
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 5, Number 1, Winter 1993

THE h-p-VERSION
OF SPLINE APPROXIMATION METHODS

FOR MELLIN CONVOLUTION EQUATIONS

J. ELSCHNER

ABSTRACT. We consider the numerical solution of Mellin
convolution equations on an interval by the h-p-version of
spline approximation methods. Using a geometric mesh re-
finement towards the singularity of the integral equation, we
prove stability and exponential convergence in the Lq norm,
1 ≤ q ≤ ∞, for Galerkin, collocation and Nyström methods
based on piecewise polynomials.

1. Introduction. We consider the approximate solution of the
one-dimensional Mellin convolution equation

(1.1) u(x) −
∫ 1

0

κ(x/y)u(y)y−1 dy = f(x), x ∈ I := (0, 1),

where f and κ are given functions and u is the unknown function. Such
integral equations having a fixed singularity at the point x = 0 arise
in a variety of applications; for example, they occur when boundary
integral methods are applied to potential problems in plane regions
with corners or to crack problems in linear elasticity (see [4, 13] and
the references therein). Note that the integral operator in (1.1) is not
compact so that standard theories for the numerical analysis of second
kind Fredholm integral equations cannot be applied. Nevertheless,
using graded meshes and modified spline spaces, results on stability
and optimal convergence orders of Galerkin, collocation and quadrature
methods for Equation (1.1) which are based on piecewise polynomial
basis functions have been obtained in [4, 6, 7, 9]. These papers
apply the technique of the traditional h-version of spline approximation
methods where accuracy is achieved by decreasing the mesh size h,
while keeping the degree p of piecewise polynomials fixed.

In the present paper we study the h-p-version of those approximation
methods which is obtained if one simultaneously refines the mesh and
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increases the degree of the splines. For the finite element method
on a geometric mesh applied to elliptic boundary value problems in
planar polygonal domains, it has been shown in [10] that, if the given
data are piecewise analytic, the h-p-version has an exponential rate of
convergence with respect to the number of degrees of freedom, whereas
the h-version has only a polynomial rate. The state of the art of the p-
and h-p-versions of the finite element method is described in [3]. Only
recently the h-p-version has been introduced into boundary element
methods [2, 15]. These papers analyze the h-p-version of boundary
element Galerkin methods with quasiuniform and geometric meshes
for some strongly elliptic first-kind integral equations on a polygon; [2]
establishes, in particular, the exponential rate of convergence when a
geometric mesh refinement towards the vertices is used.

Our aim is to show corresponding results for spline Galerkin methods
applied to the second-kind integral equation (1.1). Furthermore, the
h-p-version of certain collocation and Nyström quadrature methods is
discussed here for the first time. In Section 2 we recall some analytical
properties of (1.1) in Lq(I), 1 ≤ q ≤ ∞, and in weighted Sobolev spaces.
Following [10] we further introduce countable normed spaces B�

q (I) of
real-analytic functions on (0, 1] which are adapted to the singularities
of solutions to (1.1) at the origin. As one of our main results we prove
that if the right-hand side f of (1.1) belongs to B�

q (I) and the kernel
function κ satisfies appropriate conditions then the solution u is also
an element of B�

q (I).

In Section 3 we define the spline spaces Sn,σ,μ, σ ∈ (0, 1), μ > 0,
consisting of piecewise polynomials of degree [μn] on the subintervals
[σn−i, σn−i−1], i = 1, . . . , n−1, of the geometric mesh. (Here and in the
following [a] denotes the integral part of a.) On the first subinterval
[0, σn−1] the splines are assumed to be zero; this corresponds to the
simplest modification of the usual spline spaces in order to deal with
the singularity of the integral equation (1.1) (cf. [4, 6, 7, 9]). Following
[10], we investigate the Lq approximation of functions u ∈ B�

q (I) by
splines from Sn,σ,μ. The underlying approximation theory, however, is
simpler than that of [10] and essentially relies on Jackson’s theorem.
Besides the uniform degree distribution, we also briefly discuss the case
of spline spaces with linear degree distribution; cf. (3.4) for definition.

In Section 4 we prove stability and exponential convergence in the
Lq norm (1 ≤ q ≤ ∞) of Galerkin and collocation methods with
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basis functions from Sn,σ,μ. In Section 5 we present the corresponding
results for the Nyström method which can be regarded as the discrete
iterated collocation method based on the spline spaces Sn,σ,μ. Using
a somewhat different approach, it is possible to treat Galerkin and
collocation methods with splines which are not required to be zero over
the first interval [0, σn−1]; cf. [7] in case of the h-version.

2. Smoothness of solutions. We first recall some facts about the
solvability of Equation (1.1) in weighted Sobolev spaces; see [7]. Let A
be the Mellin convolution operator defined by

(2.1) Au(x) := (1 −K)u(x), Ku(x) :=
∫ 1

0

κ(x/y)u(y)y−1 dy.

For any interval J and 1 ≤ q ≤ ∞, Lq(J) will denote the usual Lebesgue
space on J with norm

||u;Lq(J)|| =
{∫

J

|u|q dx
}1/q

, q <∞;

||u;L∞(J)|| = ess sup
J

|u(x)|.

For any integer l ≥ 1, we further introduce the weighted Sobolev space

Lq,l(I) = {u ∈ Lq(I) : xjDju ∈ Lq(I), j = 1, . . . , l}

on the unit interval, which is equipped with the canonical norm

||u;Lq,l(I)|| =
∑

0≤j≤l

||xjDju;Lq(I)||, D = d/dx.

Let κ̃ be the Mellin transform of the kernel function of K:

κ̃(z) =
∫ ∞

0

xz−1κ(x) dx.

The function a(z) = 1 − κ̃(z) is called the symbol of the Mellin
convolution operator A. For fixed q, 1 ≤ q ≤ ∞, and � > 0, we
make the following set of assumptions on κ and a.
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(A1)
∫ ∞
0
x1/q−1|κ(x)| dx < ∞; a(z) �= 0, Re z = 1/q;

{arg a(1/q + iξ)}∞−∞ = 0.

(A2�)
∫ ∞
0
x1/q−1−�|κ(x)| dx <∞; a(z) �= 0, 1/q − � ≤ Re z < 1/q.

Here 1/q := 0 if q = ∞, and {arg ·}∞−∞ denotes the change in argument
of a(1/q + iξ) as ξ runs from −∞ to ∞.

Note that the Lq operator norm of K is bounded by the integral
appearing in (A1), and then the second condition of (A1) is equivalent
to the invertibility of A on Lq(I). Under the assumptions (A1) and
(A2�), u ∈ Lq(I) and Au ∈ L�

q(I) imply that u ∈ L�
q(I), where L�

q(I)
denotes the weighted space x�Lq(I). Note that the supremum of the
numbers � for which condition (A2�) is satisfied reflects the principal
term of the asymptotics of solutions to (1.1) at the origin; cf. [5].

The conditions (A1) are of course necessary for the stability in Lq(I)
of any projection method applied to (1.1). To obtain sufficient stability
conditions, we usually have to require some additional smoothness of
the kernel function:

(A3l)
∫ ∞

0

x1/q−1|xjDjκ(x)| dx <∞, j = 0, . . . , l.

Condition (A3l) implies that K is a bounded map of Lq(I) into Lq,l(I),
and together with (A1) this ensures the invertibility of A on Lq,l(I).

To derive exponential convergence rates for our spline approximation
methods, the framework of weighted Sobolev spaces does not suffice,
and following [10] we therefore introduce appropriate countable normed
spaces of real-analytic functions on (0, 1]. For 1 ≤ q ≤ ∞ and � ≥ 0,
let

B�
q (I) = {u ∈ C∞(0, 1] : ∃ d > 0 independent of j such that

||xj−�Dju;Lq(I)|| ≤ dj+1j!, j = 0, 1, . . . }.

The functions in B�
q (I) are characterized by different constants d. If

we wish to emphasize the dependence of a function u on d, we shall
write u ∈ B�

q,d(I).

In order to state our result on smoothness of solutions with respect
to the scale B�

q (I), we introduce the hypothesis

(A4�) κ|I ∈ B�
q (I).
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Theorem 2.1. Assume (A1) and (A4�), and suppose in addition
that (A2�) holds if � > 0. Then u ∈ Lq(I) and Au ∈ B�

q (I) imply
u ∈ B�

q (I).

To prove this, we need the following preliminary

Lemma 2.2. (i) If u ∈ Bo
q,d(I), then

||(xD)ju;Lq(I)|| ≤ (2ed)j+1j!, j = 0, 1, . . . .

(ii) Conversely, if

||(xD)ju;Lq(I)|| ≤ dj+1j!, j = 0, 1, . . . ,

then u ∈ Bo
q,2ed(I).

Proof. (i) Using the relation xjDj = xD(xD − 1) · · · (xD − j + 1),
one obtains

||xjDju;Lq(I)|| ≤
j∑

i=0

(
j
i

)
ji||(xD)j−iu;Lq(I)||

≤
j∑

i=0

(j!/i!)dj+1−iji ≤ (j + 1)dj+1jj .

Since by Stirling’s formula,

(2.2) jj ≤ (2π)−1/2ejj! ≤ ejj!, j = 0, 1, . . . ,

we finally get

||xjDju;Lq(I)|| ≤ (ed)j+1(j + 1)! ≤ (2ed)j+1j!.

(ii) Note that

(xD)j =
j∑

i=0

cjix
j−iDj−i
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with certain nonnegative numbers cji . Applying the operator xD to the
last relation, we obtain

cj+1
i = cji + (j + 1 − i)cji−1, cjj+1 = cj−1 := 0.

Now, by induction one can easily show that for any i and j

cji ≤
(
j
i

)
ji.

Therefore we obtain the estimate

||(xD)ju;Lq(I)|| ≤
j∑

i=0

(
j
i

)
ji||xj−iDj−iu;Lq(I)||

which implies the assertion as before.

Proof of Theorem 2.1. Step 1. We first verify the assertion in the
case � = 0. We have to show that, under the assumptions (A1) and
(A4o), u ∈ Lq(I) and Au ∈ Bo

q (I) imply u ∈ Bo
q (I). Thus, by Lemma

2.2, one may assume that for some d ≥ 1

(2.3)
||u;Lq(I)|| ≤ d,

||(xD)jAu;Lq(I)|| + ||(xD)jκ;Lq(I)|| ≤ dj+1j!, j = 0, 1, . . . .

Note that u ∈ Lq,j(I) for any j ≥ 1; cf. [7, Theorem 1.10]. Proceeding
by induction on j, we suppose that for some k ≥ 1 and d1 ≥ d

(2.4) ||(xD)ju;Lq(I)|| ≤ dj+1
1 j!, j < k.

To show (2.4) for j = k, we start with the relation

(2.5) xDKu(x) = KxDu(x) − κ(x)u(1), u ∈ Lq,1(I)

which follows by applying the operator xD to the integral

Ku(x) =
∫ 1

0

κ(x/y)u(y)y−1 dy =
∫ ∞

x

κ(z)u(x/z)z−1 dz.
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By iteration, (2.5) yields for any k ≥ 1
(2.6)
(xD)kAu = A(xD)ku+

∑
j<k

(xD)k−1−jκ(x)(xD)ju(1), u ∈ Lq,k(I).

Applying Sobolev’s embedding theorem for the interval [1/2, 1], one has
the estimate

|(xD)k−1u(1)| ≤ ε||(xD)ku;Lq(I)|| + c(ε)||(xD)k−1u;Lq(I)||

for any ε > 0 and k ≥ 1. Together with (2.3) and (2.6), this implies

||A(xD)ku;Lq(I)|| ≤||(xD)kAu;Lq(I)||
+ d{ε||(xD)ku;Lq(I)|| + c(ε)||(xD)k−1u;Lq(I)||}
+

∑
j≤k−2

dk−j(k − 1 − j)!{||(xD)j+1u;Lq(I)||

+ c(1)||(xD)ju;Lq(I)||}.

Choosing ε sufficiently small and using (2.3), (2.4) and the invertibility
of A in Lq(I), we obtain from the last inequality

||(xD)ku;Lq(I)|| ≤ cdk+1k! +
∑

j≤k−2

cdj+2
1 (j + 1)!dk−j(k − j − 1)!,

where c ≥ 1 does not depend on k. Using the estimates

(j + 1)!(k − j − 1)! ≤ (k − 1)!

and selecting d1 = 2cd2, we finally have

||(xD)ku;Lq(I)|| ≤ cdk+1k! +
∑

j≤k−2

cdj+2
1 dk−j(k − 1)! ≤ dk+1

1 k!.

This shows (2.4) for j = k and completes the proof of the assertion in
view of Lemma 2.2.

Step 2. Passing to the Mellin convolution operator A� = x−�Ax�

with kernel function x−�κ, the assertion in the general case may be
reduced to the situation considered in Step 1. Indeed, using the
relations (xD)jx−�κ = x−�(xD − ρ)jκ and the considerations in the
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proof of Lemma 2.2, κ ∈ B�
q (I) implies that x−�κ ∈ Bo

q (I). Further,
by assumption, A� is invertible on Lq(I) while A is invertible on Lq(I)
and L�

q(I). Thus it suffices to verify that v = x−�u ∈ Lq(I) and
A�v = x−�Au ∈ Bo

q (I) imply v ∈ Bo
q (I), which was already done in

Step 1.

Remark 2.3. Another analyticity assumption on κ, which is stronger
than (A4�) but usually satisfied in practice, is the following condition

(A5�)
∫ ∞

0

x1/q−1−�|xjDjκ(x)| dx ≤ dj+1j!, j = 0, 1, . . . .

This condition implies that

(2.7) K(L�
q(I)) ⊂ B�

q (I).

Indeed, for the Mellin convolution operator xj−�DjKx� with kernel
function xj−�Djκ, one then obtains the estimate

||xj−�DjKu;Lq(I)|| = ||xj−�DjKx�(x−�u);Lq(I)||

≤
( ∫ ∞

0

x1/q−1−�|xjDjκ(x)| dx
)
||x−�u;Lq(I)||

≤ cdj+1j!, j = 0, 1, . . . .

Notice that (2.7) together with the invertibility of A on Lq(I) and
L�

q(I) yields immediately the assertion of Theorem 2.1 if one replaces
condition (A4�) by (A5�) there. Moreover, the fact that (A5�) implies
(A4�) can now easily be verified if we choose in (2.5) a smooth function
u, vanishing in a neighborhood of x = 0 and such that u(1) �= 0, and
observe that xDKu−KxDu ∈ B�

q (I).

Example 2.4. Consider the operator (2.1) with kernel function
κ(x) = −χI(x)xβ, β > 0, where χI denotes the characteristic function
of the interval I (i.e., χI(x) = 1 if x ∈ I and χI(x) = 0 otherwise).
Then the symbol of A takes the form a(z) = 1 + (β + z)−1, and the
conditions (A1), (A2�) and (A4�) are satisfied for 1 ≤ q ≤ ∞ and
0 ≤ � < β + 1/q.

Example 2.5. Let κ(x) = 1/π(1+x2). The corresponding equation
(1.1) appears as a local model when the single layer potential is
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used to solve the exterior Neumann problem for Laplace’s equation
and the plane domain has a corner with right angle. Then a(z) =
1 − 1/2 sin(πz/2), and the assumptions (A1), (A2�), (A3l) and (A5�)
are fulfilled if 1 ≤ q < 3, 0 ≤ � < 1/q − 1/3 and l = 1, 2, . . . .

3. Auxiliary results from approximation theory. For 1 ≤ q ≤
∞ and k = 0, 1, . . . , let W k

q (I) denote the usual Sobolev space of order
k on the unit interval, where W o

q (I) = Lq(I). By Em(u;W k
q ) we denote

the error in the best approximation of the function u by polynomials
of degree ≤ m with respect to the norm in W k

q (I):

Em(u;W k
q ) = inf {||u− ϕ;W k

q (I)|| : ϕ ∈ Pm}.

The following proposition, being a simple consequence of Jackson’s
theorem, is the key to the derivation of exponential convergence rates
for our spline approximation methods.

Proposition 3.1. We have

(i) Em(u;Lq) ≤ ck(1 +m)−k||Dku;Lq(I)||, u ∈W k
q (I), m+ 1 ≥ k;

(ii) Em(u;W 1
q ) ≤ ck+1(1 + m)−k||Dk+1u;Lq(I)||, u ∈ W k+1

q (I),
m ≥ k,

where c does not depend on u,m and k.

Proof. If k = 0, then the result is trivially true. Let k ≥ 1.

(i) By Jackson’s theorem

Em(u;Lq) ≤ c(1 +m)−1||Du;Lq(I)||,

and applying successively the relations

Em−j(Dju;Lq) ≤ c(1+m−j)−1Em−j−1(Dj+1u;Lq), j = 0, 1, . . .

and an elementary inequality, one obtains (see [12, Chapter 1.6])

Em(u;Lq) ≤ ck(kk/k!)(1 +m)−k||Dku;Lq(I)||.

Together with Stirling’s formula (cf. (2.2)), this yields the result.
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(ii) By (i) there exists a polynomial ψ ∈ Pm−1 such that

||Du− ψ;Lq(I)|| ≤ ckm−k||Dk+1u;Lq(I)||, m ≥ k ≥ 1,

and setting ϕ(x) =
∫ x

0
ψ(t) dt+ u(0), the last estimate implies

||u− ϕ;W 1
q (I)|| ≤ c1||D(u− ϕ);Lq(I)|| ≤ c1c

km−k||Dk+1u;Lq(I)||,

where c, c1 only depend on q.

Let Rm be the orthogonal projection of L2(I) onto Pm. To inves-
tigate the Lq convergence of spline Galerkin methods, we need the
following simultaneous approximation result.

Proposition 3.2. For any u ∈W k+1
q (I), 1 ≤ q ≤ ∞ and m ≥ k,

||(1 −Rm)u;Lq(I)|| ≤ ck+1(1 +m)−k||Dk+1u;Lq(I)||,

where c is independent of u,m and k.

Proof. 1. Let 1 ≤ q ≤ 2. Then, for any ϕ ∈ Pm, the estimate

||(1 −Rm)u;Lq(I)|| ≤ ||(1 −Rm)u;L2(I)||
≤ ||u− ϕ;L2(I)|| ≤ c1||u− ϕ;W 1

q (I)||

holds, where c1 only depends on q. Here we have used Sobolev’s
embedding theorem. Now it suffices to apply Proposition 3.1 (ii).

2. If 2 ≤ q ≤ ∞, we have for any ϕ ∈ Pm

||(1 −Rm)u;Lq(I)|| ≤ ||u− ϕ;Lq(I)|| + ||Rm(u− ϕ);Lq(I)||
≤ ||u− ϕ;Lq(I)|| + c1(1 +m)1−2/q||u− ϕ;Lq(I)||
≤ (1 + c1)(1 +m)1−2/q||u− ϕ;Lq(I)||,

where c1 is independent of u, ϕ and m and the second inequality is a
consequence of [14, Theorem 3.3]. It remains to apply Proposition 3.1
(i).
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To the Chebyshev nodes on I

(3.1) ξj = ξ
(m)
j :=

1
2

{
1 + cos

(2j + 1)π
2(m+ 1)

}
, j = 0, . . . ,m,

we now associate the corresponding Lagrange interpolatory projection
Lm onto Pm. The following result is needed in the convergence analysis
of spline collocation methods and is the analogue of the preceding
proposition.

Proposition 3.3. For any u ∈W k+1
q (I), 1 ≤ q ≤ ∞ and m ≥ k,

||(1 − Lm)u;Lq(I)|| ≤ ck+1(1 +m)−k||Dk+1u;Lq(I)||,

where c does not depend on u,m and k.

Proof. 1. Let q <∞. By a theorem of Erdös and Feldheim (cf. [16,
Chapter 14.3]), we have

||Lmu;Lq(I)|| ≤ c(q)||u;L∞(I)||

for all m ∈ N and all continuous functions u on [0, 1]. Utilizing
Sobolev’s embedding theorem, we thus obtain for any ϕ ∈ Pm

||(1 − Lm)u;Lq(I)|| ≤ ||u− ϕ;Lq(I)|| + ||Lm(u− ϕ);Lq(I)||
≤ (1 + c(q))||u−ϕ;L∞(I)|| ≤ c1(q)||u−ϕ;W 1

q (I)||

and it suffices to apply Proposition 3.1 (ii).

2. Let q = ∞. By a theorem of Bernstein (see [13, Chapter 3.3.1]),
the L∞ operator norm of Lm is bounded by c1(1 + log(1 +m)). Now
we obtain as before

||(1 − Lm)u;L∞(I)|| ≤ c1(1 + log(1 +m))||u− ϕ;L∞(I)||

for any ϕ ∈ Pm, and Proposition 3.1 (i) completes the proof.

We now introduce the spaces of piecewise polynomials on geometric
meshes occurring in the h-p-version of spline approximation methods.
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For any n ∈ N and fixed σ ∈ (0, 1), we first define the geometric mesh
Δn = Δn,σ = {xi : 0 ≤ i ≤ n} on I, where

(3.2) xi = x
(n)
i = σn−i, i = 1, . . . , n; xo = 0.

Let Ii = (xi−1, xi), hi = xi − xi−1, where the upper index n is omitted
for convenience. To the mesh Δn,σ and a fixed parameter μ > 0, we
then associate the spline space

(3.3) Sn = Sn,σ,μ := {u ∈ L∞(I) : u|I1 = 0, u|Ii
∈ P[μn], i ≥ 2}

which corresponds to a uniform degree distribution on the subintervals
of Δn. Sometimes we also consider the case of linear degree distribution

(3.4) Slin
n,σ,μ := {u ∈ L∞(I) : u|I1 = 0, u|Ii

∈ P[μi], i ≥ 2}.

The following theorem is the crucial approximation property of Sn;
for q = 2 it is of course a special case of the two-dimensional results
obtained in [10]. Let Pn denote the orthogonal projection of L2(I) onto
Sn,σ,μ.

Theorem 3.4. Let u ∈ B�
q (I), 1 ≤ q ≤ ∞ and � > 0. Then

(3.5) ||(1 − Pn)u;Lq(I)|| ≤ ce−bn,

where the constants c and b do not depend on n.

Proof. Step 1. On the first subinterval (0, x1) of the mesh Δn, we
have

(3.6) ||u;Lq(I1)|| ≤ σ(n−1)�||x−�u;Lq(I1)|| ≤ c1σ
n�.

Here and in the sequel c, c1, . . . denote various constants not depending
on n and μ.

Step 2. Next we prove the estimate

(3.7) ||u− Pnu;Lq(x1, 1)|| ≤ c1σ
nμ/c

in the case q = 2. In order to do so, we choose a polynomial ϕi on
each subinterval Ii, i ≥ 2, such that according to Proposition 3.1 (i)
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(with m = [μn] and k = [νn], 0 < ν < μ) and the scaling argument,
the estimate
(3.8)
||u− ϕi;L2(Ii)|| ≤ {c2hi/(1 + [μn])}[νn]||D[νn]u;L2(Ii)||

≤ {c2hi/xi−1(1 + [μn])}[νn]x�
i ||x[νn]−�D[νn]u;L2(Ii)||

holds. Here c2 is also independent of i and ν, and ν will be chosen
sufficiently small later on. Since hi/xi−1 = (1 − σ)/σ (cf. (3.2)) and
u ∈ B�

2(I), the last expression in (3.8) can be bounded by

{c3/(1 + [μn])}[νn]x�
i [νn]!.

Therefore we obtain from (3.8)

(3.9)

{∑
i≥2

||u− ϕi;L2(Ii)||2
}1/2

≤ c4{c3/(1 + [μn])}[νn][vn]!

≤ c4

(
c3

1 + [νn]
1 + [μn]

)[νn]

since [νn]!(1 + [νn])−[νn] ≤ 1. Choosing now ν = μ/c with sufficiently
large c in (3.9), we get (3.7) for q = 2. Indeed, if c = 2c3/σ
and μn/c ≥ 1, the last expression in (3.9) can be dominated by
c4σ

[νn] ≤ cνn
1 , whereas for all indices n with μn/c < 1 it can be bounded

by c4 ≤ c2σ
νn.

Step 3. We finally verify (3.7) for arbitrary q. Then (3.6) and
(3.7) obviously imply estimate (3.5). Arguing as before, but applying
Proposition 3.2 instead of Proposition 3.1 (i), we get for i ≥ 2

(3.10) ||u− Pnu;Lq(Ii)|| ≤ c3{c3/(1 + [μn])}[νn]x�
i (1 + [νn])!.

By virtue of the obvious estimate (1 + [νn])!(1 + [νn])−[νn] ≤ 1, this
yields again

||u− Pnu;Lq(x1, 1)|| ≤ c4

(
c3

1 + [νn]
1 + [μn]

)[νn]

,

hence the result.
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Remark 3.5. Let N be the number of degrees of freedom (i.e., the
dimension) of Sn,σ,μ. Then N ≤ μn2, i.e., n ≥

√
N/μ, and (3.6) and

(3.7) imply the estimate

(3.11) ||(1 − Pn)u;Lq(I)|| ≤ c1{σ�
√

N/μ + σ
√

Nμ/c} ≤ c2e
−b

√
N ,

where c, c1 and c2 do not depend on N and μ, while b is independent
of N but depends on μ. Note that a somewhat more precise estimate
for q = 2 and a discussion of the optimal choice of μ and σ can be
found in [10]. The starting point there is the more precise version of
Proposition 3.1 (i)

Em(u;L2)2 ≤ (m− k + 1)!
(m+ k + 1)!

||Dku;L2(I)||2, m+ 1 ≥ k

which is shown by approximating u by the Legendre polynomials.

Remark 3.6. If Pn denotes the orthogonal projection of L2(I) onto
Slin

n,σ,μ (cf. (3.4)), then the assertion of Theorem 3.4 only holds, in
general, if μ is sufficiently large. Indeed, instead of estimate (3.10),
one obtains from Proposition 3.2 that

||u− Pnu;Lq(Ii)|| ≤ c3x
�
i {c3/(1 + [μi])}i(1 + i)!, i ≥ 2,

which gives

||u− Pnu;Lq(Ii)|| ≤ c4{c3σ−�(1 + i)/(1 + [μi])}iσ�n ≤ c42−iσ�n

if μ is large enough. These estimates yield

||u− Pnu;Lq(x1, 1)|| ≤ c4σ
�n,

and consequently

(3.12) ||(1 − Pn)u;Lq(I)|| ≤ c1σ
�n ≤ c2e

−b
√

N/μ,

where N = dimSlin
n,σ,μ and c1, c2, b are independent of n,N and μ. This

corresponds to the result in [10] for q = 2.
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Finally, to the Chebyshev nodes (3.1) and the mesh Δn,σ we associate
the collocation points

xij = x
(n)
ij = xi−1 + ξjhi, (i, j) ∈ T ,

where T = {(i, j) : 2 ≤ i ≤ n, 0 ≤ j ≤ [μn]}. For any continuous
function u on (0, 1], define the interpolatory projection Qnu ∈ Sn,σ,μ

by

(3.13) (Qnu)(xij) = u(xij), (i, j) ∈ T .

To prove exponential convergence of spline collocation methods, we
need the following analogue of Theorem 3.4.

Theorem 3.7. If u ∈ B�
q (I), 1 ≤ q ≤ ∞ and � > 0, then

||(I −Qn)u;Lq(I)|| ≤ ce−bn,

where c and b are independent of n.

Proof. This follows as in Step 3 of the proof of Theorem 3.4, using of
course Proposition 3.3 in place of Proposition 3.2.

4. Stability and exponential convergence of Galerkin and
collocation methods. Let A = 1 − K be the Mellin convolution
operator defined in (2.1). For the approximate solution of Equation
(1.1), we first consider the h-p-version of spline Galerkin methods,
namely the Galerkin method with splines from Sn = Sn,σ,μ. The
Galerkin solution un ∈ Sn is defined by

(4.1) PnAun = un − PnKun = Pnf.

Theorem 4.1. (i) Assume (A1), and suppose additionally that
condition (A32) holds if q �= 2. Then the Galerkin method (4.1) is
stable in Lq(I), i.e.,

(4.2) ||PnAun;Lq(I)|| ≥ c||un;Lq(I)||, un ∈ Sn, n ≥ n0,
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where n0 is large enough and c does not depend on un and n.

(ii) Under the conditions of (i) and the assumptions f ∈ B�
q (I),

� > 0, (A2�) and (A4�), the Galerkin solution un of (4.1) converges
exponentially to the exact solution u of (1.1) in Lq(I), i.e.,

(4.3) ||u− un;Lq(I)|| ≤ ce−b
√

N ,

where N is the number of degrees of freedom, c and b are some constants
not depending on N (if μ is fixed).

Note that the Galerkin method (4.1) is stable in L2(I) under the
minimal (invertibility) assumptions on A, whereas in our approach the
stability in Lq(I), q �= 2, requires some additional smoothness of the
kernel function. The proof of Theorem 4.1 (i) is based on the stability
of the finite section method for (1.1). Consider the truncation operators

(4.4) πnu = χ(x1,1)u, x1 = x
(n)
1 = σn−1.

Lemma 4.2. If assumption (A1) is satisfied, then

(4.5) ||πnAπnu;Lq(I)|| ≥ c||πnu;Lq(I)||, u ∈ Lq(I), n ≥ n0,

where n0 is sufficiently large and c is independent of u and n.

Proof. Consider the map Φu(x) = e−x/qu(e−x) which is an isomor-
phism of Lq(I) onto Lq(0,∞). Then Φ(1−K)Φ−1 becomes the Wiener-
Hopf integral operator

1 −W, Wu(x) :=
∫ ∞

0

w(x− y)u(y) dy,

with kernel function w(x) = e−x/qκ(e−x) ∈ L1(−∞,∞). Now (4.5) is
a consequence of the stability of the finite section method for Wiener-
Hopf equations; see [8] for q <∞ and [1] for q = ∞, or [13].

Proof of Theorem 4.1. (i) For any un ∈ Sn, the relation

(4.6) Pn(1 −K)un = πn(1 −K)πnun + πn(1 − Pn)Kun
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holds. Therefore, by virtue of (4.5), for the proof of estimate (4.2), it
is sufficient to verify that

(4.7) ||πn(1 − Pn)K||q → 0, n→ ∞,

where || · ||q denotes the operator norm on Lq(I). We first consider the
case q = 2.

Let u ∈ L2(I). In the sequel c, c1, . . . denote various constants not
depending on u, n and i. Applying Proposition 3.1 (i) (with k = 1) and
the scaling argument, we obtain for i ≥ 2
(4.8)
||(1 − Pn)Ku;L2(Ii)|| ≤ chi(1 + [μn])−1||DKu;L2(Ii)||
≤ c(hi/xi−1)(1 + [μn])−1||xDKu;L2(Ii)|| ≤ c1n

−1||xDKu;L2(Ii)||.

If we assume, in addition, that K is a continuous map of L2(I) into
L2,1(I), then (4.8) implies that

||πn(1 − Pn)Ku;L2(I)|| ≤ c1n
−1||xDKu;L2(I)|| ≤ c2n

−1||u;L2(I)||

which proves (4.7) for q = 2. Now we observe that, for any ε > 0,
K may be approximated by a convolution operator Kε with kernel
κε satisfying condition (A31) such that ||K − Kε||2 ≤ ε. Since the
projections Pn are, of course, uniformly bounded on L2(I), it suffices
to verify the L2 stability of the Galerkin method for 1 − Kε if ε is
sufficiently small.

Next we prove (4.7) for arbitrary q. Applying Proposition 3.2 (with
k = 1) and the scaling argument, we get for any u ∈ Lq(I) and i ≥ 2

||(1 − Pn)Ku;Lq(Ii)|| ≤ ch2
i (1 + [μn])−1||D2Ku;Lq(Ii)||

≤ c(hi/xi−1)2(1 + [μn])−1||x2D2Ku;Lq(Ii)||
≤ c1n

−1||x2D2Ku;Lq(Ii)||.

Since K is a bounded operator of Lq(I) into Lq,2(I) by condition (A32),
it follows from the last estimate that

(4.9)
||πn(1 − Pn)Ku;Lq(I)|| ≤ c1n

−1||x2D2Ku;Lq(I)||
≤ c2n

−1||u;Lq(I)||

which completes the stability proof.
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(ii) By assumption and Theorem 2.1, the exact solution u of (1.1)
belongs to B�

q (I). Therefore, in view of Theorem 3.4 and Remark 3.5,
it is now sufficient to verify the estimate

||u− un;Lq(I)|| ≤ c||(1 − Pn)u;Lq(I)||, n ≥ n0.

Since ||u − un;Lq(I)|| ≤ ||(1 − Pn)u;Lq(I)|| + ||Pnu − un;Lq(I)|| and
the stability estimate (4.2) implies

||Pnu− un;Lq(I)|| ≤ c||PnA(1 − Pn)u;Lq(I)||, n ≥ n0,

it remains to verify that the last expression is bounded by c||(1 −
Pn)u;Lq(I)||. For q = 2, this is obvious because of the uniform
boundedness of Pn. In the general case, we have by (4.9)

||PnA(1 − Pn)u;Lq(I)|| ≤ ||πnK(1 − Pn)u;Lq(I)||
+ ||πn(1 − Pn)K(1 − Pn)u;Lq(I)||

≤ c||(1 − Pn)u;Lq(I)||

which completes the proof.

We now consider the h-p-version of spline collocation methods. We
seek an element un ∈ Sn such that

(4.10) QnAun = un −QnKun = Qnf,

where Qn denotes the interpolatory projection defined in (3.13). The
following result is the analogue of Theorem 4.1 for the collocation
method. Its proof follows the same line as there, using of course Propo-
sition 3.3 and Theorem 3.7 instead of Proposition 3.2 and Theorem 3.4.

Theorem 4.3 (i) Assume (A1) and (A32). Then the collocation
method (4.10) is stable in Lq(I), i.e., estimate (4.2) holds with Pn

replaced by Qn.

(ii) If, in addition, the assumptions f ∈ B�
q (I), � > 0, (A2�) and

(A4�) are satisfied, then the collocation method converges exponentially
in Lq(I), i.e., estimate (4.3) holds with the collocation solution un of
(4.10).
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Remark 4.4. For the approximation methods (4.1) and (4.10) with
basis functions from Slin

n,σ,μ (cf. (3.4)), the results of this section hold if
μ is sufficiently large; compare Remark 3.6 and the proof of Theorem
4.1. To derive stability of those methods, one has to use, for example,
the estimates

||(1 − Pn)Ku;L2(Ii)|| ≤ chi(1 + [μi])−1||DKu;L2(Ii)||, i ≥ 2

instead of (4.8).

Remark 4.5. In contrast to collocation methods based on piecewise
polynomials of fixed degree (cf. [4, 7]), for the h-p-version one does
not have so much freedom in the choice of collocation points. If we
take, for example, equidistant points ξj = ξ

(m)
j = j/m, j = 0, . . . ,m,

on the unit interval, then the L∞ operator norm of the corresponding
Lagrange interpolatory projection Lm grows exponentially as m → ∞
(cf., e.g., [11]) so that the results of Proposition 3.3 and Theorem 4.3
cannot be expected in this case. Selecting, however, ξ(m)

j as the Gauss-
Legendre points on I, one has the estimate (see [16, Chapter 14.4])

||Lmu;L∞(I)|| ≤ c
√
m||u;L∞(I)||, m = 1, 2, . . .

for any continuous function u on [0, 1], and defining Qn again by (3.13),
Theorem 4.3 holds with this choice of the collocation points xij . This
only requires a slight modification of the corresponding proofs.

5. Nyström methods. We finally study stability and exponential
convergence of a quadrature method which can be interpreted as the
discrete iterated version of the collocation method (4.10). To define
this method, consider the (m+ 1)-point interpolatory quadrature rule

(5.1)
∫ 1

0

v dx ∼
m∑

j=0

ω
(m)
j v(ξ(m)

j ) =
∫ 1

0

Lmv dx

with weights ωj = ω
(m)
j , j = 0, . . . ,m and the Chebyshev nodes

ξj = ξ
(m)
j introduced in (3.1). The following property which is

a consequence of a theorem of Fejer (cf. [12, Chapter 3.6.2]) is of
importance for our convergence analysis:

(5.2) ω
(m)
j ≥ 0 for all j and m.
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Let Qn be the interpolatory projection onto Sn,σ,μ defined in (3.13) via
the collocation points xij , (i, j) ∈ T . Then the composite quadrature
rule obtained by shifting (5.1) (with m = [μn]) to each subinterval Ii,
i ≥ 2, of the geometric mesh Δn,σ and summing over i ≥ 2 is

(5.3)
∫ 1

0

v dx ∼
∑

(i,j)∈T
ωjv(xij)hi =

∫ 1

0

Qnv dx.

Using (5.3) we approximate the integral operator K in (2.1) by

(5.4) Knu(x) =
∑

(i,j)∈T
ωj l(x, xij)u(xij)hi, x ∈ I,

where l(x, y) := y−1κ(x/y). The Nyström solution un(x) to the integral
equation (1.1) is now defined by

(5.5) (1 −Kn)un(x) = f(x), x ∈ I.

Note that (5.5) is a linear system in the values un(xij), (i, j) ∈ T , and
then f(x) +Knun(x) may be computed giving un(x) for all x ∈ I.

To derive a stability result for (5.5), we need the following technical
lemmas.

Lemma 5.1. If v ∈W k+1
1 (I) and m ≥ k, then

(5.6)
∣∣∣∣
∫

I

v dx−
m∑

j=0

ω
(m)
j v(ξ(m)

j )
∣∣∣∣ ≤ ck+1(1 +m)−k||Dk+1v;L1(I)||,

where c is independent of v, k and m.

Proof. For any ϕ ∈ Pm, the left-hand side of (5.6) can be estimated
by

∣∣∣∣
∫

I

(v − ϕ) dx
∣∣∣∣ +

∣∣∣∣
m∑

j=0

ω
(m)
j (v − ϕ)(ξ(m)

j )|

≤ ||v − ϕ;L1(I)|| +
m∑

j=0

ω
(m)
j ||v − ϕ;L∞(I)|| ≤ c||v − ϕ;W 1

1 (I)||.
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Here we have used (5.2) and Sobolev’s embedding theorem. Now the
assertion follows from Proposition 3.1 (ii).

Lemma 5.2. Under the condition (A32), we have

||(Kπn−Kn)u;Lq(I)|| ≤ cn−1||u;Lq,2(I)||, u ∈ Lq,2(I), n ∈ N,

where c does not depend on u and n and πn denotes the truncation
operator (4.4).

Proof. Applying Lemma 5.1 (with k = 1) and the scaling argument,
we obtain for any u ∈ Lq,2(I), n ∈ N and i ≥ 2

(5.7)
∣∣∣∣
∫

Ii

l(x, y)u(y) dy −
[μn]∑
j=0

ωj l(x, xij)u(xij)hi

∣∣∣∣
≤ c1(1 + [μn])−1h2

i ||D2
yl(x, y)u(y);L1(Ii)||

≤ c2n
−1||y2D2

yl(x, y)u(y);L1(Ii)||.

Furthermore, the relation

y2D2
yl(x, y)u(y) =

∑
0≤r≤2

lr(x, y)yrDru(y)

holds, where lr(x, y) = y−1κr(x/y) and the functions κr satisfy the
first condition of (A1). From (5.7) we obtain for all x ∈ I and n

|(Kπn −Kn)u(x)| ≤ c2n
−1

∑
0≤r≤2

∫ 1

0

|lr(x, y)| |yrDru| dy

which implies the result by passing to Lq norms.

We are now in a position to prove stability of the Nyström method
in the weighted Sobolev spaces Lq,2(I).

Theorem 5.3. Assume (A1) and (A34). Then the Nyström method
(5.5) is stable in Lq,2(I), i.e.,

(5.8) ||(1−Kn)u;Lq,2(I)|| ≥ c||u;Lq,2(I)||, u ∈ Lq,2(I), n ≥ n0,
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where n0 is sufficiently large and c does not depend on u and n.

Proof. Step 1. First we verify that the operators 1 −Kπn are stable
in Lq,2(I). Lemma 4.2 implies the stability of these operators in Lq(I)
since one has the matrix representation

1 −Kπn =
(
πn(1 −K)πn 0
−πnK(1 − πn) 1

)

with respect to the direct sum Lq(I) = πn(Lq(I)) ⊕ (1 − πn)(Lq(I)).
Moreover, for j = 1, 2,

||xjDju;Lq(I)|| ≤ ||xjDj(1 −Kπn)u;Lq(I)|| + ||xjDjKπnu;Lq(I)||

and by (A32) and the stability of 1 −Kπn in Lq(I)

||xjDjKπnu;Lq(I)|| ≤ c||πnu;Lq(I)|| ≤ c||u;Lq(I)||
≤ c1||(1 −Kπn)u;Lq(I)||.

These estimates obviously yield (5.8) with Kπn in place of Kn.

Step 2. We show that for any n ∈ N, u ∈ Lq,2(I) and j = 0, 1, 2, the
estimate

(5.9) ||xjDj(Kπn −Kn)u;Lq(I)|| ≤ cn−1||u;Lq,2(I)||

holds. Then the stability of (5.5) follows from that of 1 − Kπn by
small perturbation with respect to the Lq,2 operator norm. Note that
Lemma 5.2 implies (5.9) if j = 0. For j = 1, 2, we use the fact
that K(j) = xjDjK is the Mellin convolution operator with kernel
xjDkκ and that K(j)

n = xjDjKn is the approximate operator (5.4)
corresponding to K(j). Since, by (A34), K(j) satisfies condition (A32),
it suffices to apply Lemma 5.2 to those operators.

Remark 5.4. Using the more traditional approach of showing that
||(Kπn − Kn)Kn||∞ → 0 as n → ∞, one can also prove the stability
of (5.5) in L∞(I); cf. [9] in the case of the h-version of the Nyström
method.

We are now ready to state our result on exponential convergence of
the Nyström method.
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Theorem 5.5. Assume f ∈ B�
q (I), � > 0, (A1), (A2�), (A4�) and

(A5o). Then the Nyström method converges with the error bound (4.3)
where un denotes the solution of (5.5).

Proof. Using the relation (1 −Kn)un = (1 −K)u and Theorem 5.3,
we obtain

||u− un;Lq,2(I)|| ≤ c||(1 −Kn)(u− un);Lq,2(I)||
= c||(K −Kn)u;Lq,2(I)||.

Recall that condition (A5o) is stronger than (A34). Furthermore, by
assumption and Theorem 2.1, we have u ∈ B�

q (I) so that it remains to
apply Lemma 5.7 below to the operators xjDj(K − Kn), j = 0, 1, 2,.

Remark 5.6. Under the conditions of the preceding theorem, we
obtain the exponential convergence rate

||u− un;Lq,j(I)|| ≤ ce−bn, c, b independent of n,

for any j ∈ N. Indeed, if we apply the operators xjDj to the relation

u− un = Ku−Knun = (K −Kn)u+Kn(u− un),

we obtain with the notation in Step 2 of the proof of Theorem 5.3

(5.10) xjDj(u− un) = (K(j) −K(j)
n )u+K(j)

n (u− un),

where the kernel of K(j) also satisfies the assumption (A5o). Lemma
5.7 below yields the exponential rate for the first term in (5.10). For
the second term, this is a consequence of Theorem 5.5 and the uniform
boundedness of K(j)

n , the latter following from Lemma 5.2 applied to
K(j) and the continuity of K(j) : L2(I) → L2,k(I) for any j and k.

Lemma 5.7. If the assumptions u ∈ B�
q (I), � > 0 and (A5o) are

fulfilled, then

(5.11) ||(K −Kn)u;Lq(I)|| ≤ ce−bn,
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where the constants c and b do not depend on n.

Proof. We proceed similarly as in the proof of Theorem 3.4. First we
have

||K(1 − πn)u;Lq(I)|| ≤ c||(1 − πn)u;Lq(I)||
≤ cσ(n−1)�||x−�u;Lq(I)|| ≤ cσn�.

Here and in the sequel c and b denote various constants which are
independent of n. It remains to show the estimate

(5.12) ||(Kπn −Kn)u;Lq(I)|| ≤ cσbn.

Applying Lemma 5.1 (with k = [νn], m = [μn]) and the scaling
argument, we obtain for all i ≥ 2 and ν ∈ (0, μ)

(5.13)
∣∣∣∣
∫

Ii

l(x, y)u(y) dy −
[μn]∑
j=0

ωj l(x, xij)u(xij)hi

∣∣∣∣
≤ c{c/(1 + [μn])}[νn]h

1+[νn]
i ||D1+[νn]

y l(x, y)u(y);L1(Ii)||
≤ c{c/1 + [μn])}[νn]x�

i ||y1+[νn]−�D1+[νn]
y l(x, y)u(y);L1(Ii)||.

Define the functions κj and lj by

(5.14) y−1κj(x/y) = lj(x, y) = yjDj
yl(x, y).

Recall that y−1κ(x/y) = l(x, y). Then

(5.15)
∫ ∞

0

x1/q−1|κj(x)| dx ≤ dj+1j!, j = 0, 1, . . . ,

where d is independent of j. This follows easily from condition (A5o),
using Lemma 2.2 and the relations (xD)j = (Dx− 1)j ,

(Dyy)j l(x, y) = (−1)jy−1((xD)jκ)(x/y).

Now let Kj be the Mellin convolution operator with kernel function

{c/(1 + [μn])}[νn]|κj |(x),



MELLIN CONVOLUTION EQUATIONS 71

and define the functions vj by

vj = 0 on I1, vj(x) = x�
i |xj−�Dju(x)| on Ii, i ≥ 2.

Since u ∈ B�
q (I), we then have

(5.16) ||vj ;Lq(I)|| ≤ dj+1j!, j = 0, 1, . . . .

Furthermore, with the notation of (5.14)

ym−�Dm
y l(x, y)u(y) =

m∑
j=0

(
m
j

)
lj(x, y)ym−j−�Dm−ju(y)

for any m, and combining the estimates (5.13) we can write

|(Kπn−Kn)u(x)| ≤
1+[νn]∑

j=0

(
1 + [νn]

j

)
Kjv1+[νn]−j(x), x ∈ I.

Using (5.15) and (5.16), this implies

(5.17) ||(Kπn −Kn)u;Lq(I)||

≤
1+[νn]∑

j=0

c

{
c

1 + [μn]

}[νn] ( 1 + [νn]
j

)
dj+1j!d2+[νn]−j(1 + [νn] − j)!

≤ c{c/(1 + [μn])}[νn](2 + [νn])! ≤ c{c(1 + [νn])/(1 + [μn])}[νn].

Here we have used the estimate

(2 + [νn])!/(1 + [νn])[νn] ≤ 21+[νn].

As in the proof of Theorem 3.4, the last quantity in (5.17) can be
estimated by cσbn if ν ∈ (0, μ) is chosen sufficiently small. This
completes the proof of (5.12).

Remark 5.8. All results of this section extend with the same proofs
to the case where the collocation points xij are defined by means of the
Gauss-Legendre nodes ξ(m)

j on I, since the corresponding weights ω(m)
j

satisfy condition (5.2) again.
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Finally we note that the results on the Nyström method remain valid
if we choose a composite quadrature rule based on a linear degree
distribution on the mesh Δn,σ (i.e., a suitable interpolatory projection
Qn onto Slin

n,σ,μ is taken in (5.3)) and if μ is sufficiently large.

Acknowledgment. The author is grateful to the referees for valu-
able suggestions.
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