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COUNTEREXAMPLES FOR ABSTRACT
LINEAR VOLTERRA EQUATIONS

WOLFGANG DESCH AND JAN PRÜSS

ABSTRACT. The following objects exist:

1) An abstract Volterra equation in a Banach space with an
exponentially bounded scalar kernel, such that the resolvent
exists but is not exponentially bounded.

2) An analytic resolvent operator corresponding to a self
adjoint negative definite operator in a Hilbert space, and a
scalar kernel a, such that 1/|â| grows faster than polynomially.

3) An analytic function F defined on the right half plane
and satisfying |F (s)| ≤ M/|s| on the right half plane, such
that F is not the Laplace transform of an L∞ function on the
positive half axis.

1. Introduction. This paper deals with the resolvent operator of
an abstract Volterra integral equation

(1.1) u(t) =
∫ t

0

a(t − s)Au(s) ds + f(t).

Here A is an unbounded linear operator in some Banach space X,
f is an X-valued function, and a is a scalar valued function. By a
resolvent operator we mean a strongly continuous family {S(t) : t ≥ 0}
of bounded linear operators in X satisfying

S(t)Ax = AS(t)x for all x ∈ dom (A), t ≥ 0;

S(t)x = x + A

∫ t

0

a(t − s)S(s)x ds for all x ∈ X, t ≥ 0.

The solution to (1.1) is then given at least formally by

u(t) =
d

dt

∫ t

0

S(t − s)f(s) ds.
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The existence of a resolvent guarantees in some sense existence and
uniqueness of solutions to (1.1).

We say that the resolvent operator is analytic of type (ω, θ), if it
exists and it depends analytically on t in a sector Σ(0, θ), where

Σ(γ, θ) = {s ∈ C : | arg(s − γ)| < θ},

and if for each θ1 < θ, ω1 > ω, and all t ∈ Σ(ω1, θ1) the resolvent S(t)
satisfies an exponential estimate

||S(t)|| ≤ Meω1�(t).

Similar to analytic semigroups, analytic resolvent operators exhibit
particularly strong smoothness properties in time and space.

Abstract Volterra equations and their resolvents have been thor-
oughly investigated throughout the last two decades. For an exposition
of the theory and a bibliography we refer to the forthcoming monograph
[8]. The aim of this paper is to fill some of the little gaps in the theory
by negative answers to the following conjectures:

i) If a is Laplace transformable, and (1.1) admits a resolvent
operator, the resolvent operator is exponentially bounded.

ii) If (1.1) admits an analytic resolvent, then 1/â grows at most
polynomially in the right half plane.

iii) If F is analytic and sF (s) is bounded in the right half plane, then
F is the Laplace transform of an L∞ function.

Each of the following sections will be devoted to one item, with a
short explanation of its significance for the theory and disproving the
conjecture.

2. Exponentially unbounded resolvent. We say that a resolvent
S to (1.1) is exponentially bounded if there exist M > 0 and ω such
that for all t ≥ 0 the following estimate holds:

||S(t)|| ≤ Meωt.

Exponentially bounded resolvents are nice, since they can be tackled
by Laplace transform methods. For instance, the Volterra equation
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version of the Hille-Yosida theorem from [6] (see also [8, Theorem
1.3]) characterizes the equations that admit an exponentially bounded
resolvent.

Not every resolvent needs to be exponentially bounded. This is what
one expects for kernels a which do not satisfy

(2.1)
∫ ∞

0

e−γt|a(t)| dt < ∞

with any γ > 0. It is also known by a counterexample for integrable
operator valued kernels [4]. By now it has been open whether the
resolvent corresponding to a Laplace transformable scalar kernel has to
be exponentially bounded, if it exists. We close this gap by the answer
“no.”

Proposition 2.1. There exists a scalar function a ∈ C∞([0,∞),C)∩
L1([0,∞),C) with a(0) = 1, such that for any unbounded infinitesimal
generator A of a C0-semigroup in some Banach space the resolvent S
to (1.1) exists but is not exponentially bounded.

The idea of the proof somewhat hidden in the abstract framework
of Baire’s Category Theorem resembles the proof in [4]. The kernel
starts out nice, and as time passes by, worse and worse parts are
switched on. While we leave the kernel integrable, the frequencies
increase rapidly, so that the derivative of the kernel is far from being
exponentially bounded. (Otherwise one could prove an exponential
bound for the resolvent, since it can be obtained by semigroup methods,
e.g., [4].) Let us now do the technicalities. The proof is based on the
following lemma.

Lemma 2.1. There exists a function a ∈ C∞([0,∞),C)∩
L1([0,∞),C) with a(0) = 1 whose Laplace transform â admits zeros
with arbitrary large real part.

Proof. Let

X = {a ∈ C∞([0,∞),C) ∩ L1([0,∞),C) : a(0) = 1}
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topologized by the metric

d(a1, a2) =
∫ ∞

0

|a1(t) − a2(t)| dt +
1

1 + inf {s ∈ [0,∞] : a1(s) �= a2(s)} .

We claim that X is a complete metric space. Evidently, d(a1, a2) ≥ 0
with equality if and only if a1 = a2, and d(a1, a2) = d(a2, a1). Also, the
triangle inequality is obvious for the integral part, for the other term
we have even better

1
1 + inf {s ∈ [0,∞] : a1(s) �= a3(s)}

≤ max
(

1
1 + inf {s ∈ [0,∞] : a1(s) �= a2(s)} ,

1
1 + inf {s ∈ [0,∞] : a2(s) �= a3(s)}

)
.

Notice that convergence, an → a in this metric, means that an → a
in L1 and for each compact interval [0, T ] and sufficiently large n,
an|[0,T ] = a|[0,T ]. A Cauchy sequence an in X is a fortiori a Cauchy
sequence in L1, so that it admits an L1-limit a. On each compact
interval, the sequence is constant after finitely many n, so that a(t) =
an(t) throughout that interval. Thus a ∈ C∞ and an → a in X. This
shows completeness.

For M > 0, we define

XM = {a ∈ X : â(s) �= 0 for all 	(s) > M}.

The assertion of the lemma states that

X �=
∞⋃

M=1

XM .

We assume the contrary and achieve a contradiction.

We prove first that XM is closed. Let a ∈ X\XM ; thus there is
some s0 with 	(s0) > M and â(s0) = 0. As a(0) = 1, the Laplace
transform â cannot vanish identically, and by the principle of isolated
zeros, there is a circle B around s0 entirely contained in the half plane
{s : 	(s) > M} and some δ > 0 so that |â(s)| > δ on the boundary of
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B. If an → a in X, by the L1-convergence, ân → â uniformly on B, so
that for sufficiently large n, |ân(s) − â(s)| ≤ |â(s)|/2 on the boundary
of B. By Rouché’s Theorem, ân admits a zero sn in the interior of B,
in particular, 	(sn) > M . Consequently, an /∈ XM . This shows that
XM is closed.

Assuming X = ∪∞
M=1XM , we invoke Baire’s theorem and obtain that

some XM contains an open ball with center a. This means that there
are some ε > 0 and T > 0 such that any b ∈ X satisfying

(2.2) b(t) = a(t) for t ∈ [0, T ],
∫ ∞

0

|b(t) − a(t)| dt < ε,

is contained in XM .

We start out constructing some c ∈ L1 satisfying (2.2), but such that
ĉ admits a zero s0 with 	(s0) = 2M . We set

c(t) =
{

a(t) if t ≤ 2T ,
a(t) + αe(2T−t)+iνt if t > 2T .

The numbers α and ν are still to be chosen. As
∫ ∞

0

|c(t) − a(t)| dt = |α|,

we will take care that |α| < ε. Moreover,

ĉ(2M + iν) − â(2M + iν) =
αe−4MT

1 + 2M
.

Thus ĉ(2M + ν) = 0 if

α = α(ν) := −(2M + 1)e4MT â(2M + iν).

As â(2M + iν) → 0 for ν → ∞, we may choose some ν such that the
corresponding α(ν) < ε. This completes the construction of c.

Since C∞ is dense in L1, we may construct a sequence bn in X such
that bn → c in L1 and bn(t) = c(t) for t ≤ T . By the argument used
above to show closedness of XM , we see that for sufficiently large n,
the Laplace transform, b̂n, admits a zero sn with 	(sn) > M , so that
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bn /∈ XM . Moreover, for large n, bn satisfies (2.2). This yields the
desired contradiction, and Lemma 2.1 is proved.

Proof of Proposition 2.1. We take the function a from Lemma 2.1.
Let A be the unbounded infinitesimal generator of an arbitrary C0-
semigroup in some Banach space. By the smoothness of a and since
a(0) = 1, we may rewrite (1.1) in differentiated form

(2.3) u′(t) = Au(t) +
∫ t

0

a′(t − s)Au(s) ds.

It is standard [8, Corollary 1.4] that (2.3) admits a resolvent operator
S(t). If S is exponentially bounded, one knows [8, Theorem 1.3] that
â(s) �= 0 for s with sufficiently large real part. This contradicts the
construction of a according to Lemma 2.1.

3. Lower bounds for the transform of the kernel. This section
deals with bounds for 1/â(s) when (1.1) generates an analytic resolvent
operator. To understand why such estimates are important, let us
review some facts about spatial regularity.

If A generates an analytic semigroup S(t) in some Banach space,
for each t > 0 and each initial vector x, S(t)x is contained in
∩∞

k=1dom (Ak), which means infinite spatial smoothness in PDE ap-
plications. Moreover, there is an estimate

(3.1) ||AS(t)x|| ≤ M

t
eωt||x||.

This is no longer true for analytic resolvent operators. Let the resolvent
operator S(t) to (1.1) be analytic of type (ω0, θ0). It is discussed in [8,
Theorem 2.2] that in general S(t)x /∈ dom (A2). There is an estimate
analogous to (3.1), namely

(3.2) ||AS(t)|| ≤ Meωt(tβ + ec/tβ

)

where ω > ω0 and β > π/(2θ0). Compared to (3.1) this looks very
coarse. In fact, the estimate can be improved ([7, 8]) to

(3.3) ||AS(t)|| ≤ Meωt(1 + t−α),
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provided

(3.4)
∣∣∣∣ 1
â(s)

∣∣∣∣ ≤ c(|s − ω|α + 1)

with suitable c > 0, α > 0.

Unfortunately, the estimate available in general is much weaker (see
again [8, (2.19) in the Proof of Theorem 2.2]): Let θ < θ0 and ω > ω0,
pick

α ∈
(

1
1 + 2θ

π

, 1
)

.

Then there exists some constant c > 0 such that for all s ∈ Σ(ω, π/2+θ)

(3.5)
∣∣∣∣ 1
â(s)

∣∣∣∣ ≤ ec(1+|s−ω|α).

In this section we show that this estimate is in fact the best one to be
obtained in general. Before we construct a pertinent example, however,
we mention that (3.4) holds, roughly speaking, whenever generation of
an analytic resolvent can be proved without a very close look on the
structure of A:

Proposition 3.1. 1) Suppose that a is such that (1.1) admits
an analytic resolvent operator for each negative definite self-adjoint
operator A in any Hilbert space. Then there exist some M > 0, ω > 0,
and θ, ε ∈ (0, π/2) such that for all s ∈ Σ(ω, π/2 + θ)

(3.6)
∣∣∣∣ 1
â(s)

∣∣∣∣ ≤ M(|s − ω|1+2ε/π + 1).

2) Suppose that a is such that (1.1) admits an analytic resolvent
operator for each generator of an analytic semigroup A in any Hilbert
space. Then for each ε ∈ (0, π/2) there exist some M > 0, ω > 0, and
θ ∈ (0, π/2) such that (3.6) holds for all s ∈ Σ(ω, π/2 + θ).

Proof. The proof is the same for both cases. We pick a sufficiently
large Hilbert space, and a normal operator A whose spectrum is

σ(A) = C\Σ
(

0,
π

2
+ η

)
.
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For case (1) we have to pick η = π/2, while for case (2), η ∈ (0, π/2])
may be taken arbitrarily small. From the Hille-Yosida Theorem for
analytic resolvent operators [6], [8, Theorem 2.1], we infer that there
exist δ ∈ (0, π/2), ω ≥ 0, N > 0 such that for each s ∈ Σ(ω, π/2 + δ),

(3.7)
∥∥∥∥ 1

â(s)

(
1

â(s)
− A

)−1∥∥∥∥ ≤ N.

Since A is normal,

‖(λ − A)−1‖ =
1

dist (λ, σ(A))
.

Since σ(A) is a closed sector, (3.7) implies that there exists some
ε ∈ (0, η) such that for s ∈ Σ(ω, π/2 + δ),

1
â(s)

∈ Σ(0, π/2 + ε).

Put

g(z) =
(

1
â(ω + z1+2δ/π)

) 1
1+2ε/π

.

Identifying
z = (s − ω)

1
1+2δ/π

we see that g maps the right half plane into the right half plane.
According to a theorem by Carathéodory, Julia and Wolff [2, Theorem
6.23], there exists a finite limit

g(z)
z

→ c when |z| → ∞, z ∈ Σ(0, ξ)

for any ξ ∈ (0, π/2). We pick ξ large enough, such that

θ := ξ(1 + 2δ/π) − π/2 > 0.

Returning to terms of s, we infer that there exists a bound M such
that for each s ∈ Σ(ω, π/2 + θ)

∣∣∣∣ 1
â(s)

∣∣∣∣ ≤ M1(1 + |s − ω|(1+2ε/π)/(1+2δ/π)) ≤ M(1 + |s − ω|1+2ε/π).
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Notice that in case (1) η ∈ (0, π/2) somewhere, while in case (2) A can
be chosen such that η is arbitrarily small, and hence ε can be picked
arbitrarily small.

We now construct an example which shows that (3.5) is sharp in the
general case.

Proposition 3.2. Let θ ∈ (0, π/2), α ∈ (0, 1/(1 + 2θ/π)), and
ρ ∈ [0, π/2]. Then there exists a separable Hilbert space H, a negative
definite, self-adjoint unbounded operator A in H, and a kernel a ∈
L2(0,∞) such that (1.1) admits an analytic resolvent of type (0, θ), but
there is a sequence sn with arg(sn) = ρ, |sn| → ∞, such that for any
constants c > 0 and ω > 0, one can find arbitrarily large n with

(3.8)
∣∣∣∣ 1
â(sn)

∣∣∣∣ ≥ ec(1+|sn−ω|α).

We give a short overview over the idea before we start with the
technicalities. In order that (1.1) admits an analytic resolvent, 1/â(s)
needs to stay away from the negative axis if −|1/â(s)| comes close to
an eigenvalue of A. Thus, as s → ∞ along the ray arg(s) = π/2 + θ,
â(s) has to come back to some sector Σ(0, π/2 + η) infinitely often
to leave space for the spectrum of A. On the other hand, there is a
relation between the decrease of the absolute value and the argument
(e.g., [5, Section 1.7]). Strong decrease of |â(s)| along that ray implies
a large negative argument, which would push â(s) out of the sector
across the negative axis. Our problem is to find a reasonable tradeoff,
allowing for a small phase angle sometimes and a strong decrease of the
absolute value on other intervals. We solve it by constructing â as an
infinite product of phase lag compensators. These provide the decrease
of amplitude, with the disadvantage of a large negative phase angle for
s close to their corner frequencies. However, for very large and very
small s, the phase angle of a phase lag compensator is almost 0, so all
we have to do is to give sufficient space between the corner frequencies
of subsequent compensators to let the argument recover in between,
before we push again for the absolute value. These considerations
explain also, why a far better estimate works when the spectrum of
A is the whole negative half line (cf. Proposition 3.1). In this case the
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argument is always confined to some sector, and there is no frequency
interval left to achieve decrease of the absolute value. Let us now do
the details.

Lemma 3.1. Let φ ∈ [0, π/2) and g : [0,∞) → [0,∞) be a
nondecreasing function such that

(3.9) lim
r→∞

ln(g(r))
r

= 0.

There exists a function f analytic on the open positive half plane and
continuously extensible to its closure with the following properties:

i)

(3.10) |f(s)| ≤
∣∣∣∣ 1
1 + s

∣∣∣∣ for 	(s) ≥ 0.

ii) There is a sequence 0 < S1 < T1 < S2 < T2 · · · → ∞

(3.11) −3π/4 < arg(f(s)) < 3π/4 for |s| ∈ [Sj , Tj ], 	(s) ≥ 0.

iii) If

mj = sup{|f(s)| : 	(s) ≥ 0, |s| ≥ Tj},

and

Mj = inf {|f(s)| : 	(s) ≥ 0, |s| ≤ Sj},

then

(3.12) mj ≤ 1
2
Mj .

iv) There is a sequence rj → ∞ such that

(3.13) |f(rje
iφ)| ≤ 1/g(rj).
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Proof. We fix some γ > 1 and define for r0 > 0

Hr0(s) =
1 + s/(r0γ)
1 + sγ/r0

The following properties of Hr0 are well known and can be checked by
straightforward computation:

0 < |Hr0(s)| ≤ 1 if 	(s) ≥ 0,

lim
|s|→∞,�(s)≥0

Hr0(s) = 1/γ2,

|Hr0(r0e
iφ)| =

∣∣∣∣
1 + 1

γ eiφ

1 + γeiφ

∣∣∣∣ = Q < 1 (independent of r0).

Starting with f0(s)=1/(1+s), we construct inductively Sn, Tn, rn, kn,

fn =
1

1 + s
Hk1

r1
· · ·Hkn

rn

with the following properties:

−3π/4<arg fn(s) < 3π/4 for |s| ∈ [Sj , Tj ], 	(s)≥0, j=1, . . . , n;
(3.14)

|fn(rje
iφ)| < 1/g(rj) for j = 1, . . . , n;(3.15)

|fn(s)|< 1
2
inf {|fn(t)| : 	(t)≥0, |t| ≤Sj}, for |s|≥Tj , j=1, . . . , n;

(3.16)

|fn(s) − fn−1(s)| ≤ 2−n for 	(s) ≥ 0, |s| ≤ n.(3.17)

Given these objects up to index n, we have to find rn+1 and an integer
kn+1 to specify fn+1, as well as an interval [Sn+1, Tn+1]. By its con-
struction, fn(s) converges to 0 as |s| → ∞, while lim sup|s|→∞ | arg(fn)
(s)| ≤ π/2; also, fn has no zeros in the closed right half plane. There-
fore, we can find Sn+1 and Tn+1 such that Tn < Sn+1 < Tn+1 such
that

(3.18) −3π/4 < arg(fn(s)) < 3π/4 for |s| ≥ Sn+1,
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and
(3.19)

|fn(s)| <
1
2
inf {|fn(t)| : 	(t) ≥ 0, |t| ≤ Sn+1}, for |s| ≥ Tn+1,

j = 1, . . . , n.

Pick some R > max(n + 1, Tn+1, rn). By construction, fn satisfies
(3.14), (3.18), (3.16), (3.19), (3.15) and is bounded by |fn(s)| ≤ 1.
Thus there exists some ε > 0 such that fn+1 satisfies (3.14), (3.16),
(3.15), (3.17) (each with n replaced by n + 1, if

(3.20) |fn+1(s) − fn(s)| ≤ ε for 	(s) ≥ 0, |s| ≤ R;

and

(3.21) |fn+1(rn+1e
iφ)| < 1/g(rn+1).

To obtain (3.21) notice that

|fn+1(rn+1e
iφ)| = |fn(rn+1e

iφ)Hkn+1
rn+1

(rn+1e
iφ)| ≤ Qkn+1 .

Therefore, once rn+1 is known, we determine kn+1 to be the least
integer satisfying

kn+1 >
ln(g(rn+1))

ln(1/Q)
.

Now we have to take care of (3.20). For |s| ≤ R, 	(s) ≥ 0,

|fn+1(s) − fn(s)| = |fn(s)| |Hkn+1
rn+1

(s) − 1|

≤ |Hrn+1(s) − 1|
kn+1−1∑

j=0

|Hj
rn+1

(s)|

≤ kn+1

∣∣∣∣
s

rn+1γ − sγ
rn+1

1 + sγ
rn+1

∣∣∣∣

≤
(

1 +
ln(g(rn+1))

ln(1/Q)

)(
γ − 1

γ

)
R

rn+1

which tends to 0 as rn+1 → ∞. Therefore we may pick some large rn+1

and the corresponding kn+1 to have (3.20) and (3.21) satisfied. This
completes the inductive construction of the functions fn.



ABSTRACT LINEAR VOLTERRA EQUATIONS 41

By (3.17), the sequence fn converges to some analytic f uniformly
on each bounded subset of the closed right half plane. f now evidently
fulfills the assertions i) through iv), thus Lemma 3.1 is proved.

Proof of Proposition 3.2. Put φ = ρ/(1 + 2θ/π) and choose β ∈
(α, 1/(1 + 2θ/π)). Put

g(r) = er(β(1+2θ/π))
.

Evidently, g satisfies (3.9), so that we may find some f according to
Lemma 3.1. We define

â(s) = f(s1/(1+2θ/π)).

This defines â as an analytic function on the sector Σ(0, π/2 + θ). As

|â(s)| ≤ |1 + s|−1/(1+2θ/π),

we infer that â lies in the Hardy-Lebesgue space H2, thus it is the
Laplace transform of some a ∈ L2(0,∞). Putting sn = r

1+2θ/π
n eiρ, we

have ∣∣∣∣ 1
â(sn)

∣∣∣∣ =
∣∣∣∣ 1
f(rneiφ)

∣∣∣∣ ≥ g(|sn|1/(1+2θ/π)) = e|sn|β .

As β > α and |sn| → ∞, this easily implies (3.8).

We now have to find an operator A such that (1.1) with our kernel
a admits an analytic resolvent. For that purpose, let H be a separable
Hilbert space and A be a self-adjoint operator whose spectrum consists
of the eigenvalues μn = −1/(2Mn) − 1/(2mn). By Lemma 3.1, (ii and
iii), we have that for each s ∈ Σ(0, π/2 + θ) one of the following holds:

1. |1/â(s)| ≥1/mn, then |μn| ≤ (3/4)|1/â(s)|, thus |(1/â(s))(1/â(s)−
μn)−1| ≤ 4.

2. |1/â(s)| ≤1/Mn, then |μn| ≥ (3/2)|1/â(s)|, thus |(1/â(s))(1/â(s)−
μn)−1| ≤ 2.

3. | arg(1/â(s))| ≤ 3π/4, then |(1/â(s))(1/â(s) − μn)−1| = |(1 −
â(s)μn)−1| ≤ √

2.

Consequently,
||(1/â(s))(1/â(s) − A)−1|| ≤ 4.
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By the generation theorem for analytic resolvent operators [8, Theorem
2.1] (1.1) admits an analytic resolvent operator of type (0, θ).

4. Growth 1/s in the right half plane does not imply an
inverse transform in L∞

loc . If (1.1) admits a resolvent operator, then
there are constants M and ω such that

||s−1(I − â(s)A)−1|| ≤ M

	(s) − ω

for all s with 	(s) > ω. If the estimate can be improved to

(4.1) ||s−1(I − â(s)A)−1|| ≤ M/|s − ω|

for all s ∈ Σ(ω, θ + π/2) with some θ > 0, then (1.1) generates an
analytic resolvent. In case of a semigroup, (4.1) holds in a sector, if it
holds in a half plane 	(s) > ω.

In the general case, we call (1.1) parabolic, if (4.1) holds with ω = 0
in the right half plane. To assure generation of a resolvent one seems
to need additional hypotheses on the kernel [8, Theorem 3.1]. An
example of a parabolic equation which does not admit a resolvent is
not yet known. One is tempted to conjecture that parabolicity by itself
is sufficient to guarantee wellposedness. This could be easily proved, if
one could show that an estimate

||F (s)|| ≤ M/|s|

for an operator valued function in the right half plane implies that F
is the Laplace transform of a function in L∞. A result like this would
also improve the regularity estimates for parabolic resolvents with k-
regular kernels [8, (3.13)] and might be useful in many other respects.
However, it has the disadvantage of being wrong even in the scalar case:

Proposition 4.1. There is a function F analytic in the right half
plane with (1 + |s|)|F (s)| bounded in the right half plane, such that F
is not the Laplace transform of some function f ∈ L∞

loc (0,∞).

Proof. Notice first, that it is sufficient to show existence of some F
which is not the Laplace transform of some f ∈ L∞

loc although |sF (s)| is
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bounded. Then F1(s) = F (s + 1) evidently has the properties claimed
in the proposition.

We prove Proposition 4.1 by contradiction. Let Y be the space of
functions analytic in the right half plane such that

||F ||Y = sup
�s>0

|sF (s)| < ∞.

For shorthand, let X = L∞
loc (0,∞). X is a Frechet space with the

seminorms
pj(f) = ess sup

t∈(0,j)

|f(t)|.

Here j = 1, 2, 3, . . . . If Proposition 4.1 is wrong, then the Laplace
transform admits an inverse T : Y → X. We show that T is bounded.
For this purpose we fix some ε > 0 and define the right shift

(τεF )(s) = F (s + ε) for 	(s) > 0,

and observe that

(TτεF )(t) = e−εt(TF )(t) for t > 0, ε > 0.

Let Fn → F in Y and TFn → g in X. Obviously, τεFn → τεF in
the Hardy-Lebesgue space H2, and since T is an isomorphism from
H2 into L2(0,∞,C), we infer that TτεFn converges to TτεF in L2.
Consequently, TFn converges to TF in L2

loc . On the other hand,
TFn → g in L∞

loc so that g = TF . This shows that T is closed. By the
closed graph theorem in Frechet spaces [1, Corollary (48.6)] T : Y → X
is continuous. We infer in particular that there exists some M > 0 such
that for all f ∈ X with f̂ ∈ Y

(4.2) ess sup
t∈(0,1)

|f(t)| ≤ M ||f̂ ||Y .

Now we pick some positive integer n and functions

f(t) =
n−1∑
j=0

ajχj/n(t),
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where χε is the indicator function of the interval [ε,∞). Then

f̂(s) =
1
s

n−1∑
j=0

aje
−sj/n.

From (4.2) we infer for every k = 1 · · ·n
∣∣∣∣

k−1∑
j=0

aj

∣∣∣∣ ≤ ess sup
t∈(0,1)

|f(t)| ≤ M ||f̂ ||Y ≤ sup
�s>0

∣∣∣∣
n−1∑
j=0

aje
−sj/n

∣∣∣∣.

With z = e−s/n and using the maximum principle, we obtain

∣∣∣∣
k−1∑
j=0

aj

∣∣∣∣ ≤ M sup
|z|<1

∣∣∣∣
n−1∑
j=0

ajz
j

∣∣∣∣ = M sup
|z|=1

∣∣∣∣
n−1∑
j=0

ajz
j

∣∣∣∣.

Let n = 2m + 1, k = m and |u| = 1. Replacing aj by aju
j , we obtain

∣∣∣∣
−1∑

j=−m

aj+muj

∣∣∣∣ ≤ M sup
|z|=1

∣∣∣∣
m∑

j=−m

aj+mzj

∣∣∣∣,

thus

(4.3)
∣∣∣∣

m∑
j=−m

sgn (j)aj+muj

∣∣∣∣ ≤ (1 + 2M) sup
|z|=1

∣∣∣∣
m∑

j=−m

aj+mzj

∣∣∣∣,

Let Cper denote the space of 2π-periodic, complex valued continuous
functions on R, normed by the maximum norm. For a trigonometric
polynomial

g(x) =
m∑

j=−m

aj+meijx

let Hg denote the Hilbert transform

(Hg)(u) =
m∑

j=−m

sgn (j)aj+meiju.
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It is known [3, Proposition 9.3.1] that

(4.4) (Hg)(u) =
1
2π

PV -
∫ π

−π

cot
(

x

2

)
g(u − x) dx.

This is to be understood as a principle value integral. If estimate (4.3) is
valid, then H is continuous on the space of trigonometric polynomials,
which is dense in Cper. Consequently, H would be a bounded operator
Cper → Cper. As the kernel cot(x/2) does not correspond to a measure
of bounded variation, it is seen from (4.4) that H is unbounded on
Cper. Therefore we have arrived at a contradiction.
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