
in L2. It is well known that Hn equipped with the inner product
(u, v)n =

∑n
i=0(u

(i), v(i)) is a Hilbert space. Then

||u||Hn =
( n∑

i=0

||u(i)||22
)1/2

is the norm induced by this inner product. Let W be a finite di-
mensional subspace of C[0, 1] containing mildly singular functions that
reflect the singularities of the exact solution of equation (1.1). For this
reason W is called a singular subspace for equation (1.1). The choice
of this singular subspace depends on the singularity decomposition of
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the exact solution of the equation under consideration. Throughout
this section, we assume that the solution y of equation (1.1) has the
decomposition y = w + v, where w ∈ W and v ∈ Hn. We remark that
w preserves the singularity of y and v is a smooth function.

An operator P mapping from L2 into a subspace is said to be a
projection if P 2 = P . Let h > 0 be a parameter to be specified later.
Let Sn

h be a finite dimensional linear subspace of C[0, 1], depending on
n and h. In most applications, this space will be a space of polynomial
splines of degree n − 1 with a certain degree of continuity at given
knots and with h being the maximal distance between two successive
knots. This is the conventional projection subspace. Let P ′

h be a linear
projection from L2 into Sn

h satisfying

1. ||P ′
hu− u||2 → 0 for all u ∈ L2, and

2. ||P ′
hu− u||2 ≤ Chn||u||Hn , for all u ∈ Hn.

We define a singularity preserving projection subspace V n
h to be the

direct sum of the singular subspace W and the conventional projection
subspace Sn

h , i.e.,
V n

h = W ⊕ Sn
h .

Let Ph be a linear projection mapping from L2 into V n
h . Since this

linear projection maps a function in L2 into the singularity preserving
subspace V n

h , it is called a singularity preserving projection. A function
yh ∈ V n

h is called a singularity preserving projection approximation for
the solution of (1.1) if it satisfies

(2.1) yh = PhKyh + Phf.

Clearly, since V n
h contains W , yh will preserve the singularity of the

exact solution of equation (1.1). The main theorem of this section will
present the order of convergence of yh in terms of the parameter h.
Even though the exact solution of equation (1.1) is not continuously
differentiable on [0, 1], yh has an order of convergence as high as con-
ventional projection approximation for an equation with a sufficiently
smooth kernel whose solution is in Cn[0, 1]. To prove this theorem we
need the following preliminary results.

Lemma 2.1. Let X be a Banach space. Suppose that U1 and U2

are two subspaces of X with U1 ⊆ U2. Assume that P1 : X → U1 and
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P2 : X → U2 are linear operators. If P2 is a projection, then

||x− P2x||X ≤ (1 + ||P2||X)||x− P1x||X for all x ∈ X.

Proof. Let x ∈ X. We write

x− P2x = (x− P1x) + (P1x− P2x).

Since P1x ∈ U1 and U1 ⊆ U2, we have P2P1x = P1x. Hence,

x− P2x = x− P1x+ P2P1x− P2x = (I − P2)(x− P1x).

It follows that

||x− P2x||X ≤ (1 + ||P2||X)||x− P1x||X for all x ∈ X.

The proof is complete.

Next we state a result from [1] for the readers’ convenience.

Proposition 2.2. Let X be a Banach space with a norm || · ||.
Assume T, Tn : X → X are bounded linear operators with Tn → T
pointwise. Then

||(Tn − T )K|| → 0

for each compact operator K : X → X.

We are now ready to prove the main theorem of this section.

Theorem 2.3. Let Ph be a set of linear projections uniformly
bounded in L2 mapping from L2 into V n

h = W ⊕ Sn
h . Assume that for

each h > 0 there is a linear projection from L2 into Sn
h that satisfies

the assumptions 1 and 2. Let y be the solution of equation (1.1) with
a decomposition y = w + v, w ∈ W and v ∈ Hn. Then there exists an
h0 > 0 for which equation (2.1) has a unique solution yh ∈ V n

h with an
estimate

||y − yh||2 ≤ Chn||v||Hn , whenever 0 < h < h0,
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where C > 0 is a constant independent of h.

Proof. Subtract (1.1) from (2.1) and obtain

(2.2) yh − y = PhKyh −Ky + Phf − f.

By applying the operator Ph to both sides of equation (1.3), we have

Phy = PhKy + Phf.

Hence,

(2.3) Phf − f = Phy − PhKy − y +Ky.

Substituting (2.3) into (2.2) gives

(2.4) yh − y = PhK(yh − y) + Phy − y.

Since K is a compact operator and Phu→ u for all u ∈ L2, it follows
from Proposition 2.2 that ||PhK−K||2 → 0, as h→ 0. Since (I−K)−1

exists, by a standard functional analysis argument (cf. [1]), we conclude
that there exists an h0 > 0 such that for all 0 < h < h0 the inverse
operator (I − PhK)−1 exists and

||(I −K)−1(PhK −K)||2 < 1
2
.

Hence,

(2.5)
||(I − PhK)−1||2 ≤ ||(I −K)−1||2

1 − ||(I −K)−1(PhK −K)||2 < C1,

0 < h < h0,

where C1 = 2||(I − K)−1||2. It follows from (2.4) and the argument
above that

(2.6) y − yh = (I − PhK)−1(y − Phy).

Notice that y has the decomposition y = w+v and that Phw = w since
w ∈W ⊂ V n

h . We conclude that

Phy = Ph(w + v) = Phw + Phv = w + Phv.
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This implies that

(2.7) Phy − y = w + Phv − (w + v) = Phv − v.

Therefore, by (2.5), (2.6) and (2.7), we find

||y − yh||2 ≤ C1||y − Phy||2 = C1||Phv − v||2.

Let P ′
h be a linear projection from L2 into Sn

h satisfying the assumptions
1 and 2. Now we apply Lemma 2.1 to obtain

||Phv − v||2 ≤ (1 + ||Ph||2)||P ′
hv − v||2.

Since Ph is uniformly bounded, there exists a constant C2 > 0 such
that

||Phv − v||2 ≤ C2||P ′
hv − v||2, 0 < h < h0.

By assumption 2 on the projection P ′
h, we have

||y − yh||2 ≤ Chn||v||Hn ,

where C = C1C2. The proof is complete.

Notice that, in the estimate of Theorem 2.3, the upper bound is given
in terms of the Hn norm of v only and v is the smooth part of y. It
should be pointed out that, although Theorem 2.3 is stated in terms of
L2 and Hn norms, a similar result holds for Lp and the related Sobolev
norms.

3. Singularity preserving Galerkin methods. In this section we
apply the general result obtained in the last section to the orthogonal
projection (Galerkin) approximation.

We now define Sn
h specifically. Assume we are given the partition

Δ : 0 = t0 < t1 < · · · < tk < tk+1 = 1

of [0, 1]. Let
h = max

1≤i≤k+1
(ti − ti−1),
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and assume that h → 0 as k → ∞. Let Ii = (ti−1, ti) for i =
1, 2, . . . , k + 1. Denote by Πn the set of polynomials of degree n − 1.
Let

Sn
h = Sn,ν

h (Δ) = {s ∈ Cν [0, 1] : s|I1 ∈ Πn, }

where 0 ≤ ν ≤ n− 1. This space is called the space of spline functions
of degree n − 1 with knots at t1, t2, . . . , tk of multiplicity n − 1 − ν;
its dimension is d = n(k + 1) − k(1 + ν). The smoothest space of
nondegenerate splines is the one with ν = n− 2, which is of dimension
n + k. It is well known that the space Sn,ν

h has a basis consisting of
B-splines {Bi}d

i=1.

With this specific Sn
h we define V n

h as in the last section, i.e.,
V n

h = W ⊕ Sn
h . Let PG

h be the orthogonal projection from L2 into
V n

h defined by

(PG
h u, vh) = (u, vh) for all vh ∈ V n

h ,

where u ∈ L2 is fixed. We call a solution yh of the equation

(3.1) (yh, vh) = (Kyh, vh) + (f, vh), for all vh ∈ V n
h

a Galerkin approximation in V n
h of the exact solution y of equation

(1.1). yh preserves the singularity of y.

Note that W is a finite dimensional subspace. Assume w1, . . . , wμ is
a basis for W . Then, we let

yh(s) =
μ∑

i=1

aiwi(s) +
d∑

i=1

biBi(s),

where coefficients ai, i = 1, 2, . . . , μ and bi, i = 1, 2, . . . , d are deter-
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mined by the linear system of equations:

μ∑
i=1

ai(wi, wj) +
d∑

i=1

bi(Bi, wj) =
μ∑

i=1

ai(Kwi, wj)

+
d∑

i=1

(KBi, wj) + (f, wj),

j = 1, 2, . . . , μ,
μ∑

i=1

ai(wi, Bj) +
d∑

i=1

bi(Bi, Bj) =
μ∑

i=1

ai(Kwi, Bj)

+
d∑

i=1

(KBi, Bj) + (f,Bj),

j = 1, 2, . . . , d.

Before stating and proving Theorem 3.2, the main result of this
section, for ready reference we state a known result (cf., [5, 14])
concerned with the order of approximation by splines in L2.

Theorem 3.1. Let 0 ≤ ν ≤ n− 1. If g ∈ Hn, n ≥ 0, then for each
h > 0, there exists φh ∈ Sn

h such that

||g − φh||2 ≤ Chn||g||Hn ,

where C > 0 is a constant independent of h.

Theorem 3.2. Assume the solution y of equation (1.1) has a
decomposition y = w + v with w ∈W and v ∈ Hn. Let V n

h = W ⊕ Sn
h .

Then there exists an h0 > 0 such that for 0 < h ≤ h0, a unique Galerkin
approximation yh ∈ V n

h exists with

||y − yh||2 = O(hn).

Proof. Let PG′
h be the conventional Galerkin projection from L2 into

Sn
h , i.e., PG′

h u satisfies the equation

(PG′
h u, s) = (u, s), for all s ∈ Sn

h .
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Then we have PG′
h u → u for all u ∈ L2. By using Theorem 3.1, we

conclude that there is a constant C independent of h and a φh ∈ Sn
h

such that
||u− φh||2 ≤ Chn||u||Hn .

Noting that PG′
h u is the best L2-approximation to u from Sn

h , we then
have

||PG′
h u− u||2 ≤ ||u− φn||2 ≤ Chn||u||Hn , for all u ∈ Hn.

In addition, since PG
h is the orthogonal projection from L2 into V n

h , for
any x ∈ L2,

x = PG
h x+ (x− PG

h x)

with
(PG

h x, x− PG
h x) = 0.

Hence,
||x||22 = ||PG

h x||22 + ||x− PG
h x||22.

This implies that ||PG
h x||2 ≤ ||x||2. Thus, ||PG

h ||2 ≤ 1. On the other
hand, we also have x = PG

h x for x ∈ V n
h . This equation yields

||PG
h ||2 ≥ 1. Therefore, we find ||PG

h ||2 = 1 for all h > 0. Hence,
all assumptions of Theorem 2.3 are satisfied and the validity of this
theorem follows directly from Theorem 2.3. The proof is complete.

4. Applications to equations with logarithmic kernels. In this
section we apply the singularity preserving Galerkin method established
in the last section to Fredholm integral equations of the second kind
with logarithmic kernels.

Consider the equation

(4.1) y(s) − λ

∫ 1

0

log |s− t|m(s, t)y(t) dt = f(s), 0 ≤ s ≤ 1,

where m ∈ Cn+1([0, 1] × [0, 1]) and f ∈ Hn[0, 1]. Let

(4.2) (Ky)(s) =
∫ 1

0

log |s− t|m(s, t)y(t) dt, 0 ≤ s ≤ 1.
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Equation (4.1) may be rewritten in operator form as y− λKy = f . To
develop the singularity preserving Galerkin method for this equation,
we need a singularity expansion for a solution y of equation (4.1). We
state the result in a general setting, without assuming that λ is not an
eigenvalue of K. This will allow us to include eigenfunctions of K in
our theorem.

Theorem 4.1. Let m ∈ Cn+1([0, 1] × [0, 1]) and f ∈ Hn. Suppose
that y is a solution of equation (4.1). Then there exist constants aij

and bij for i, j = 1, . . . , n− 1 and a function vn ∈ Hn such that
(4.3)

y(s) =
n−1∑
i=1

n−1−i∑
j=0

[aijs
j(s log s)i + bij(1−s)j((1−s) log(1−s))i] + vn(s).

Remark. The special case of Theorem 4.1 when m ≡ 1 was given in
[4, 11]. We shall call the expansion of y in this theorem the singularity
expansion for y. It can be seen that the proof of this expansion does not
depend on the uniqueness of y. Therefore, the conclusion of Theorem
4.1 also holds for eigenfunctions of K if λ is an eigenvalue of K. For
further reference, we state this as a corollary of Theorem 4.1.

Corollary 4.2. The expansion (4.3) holds for eigenfunctions of K.

To prove Theorem 4.1, we need several lemmas. Since the proof of
Theorem 4.1 does not depend on the value of λ, to simplify our notation,
we let λ = 1 in the rest of this section.

Lemma 4.3. Assume m ∈ C1([0, 1] × [0, 1]). Then the operator K
defined by (4.2) maps L2 into H1.

Proof. If m(s, t) ≡ 1, this result is valid by Lemma 2 of [11]. We
now prove the general result. Since m ∈ C1([0, 1] × [0, 1]), it can be
approximated by its bivariate Bernstein polynomial expansion

Bn(s, t) =
n∑

i=0

n∑
j=0

Ci
nC

j
nm

(
i

n
,
j

n

)
si(1 − s)n−itj(1 − t)n−j ,
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with

max
0≤s,t≤1

|m(s, t) −Bn(s, t)| + max
0≤s,t≤1

|Ds(m(s, t) −Bn(s, t))|
+ max

0≤s,t≤1
|Dt(m(s, t) −Bn(s, t))| → 0

as n → ∞ (see [9]), where Ci
n is the binomial coefficient and Ds and

Dt denote the partial derivatives with respect to the variables s and t,
respectively. Define the operator associated with the kernel Bn by

(4.4) (Gny)(s) =
∫ 1

0

log(|s− t|)Bn(s, t)y(t) dt,

and

(Gy)(s) =
∫ 1

0

log(|s− t|)y(t) dt.

Then,

(Gny)(s) =
n∑

i=0

n∑
j=0

Ci
nC

j
nm

(
i

n
,
j

n

)
si(1 − s)n−i(Gbjy)(s),

where bj(t) = tj(1 − t)n−j . Since G maps L2 into H1, Gbjy ∈ H1.
Thus, Gn also maps L2 into H1 for each n and hence Gny ∈ H1.

Next we show that Gny → Ky in H1. Clearly, we have ||Ky −
Gny||2 → 0 as n → ∞, for any y ∈ L2. We need only show that
{DGny} is a Cauchy sequence in L2, where D = d/ds. Notice that
(see the proof of Lemma 2 in [11])

D

∫ 1

0

log |s− t|y(t) dt = P.V.
∫ 1

0

y(t)
s− t

dt,

where ‘P.V.’ denotes the Cauchy principal value of the integral and is
defined by

P.V.
∫ 1

0

y(t)
s− t

dt = lim
ε→0

[ ∫ s−ε

0

y(t)
s− t

dt+
∫ 1

s+ε

y(t)
s− t

dt

]
.
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The prefix P.V. will not be used, it being understood that the principal
value is to be taken when appropriate. If m > n, then we have

DGmy(s) −DGny(s) =
∫ 1

0

log(|s− t|)Ds[Bm(s, t) −Bn(s, t)]y(t) dt

+
∫ 1

0

Bm(s, t) −Bn(s, t)
s− t

y(t) dt.

We now estimate the two terms in the right-hand side of this equation.
Let ε > 0. Since {Bn(s, t)}, {DsBn(s, t)} and {DtBn(s, t)} are all
Cauchy sequences in C[0, 1], there exists a constant N > 0 such that

max
0≤s,t≤1

|Bm(s, t) −Bn(s, t)| < ε, whenever m > n > N,

max
0≤s,t≤1

|Ds[Bm(s, t) −Bn(s, t)] < ε, whenever m > n > N,

and

max
0≤s,t≤1

|Dt[Bm(s, t) −Bn(s, t)]| < ε, whenever m > n > N.

Let

Y (s) =
∫ 1

0

| log(|s− t|)||y(t)| dt,

and

X(s) =
∫ 1

0

y(t)
s− t

dt.

Then Y,X ∈ L2. Clearly,
∣∣∣∣
∫ 1

0

log(|s− t|)Ds[Bm(s, t) −Bn(s, t)]y(t) dt
∣∣∣∣ < εY (s).

Moreover,
∣∣∣∣
∫ 1

0

Bm(s, t) −Bn(s, t)
s− t

y(t) dt
∣∣∣∣

≤
∣∣∣∣
∫ 1

0

[Bm(s, t) −Bn(s, t)] − [Bm(s, s) −Bn(s, s)]
s− t

y(t) dt
∣∣∣∣

+
∣∣∣∣
∫ 1

0

Bm(s, s) −Bn(s, s)
s− t

y(t) dt
∣∣∣∣
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By the Mean-Value theorem, there exists a number ξ dependent on
both s and t such that∣∣∣∣ [Bm(s, t) −Bn(s, t)] − [Bm(s, s) −Bn(s, s)]

s− t

∣∣∣∣
= |Dt[Bm(s, ξ) −Bn(s, ξ)]| < ε.

Hence,
∣∣∣∣
∫ 1

0

Bm(s, t) −Bn(s, t)
s− t

y(t) dt
∣∣∣∣ ≤ ε

∫ 1

0

|y(t)| dt+ ε|X(s)|.

It follows that for every s ∈ [0, 1]

|DGmy(s) −DGny(s)| < ε(M + Y (s) + |X(s)|),

where M =
∫ 1

0
|y(s)| ds. This implies that

||DGmy −DGny||2 ≤ ε(M + ||Y ||2 + ||X||2),

whenever m > n > N . We conclude that {DGny} is a Cauchy sequence
in L2. Thus, {Gny} is a Cauchy sequence in H1. Since Gny → Ky in
L2, Ky ∈ H1 and Gny → Ky in H1. The proof is complete.

We remark that for m ∈ C([0, 1]× [0, 1]), in general, K does not map
L2 into H1. The following example illustrates this remark.

Example. Let m(s, t) = s1/2 and y(t) = log t. Then m ∈
C([0, 1] × [0, 1]) and y ∈ L2[0, 1]. Consider

(Ky)(s) = s1/2

∫ 1

0

log |s− t| log t dt, 0 ≤ s ≤ 1.

The derivative of Ky is given by

(4.5)

d

ds
(Ky)(s) =

1
2s1/2

∫ 1

0

log |s− t| log t dt

+ s1/2 d

ds

∫ 1

0

log |s− t| log t dt.
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Since u(s) =
∫ 1

0
log |s − t| log t dt, as a function of s, is in H1, the

second term in the right hand side of (4.5) is in L2. Notice that
u(0) =

∫ 1

0
log2 t dt > 0 and u is continuous on [0, 1]. There exist a

constant C > 0 and δ > 0 for which

[
1

2s1/2

∫ 1

0

log |s− t| log t dt
]2

≥ C

4s
, 0 < s < δ.

Since 1/s is not an integrable function on [0, 1], the first term of (4.5)
is not in L2. It follows that Ky /∈ H1.

In the following lemma and its proof, we use cj , dj , cij and dij to
denote generic constants whose values may change from time to time,
and vn to denote a function in Hn (possibly being different in different
places). Also, we let u1(t) = tp(log t)q and u2(t) = (1− t)p(log(1− t))q,
where 0 ≤ t ≤ 1, and p, q are positive integers.

Lemma 4.4. Let f ∈ Hn−1.

(1) For the operator G defined by (4.4), we have

(Gf)(s) =
n−1∑
j=1

[cjsj log s+ dj(1 − s)j log(1 − s)] + vn(s),

(Gu1)(s) =
q+1∑
j=1

cjs
p+1(log s)j

+
n−1∑

j=q+1

dj(1 − s)j log(1 − s) + vn(s),

and

(Gu2)(s) =
q+1∑
j=1

cj(1 − s)p+1(log 1 − s)j +
n−1∑

j=q+1

djs
j log s+ vn(s).
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(2) In addition, assume m ∈ Cn+1([0, 1] × [0, 1]). Then

(Kf)(s) =
n−1∑
j=1

[cjsj log s+ dj(1 − s)j log(1 − s)] + vn(s),

(Ku1)(s) =
n−1∑

j=p+1

q+1∑
i=1

cijs
j(log s)i

+
n−1∑

j=q+1

dj(1 − s)j log(1 − s) + vn(s),

and

(Ku2)(s) =
n−1∑

j=p+1

q+1∑
i=1

cij(1 − s)j(log(1 − s))i

+
n−1∑

j=q+1

djs
j log s+ vn(s).

Proof. (1) The proof of this part may be found in [11].

(2) In this proof we denote

m(i,j)(s, t) :=
∂i+j

∂si + ∂tj
m(s, t).

We expand m(s, t) at t = s by using Taylor’s expansion and obtain
(4.6)

m(s, t) =
l∑

k=0

1
k!
m(0,k)(s, s)(t− s)k +

1
l!

∫ t

s

m(0,l+1)(s, σ)(t− σ)l dσ.

By using (4.6) with l = n− 1 and the binomial expansion for (s− t)k,
we have

(Kf)(s)=
n−1∑
k=0

1
k!
m(0,k)(s, s)

k∑
i=0

(−1)iCi
ks

k−i

∫ 1

0

tif(t) log(|s−t|) dt+vn(s),
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where

vn(s) =
1

(n− 1)!

∫ 1

0

log(|s− t|)
∫ t

s

m(0,n)(s, σ)(t− σ)n−1 dσf(t) dt.

Next we prove that vn ∈ Hn. Let

g(s, t) = (−1)n−1 log(|s− t|)
∫ t

s

m(0,n)(s, σ)(σ − t)n−1 dσ.

Differentiating g n times with respect to s gives

g(n,0)(s, t) = (−1)n−1
n∑

k=0

Ck
n

dk

dsk
(log(|s− t|))

· d
n−k

dsn−k

∫ t

s

m(0,n)(s, σ)(σ − t)n−1 dσ.

Since m ∈ Cn+1([0, 1] × [0, 1]), we find

∣∣∣∣ d
n−k

dsn−k

∫ t

s

m(0,n)(s, σ)(σ − t)n−1 dσ

∣∣∣∣
≤ C|s− t|k, for k = 0, 1, . . . , n.

Hence, the first term of the summation above is bounded by − log(|s−
t|) and the remaining terms are bounded by a constant. Thus, we have
g(·, t) ∈ Hn. It follows that vn ∈ Hn (see [3, p. 88]). Applying (1) of
this lemma with f(t) replaced by tif(t) and noting that for w ∈ Cn[0, 1]

(4.7) w(s)(log s)i =
n−1∑
j=0

sj(log s)i + vn(s),

where vn ∈ Hn, we have

(Kf)(s) =
n−1∑
j=1

[cjsj log s+ dj(1 − s)j log(1 − s)] + vn(s),
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for some vn ∈ Hn. Thus, we obtain the first equation of (2). Using
(4.6) with l = n− 1 and the binomial formula, we conclude that

(Ku1)(s) =
n−1∑
i=0

m(0,i)(s, s)
i!

∫ 1

0

log(|s− t|)(s− t)itp(log t)q dt

+
1

(n−1)!

∫ 1

0

log(|s−t|)
∫ t

s

m(0,n)(s, σ)(t− σ)n−1 dσtp(log t)q dt

=
n−1∑
i=0

m(0,i)(s, s)
i!

∫ 1

0

log(|s− t|)
i∑

l=0

Cl
is

i−ltl+p(log t)q dt

+ vn(s).

By using part (1) of this lemma and (4.7), we obtain the second
equation of (2). The proof for the last equation is similar and we
omit it. The proof is complete.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We use a proof by induction. For n = 1, the
result is a direct consequence of Lemma 4.3. Assume that the result
holds for n = k, that is, if f ∈ Hk, then expansion (4.3) holds with
n = k. Let

uij(s) = aijs
j(log s)i + bij(1 − s)j(log(1 − s))i.

Then

(4.8) y(s) =
k−1∑
i=1

k−1−i∑
j=0

uij(s) + vk.

Now we consider the case when n = k+ 1 and suppose that f ∈ Hk+1.
Substituting (4.8) into the integral of (4.1), we have

y(s) =
k−1∑
i=1

k−1−i∑
j=0

(Kuij)(s) + (Kvk)(s) + f.
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By using (2) of Lemma 4.4, we obtain the desired result for n = k+ 1.
The proof is complete.

Motivated by the singularity expansion (4.3), we define the singular
subspace W of C[0, 1] for equation (4.1) by

W = span {sj(s log s)i, (1 − s)j((1 − s) log(1 − s))i,

j = 0, 1, . . . , n− 1 − i, i = 1, 2, . . . , n− 1}.
The dimension of the singular subspace W is n(n − 1)2. Assume Sn

h

is the space of spline functions defined in the beginning of this section.
Then V n

h = W ⊕Sn
h . Clearly the dimension of V n

h is n(n−1)+d, where
d is the dimension of the space of splines. The Galerkin approximation
yh in V n

h of equation (4.1) can be written as

yh(s) =
n−1∑
i=1

n−1−i∑
j=0

[aijs
j(s log s)i + bij(1 − s)j((1 − s) log(1 − s))i]

+
d∑

i=1

ciBi(s),

where Bi, i = 1, 2, . . . , d is the B-spline basis for the space Sn
h . The

coefficients aij , bij , j = 0, 1, . . . , n − 1 − i, i = 1, 2, . . . , n − 1, and ci,
i = 1, 2, . . . , d are determined by the system of linear equations:

(yh, vh) = (Kyh, vh) + (f, vh), for all vh ∈ V n
h .

In terms of the basis for V n
h , we have the following form of linear

equations

(yh(s), sj(s log s)i) = ((Kyh)(s), sj(s log s)i) + (f(s), sj(s log s)i),
(yh(s), (1−s)j((1−s) log(1−s))i)

= ((Kyh)(s), (1−s)j((1−s) log(1−s))i)
+ (f(s), (1−s)j((1−s) log(1−s))i),

j = 0, 1, . . . , n− 1 − i, i = 1, 2, . . . , n− 1,

and

(yh(s), Bi(s))=((Kyh)(s), Bi(s))+(f(s), Bi(s)), i=1, 2, . . . , d.
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The next theorem guarantees the unique existence of the Galerkin
approximation yh in V n

h of the solution y of equation (4.1) for a
sufficiently small h > 0 and gives the order of the convergence for
this approximation.

Theorem 4.5. Let m ∈ Cn+1([0, 1] × [0, 1]) and f ∈ Hn. Assume
that λ is not an eigenvalue of K. Then there exists an h0 > 0 such
that a unique Galerkin approximation yh to the solution y of equation
(4.1) exists with

||y − yh||2 = O(hn).

Proof. By Theorem 4.1, the solution y of equation (4.1) has the
singular form

y(s) = w(s) + v(s)

where w ∈ W and v ∈ Hn. Hence, the hypothesis of Theorem 3.2 is
satisfied. The result then follows immediately from Theorem 3.1.

The order of convergence given by Theorem 4.5 is optimal in the sense
that it is the order of spline functions used in approximation. Note that
the conventional Galerkin method applied to the current problem only
gives a convergence order O(h). The price we pay to obtain this optimal
convergence rate O(hn) is that the dimension of the Galerkin subspace
increases by n(n−1). It is illustrated by a numerical example presented
in Section 6 that, in practice, the choice n = 2 or n = 3 will give
satisfactory numerical results. Even in general, since d� n(n−1), the
additional cost to achieve the optimal convergence rate is insignificant
in comparison with the acceleration convergence that we obtain. This
will be demonstrated by a numerical example in Section 6.

5. Applications to equations with algebraic singularities. In
this section we establish results analogous to those presented in Section
4 for Fredholm integral equations with algebraic singular kernels. More
specifically, we consider the integral equations

(5.1) y(s) − λ

∫ 1

0

|s− t|αm(s, t)y(t) dt = f(s), 0 ≤ s ≤ 1,
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where −1 < α < 0, m ∈ Cn+1[0, 1] and f ∈ Hn. Let

(5.2) (Ky)(s) =
∫ 1

0

|s− t|αm(s, t)y(t) dt, 0 ≤ s ≤ 1.

We first obtain a singularity expansion for a solution of (5.1) with α
being an irrational number in the interval (−1/2, 0) and then describe
briefly a way with which it can be extended to other cases. In
this section, we use the notation {∑n

i=1 ai(s)}∗ to denote a linear
combination of functions a1(s), a2(s), . . . , an(s).

Theorem 5.1. Let m ∈ Cn+1[0, 1] and f ∈ Hn. Assume that α is
an irrational number in (−1/2, 0). Then a solution y of equation (5.1)
has the decomposition

(5.3)
y(s) =

{ n−1∑
l=0

n−l−1∑
j=0

2∑
i=1

[s(2l+i)(1+α)+j + (1 − s)(2l+i)(1+α)+j ]
}∗

+ vn(s), 0 ≤ s ≤ 1,

where vn ∈ Hn.

We remark that the special case of Theorem 5.1 when m ≡ 1 was
given in [4, 11]. To prove this theorem we need two lemmas which are
analogous to Lemmas 4.3 and 4.4.

Lemma 5.2. Let m ∈ C2[0, 1] and α ∈ (−1/2, 0). Then K defined
by (5.2) maps Hδ into H1+δ+α for δ < 1/2, where Hδ denotes the
Sobolev space with real index δ.

Proof. Let ψ ∈ Hδ where δ < 1/2. If m(s, t) ≡ 1, the lemma was
proved in [11]. In general we expand m(s, t) in Taylor’s expansion at
t = s and obtain

(Kψ)(s) =
∫ 1

0

|s− t|α
[
m(s, s) + (s− t)m(0,1)(s, s)

+
1
2

∫ t

s

(s− σ)m(0,2)(s, σ) dσ
]
ψ(t)dt
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= m(s, s)
∫ 1

0

|s− t|αψ(t) dt

+m(0,1)(s, s)
∫ 1

0

|s− t|α(s− t)ψ(t) dt

+
1
2

∫ 1

0

|s− t|α
∫ t

s

(s− σ)m(0,2)(s, σ)dσψ(t) dt

≡ ψ1(s) + ψ2(s) + ψ3(s).

By Lemma 4 of [11], ψ1, ψ2 ∈ H1+α+δ. Moreover, similar to the proof
of Lemma 4.4, we have

1
2

∫ t

s

(s− σ)m(0,2)(s, σ) dσ|s− t|α ∈ H2.

Hence, ψ3 ∈ H2 ⊂ H1+α+δ. The proof is complete.

Let

(Gy)(s) =
∫ 1

0

|s− t|αy(t) dt, 0 ≤ s ≤ 1.

Let u(s) = sp + (1− s)p for p > −1. In the following lemma vn always
denotes a function in Hn.

Lemma 5.3. Let f ∈ Hn−1.

(1) The expansions
(5.4)

(Gu)(s) =
{
s1+α+p + (1 − s)1+α+p +

n−2∑
j=0

[s1+α+j + (1 − s)1+α+j ]
}∗

+ vn,

and

(5.5) (G2u)(s) =
{
s2(1+α)+p + (1−s)2(1+α)+p

+
2∑

i=1

n−1∑
j=0

[siα+j+1 + (1−s)iα+j+1]
}∗

+ vn
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hold. If f ∈ Hn, then

(5.6) (Gf)(s) =
{ n−2∑

j=0

[sα+j+1 + (1 − s)α+j+1]
}∗

+ vn.

If f ∈ Hn−1, then

(5.7) (G2f)(s) =
{ 2∑

i=1

n−2∑
j=0

[siα+j+1 + (1 − s)iα+j+1]
}∗

+ vn.

(2) If m ∈ Cn+1([0, 1] × [0, 1]), then the results of (1) hold if the
operator G is replaced by K.

Proof. (1) Let u1(s) = sp and u2(s) = (1 − s)p.

(Gu1)(s) =
∫ s

0

(s− t)αtp dt+
∫ 1

s

(t− s)αtp dt ≡ I1(s) + I2(s).

Let x = t/s in I1 to obtain

I1(s) = s1+α+p

∫ 1

0

(1 − x)αxp dx.

By the binomial series, we have

I2(s) =
∫ 1

s

(
1 − s

t

)α

tα+p dt

=
∫ 1

s

∞∑
n=0

−α(−α+ 1) · · · (−α+ n− 1)
n!

(
s

t

)n

tα+p dt

=
∞∑

n=0

−α(−α+ 1) · · · (−α+ n− 1)
n!(α+ p− n+ 1)

(sn − sα+p+1).

Notice that, for some ξi ∈ ((−α− 1)/i, 0)

log
−α(−α+ 1) · · · (−α+ n− 1)

n!
=

n∑
i=1

log
(

1 +
−α− 1

i

)

=
n∑

i=1

(−α− 1
i

+
(1 + α)2

2i2(1 + ξi)2

)

≤ (−α− 1)
n∑

i=1

1
i

+ C

≤ (−α− 1) logn+ C,
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where

C =
1
2

(
1 + α

α

)2 ∞∑
i=1

1
i2
< +∞

is a constant independent of n. It follows that

−α(−α+ 1) · · · (−α+ n− 1)
n!

≤ eC

n1+α
.

Thus, the series
∞∑

n=0

−α(−α+ 1) · · · (−α+ n− 1)
n!(p+ α− n+ 1)

(sn − sα+p+1)

is uniformly convergent for |s| < 1 − δ where 0 < δ < 1/2. Hence,
I2(s)−asp+α+1 ∈ H∞[0, 1− δ]. On the other hand, for s ∈ [δ, 1], again
by the binomial series,

I2(s) =
∫ 1

s

(t− s)α(1 − (1 − t))p dt

=
∞∑

n=0

−p(−p+ 1) · · · (−p+ n− 1)
n!

∫ 1

s

(t− s)α(1 − t)n dt

= (1 − s)1+α
∞∑

n=0

−p(−p+ 1) · · · (−p+ n− 1)
n!

·
∫ 1

0

(1 − t)αtn dt(1 − s)n.

Since ∫ 1

0

(1 − t)αtn dt ≤ 1
α+ 1

,

it follows from the proof for the last case that there exists a positive
constant C for which

−p(−p+ 1) · · · (−p+ n− 1)
n!

∫ 1

0

(1 − t)αtn dt ≤ C

n1+p
.

Since limn→∞ n1/n = 1, we conclude that the radius of convergence for
the power series above is 1. Therefore, it is uniformly convergent for
s ∈ [δ, 1]. Thus,

I2(s) = (1 − s)α+1{1 + (1 − s) + · · · + (1 − s)n−1}∗ + vn(s),
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where vn ∈ Hn[δ, 1]. Therefore,

(5.8) (Gu1)(s) =
{
s1+α+p +

n−2∑
j=0

(1 − s)1+α+j

}∗
+ vn(s).

By symmetry, we have

(5.9) (Gu2)(s) =
{

(1 − s)1+α+p +
n−2∑
j=0

s1+α+j

}∗
+ vn(s).

Adding these two equations together, we obtain the first expansion.

For f ∈ Hn, integration by parts gives

(5.10) (Dn−1Gf)(s) = (GDn−1f)(s) +
{ n−2∑

j=0

[Djsα +Dj(1 − s)α]
}∗
.

Integrating both sides of (5.10) n− 1 times, we obtain

(5.11) (Gf)(s) =
{ n−2∑

j=0

[sα+j+1 + (1 − s)α+j+1]
}∗

+ wn

where wn is a function obtained by integrating GDn−1f n − 1 times.
Since Dn−1f ∈ H1 ⊂ H−α, by Lemma 5.2 GDn−1f ∈ H1. Hence,
wn ∈ Hn. It can be shown that if f ∈ Hn−1, then

(Dn−1G2f)(s) = (G2Dn−1f)(s)+(I+G)
{ n−2∑

j=0

[Djsα +Dj(1−s)α]
}∗
.

Again integrating this equation n− 1 times gives

(G2f)(s) =
{ n−2∑

j=0

[sα+j+1 + (1 − s)α+j+1]
}∗

+ wn,

where wn is obtained from G2Dn−1f by integrating n− 1 times. Since
f ∈ Hn−1, G2Dn−1f ∈ H1 and thus wn ∈ Hn.
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(2) The proof for this part is similar to that for part (2) of Lemma
4.4, and we omit it.

Proof of Theorem 5.1. The proof is by induction. Assume that
f ∈ H1 and y is a solution of (5.1). Then y ∈ L2. Using Lemma
5.2, we conclude that y ∈ H1. Hence, (5.3) holds for n = 1. Assume
that (5.3) holds for n = k. Suppose that f ∈ Hk+1. Equation (5.1)
can be written as

y = K2y + (I +K)f.

Substituting (5.3) with n = k into the right hand side of this equation,
we have

(5.12) y = K2
k−1∑
l=0

n−l−1∑
j=0

2∑
i=1

uijl +K2vk + (I +K)f,

where uijl denotes {s(2l+i)(1+α)+j + (1 − s)(2l+i)(1+α)+j}∗. By Lemma
5.3, we have

(Kf)(s) =
{ k−1∑

j=0

[sα+j+1 + (1 − s)α+j+1]
}∗

+ vk+1,

where vk+1 ∈ Hk+1. Applying Lemma 5.3 to the first two terms of the
right hand side of (5.12) and rearranging terms, we conclude that (5.3)
holds for n = k + 1.

For rational α the exponents (2l + i)(1 + α) in the statement of
Theorem 5.1 may become integers, and the foregoing result requires
modification. We state the modified result in the next theorem without
proof.

Let 1 + α = p/q, where p, q are coprime and p < q, let n = [q/p] + 1
and let ρ be the smallest integer such that q ≤ nρ, i.e., where

q = n(ρ− 1) + σ, 0 < σ ≤ n, and ρ ∈ N.

Theorem 5.4. Let m ∈ Cm+1[0, 1] and f ∈ Hmρ+1. Assume that
α is a rational number in (−1/2, 0). Then the solution y of equation
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(5.1) has the decomposition

y(t) =
{ m−1∑

i=0

(tp log t)i((t1+α + · · · + tn(1+α))(1 + · · · + t(m−i)ρ−1) + · · ·

+ (t((ρ−1)n+1)(1+α) + · · · + tp log t)(1 + · · · + t(m−i−1)ρ))

+
m−1∑
i=0

((1 − t)p log(1 − t))i

× (((1 − t)1+α + · · · + (1 − t)n(1+α))(1 + · · · + (1 − t)(m−i)ρ−1)

+ · · · + ((1 − t)((ρ−1)n+1)(1+α) + · · · + (1 − t)p log(1 − t))

× (1 + · · · + (1 − t)(m−i−1)ρ))
}∗

+ vmρ+1,

where t ∈ (0, 1) and vmρ+1 ∈ Hmρ+1[0, 1].

For the case −1 < α ≤ −1/2, we can use the same technique to obtain
an analogous decomposition for the solution of equation (5.1) with a
modification in proof where we use Kl for l = 1 + [1/(1 + α)] instead
of using K2. We leave the straightforward details to the interested
readers.

We now apply the method proposed in Section 3 to the algebraic
singular case. We only present the method for an irrational α ∈
(−1/2, 0) since other cases are similar. Similarly to the logarithmic
case, we define the singular subspace W of C[0, 1] for equation (5.1) by
using the singularity expansion (5.3) as follows:

W = span {s(2l+i)(1+α)+j , (1 − s)(2l+i)(1+α)+j ,

i = 1, 2, j = 0, 1, . . . , n− l − 1, l = 0, 1, . . . , n− 1}.

Clearly, W is of dimension n(n+ 1). As in Section 4, assume that Sn
h

is the space of spline functions defined in Section 3. Let V n
h = W ⊕Sn

h ,
and let yh be the Galerkin approximation from V n

h to the solution y of
equation (5.1).

Theorem 5.5. Let m ∈ Cn+1([0, 1] × [0, 1]) and f ∈ Hn. Assume
that λ is not an eigenvalue of K. Then there exists an h0 > 0 such that
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whenever 0 < h < h0, a unique Galerkin approximation yh from V n
h to

the solution y of equation (5.1) exists with

||y − yh||2 = O(hn).

6. Computational implementation. In this section we dis-
cuss the computational implementation of the singularity preserv-
ing Galerkin method proposed in the previous sections. We assume
f ∈ Cn[0, 1] unless stated otherwise. To find the solution for (3.1), we
need to evaluate integrals of types

(1) (Bi, Bj), (f,Bj),

(2) (wi, wj), (Bi, wj), (f, wj),

(3) (KBi, Bj), (KBi, wj), (Kwi, Bj), (Kwi, wj),

where wi ∈ W and Bi is a B-spline. The integrals of type (1) can be
evaluated by a common quadrature rule which has a convergence of
order n.

To evaluate the integrals of types (2) and (3), we construct quadrature
formulas using an idea from [8]. Let S be a subset of [0, 1] consisting
of a finite number of points and define a function associated with S by
ωS(x) = inf {|x− t| : t ∈ S}. For α > −1 and a nonnegative integer k,
a real-valued function g is said to be of Type (α, k, S) if

|g(k)(x)| ≤ C[ωS(x)](α−k), x /∈ S and g ∈ Ck([0, 1]\S).

The functions inW defined in Sections 4 and 5 are of Type (α, k, {0, 1})
for some α > −1 and for all positive integers k. In particular,

s log s ∈ Type (1, k, {0}),
(1 − s) log(1 − s)) ∈ Type (1, k, {1}),

s2(1+α) ∈ Type (2(1 + α), k, {0})
and

(1 − s)2(1+α) ∈ Type (2(1 + α), k, {1})
for any integer k ≥ 0. Let q = (k + 1)/(α + 1) and define a partition
Πα of [0, 1] associated with α by

Πα : t0 = 0, t1 = m−q, tj = jqt1, j = 2, . . . ,m.
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In addition, assume that

tj ≤ uj1 < · · · < ujn ≤ tj+1 for j = 0, 1, . . . ,m− 1.

Let
u

(j)
i =

1
2
(tj+1 − tj)uji +

1
2
(tj+1 + tj).

It can be proved that if g ∈ Type (α, n, {0}) then
(6.1)∫ 1

0

g(x) dx =
m−1∑
j=1

1
2
(tj+1 − tj)

n∑
i=1

g(u(j)
i )

∫ 1

−1

lji(x) dx+O(m−n),

where

lji(x) =
n∏

p=1,p�=i

x− ujp

uji − ujp
.

In particular, if uji, i = 1, 2, . . . , n are chosen to be the zeros of the
Legendre polynomial of degree k and q = (2k + 1)/(α + 1), then the
error term in (6.1) becomes O(m−2n) [8]. Integrals of type (2) can be
evaluated by using this method.

The integrals of type (3) are double integrals that require additional
efforts for evaluation. Since the integral (Kwi, wj) has the strongest
singularity among the four integrals, we take it as an example to
demonstrate our treatment. Write

(Kwi, wj) =
∫ 1

0

wj(s)zi(s) ds,

where

zi(s) =
∫ 1

0

k(s, t)wi(t) dt.

From the theory established in Sections 4 and 5, zi ∈ Type (α, n, {0, 1})
for some α ≥ 0. Hence, wjzi ∈ Type (α′, n, {0, 1}) for some α′ ≥ 0. We
split it into two integrals so that each has only one singular point and
then use (6.1) to evaluate them. Clearly, we need the values of zp(u

(j)
i )

for computation of the integrals. Since

K(u(j)
i , ·)wp(·) ∈ Type (α, n, {0, u(j)

i , 1}),
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zp(u
(j)
i ) can be obtained by evaluating four singular integrals using

formula (6.1).

Next we present a numerical example to demonstrate the efficiency
and accuracy of the method established in this paper and compare our
method wth the conventional Galerkin method. The numerical results
show that our method improves the convergence rate significantly,
which is consistent with our theoretical estimate.

In this estimate, we consider equation

(6.2) y(s) −
∫ 1

0

log(|s− t|) exp(2st)y(t) dt = f(s), 0 ≤ s ≤ 1,

where f(s) is chosen so that y(s) = s log s+ (1 − s) log(1 − s) + s3.2 is
the solution of the equation. That is,

f(s) = s log s+ (1 − s) log(1 − s) + s3.2

−
∫ 1

0

log(|s−t|) exp(2st)[t log t+ (1−t) log(1−t) + t3.2] dt.

The solution of equation (6.2) has singularities at s = 0 and s = 1 and
y ∈ H1\H2. We define a uniform partition by letting h = 1/(k + 1),
and xi = ih for i = 0, 1, . . . , k + 1. Let S2

h be the space of piecewise
linear functions defined on [0, 1] with knots at x1, . . . , xk. We denote
the B-spline basis of the space S2

h by

B2
i (s) =

⎧⎨
⎩

(s− xi−1)/(xi − xi−1), xi−1 ≤ s < xi

(s− xi+1)/(xi − xi+1), xi ≤ s < xi+1

0, otherwise,

for i = 1, 2, . . . , k,

B2
0(s) =

{
(s− x1)/(x0 − x1), x0 ≤ s < x1

0, otherwise,

and

B2
k+1(s) =

{
(s− xk)/(xk+1 − xk), xk ≤ s < xk+1

0, otherwise.

In addition, we define the singular subspace W by

W = span {s log s, (1 − s) log(1 − s)}.
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Then the Galerkin subspace is V 2
h = W ⊕ S2

h. We use both the
conventional Galerkin method and the singularity preserving Galerkin
method to solve the equation and obtain two approximate solutions, yh

and ŷh, respectively. Numerical resuls are contained in the following
table, where ei = y(si) − yh(si) and êi = y(si) − ŷh(si).

h = 0.1 h = 0.1 h = 0.025 h = 0.025
xi |êi| |ei| |êi| |ei|
0.0 2.78E-2 4.09E-2 3.44E-2 1.28E-2
0.1 5.77E-3 1.69E-1 9.83E-4 9.37E-2
0.2 3.61E-3 2.25E-1 7.55E-5 1.72E-1
0.3 3.89E-3 2.51E-1 2.31E-3 4.27E-2
0.4 3.77E-3 2.36E-1 1.65E-3 1.68E-1
0.5 4.84E-3 1.69E-1 2.07E-3 2.38E-1
0.6 5.08E-3 4.07E-2 1.10E-3 1.72E-1
0.7 6.52E-3 1.69E-1 7.46E-4 4.27E-2
0.8 6.95E-3 4.84E-1 3.08E-4 1.68E-1
0.9 1.28E-2 8.44E-2 2.22E-4 4.83E-1
1.0 2.96E-2 1.00E-0 8.65E-3 1.00E-0

L2 error 1.12E-2 3.87E-1 3.00E-3 3.77E-1

The L2 norm of the errors of the approximate solutions in this table
is evaluated by the formula

||y − yh||2 ≈
{ 10∑

i=1

1
10

[y(xi) − yh(xi)]2
}1/2

.

Notice that the theoretical error estimate for the current method is
||y − ŷh||2 = O(h2). The numerical results are consistent with our
theoretical estimate.
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