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EXISTENCE RESULTS FOR BV-SOLUTIONS
OF NONLINEAR INTEGRAL EQUATIONS

DARIUSZ BUGAJEWSKI AND DONAL O’REGAN

ABSTRACT. In this paper we deal with the existence of
global bounded variation (BV) solutions as well as contin-
uous BV-solutions of nonlinear Hammerstein and Volterra-
Hammerstein integral equations formulated in terms of the
Lebesgue and the Denjoy-Perron integral. The method of
proof is based on an application of the Leray-Schauder al-
ternative for contractions.

1. Introduction. Functions of bounded variation appear frequently
as solutions to many integral equations which describe concrete physical
phenomena. This fact motivated us to investigate bounded variation
solutions as well as continuous bounded variation solutions of the
Hammerstein type integral equation

(1) x(t) = g(t) +
∫ T

0

K(t, s)f(x(s)) ds, for t ∈ I = [0, T ],

and the Volterra-Hammerstein integral equation

(2) x(t) = g(t) +
∫ t

0

K(t, s)f(x(s)) ds, for t ∈ I,

where I is a compact interval in R. First we will investigate equations
(1) and (2) with the Lebesgue integral and then later with the Denjoy-
Perron integral.

The theory of the Denjoy-Perron integral gives a pure theoretical
motivation for the need to investigate BV-solutions of equations (1)
and (2). More precisely, it is well-known that if h : I → R is any
function integrable in the Denjoy-Perron sense and φ is a function of
bounded variation, then hφ is also integrable in this sense, see [5] for
details.
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A variety of existence theorems for BV-solutions and continuous BV-
solutions of equation (2) and the Hammerstein integral equation of the
form

(3) x(t) = g(t) + λ

∫ T

0

K(t, s)f(x(s)) ds, for t ∈ I, and λ ∈ R,

with the Lebesgue integral were proved in [4]. In [3] similar results were
obtained for equations (2) and (3) with the Denjoy-Perron integral.
Existence theorems for equation (2) in [3] and [4] have a local character.
Their proofs were based on the classical Banach contraction principle.

This paper develops existence theory for global BV-solutions and
continuous BV-solutions of equations (1) and (2). The proofs of the
results in Section 3 and Section 4 are based on the following Leray-
Schauder alternative, see [6].

Let U be an open subset of a Banach space (X, ‖ · ‖) with 0 ∈
U . Suppose F : Ū → X and assume there exists a continuous
nondecreasing function φ : [0, +∞) → [0, +∞) satisfying φ(z) < z
for z > 0 such that for x, y ∈ Ū we have ‖F (x) − F (y)‖ ≤ φ(‖x − y‖);
here Ū denotes the closure of U in X. In addition assume F (Ū) is
bounded and x �= λF (x) for x ∈ ∂U and λ ∈ (0, 1]; here ∂U denotes
the boundary of U in X. Then F has a fixed point in U .

We refer the reader to [2] for basic results concerning the superposi-
tion operator in the space of functions of bounded variation and to [8,
9] for an introduction to integral operators in the space of functions of
bounded variation.

2. Preliminaries. In this section we collect some definitions
and results which will be needed in the sequel. Consider a function
x : [a, b] → R, where [a, b] is a compact interval in R. Recall that the
number

b∨
a

(x) = sup
n∑

i=1

|x(si) − x(si−1)|,

where the supremum is taken over all (finite) partitions {s0, s1, . . . , sn}
of [a, b], is called the variation of x over [a, b]. By BV = BV ([a, b])
we will denote the space of all functions x defined on [a, b] such that
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∨b
a(x) < +∞, with the norm

‖x‖BV = |x(a)| +
b∨
a

(x).

It is well known that BV considered with the above norm is a (real or
complex) Banach space. Functions of bounded variation will be called
BV-functions in this paper.

Recall that the superposition operator generated by a function f =
f(u) acts in the space BV if and only if f satisfies a local Lipschitz
condition, cf. [2, p. 174].

Next we present the concept of the Denjoy-Perron integral. First we
define ACG∗ functions.

A function f : [a, b] → R is said to be generalized absolutely
continuous on [a, b], written ACG∗ on [a, b], if it is continuous on [a, b]
and if this interval can be expressed as the sum of a finite or countable
sequence of sets on each of which the function f is absolutely continuous
in the restricted sense.

We say that a function f : [a, b] → R is integrable in the Denjoy-
Perron sense on [a, b] if there exists an ACG∗ function F : [a, b] → R
with F ′ = f almost everywhere on [a, b]. The increment F (b) − F (a)
over the interval [a, b] is termed the definite D-P integral of f over [a, b]
and is denoted by (D − P )

∫ b

a f(s) ds.

In this paper, instead of “(D − P )
∫ b

a
f(s) ds,” we use “

∫ b

a
f(s) ds”.

More information about the Denjoy-Perron integral and its properties
can be found in the books [5] and [7]. One of the properties of the
Denjoy-Perron integral frequently used in Section 4 is mentioned next.

If x ∈ BV ([a, b]) and φ : [a, b] → R is integrable on [a, b] in the
Denjoy-Perron sense, then the following inequality holds:

∣∣∣∣
∫ b

a

x(s)φ(s) ds

∣∣∣∣ ≤ |x(a)|
∣∣∣∣
∫ b

a

φ(s) ds

∣∣∣∣ +
b∨
a

(x)O(Φ; [a, b]),

where Φ(s) =
∫ s

a
φ(t)dt and O(Φ; [a, b]) denotes the oscillation of Φ on

[a, b].
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3. Equations with the Lebesgue integral. Consider equation
(1), where “

∫
” stands for the Lebesgue integral. Assume that:

10 g : I → R is a BV-function;

20 f : R → R;

30 K : I × I → R is a function such that K(t, ·) is a Lebesgue
integrable for any t ∈ I and

T∨
0

(K(·, s)) ≤ M(s) for a.e. s ∈ I,

where M : I → R+ is integrable in the Lebesgue sense;

40 there exists Ψ : [0, +∞) → [0, +∞) with Ψ(u) > 0 for u > 0 and
sups∈[0,T ] |f(x(s))| ≤ Ψ(‖x‖BV ) for any x ∈ BV (I);

50 there exists M0 > 0 with M0/(‖g‖BV + Ψ(M0) · T0) > 1, where
T0 =

∫ T

0 (|K(0, s)| + M(s)) ds;

60 there exists φM0 : [0, +∞) → [0, +∞) continuous and nondecreas-
ing with T0φM0 (z) < z for z > 0 and with |f(x)− f(y)| ≤ φM0 (|x− y|)
for |x|, |y| ≤ M0.

Remark 1. Notice in 40 it is enough to assume sups∈[0,T ] |f(x(s))| ≤
Ψ(‖x‖BV ) for x ∈ BV (I) with ‖x‖BV = M0.

Now we prove the following existence result.

Theorem 1. Under the above assumptions equation (1) has a BV-
solution, defined on I.

Proof. The proof is based on an idea from [1, pp. 681 682]. First, let
us observe that by 30, for t ∈ I, we have

|K(t, s)| ≤ |K(0, s)| +
T∨
0

(K(·, s)) ≤ |K(0, s)| + M(s) for a.e. s ∈ I.

Denote by BM0 the closed ball of center zero and radius M0 in the space
BV (I). Define G(x)(t) = g(t) +

∫ T

0
K(t, s)f(x(s)) ds for x ∈ B̄M0 and
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t ∈ I. For any x, y ∈ B̄M0 we have

‖G(x) − G(y)‖BV

≤
∫ T

0

|K(0, s)||f(x(s)) − f(y(s))| ds

+ sup
0=t0<...<tn=T

∫ T

0

n∑
i=1

|K(ti, s) − K(ti−1, s)||f(x(s))−f(y(s))| ds

≤ sup
s∈I

|f(x(s)) − f(y(s))|
∫ T

0

(|K(0, s)| + M(s)) ds

≤ T0 sup
s∈I

φM0(|x(s) − y(s)|)

≤ T0φM0(‖x − y‖BV ).

Thus, in particular, G(B̄M0) is bounded. Now suppose x ∈ BV (I) with
‖x‖BV = M0 is a solution of

(4) x(t) = λ(g(t) +
∫ T

0

K(t, s)f(x(s)) ds) for t ∈ I,

for λ ∈ (0, 1]. Then, by 50, we have

||x‖BV ≤ ‖g‖BV + ‖
∫ T

0

K(t, s)f(x(s)) ds‖BV

≤ ‖g‖BV +
∫ T

0

|K(0, s)||f(x(s))| ds+
T∨
0

( T∫
0

K(t, s)f(x(s)) ds

)

≤ ‖g‖BV + sup
s∈[0,T ]

|f(x(s))|
( T∫

0

(|K(0, s)| + M(s)) ds

)

≤ ‖g‖BV + Ψ(‖x‖BV ) · T0.

Thus

(5)
‖x‖BV

‖g‖BV + Ψ(‖x‖BV )T0
≤ 1

(note that without loss of generality we may assume ‖g‖BV +Ψ(‖x‖BV )T0

> 0).
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Now ‖x‖BV = M0, so (5) implies that

M0

‖g‖BV + Ψ(M0)T0
≤ 1,

which contradicts 50. Apply the nonlinear alternative of Leray-
Schauder type in Section 1 to deduce that G has a fixed point in
BM0 = {x ∈ BV (I) : ‖x‖BV < M0}. It is clear that this fixed point is
a BV-solution of (1).

Remark 2. It is clear that 40 is equivalent to

40′ there exists a nondecreasing function Ψ : [0, +∞) → [0, +∞) with
Ψ(u) > 0 for u > 0 and |f(x)| ≤ Ψ(|x|) for x ∈ R.

Remark 3. Instead of equation (1) one can consider a more general
one, namely

(6) x(t) = g(t) +
n∑

i=1

T∫
0

Ki(t, s)fi(x(s)) ds for t ∈ I,

where g satisfies 10, fi satisfies 20 and 60 with φi
M0

for 1 ≤ i ≤ n, Ki

satisfies 30 with Mi integrable in the Lebesgue sense for 1 ≤ i ≤ n.
Moreover, we assume that

70 there exists Ψi : [0, +∞) → [0, +∞) such that Ψi(u) > 0 for
u > 0, and sups∈[0,T ] |fi(x(s))| ≤ Ψi(‖x‖BV ) for any x ∈ BV (I) with
‖x‖BV = M0, i = 1, . . . , n;

80 there exists M0 > 0 such that

M0

‖g‖BV +
∑n

i=1 Ψi(M0)Ti
> 1,

where Ti =
∫ T

0
(|Ki(0, s)| + Mi(s)) ds;

Under the above assumptions one can prove that (6) has a BV-solution,
defined on I.

Now we shall consider continuous BV-solutions of (1). Assume that
20 60 are satisfied. Moreover, suppose that
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90 g : I → R is a continuous BV-function;

100 for each ε > 0 there exists δ > 0 such that for all t, τ, s ∈ I:

|τ − t| < δ =⇒
T∫

0

|K(τ, s) − K(t, s)| ds < ε.

Theorem 2. Under the above assumptions equation (1) has a
continuous BV-solution defined on I.

Proof. Consider the Banach space BVC(I) = BV (I) ∩ C(I) with
the norm ‖ · ‖BV . Additional assumptions 90 and 100 guarantee that
the mapping G defined in the proof of Theorem 1 maps continuous
functions into continuous ones. Indeed, for x ∈ B̄M0 and t, τ ∈ I, we
have

|G(x)(t)−G(x)(τ)| ≤ |g(t)−g(τ)|+sup
s∈I

|f(x(s))|
T∫

0

|K(t, s)−K(τ, s)| ds.

Hence G maps B̄M0 ⊂ BVC(I) into BVC(I). Essentially the same
reasoning as in the proof of Theorem 1 establishes the result.

Equation (2) is a special case of equation (1). Putting

K̃(t, s) =
{

K(t, s) 0 ≤ s ≤ t,
0 t < s ≤ T ,

we can write (2) in the following equivalent form

(7) x(t) = g(t) +

T∫
0

K̃(t, s)f(x(s)) ds for t ∈ I.

Suppose that 10, 20, 40 and 60 are satisfied. Moreover, assume that

110 T̃ = {(t, s) : 0 ≤ t ≤ T, 0 ≤ s ≤ t} and K : T̃ → R is a function
such that |K(s, s)|+ ∨T

s (K(·, s)) ≤ m(s) for almost every s ∈ I, where
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m : I → R+ is integrable in the Lebesgue sense and K(t, ·) is integrable
in the Lebesgue sense on [0, t] for every t ∈ I;

120 there exists M0 > 0 with
M0

‖g‖BV + Ψ(M0) · T1
> 1,

where T1 =
∫ T

0
m(s) ds.

Theorem 3. Under the above assumptions equation (7) has a BV-
solution, defined on I.

Proof. The result follows immediately from Theorem 1. Indeed, we
have

∨T
0 (K̃(·, s)) = |K(s, s)| +

∨T
s (K(·, s)) ≤ m(s) for almost every

s ∈ I, so K̃ satisfies 30. Moreover K̃(0, s) = 0 for 0 < s ≤ T and thus
one can take T0 = T1 =

∫ T

0
m(s) ds.

To deal with continuous BV-solutions of (2) we need the following
assumption

130 for each t ∈ I and for each ε > 0 there exists δ > 0 such that for
all τ ∈ I and s ∈ [0, t] ∩ [0, τ ]:

|t − τ | < δ =⇒
∫ min(t,τ)

0

|K(τ, s) − K(t, s)|ds < ε.

Theorem 4. Assume that 90, 20, 40, 60, 110, 120 and 130 hold.
Then the equation (2) has a continuous BV-solution, defined on I.

Proof. Define G(x)(t) = g(t) +
∫ t

0
K(t, s)f(x(s)) ds for x ∈ BM0 ⊂

BVC(I) and t ∈ I. Assumptions 90 and 130 guarantee that G maps
continuous functions into continuous ones. For example, for fixed t0 ∈ I
and τ < t0,

|G(x)(t0) − G(x)(τ)|
≤ |g(t0) − g(τ)|

+sup
s∈I

|f(x(s))|
( τ∫

0

|K(t0, s)−K(τ, s)| ds +

t0∫
τ

|K(t0, s)| ds

)
,
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for x ∈ BM0 . Hence the mapping G maps B̄M0 ⊂ BVC(I) into BVC(I).
Essentially the same reasoning as in Theorem 1 establishes the result.

4. Equations with the Denjoy-Perron integral. Consider again
equation (1), where “

∫
” now stands for the Denjoy-Perron integral.

Suppose that 10 and 20 hold. Moreover, assume that

140 K : I × I → R is function such that K(t, ·) is integrable in the
Denjoy-Perron sense for every t ∈ I and

T∨
0

(∫
I

K(t, s) ds

)
< +∞;

150 there exists a number 0 < c < +∞ such that

sup
0=t0<...<tn=T

n∑
i=1

O

( s∫
0

(K(ti, z)− K(ti−1, z)) dz; I
)

< c;

160 there exists Ψ : [0, +∞) → [0, +∞) such that Ψ(u) > 0 for u > 0,
and ‖f(x)‖BV ≤ Ψ(‖x‖BV ) for any x ∈ BV (I);

170 there exists M0 > 0 with

M0

‖g‖BV + Ψ(M0) · T ′ > 1,

where

T ′ = max
(∥∥∥

∫
I

K(t, s) ds
∥∥∥

BV
; O(P ; I) + c

)
, P (s) =

s∫
0

K(0, z) dz

for s ∈ I;

180 there exists φM0 : [0, +∞) → [0, +∞) continuous and nonde-
creasing with T ′φM0(z) < z for z > 0 and with ‖f(x) − f(y)‖BV ≤
φM0(‖x − y‖BV ) for x, y ∈ BV (I) with ‖x‖BV , ‖y‖BV ≤ M0.
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Theorem 5. Under the above assumptions equation (1) has a BV-
solution, defined on I.

Proof. Let G and BM0 be as in the proof of Theorem 1. For any
x, y ∈ BM0 we obtain

‖G(x) − G(y)‖BV

=
∣∣∣∣

T∫
0

K(0, s)[f(x(s)) − f(y(s))] ds

∣∣∣∣

+ sup
0=t0<...<tn=T

n∑
i=1

∣∣∣∣
T∫

0

(K(ti, s) − K(ti−1, s))[f(x(s)) − f(y(s))]ds

∣∣∣∣

≤ |f(x(0)) − f(y(0))|
∣∣∣∣

T∫
0

K(0, s) ds

∣∣∣∣ +
T∨
0

(f(x) − f(y)) · O(P ; I)

+ |f(x(0)) − f(y(0))|
T∨
0

( T∫
0

K(t, s) ds

)
+

T∨
0

(f(x) − f(y))c

≤ max
(
‖

T∫
0

K(t, s) ds‖BV , O(P ; I) + c

)
‖f(x) − f(y)‖BV

≤ max
(
‖

T∫
0

K(t, s) ds‖BV , O(P ; I) + c

)
φM0(‖x − y‖BV )

≤ T ′φM0 (‖x − y‖BV ).

In particular, G(B̄M0 ) is bounded. Let x ∈ BV (I) with ‖x‖BV = M0

be a solution to (6) for λ ∈ (0, 1] (the integral in (6) is the Denjoy-
Perron integral). Then

‖x‖BV ≤ ‖g‖BV +
∥∥∥∥

T∫
0

K(t, s)f(x(s)) ds

∥∥∥∥
BV

≤ ‖g‖BV +
∣∣∣∣

T∫
0

K(0, s)f(x(s)) ds

∣∣∣∣ +
T∨
0

( T∫
0

K(t, s)f(x(s)) ds

)
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≤ ‖g‖BV + |f(x(0))|
∣∣∣∣

T∫
0

K(0, s) ds

∣∣∣∣ +
T∨
0

(f(x))O(P ; I)

+ |f(x(0))|
T∨
0

( T∫
0

K(t, s) ds

)
+ c

T∨
0

(f(x))

≤ ‖g‖BV + |f(x(0))|
∥∥∥∥

∫
I

K(t, s) ds

∥∥∥∥
BV

+
T∨
0

(f(x))[O(P ; I) + c]

≤ ‖g‖BV + ‖f(x)‖BV T ′

≤ ‖g‖BV + Ψ(‖x‖BV )T ′.

Thus

(8)
‖x‖BV

‖g‖BV + Ψ(‖x‖BV )T ′ ≤ 1.

Now ‖x‖BV = M0, so (8) implies

M0

‖g‖BV + Ψ(M0)T ′ ≤ 1,

which contradicts 170. Apply the nonlinear alternative of Leray-
Schauder type for contraction in Section 1 to deduce that G has a
fixed point in BM0 . This fixed point is a BV-solution of (1).

For equation (1) with the Denjoy-Perron integral we can also consider
continuous BV-solutions. For this purpose we need the additional
assumption:

190 for each t ∈ I for each ε > 0 there exists δ > 0 such that for each
τ ∈ I:

|t − τ | < δ =⇒ sup
s∈I

∣∣∣∣
s∫

0

[K(t, z) − K(τ, z)] dz

∣∣∣∣ < ε.

Assumptions 90 and 190 guarantee that the mapping G defined in the
proof of Theorem 1 maps B̄M0 ⊂ BVC(I) into BVC(I). Indeed, for
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t, τ ∈ I and x ∈ B̄M0 we have

|G(x)(t) − G(x)(τ)|

≤ |g(t) − g(τ)| +
∣∣∣∣

T∫
0

[K(t, s) − K(τ, s)]f(x(s)) ds

∣∣∣∣

≤ |g(t)−g(τ)|+|f(x(0))|
∣∣∣∣

T∫
0

[K(t, s)−K(τ, s)] ds

∣∣∣∣+
T∨
0

(f(x)) · O(Ht
τ ; I)

≤ |g(t)−g(τ)| + ‖f(x)‖BV max
(∣∣∣∣

T∫
0

[K(t, s)−K(τ, s)] ds

∣∣∣∣, O(Ht
τ ; I)

)
,

where Ht
τ (s) =

s∫
0

[K(t, z) − K(τ, z)] dz for s ∈ I. Hence the same

reasoning as in Theorem 5 yields

Theorem 6. Suppose 20, 90, 140 − 180 are satisfied. Then equation
(1) has a continuous BV-solution defined on I.

Now, consider equation (2), where “
∫ t

0” now stands for the integral in
the Denjoy-Perron sense. As in Section 3 it is easily seen that, instead
of (2) one can consider an equivalent form (7), where “

∫ t

0 ” now stands
for the Denjoy-Perron integral. Suppose 10, 20 and 160 are satisfied.
Moreover assume that

200 T̃ = {(t, s) : 0 ≤ t ≤ T, 0 ≤ s ≤ t} and K : T̃ → R is a function
such that K(t, ·) is integrable in the Denjoy-Perron sense for every t ∈ I
and

T∨
0

( t∫
0

K(t, s) ds

)
< +∞;

210 there exists a number 0 < c < +∞ such that

sup
0=t0...<tn=T

n∑
i=1

O

( s∫
0

K(ti, z) dz −
min(ti−1,s)∫

0

K(ti−1, z) dz; [0, ti]
)

< c;
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220 there exists M0 > 0 with M0/(‖g‖BV + Ψ(M0) · T ′′) > 1, where
T ′′ = max(

∨T
0 (

∫ t

0
K(t, s) ds, c).

Finally, we assume that 180 with M0 defined above, is satisfied.

Theorem 7. Under the above assumptions equation (2) has a BV-
solution, defined on I.

Proof. The result follows immediately from Theorem 5. Indeed, we
have

∨T
0 (

∫
I
K̃(t, s) ds =

∨T
0 (

∫ t

0
K(t, s) ds) < +∞, so K̃ satisfies 140.

Furthermore, we have

sup
0=t0...<tn=T

n∑
i=1

O

( s∫
0

(K̃(ti, z) − K̃(ti−1, z) dz; I
)

= sup
0=t0...<tn=T

n∑
i=1

O

( s∫
0

K(ti, z) dz −
min(ti−1,s)∫

0

K(ti−1, z) dz; [0, ti]
)

< c,

so K̃ satisfies 150. Moreover, ‖ ∫ t

0
K(t, s)ds‖ =

∨T
0 (

∫ t

0
K(t, s) ds) and

P (s) = 0 for s ∈ I, and thus one can take T ′ = T ′′.

Finally let’s consider continuous BV-solutions of equation (2) with
the Denjoy-Perron integral. We need two additional assumptions:

230 for each t ∈ I and for each ε > 0 there exists δ > 0 such that for
every τ ∈ I:

|t − τ | < δ =⇒ sup
s∈[0,min(t,τ)]

∣∣∣∣
s∫

0

[K(t, z) − K(τ, z)] dz

∣∣∣∣ < ε;

240 lim
τ→t+

sup
t<s≤τ

s∫
t

K(τ, z) dz = 0 for fixed t ∈ I.

We can prove the following

Theorem 8. Assume that 90, 20, 160, 180, 200 240 are satisfied.
Then equation (2) has a continuous BV-solution, defined on I.
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Proof. Fix t ∈ I and let τ ∈ (t, T ). Consider the mapping G defined
in the proof of Theorem 1. Then for x ∈ B̄M0 ⊂ BVC(I) we have

|G(x)(t)−G(x)(τ)|

≤ |g(t)−g(τ)|+
∣∣∣∣

t∫
0

[K(t, s)−K(τ, s)]f(x(s)) ds

∣∣∣∣+
∣∣∣∣

τ∫
t

K(τ, s)f(x(s)) ds

∣∣∣∣

≤ |g(t)−g(τ)|+|f(x(0))|
∣∣∣∣

t∫
0

[K(t, s)−K(τ, s)] ds

∣∣∣∣

+
t∨
0

(f(x)) · O(Ht
τ ; [0, t])+|f(x(t))|

∣∣∣∣
τ∫

t

K(τ, s) ds

∣∣∣∣

+
τ∨
t

(f(x)) · O
( s∫

t

K(τ, z) dz; [t, τ ]
)

≤ |g(t)−g(τ)|+‖f(x)‖BV max
{∣∣∣∣

t∫
0

[K(t, s)−K(τ, s)] ds

∣∣∣∣; O(Ht
τ ; [0, t])

}

+ sup
t∈[−M0,M0]

|f(t)|
∣∣∣∣

τ∫
t

K(τ, s) ds

∣∣∣∣+
T∨
0

(f(x)) · O
( s∫

t

K(τ, z) dz; [t, τ ]
)

.

By 90, 230 and 240 we infer that in this case |G(x)(t) − G(x)(τ)| can
be made sufficiently small. Similar reasoning is used in the case when
τ ∈ (0, t). Hence the mapping G maps B̄M0 into BVC(I). Essentially
the same reasoning as in Theorem 5 establishes the result.
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