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MULTILEVEL METHODS FOR THE APPROXIMATION
OF SINGULAR SOLUTIONS OF COMPLETELY

CONTINUOUS OPERATOR EQUATIONS

IGOR MORET

ABSTRACT. The direct techniques for approximating sin-
gular solutions of nonlinear equations depending on param-
eters transform the original problem into that of solving a
suitable augmented system. Dealing with equations involving
completely continuous operators, a multilevel approach to the
solution of these larger systems is presented.

1. Introduction. We are concerned with the approximation
of singular points in branches of solutions of nonlinear parameter-
dependent equations having the form

(1.1) F (u, β1, . . . , βp−1, γ) = u−K(u, β1, . . . , βp−1, γ) = 0,

where u ∈ U , with U a real Banach space, γ ∈ R and the βi’s are
(p − 1)-additional real parameters, for some p ≥ 1. From now on,
we assume that F is a Cν-mapping, with ν ≥ 3, from an open set
D ⊂ U ×Rp into U and that the operator K is completely continuous.

As is well known, the direct techniques for the approximation of
a singular solution are based on the construction of an augmented
system having it as a regular solution (cf. [9] for a general discussion).
Then, moving from a suitable starting point, obtained for instance by
a continuation procedure, the arising system is solved by an iterative
method. In several practical cases, this procedure is carried out using
operator approximations, on which the accuracy of the computed
solution depends (cf. [11, 20]).

In this paper we deal with singular solutions of (1.1), such as turning
points and, when unfolded, bifurcation points, which fall within the
unifying theory recently developed by Griewank and Reddien in [10,
11], where the corresponding augmented system is built up through the
minimum number of additional scalar equations characterizing the sin-
gularity. For solving this larger system, we present an approach based
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on the use of iterative multilevel methods, with special attention to the
case where collectively compact approximations of K are employed.

The basic approximation scheme is presented and studied in Section
2. In Section 4 we illustrate how it can be suitably combined with
classical linear multigrid algorithms, briefly outlined in Section 3.

2. The basic approximation scheme. From now on, for ease of
notation, we set X = U × Rp and Z = U × Rp−1 (Z = U , if p = 1).
Moreover, we denote by QU and QZ the coordinate projections from
X into U and into Z, respectively. That is, we set QUx = u, QZx =
(u, β1, . . . , βp−1)T , for x = (u, β1, . . . , βp−1, γ)T ∈ X. Accordingly, we
rewrite equation (1.1) in the form

(2.1) F (x) = QUx−K(x) = 0, x ∈ X.

Throughout, the first and second derivatives of F with respect to x
will be indicated by F ′ and F ′′, respectively, and we will use subscripts
for indicating the partial derivatives with respect to each variable. In
particular, Fz will denote the derivative of F with respect to QZx. As
usual, for i = 1, . . . , p, ei will be the ith coordinate vector in Rp; any
product space U ×Rm will be endowed with a product norm; | · |E will
stand for the norm in a Banach space E, except for the space L(E,E′)
(E and E′ Banach spaces) of all bounded linear operators from E into
E′ whose norm will be denoted by || · ||E→E′ ; E∗ will stand for the
dual space of E and B∗ will be the adjoint of a linear operator B. The
notation S(x, δ) will indicate the closed ball in X of center x and radius
δ. Finally, e ∈ X∗ will be such that

ex = γ, for x = (u, β1, . . . , βp−1, γ)T ∈ X.

Let xs ∈ D be a singular point of (2.1) in the sense that:

(h1) F (xs) = 0;

(h2) Ker (Fz(xs)) = span {QZys
1, . . . , QZys

p};
with eT

i MQZys
j = δij (the Kronecker’s delta), for i, j = 1, . . . , p, where

M is a suitable linear mapping acting from Z into Rp;

(h3)
Fγ(xs) /∈ RangeFz(xs) and

Range (Fz(xs)) = {u ∈ U : ψsu = 0},
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for some ψs( �= 0) ∈ U∗. We also assume that

(h4)
the p× p matrix Rs = [rs

ij ] having entries
rs
ij = ψsFzz(xs)QZys

iQZys
j , for i, j = 1, . . . , p,

is nonsingular.

These conditions characterize various types of singular solutions (see
[7, 10 12, 15, 18, 20]), which Griewank and Reddien in [10, 11]
called generalized turning points. As mentioned in the introduction, for
characterizing xs as a regular solution of a suitable augmented system,
we adopt here the following approach proposed in [10, 11].

For any x ∈ D, we consider the mapping A(x) : X → X defined by

(2.2) A(x)y = (F ′(x)y,MQZy)T , for y ∈ X.

Then, the following result can be proved (see [11]).

Proposition 2.1. There exists δ∗ such that, for every x ∈ S(xs, δ∗),
A(x) has a bounded inverse. Moreover, xs is a regular solution of the
following augmented system (from X into itself)

(2.3) F (x) = 0

(2.4) eyi(x) = 0, for i = 1, . . . , p,

where, for each i = 1, . . . , p, yi(x) ∈ X solves the equation

A(x)yi(x) = (0, ei)T , 0 ∈ U.

From now on, let {Fn}, n = 0, 1, . . . , be a sequence of nonlinear
operators from D into U satisfying the following assumptions:

(k1) Fn is pointwise convergent to F on D, i.e., for each x ∈ D,

Fn(x) → F (x), as n→ ∞;

(k2)
{QU−Fn} is a family of collectively compact (c.c.) operators (cf. [1]);



134 I. MORET

k3 for every n, Fn is of class Cν , ν ≥ 3, on S(xs, δ∗) and the derivatives
Fn′

(x), Fn′′
(x) and Fn′′′

(x) are uniformly bounded with respect to x
and n.

Accordingly, we define the sequence of operators {An} as

An(x)v = (Fn′(x)v,MQZv)T , for v ∈ X.

We assume that for all n sufficiently large:

(k4) for every x ∈ S(xs, δ∗), the operators An(x)−1 exist and they
are uniformly bounded with respect to x and n.

Then for solving (2.3) (2.4), we consider the following approximation
scheme:

Scheme 1. Select n∗ and take a subsequence of {Fn : n ≥ n∗}, we
relabel here as {F k}, for k = 0, 1, . . . . Starting from x0 ∈ D, for
k = 0, 1, . . . , do the following:

1. Select an approximation Bk of Ak(xk)−1.

2. Take
sk = −Bk(F k(xk), 0)T .

3. For each i = 1, . . . , p, take

yk
i = Bk(0, ei)T .

4. Construct the p× p matrix Rk having entries

ρk
ij = [(Bk)∗e](−F k′′(xk)yk

i y
k
j , 0)T , for i, j = 1, . . . , p,

and the p-dimensional vector ck having entries

ηk
i = −eyk

i + [(Bk)∗e][(F k′′(xk)skyk
i , 0)T +Ak(xk)yk

i − (0, ei)T ],

for i = 1, . . . , p.

5. Find ak = (αk
1 , . . . , α

k
p)T which solves

(2.5) Rkak = ck.

6. Set
xk+1 = xk + sk + Σ1≤i≤pα

k
i y

k
i .



SINGULAR SOLUTIONS 135

In order to simplify the notation, we set

(ΔF )k := |F k(xs)|U .

(ΔA)k = max1≤i≤p |(Ak(xs) −A(xs))ys
i |X ,

ϑk = ||I −BkAk(xk)||X→X ,

ek
x = |xs − xk|X ,

ek
y = max1≤i≤p |ys

i − yk
i |X .

Theorem 2.1. Let (h1) (h4) and (k1) (k4) hold. There exist
constants δ and ϑ such that, if x0 ∈ S(xs, δ), ϑk ≤ ϑ for every k, and
n∗ is sufficiently large, then Scheme 1 is well defined and xk ∈ S(xs, δ),
for every k. Moreover, there are two constants cy and cx such that, for
every k,

(2.6) ek
y ≤ cy[ϑk + ek

x + (ΔA)k],

and

(2.7) ek+1
x ≤ cx[(ek

x + ϑk)(ek
x + ek

y) + (ΔF )k + (ΔA)k].

Proof. If n∗ is sufficiently large, then, by (k4), there is a constant μ
such that, for every k, if xk ∈ S(xs, δ∗), then Ak(xk) is invertible and

||(Ak(xk))−1||X→X ≤ μ.

Then
Bk − (Ak(xk))−1 = −[I −BkAk(xk)](Ak(xk))−1,

and, since ϑk ≤ ϑ, it follows that

||Bk||X→X ≤ (1 + ϑ)μ.

By (h1) (h4), using well-known results about approximations of com-
pletely continuous operators (see [1, 17]), since for each i = 1, . . . , p,
yi(xs) = ys

i (cf. (2.4)), we realize that, if xk ∈ S(xs, δ), if δ and ϑ are
sufficiently small and if n∗ is sufficiently large, then the coefficient ma-
trix Rk of (2.5) is nonsingular and there is a constant τ , independent
of k, such that

(2.8) ||(Rk)−1|| ≤ τ.



136 I. MORET

(Here || || denotes the matrix norm induced by the 1-norm on Rp).
Hence, relation (2.6) easily follows and, moreover, by (2.8), xk+1 is well
defined. Now let us prove (2.7).

Let α′k
i , for i = 1, . . . , p, be such that

(2.9) Σ1≤i≤pα
′k
i ei = MQZ(xs − xk).

Clearly, the α′k
i ’s are uniquely determined.

Then we define x′k by

x′k = xk + sk + Σ1≤i≤pα
′k
i yk

i .

By (2.9), we have

x′k − xk = −Bk[(F k(xk), 0)T − Σ1≤i≤pα
′k
i (0, ei)T ]

= Bk(F k(xs) − F k(xk) − F k′(xk)(xs − xk), 0)T

+BkAk(xk)(xs − xk) −Bk(F k(xs)), 0)T .

Hence, we easily get

(2.10) |x′k − xs|X ≤ c[|xs − xk|2X + (ΔF )k + ϑk|xs − xk|X ].

Observing that the yk
i ’s are uniformly bounded, we have, for some

constant c0, independent of k,

(2.11) |xs − xk+1|X ≤ c0[|xs − x′k|X + Σ1≤i≤p|αk
i − α′k

i |].

Now we provide an upper bound for Σ1≤i≤p|αk
i − α′k

i |. From the
identities

Σ1≤j≤pρ
k
ijα

k
j =e[−yk

i +Bk((F k′′(xk)skyk
i , 0)T +Ak(xk)yk

i − (0, ei)T )]

and
Σ1≤j≤pρ

k
ijα

′k
j = Σ1≤j≤pα

′k
j eBk(−F k′′

(xk)yk
i y

k
j , 0)T ,

for every i = 1, . . . , p, we get
(2.12)

Σ1≤j≤pρ
k
ij(α

k
j − α′k

j )

= e[−yk
i +Bk((F k′′(xk)(xk′−xk)yk

i , 0)T +Ak(xk)yk
i −(0, ei)T )].
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Now, recalling that, by (h3), eys
i = 0 and that A(xs))ys

i = (0, ei)T , for
every i = 1, . . . , p, we obtain the following inequality

|e[−yk
i +Bk((F k′′

(xk)(xs − xk)yk
i , 0)T +Ak(xk)yk

i − (0, ei)T )]|
≤ |eBk(−F k′

(xs)yk
i + F k′′

(xk)(xs − xk)yk
i + F k′

(xk)yk
i , 0)T |

+ |e[(ys
i − yk

i ) −Bk(Ak(xs)(ys
i − yk

i ) +Bk(Ak(xs) −A(xs))ys
i ]|.

Hence, we easily get, for every i,

(2.13)
|e[−yk

i +Bk((F k′′
(xk)(xk′ − xk)yk

i )0)T +Ak(xk)yk
i − (0, ei)T )]|

≤ c1[(ek
x)2 + ϑkek

y + ek
xe

k
y + (ΔA)k + |x′k − xs|X ],

for some constant c1 independent of k. Thus, by (2.10) (2.13), we
obtain (2.7). Clearly, xk+1 ∈ S(xs, δ), for a sufficiently large n∗ and
for sufficiently small δ and ϑ.

3. A review of linear multilevel methods. In this section we will
consider some linear multilevel (here we will use the term multigrid)
procedures which can be employed for constructing the operators Bk

and (Bk)∗ in Scheme 1.

At first, we give a general formulation of the linear multigrid methods
which includes various classical procedures, like for instance those
proposed by Hackbusch [12] and Hemker and Schippers [13].

Let {Xi}, i = 0, 1, . . . , be a sequence of Banach spaces, let Ii denote
the identity operator on Xi, and let us suppose that:

1) {πi}, πi : Xi−1 → Xi, i = 1, 2, . . . , is a sequence of linear operators
(prolongations), such that

||πi||Xi−1→Xi
≤ cπ, for every i;

2) {ρi}, ρi : Xi → Xi−1, i = 1, 2, . . . , is a sequence of linear operators
(restrictions) such that, for every i,

||ρi||Xi→Xi−1 ≤ cρ

and
ρiπi = Ii−1;
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3) {Ai}, {Γi}, {Ψi}, {Φi}, for i = 0, 1, . . . , are uniformly bounded
sequences of linear operators, with Ai,Γi,Ψi,Φi : Xi → Xi. We assume
that the inverses of the operators Ai exist and are uniformly bounded.

Then, for every i = 1, 2, . . . , we consider the approximation Bi of
A−1

i generated by the following

General linear multigrid scheme. Let an approximation B0 of A−1
0

and an integer γ ≥ 1 be given. For i = 1, 2, . . . , set

(3.1) Si−1 = Ii−1 −Bi−1Ai−1,

(3.2) Qi−1 = Σ0≤j≤γ−1(Si−1)jBi−1,

(3.3) Bi = Γi + ΨiπiQi−1ρiΦi.

For the study of this scheme, the following operators will also be
considered:

Ri = Ii − ΓiAi − ΨiπiA
−1
i−1ρiΦiAi,

Wi = Ii − ΓiAi + (Ii − Ψi)πiA
−1
i−1ρiΦiAi.

Straightforward computations show that, sinceQi−1 = (Ii−1−(Si−1)γ)·
A−1

i−1 and ρiπi = Ii−1, we have

(3.4)
Si = Ri + Ψiπi(Si−1)γA−1

i−1ρiΦiAi

= Ri + Ψiπi(Si−1)γρi(Wi −Ri).

Remark. The above scheme contains the classical methods described
in [12], where the coarse-grid corrections are combined with some pre-
smoothing and post-smoothing steps. Indeed, for every i, let Mi and
Ni be linear operators, from Xi into itself, such that Mi = (Ii −NiAi).
Then, for some integers m ≥ q > 0, set

Γi = Σ0≤j≤m−1M
j
i Ni,

Ψi = Mm−q
i ,

Φi = Ii −AiΣ0≤j≤q−1M
j
i Ni.
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Accordingly, we have

Ri = Mm−q
i [Ii − πiA

−1
i−1ρiAi]M

q
i ,

Wi = Mm−q
i − [(Ii −Mm−q

i )πiA
−1
i−1ρiAi]M

q
i .

In particular, choosing, for each i, Mi = Ii, m = q = 1, we obtain
certain multigrid methods for equations of the second kind discussed
in [13].

We come back to the study of the scheme defined by (3.1) (3.3). Let
us assume that {vi}, i = 0, 1, . . . , is a sequence such that, for each
i = 1, 2, . . . ,

||Ri||Xi→Xi
≤ vi

and
||S0||X0→X0 ≤ v0.

Thus, setting
κ = cπcρ Sup i||Ψi||Xi→Xi

and
si = ||Si||Xi→Xi

, w = Sup i||Wi||Xi→Xi
,

from (3.4) it follows that

(3.5) si ≤ vi + κ(si−1)γ(w + vi), for i = 1, 2, . . . ,

with

(3.6) s0 ≤ v0.

Arguing as in [13, Lemma 3.3], one proves the following result.

Proposition 3.1. Let (3.5) and (3.6) hold. Assume that vi ≤ v for
every i, set di = vi/vi−1 and then set d = infi(di). If either,

γ ≥ 1, 0 < κw < d < 1, and v ≤ (d− κw)/(d+ κd)

or

(3.7) γ = 2, and 4κvi−1(w/di + vi−1) ≤ 1, for every i,
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then there is a c > 0 such that, for every i, we have

si ≤ cvi.

More precisely, we can take, in the first case, c = 1+κ(w+d)/(d−κw)
and, in the second case, c = 2.

The above proposition contains the results given in [13], where the
sequence {vi} is assumed to be nonincreasing and κ = 1. Moreover,
in the case γ = 2, here the ratios di are allowed to become arbitrarily
small, provided that their rate of decay is controlled by (3.7).

In the next section, we will combine Scheme 1 of Section 2 with linear
multigrid methods where

(3.8) Xi = X, πi = ρi = I, Ψi = I.

Precisely, given B0, we will consider two pairs of methods of the type
(3.1) (3.3), defined by (3.8) and by particular choices of Γi and Φi at
the i-th step.

The first pair, we call linear multigrid methods 1, is defined as follows
(together with (3.8)):

Method 1a. Γi = I, Φi = I −Ai.

Method 1b. Γi = 0, Φ = I −Ai +Ai−1.

Procedures of this type were proposed and discussed in [13]. In
particular, they also yield the classical methods of Atkinson [2] and
Brakhage [6] (cf. also Kelley [14]). For both Methods 1a and 1b, we
get

(3.9) Ri = (Ai−1)−1[Ai−1 −Ai](I −Ai).

The second pair of multigrid methods, we call here linear multigrid
methods 2, are defined (together with (3.8)) by:

Method 2a. Γi = I, Φi = I −Ai−1.

Method 2b. Γi = 0, Φi = I.

Now, for both Methods 2a and 2b, we have

(3.10) Ri = (Ai−1)−1[Ai−1 −Ai].
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In any case κ = 1. For Methods 1a and 2a we can take in (3.5)
w = Sup i||I − Ai|| and for Methods 1b and 2b, we take w = 1.
Accordingly (cf. Proposition 3.1), we can choose for Methods 1a and
2a even the value γ = 1, provided that w is sufficiently small, while for
Methods 1b and 2b, we must take γ = 2.

It is easy to verify that, for each case, the corresponding adjoint
operators B∗

i , for i = 1, 2, . . . , are defined through the following
multigrid scheme:

Starting from B∗
0 , for i = 1, 2, . . . , set

S∗
i−1 = I −A∗

i−1B
∗
i−1

Q∗
i−1 = Σ0≤j≤γB

∗
i−1(S

∗
i−1)

j ,

B∗
i = Γ∗

i + Φ∗
iQ

∗
i−1,

where now I is the identity on X∗.

4. Nonlinear multilevel procedures. In this section we will
examine some procedures obtained combining Scheme 1 with the two
pairs of linear multigrid methods described in the previous section. The
use of such procedures will be motivated in the light of the following
result which is an immediate consequence of Theorem 2.1 (to which we
refer for the notation).

Proposition 4.1. Let {Δk}, k = 0, 1, . . . , be a nonincreasing null
sequence of positive numbers such that, for some 0 < d < 1,

Δk+1 ≥ dΔk, for every k = 0, 1, . . . .

Assume that there exist constants C0 and C1 such that, for every
k = 0, 1, . . . ,

(ΔA)k + (ΔF )k ≤ C0Δk+1,

and
ϑk ≤ C1Δk.

If Δ0 and e0x are sufficiently small, then Scheme 1 is well defined and
there exists a null sequence {qk}, k = 0, 1, . . . , such that, for every k
we have

(4.1) ek+1
x ≤ cx(C0 + qk)Δk+1.
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Proof. Proceed by induction, using estimates (2.6) and (2.7).

Let us return to the equation

QUx−K(x) = 0.

In this case the operator A, defined in (2.2), is given by

A(x)v = QUv −K ′(x)v,MQZv), for v ∈ X.

Here we propose two different approaches for constructing the approx-
imating operators involved in Scheme 1. The first approach is based
only on the use of collectively compact (c.c. for brevity) approximations
of K; the second one also employs projection methods.

a) Approximations through c.c. operators. Let {Kn} be a sequence
of completely continuous nonlinear operators from D into U , which
satisfies the following assumptions:

(i1) {Kn} is a c.c. family on D;

(i2) Kn is pointwise convergent to K on D, i.e., for each x ∈ D,

Kn(x) → K(x), as n→ ∞;

(i3) for every n, Kn is of class Cν , ν ≥ 3, on S(xs, δ∗), and
the derivatives K ′

n(x), K ′′
n(x) and K ′′′

n (x) are uniformly bounded with
respect to x and n.

Then, we consider the sequence of operators {An}, An : X → X,
defined by

(4.2) An(x)v = (QUv−K ′
n(x)v,MQZv), for v∈X, x∈S(xs, δ∗).

As well-known (cf. [1, 2]) assumptions (i1) (i3) ensure that:

(j1) {I −An} is a c.c. family of linear operators on S(xs, δ∗);

(j2) An(x)v → A(x)v, for every x ∈ S(xs, δ∗) and v ∈ X;

(j3) there is a constant CA such that, for every n and for every
u,v ∈ S(xs, δ∗),

||An(u) −An(v)||X→X ≤ CA|u − v|X ;
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(j4) the sequence {An(x)} is uniformly bounded, with respect to x
and n;

(j5) for any compact operator T : X → X, limn→∞ ||(A(x) −
An(x))T ||X→X = 0, for each x ∈ S(xs, δ∗);

(j6) for all sufficiently large n and for every x ∈ S(xs, δ∗), An(x)
is invertible and the inverses are uniformly bounded with respect to x
and n. Then, we consider a suitable subsequence of {Kn}, we relabel
as {Kk}, for k = 0, 1, . . . . Accordingly, in Scheme 1, we take

F k(x) = QUx −Kk(x).

Assumptions (k1) (k4) of Theorem 2.1 are clearly fulfilled.

Now we discuss the construction of Bk (and (Bk)∗) in Scheme 1, by
the linear multigrid methods of Section 3. Referring to (4.2), a first
procedure could be defined by taking

(4.3) B0 = A0(x0)−1

and, for each k = 1, 2, . . . ,

(4.4) Ai = Ai(xk), for i = 0, 1, . . . , k.

Then we employ one of the two linear multigrid schemes 1 considered in
Section 3. We set, in Scheme 1, Bk = Bk, for k = 0, 1, . . . . Accordingly,
for each k = 1, 2, . . . , from (3.9) we have
(4.5)
Ri = [Ai−1(xk)]−1[Ai−1(xk)−Ai(xk)](I−Ai(xk)), for i=1, . . . , k,

and

(4.6) S0 = [A0(x0)]−1[A0(x0) −A0(xk)].

A second procedure could be defined taking B0 as in (4.3) and, for
each k = 1, 2, . . . ,

(4.7) Ai = Ai(xi), for i = 0, 1, . . . , k.

Again, we use one of the linear multigrid schemes 1 considered in
Section 3, setting Bk = Bk, for each k. In this case, we have, for
k = 1, 2, . . . ,

(4.8) Rk = [Ak−1(xk−1)]−1[Ak−1(xk−1) −Ak(xk)](I −Ak(xk)),
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and

(4.9) S0 = 0.

Clearly, using (4.7) instead of (4.4), one has the advantage of construct-
ing each Ai once and for all.

Now we show how Proposition 4.1 can be applied to the cases
considered above. In the following cj , for j = 1, 2, 3, 4, 5, will be
constants independent of the index k.

Assume (i1) (i3) and (j1) (j6), and suppose that

||[K ′(xs) −K ′
k−1(x

s)][I −Ak(xs)]||X→U ≤ c1Δk,

|K(xs) −Kk(xs)|U + Max
1≤i≤p

|[K ′(xs) −K ′
k(xs)]ys

i |U ≤ c2Δk+1;

for every k = 1, 2, . . . , where the sequence {Δk} is chosen as in
Proposition 4.1. Then, for both choices (4.3) (4.4) and (4.3) (4.7),
using (4.5) (4.6), or (4.8) (4.9), and Proposition 3.1, one can easily
prove by induction that (4.1) holds provided that Δ0 and e0x are
sufficiently small.

b) Approximations through c.c. operators and projections. Let {Pn}
be a sequence of linear projections from X into itself which is pointwise
convergent to I. Let the sequence {Kn} be given as before. As is well-
known (cf. [4]), the family of operators {Kn(Pn·)} satisfies (i1) (i3).
Assume that {Kk} and {Pk} are (relabelled) subsequences of {Kn}
and {Pn}, respectively, such that:

(m1) for every x ∈ S(xs, δ∗), the operators Ak(x) defined by

(4.10) Ak(x)v = (QUv−K ′
k(Pkx)Pkv,MQZv), for v ∈ X,

are invertible and their inverses are uniformly bounded with respect to
x and k.

Then, in Scheme 1 we take

F k(x) = QUx −Kk(Pkx).

Moreover, referring to the operators defined in (4.10), we can use one
of the linear multigrid schemes 1, taking B0 as in (4.3), Ai as in (4.7)
and Bk = Bk. Accordingly, (4.8) and (4.9) follow.
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Let {Δk} be a sequence as in Proposition 4.1 and suppose that, for
every k = 1, 2, . . . ,

||(K ′(xs) −K ′
k−1(Pk−1xs)Pk−1)[I −Ak(xs)]||X→U ≤ c3Δk,

(4.11)
|K(xs) −Kk(Pkxs)|U + Max

1≤i≤p
|[K ′(xs) −K ′

k(Pkxs)Pk]ys
i |U ≤ c4Δk+1.

Then, by assumption (m1) and invoking again Propositions 3.1 and 4.1,
the usual inductive argument shows that relation (4.1) holds for every
k, provided that Δ0 and e0x are sufficiently small.

Let us consider the particular case where Kk = K, for every k, and
therefore

F k(x) = QUx −K(Pkx)

and

Ak(x)v = (QUv −K ′(Pkx)Pkv,MQZv), for v ∈ X.

If

(4.12) ||(K ′(xs)(I − Pk)||X→U → 0,

we could also use the linear multigrid schemes 2 of Section 3, taking,
as before, B0 = B0 = A0(x0)−1, for each k, Ai = Ai(xi), for
i = 0, 1, . . . , k and Bk = Bk. In this case, from (3.10), we get

Rk = [Ak−1(xk−1)]−1[Ak−1(xk−1) −Ak(xk)]

and S0 = 0. Then, assuming that, for every k, relation (4.11) (with
Kk = K) holds and that

||(K ′(xs) −K ′(Pk−1xs)Pk−1)||X→U ≤ c5Δk,

the conclusions of Proposition 4.1 easily follow.

We notice that, for all the cases considered here, it was understood
that, in Scheme 1, the adjoint Bk∗ is obtained by the same multigrid
method which yields Bk, as shown at the end of Section 3.

There are several results, on the approximation of integral operators,
which can be used for checking the validity of the various assumptions
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above considered as well as for estimating the values of {Δk}. Among
the more recent papers, we refer to [2, 3, 4, 5, 8].

Remarks. The more natural way for constructing the sequence of
projections {Pn} in X is that of taking a sequence {Pn} of linear
projections in U , and then defining Pn as Pnv = (PnQUv,vp).
Here, for conciseness, we have expressed any v ∈ X in the form
v = (QUv,vp), with vp ∈ Rp. In order to illustrate how in this case the
application of B0 = A0(x0)−1, with A0 given by (4.10), can be carried
out, we assume, for simplicity, that the operator MQZ has the form
MQZv = (M1QUv,M2vp), with M1 ∈ U∗, M2 ∈ L(Rp,Rp−1). This
is the case usually occurring in practice. Accordingly, an application
of B0 consists of solving a system of the type

QUv −K ′
0(P0x0)P0v = f1,

M1QUv = f2,

M2vp = f3,

with f1 ∈ U , f2 ∈ R and f3 ∈ Rp−1. This is equivalent to solve, at
first, the projected system

(4.13)
P0(QUv −K ′

0(P0x0)P0v − f1) = 0,
M1(K ′

0(P0x0)P0v + f1) = f2,

M2vp = f3,

with respect to the unknowns P0v and vp and then to get QUv as the
iterated solution of (4.13) (in the sense of Sloan [19]), namely,

QUv = K ′
0(P0x0)P0v + f1.

Of course, the coefficient matrix of the above linear system will be
factorized once and for all.

In the particular case when equation (2.1) has the classical Hammer-
stein form

(4.14) QUw −KG(w) = 0,

where now K is a linear compact operator into U and G is a nonlinear
mapping from X into U , for an efficient use of projection methods, it
is convenient to consider, instead of (4.14), the equation

QUx−G(KQUx,xp) = 0,
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obtained through the change of variable x = (G(w),wp) that is
w = (KQUx,xp). For more details on this point, we refer to [15,
16].
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