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ABSTRACT. We consider the solvability of linear integral
equations on the real line, in operator form (λ − K)φ = ψ,
where λ ∈ C and K is an integral operator. We impose
conditions on the kernel, k, of K which ensure that K is
bounded as an operator on Lp(R), 1 ≤ p ≤ ∞, and on
BC(R). We establish conditions on families of operators,
{Kk : k ∈ W}, which ensure that if λ �= 0 and λφ = Kkφ
has only the trivial solution in BC(R), for all k ∈ W , then
for 1 ≤ p ≤ ∞, (λ − K)φ = ψ has exactly one solution
φ ∈ Lp(R) for every k ∈ W and ψ ∈ Lp(R). The results
of considerable generality apply in particular to kernels of
the form k(s, t) = κ(s − t)z(t) and k(s, t) = κ̃(s − t)z̃(s, t),
where κ, κ̃ ∈ L1(R), z ∈ L∞(R), z̃ ∈ BC(R2) and κ̃(s) =
O(s−b) as |s| → ∞, for some b > 1. As a significant
application we consider the problem of acoustic scattering
by a sound-soft, unbounded one-dimensional rough surface
which we reformulate as a second kind boundary integral
equation. Combining the general results of earlier sections
with a uniqueness result for the boundary value problem,
we establish that the integral equation is well-posed as an
equation on Lp(R), 1 ≤ p ≤ ∞, and on weighted spaces of
continuous functions.

1. Introduction. We consider in this paper integral equations of
the form

(1.1) λφ(s)−
∫ +∞

−∞
k(s, t)φ(t) dt = ψ(s), s ∈ R,

where λ ∈ C, the functions k : R2 → C and ψ are assumed known and
φ is the solution to be determined. Define the integral operator K by

(1.2) Kψ(s) =
∫ +∞

−∞
k(s, t)ψ(t) dt, s ∈ R.
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Then (1.1) can be abbreviated in operator notation as

(1.3) (λ−K)φ = ψ.

We assume throughout that k is (Lebesgue) measurable and that the
following assumptions on k hold:

A. sup
s∈R

∫ +∞

−∞
|k(s, t)| dt < ∞.

B. For all s ∈ R,

∫ +∞

−∞
|k(s, t)− k(s′, t)| dt −→ 0, as s′ → s.

Assumption A ensures that K is a bounded operator on L∞(R). (As
usual, Lp(R), 1 ≤ p ≤ ∞, denotes the Banach space of measurable
functions φ : R → C for which |φ|p is integrable, 1 ≤ p < ∞, φ is
essentially bounded, p = ∞.) Assumptions A and B together ensure
that K : L∞(R) → BC(R) and is bounded, where BC(R) ⊂ L∞(R)
is the subspace of functions bounded and continuous on R.

For much of the paper we will make the following stronger assumption
than A:

A′. For some κ ∈ L1(R),

|k(s, t)| ≤ |κ(s− t)|, s, t ∈ R.

Assumption A′ implies that, by Young’s equality, K : Lp(R) → Lp(R).
and is bounded, for 1 ≤ p ≤ ∞, with norm ‖K‖ ≤ ‖κ‖1.

A main concern of this paper is to study the solvability of (1.1) as an
operator equation on Lp(R), 1 ≤ p ≤ ∞, and other function spaces.
Let Y denote any one of these function spaces. Then a main aim of
the paper is to establish conditions, sufficiently explicit that they can
be checked in applications, which ensure that (1.1) has exactly one
solution φ ∈ Y for every ψ ∈ Y . In terms of our operator notation, the
aim is thus to seek conditions which ensure that (λ −K) : Y → Y is
bijective, in which case (λ−K)−1 : Y → Y exists and, by the Banach
theorem, is bounded. Thus the paper contains results giving conditions
which ensure, for specific function spaces Y , that (λ −K)−1 ∈ B(Y ),
the set of bounded linear operators on Y .

Given a Banach space Y and A ∈ B(Y ), let ‖A‖Y denote the norm
of A : Y → Y , RY (A) := {λ ∈ C : (λ − A)−1 ∈ B(Y )}, and
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let ΣY (A) := C \ RY (A) denote the spectrum of A ∈ B(Y ). Let
ΣpY (A) ⊂ ΣY (A) denote the point spectrum, the set of eigenvalues of
A, in other words the set of λ for which (λ−A) : Y → Y is not injective.

In terms of these definitions and supposing that K ∈ B(Y ), clearly
(1.3) has exactly one solution φ ∈ Y for every ψ ∈ Y if and only if
λ /∈ ΣY (K). A second aim of the paper, clearly related to the first aim
mentioned above, is to shed light on the relationships between ΣY (K)
and ΣpY (K) and between ΣY (K) and ΣZ(K) for various function spaces
Y and Z.

For the special case satisfying A′ and B, of the convolution inte-
gral equation on the real line, when k(s, t) = κ(s − t), s, t ∈ R, with
κ ∈ L1(R), the questions considered in this paper are already well un-
derstood. For brevity, in the remainder of the paper, let us abbreviate
Lp(R) by Lp and BC(R) by X. Then, in particular [24],

(1.4) ΣLp(K) = ΣX(K) = {0} ∪ ΣpX(K) = {0} ∪ {κ̂(ξ) : ξ ∈ R},
for 1 ≤ p ≤ ∞, where κ̂(ξ) :=

∫ +∞
−∞ κ(t)eiξt dt, ξ ∈ R, is the Fourier

transform of κ. A large part of the argument in this paper can be
viewed as an attempt to investigate in what way the equation

ΣLp(K) = ΣX(K) = {0} ∪ ΣpX(K)

generalizes to cases where the kernel k(s, t), while not an L1 convolution
kernel, is bounded by such a kernel, satisfying A′.

In Section 2 we review results drawn from Part I of this study [6]
which are essential for the arguments we make in later sections. The
earlier paper considers the solvability of (1.1) in BC(R) and in weighted
spaces of continuous functions, defined for a ≥ 0 by

(1.5) Xa := {φ ∈ X : φ(s) = O(s−a), |s| → ∞}.
Xa is a Banach space under the norm ‖ · ‖Xa

, defined by ‖φ‖Xa
=

‖φwa‖∞, where wa(s) = (1+ |s|)a. It is shown in [9] that, if k satisfies
A′ and B and

(1.6) κ(s) = O(s−b), |s| → ∞,

for some b > 1, then K ∈ B(Xa) for 0 ≤ a ≤ b. A main result of [6] is
that these same assumptions ensure that

(1.7) ΣXa
(K) = ΣX(K), 0 ≤ a ≤ b.
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In Section 2 we also review results in [6] on the relationship between
ΣX(K) and ΣpX(K). It is shown in [15] that, if for some r ∈ R \ {0},
(1.8) k(s+ r, t+ r) = k(s, t), s, t ∈ R,

and A and B hold, then

(1.9) ΣX(K) = ΣpX(K) ∪ {0}.
It is easy to see that (1.8) is equivalent to the operator equation

(1.10) TrK = KTr,

where Tr is the translation operator defined by

(1.11) Trψ(s) = ψ(s− r), s ∈ R.

Obviously (1.8) and (1.10) hold for all r ∈ R in the case when
k(s, t) = κ(s− t).

But (1.9) certainly does not hold for all kernels satisfying A and B.
As an example, (1.9) does not hold in general for the Wiener-Hopf
cases,

(1.12) k(s, t) =
{
κ(s− t) s ∈ R, t ≥ 0,
0 s ∈ R, t < 0,

with κ ∈ L1 [24, 27].

However, the following result, which may be viewed as a generaliza-
tion of (1.9) is shown in [18]. Denote the integral operator K by Kk
to indicate its dependence on its kernel k, and let W denote a family
of kernels which satisfy A and B uniformly and have the translation
invariance property, cf. (1.10), that

(1.13) {TrKk : k ∈ W} = {KkTr : k ∈ W},
for some r ∈ R \ {0}. Then, provided W also has certain compactness
properties (explained in Section 2, see Theorem 2.1 below) with respect
to the σ-topology proposed in [18], it holds that

⋃
k∈W

ΣX(Kk) = {0} ∪
⋃
k∈W

ΣpX(Kk) =: Σ
p
X(W ).
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Moreover, for λ /∈ ΣpX(W ), it holds that

sup
k∈W

‖(λ−Kk)−1‖X < ∞.

We note that the idea of considering a family of operators satisfying
A and B uniformly and having the property (1.13) derives from an
analysis of the finite section method for the Wiener-Hopf cases (1.12)
in Anselone and Sloan [1, 2].

In Section 3 we obtain solvability results in Lp-spaces via the solv-
ability results in BC(R) and in weighted spaces of [6], summarized in
Section 2, and via a consideration of properties of the adjoint operator
KT with transposed kernel kT , defined by

kT (s, t) := k(t, s), s, t ∈ R.

Generalizing (1.12), in Section 3.1 we consider kernels of the form

(1.14) k(s, t) = κ(s− t)z(t),

for some κ ∈ L1, z ∈ L∞, so that K = KMz where K is the convolution
integral operator with kernel κ(s − t) and Mz is the operation of
multiplication by z. In the case that κ is even, we show that, cf. (1.4),

ΣLp(KMz) ⊂ ΣL1(KMz) = ΣL∞(KMz) = ΣX(KMz),

1 < p < ∞. In the case that V ⊂ L∞ is weak∗-sequentially com-
pact and has certain translation and reflection invariance properties,
specified in Corollary 3.11 below, we show that

(1.15)
⋃
z∈V

ΣLp(KMz) ⊆ {0} ∪
⋃
z∈V

ΣpX(KMz), 1 ≤ p ≤ ∞,

with equality in (1.15) for p = 1,∞. As an interesting example which
arises in an application to an elliptic boundary value problem, (1.15)
holds for the case when V = {z ∈ L∞ : ess. range z ⊂ Q} with Q ⊂ C
compact and convex.

In Section 3.2 we consider a more general class of kernels but with
conditions which exclude the case (1.14) if z /∈ X. We suppose that W
has the translation invariance property (1.13), for some r ∈ R \ {0},
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and that W and WT := {kT : k ∈ W} satisfy A′ and B uniformly
with respect to k and are sequentially compact with respect to the
σ-topology introduced in Section 2. Our main results are similar to
(1.15), but obtained by substantially different arguments, in particular
using additional results from Section 2. We show in this case, provided
(1.6) holds for some b > 1, that

(1.16)
⋃
k∈W

ΣLp(Kk) ⊆ {0} ∪
⋃
k∈W

ΣpX(Kk).

Similarly to (1.15), (1.16) is shown to hold with equality for p = 1,∞.
We also point out that ΣLp(Kk) = ΣLq(KkT ), 1 ≤ p ≤ ∞, with
1/p+ 1/q = 1. Thus (1.16) also relates the spectrum of KT

k = KkT in
Lp to the point spectrum of Kk in X.

To finish Section 3.2 we present a particularly simple form of the
theory, with substantially simpler conditions to verify, for the special
case when the kernel takes the form

(1.17) k(s, t) = κ(s− t)z(s, t),

for some κ ∈ L1, z ∈ BC(R̃2) where R̃2 := R2 \ {(s, s) : s ∈ R}.
Section 4 considers a substantial application of the results of the

previous sections. The problem considered is one of scattering by
a one-dimensional unbounded rough surface. Precisely, we consider
the Dirichlet boundary value problem for the Helmholtz equation in
a nonlocally perturbed half-plane. The theoretical basis for boundary
integral equation methods for the Helmholtz equation for scattering
by unbounded surfaces is in its infancy. But recently [13], a novel
boundary integral equation formulation for this problem has been
proposed and this formulation has been shown to be uniquely solvable
in the space of bounded continuous functions, leading to the first
proof of unique existence of solution for the problem of scattering of
a plane wave by a one-dimensional rough surface [14]. In this paper,
applying the results of Sections 2 and 3, we show that the boundary
integral equation is well posed also in Lp-spaces and weighted spaces
of continuous functions. We show similar results for an alternative
boundary integral equation formulation, whose integral operator is the
adjoint of that in the first equation considered. This alternative integral
equation formulation is obtained by a direct approach using Green’s
theorem, in contrast to the indirect formulation of [13].
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Arens [3, 4, 5], in related work to that of Section 4, considers the
problem of elastic wave scattering by one-dimensional rough surfaces,
proposing a novel reformulation as a coupled pair of boundary integral
equations. Employing the results of [22, 23] and arguments closely
related to those in Section 3.2, the well posedness of the integral
equation system in Lp-spaces is established [4, 5], leading to an
existence proof for the elastic wave boundary value problem.

We finish this introduction by contrasting the results of this paper
to those of earlier authors. There exists a large literature (e.g., [7,
8, 21, 26] and the references therein) concerned with extensions of
the case k(s, t) = κ(s − t), k ∈ L1, and the Wiener-Hopf case (1.12)
to more general kernels satisfying A′ (and to systems of equations,
multi-dimensional cases and singular integral operators). In large part
the concern in this literature has been to characterize explicitly the
spectrum or essential spectrum of the operator and give an explicit
formula for the index when the operator is Fredholm. The results
available provide information relating to cases we consider in this
paper, in particular, regarding kernels of the form (1.14) or (1.17),
with z ∈ L∞(R) or z ∈ L∞(R2), respectively. However, the results
which have been obtained only apply to cases where the behavior of z
is severely constrained at ±∞.

As an indication of the results that have been shown, consider the
case when the kernel is given by (1.17) with z ∈ L∞(R2) and suppose
that z has limits at infinity, z±, in the sense that

(1.18)

lim
A→∞

ess. sup
s>A,t>A

|z(s, t)− z+| = 0, lim
A→∞

ess. sup
s<−A,t<−A

|z(s, t)− z−| = 0.

Then [25, 26]

ΣLp(K) = {0} ∪ {z±κ̂(ξ) : ξ ∈ R}

∪
{
λ :

[
arg

(
λ− z−κ̂(ξ)
λ− z+κ̂(ξ)

)]+∞

ξ=−∞
�= 0

}

∪ ΣpLp(K), 1 ≤ p ≤ ∞.

This criterion for the solvability of (1.1) in Lp is at least as easy to
check in applications as (1.16) and is arguably more explicit. But the
constraint that z has limits at infinity is a severe one. For example, in
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the application in Section 4, z has limits in the sense (1.18) if and only if
the graph of the unbounded surface approaches horizontal asymptotes
at ±∞.

2. Solvability in BC(R) and in weighted spaces of continuous
functions. We begin by reviewing properties of integral operators on
the real line and results of Part I of this study [6] that we will need
for our arguments. We are concerned in this section with properties
of the integral operator K as an operator on X = BC(R) and on the
weighted spaces Xa ⊂ X introduced above.

Conditions A and B ensure that the integral operator K ∈ B(X)
with

‖K‖X = sup
s∈R

∫ +∞

−∞
|k(s, t)| dt.

Conditions A and B do not imply that K is compact. (For example, if
k(s, t) = κ(s− t), s, t ∈ R, with κ ∈ L1, then k satisfies A and B, but
K has the continuous spectrum (1.4), so is not compact.) In Sections
3 and 4 we will use the fact that K is compact if k satisfies A,B and
the following assumption [1].

C. ∫ +∞

−∞
|k(s, t)| dt −→ 0 as |s| −→ ∞.

In the case that (1.8) holds for some r ∈ R \ {0}, i.e.,
(2.1) TrK = KTr,

where Tr is the translation operator given by (1.11), we have mentioned
already in the introduction that

(2.2) ΣX(K) = ΣpX(K) ∪ {0}.
We have also pointed out, with an example, that (2.2) does not hold in
general given only that k satisfies A and B. However, a version of (2.2)
holds for families of integral operators satisfying A and B uniformly
and having a translation invariance property to replace (2.1).

Let K := {k : R2 → C : k is measurable and satisfies A and B}. For
k ∈ K let Kk denote the integral operator defined by

Kkφ(s) =
∫ +∞

−∞
k(s, t)φ(t) dt, s ∈ R.
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We consider families W ⊂ K satisfying the following uniform versions
of A and B.

Au.
sup
k∈W

‖|k|‖ < ∞,

where

‖|k|‖ := sup
s∈R

∫ +∞

−∞
|k(s, t)| dt.

Bu. For all s ∈ R,

sup
k∈W

∫ +∞

−∞
|k(s, t)− k(s′, t)| dt −→ 0

as s′ → s.

For (kn) ⊂ K, k ∈ K, we will write kn
σ→ k if supn ‖|kn|‖ < ∞ and,

for all ψ ∈ L∞,

∫ +∞

−∞
kn(s, t)ψ(t) dt −→

∫ +∞

−∞
k(s, t)ψ(t) dt,

uniformly on every finite interval. (This is convergence in the σ-
topology of [18].) CallW ⊂ K σ-sequentially compact if every sequence
(kn) ⊂ W has a subsequence which is σ-convergent to some k ∈ W .
Clearly, if W ∈ K is σ-sequentially compact, then W satisfies Au.

Let the translation operator T (2)
r be defined for r ∈ R by

T (2)
r k(s, t) = k(s− r, t− r), s, t ∈ R.

The following results are shown in [18] and [6].

Theorem 2.1 [18, Theorem 2.10]. Suppose that λ �= 0, W ⊂ K and

(i) W satisfies Bu,

(ii) W is σ-sequentially compact,

(iii) T (2)
r (W ) = W for some r ∈ R \ {0} so that

{TrKk : k ∈ W} = {KkTr : k ∈ W};
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(iv) λ /∈ ΣpX(Kk), k ∈ W .

Then (λ − Kk)(X) is closed for all k ∈ W so that (λ − Kk)−1 :
(λ − K)(X) → X is bounded. Moreover, these inverse operators are
uniformly bounded, i.e.,

(2.3) sup
k∈W

‖(λ−Kk)−1‖X < ∞.

Suppose that, in addition to (i) (iv), it holds that:

(v) For every k̃ ∈ W there exists (kn) ⊂ W such that kn
σ→ k̃ and

(2.4) λ /∈
⋃
k∈W

ΣpX(Kk) =⇒ λ /∈ ΣX(Kkn
)

for each n.

Then (λ −Kk)(X) = X for all k ∈ W so that (λ −Kk)−1 ∈ B(X),
k ∈ W .

We point out that (2.4) certainly holds if λ − Kkn
is Fredholm of

index zero. In particular, for any λ �= 0, (2.4) holds if Kkn
is compact.

The next theorem requires that A′ is satisfied uniformly for k ∈ W ,
i.e., that the following uniform version of A′ holds.

A′
u. For some κ ∈ L1,

|k(s, t)| ≤ |κ(s− t)|, s, t ∈ R,

for all k ∈ W .

Theorem 2.2 [6, Theorem 3.6]. Suppose that W satisfies A′
u and Bu,

that (1.6) holds for some b > 1 and that W is σ-sequentially compact.
Then

(2.5) ΣXa
(Kk) = ΣX(Kk), k ∈ W, 0 ≤ a ≤ b,

and, for λ /∈ ∪k∈WΣX(Kk), it holds that

sup
k∈W

‖(λ−Kk)−1‖Xa
< ∞ ⇐⇒ sup

k∈W
‖(λ−Kk)−1‖X < ∞,
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0 ≤ a ≤ b.

Combining Theorems 2.1 and 2.2, we have the following criterion for
(λ−Kk)−1 ∈ B(Xa).

Theorem 2.3. Suppose that λ �= 0 and

(i) W ⊂ K satisfies A′
u and Bu and (1.6) holds with b > 1,

(ii) W is σ-sequentially compact,

(iii) T (2)
r (W ) = W for some r ∈ R \ {0},

(iv) λ /∈ ΣpX(Kk), k ∈ W ,

(v) For every k̃ ∈ W there exists (kn) ⊂ W such that kn
σ→ k̃ and

λ /∈
⋃
k∈W

ΣpX(Kk) =⇒ λ /∈ ΣX(Kkn
)

for each n.

Then λ /∈ ΣXa
(Kk) for k ∈ W , 0 ≤ a ≤ b and

sup
k∈W

‖(λ−Kk)−1‖Xa
< ∞, 0 ≤ a ≤ b.

3. Solvability in Lp-spaces. The results of the previous section
examine the solvability of (1.1) in the weighted spaceXa. In this section
we apply these results to examine the solvability of (1.1) and its adjoint
equation

(3.1) λφ(s)−
∫ +∞

−∞
k(t, s)φ(t) dt = ψ(s), s ∈ R,

in X and in Lp, 1 ≤ p ≤ ∞. Besides the work of Section 2, our main
tool will be results relating properties of an operator A ∈ B(Y ) to
properties of its adjoint A∗ ∈ B(Y ∗), where Y ∗ denotes the dual space
of the Banach space Y . In particular, the following standard results
will suffice for the arguments which follow, see, e.g., [28].

Theorem 3.1. Suppose that Y is a Banach space, Y ∗ is its dual
space, A ∈ B(Y ) and A∗ ∈ B(Y ∗) is the adjoint of A. Then



12 T. ARENS, S.N. CHANDLER-WILDE, K.O. HASELOH

(i) ‖A‖ = ‖A∗‖.
(ii) A(Y ) is dense in Y if and only if A∗ is injective.

(iii) A is bijective if and only if A∗ is bijective and, if they are
both bijective, then (A∗)−1 = (A−1)∗, the adjoint of A−1 so that
‖A−1‖ = ‖(A∗)−1‖.

Of course, these results are useful to us since, for 1 ≤ p < ∞, (Lp)∗

can be identified with Lq where q here and in the remainder of the
paper is related to p via the equation 1/p + 1/q = 1 (with q = ∞
if p = 1, q = 1 if p = ∞). This identification can be made via the
isometric isomorphism i : Lq → (Lp)∗ given by i(φ) = φ̃ where φ̃ is
defined by

φ̃(ψ) =
∫ +∞

−∞
φ(s)ψ(s) ds, ψ ∈ Lp.

Making this identification, it follows from Fubini’s theorem (see, e.g.,
Jörgens [24]) that if the integral operator K given by (1.2) satisfies
K ∈ B(Lp) for some p ∈ [1,∞), its adjoint operator K∗ ∈ B((Lp)∗) =
B(Lq) is the integral operator KT given by (1.2) with K, k replaced by
KT , kT where kT (s, t) := k(t, s), s, t ∈ R. That is,

(3.2) KTφ(s) =
∫ +∞

−∞
k(t, s)φ(t) dt, s ∈ R.

We shall consider cases when both k and kT satisfy Assumption A.
Then the following result holds [24, Chapter 11].

Theorem 3.2. If k and kT satisfy A, then K and KT , defined by
(1.2) and (3.2), respectively, are bounded operators on Lp, 1 ≤ p ≤ ∞.
Further, for all λ ∈ C and 1 ≤ p < ∞, (λ−KT ) ∈ B(Lq) = B((Lp)∗)
is the adjoint of (λ−K) ∈ B(Lp) and (λ−K) ∈ B(Lq) is the adjoint
of (λ−KT ) ∈ B(Lp).

In part the above theorem can be established using the following
result. This is a special case of the interpolation theorem of Riesz-
Thorin, often called the Riesz convexity theorem [29, Chapter V,
Theorem 1.3].
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Theorem 3.3. If, for some s, r ∈ [1,∞], A ∈ B(Lr) ∩ B(Ls), then
for

1
p
=

t

r
+

1− t

s
,

with 0 < t < 1, it holds that A ∈ B(Lp) with

(3.3) ‖A‖Lp ≤ ‖A‖tLr‖A‖1−t
Ls .

Clearly, as a simple consequence of Theorems 3.1 and 3.2 we have
that, if k and kT satisfy A, then

(3.4) ΣLp(K) = ΣLq(KT ), 1 ≤ p ≤ ∞.

We can also, if k additionally satisfies B, relate ΣL∞(K) to ΣX(K) via
the following simple result.

Lemma 3.4. Suppose Y is a Banach space, Z ⊂ Y is a closed
subspace and A ∈ B(Y ) with A(Y ) ⊂ Z. Then, for λ �= 0, (λ−A)−1 ∈
B(Y ) if and only if (λ−A)−1 ∈ B(Z) and

(3.5) ‖(λ−A)−1‖Z ≤ ‖(λ−A)−1‖Y ≤ |λ|−1(1+‖(λ−A)−1‖Z‖A‖Y ).

Proof. Suppose that λ �= 0. It is clear, since A(Y ) ⊂ Z, that λ − A
has the same kernel in Z as in Y . Further, since A(Y ) ⊂ Z, it is easy
to see that (λ − A)(Y ) = Y implies (λ − A)(Z) = Z. Conversely,
if (λ − A)(Z) = Z, then, given ψ ∈ Y , there exists φ ∈ Z with
(λ−A)φ = Aψ and

(3.6) (λ−A)(ψ + φ) = λψ.

Thus (λ−A)(Y ) = Y . We have shown that λ−A : Y → Y is bijective
if and only if λ−A : Z → Z is bijective. The bound (3.5) follows easily
from the definitions of the norms in B(Y ) and B(Z) and equation (3.6).

Applying Lemma 3.4 and with some additional agreement we obtain
the following result. In the proof of this lemma, we make use of weak∗-
convergence in L∞ = (L1)∗. This standard topology on L∞ is used
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more extensively in Section 3.1, where a definition and characterization
of weak∗-convergence in L∞ will be given.

Lemma 3.5. If k satisfies A and B, then ΣL∞(K) = ΣX(K) and,
if λ /∈ ΣX(K), then

‖(λ−K)−1‖L∞ = ‖(λ−K)−1‖X .

Proof. If k satisfies A and B then, by [6, Lemma 2.5], 0 ∈ ΣX(K).
Exactly the same proof applies to show that 0 ∈ ΣL∞(K). Combining
this with Lemma 3.4 we see that ΣL∞(K) = ΣX(K). If λ /∈ ΣX(K),
then λ �= 0 and ‖(λ −K)−1‖X ≤ ‖(λ −K)−1‖L∞ by Lemma 3.4. To
see that the reverse inequality holds, note that given ψ ∈ L∞ we can
construct (ψn) ⊂ X such that (ψn) converges weak∗ to ψ in L∞ = (L1)∗

and such that ‖ψn‖∞ → ‖ψ‖∞. (For example, choose a compactly
supported κ ∈ C(R) with κ ≥ 0 and

∫ +∞
−∞ κ(t) dt = 1 and define

ψn(s) = n
∫ +∞
−∞ κ(n(s − t))ψ(t) dt.) Let φn = (λ − K)−1ψn. Then

λφn − Kφn = ψn
w∗→ ψ. Since (φn) is bounded, (Kφn) is bounded

and so, by the Banach-Alaoglu theorem, has a weak∗ convergent
subsequence. Denoting this subsequence by itself, we see that, for some
φ ∈ L∞, φn = λ−1(Kφn + ψn)

w∗→ φ. Now, since k satisfies A, φn
w∗→

φ ⇒ Kφn
w∗→ Kφ, see, e.g., [15]. Thus λ−1(Kφn+ψn)

w∗→ λ−1(Kφ+ψ)
so that φ = (λ−K)−1ψ. But also

‖φ‖∞ ≤ lim sup ‖φn‖∞ ≤ ‖(λ−K)−1‖X lim sup ‖ψn‖∞
= ‖(λ−K)−1‖X‖ψ‖∞.

Thus ‖(λ−K)−1‖L∞ ≤ ‖(λ−K)−1‖X .

3.1 When K is the product of a convolution and multipli-
cation. As a first illustration of the power of these results and of
Theorem 2.1 in the last section, we consider their application to the
integral equation

(3.7) λφ(s)−
∫ +∞

−∞
κ(s− t)z(t)φ(t) dt = ψ(s), s ∈ R,
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and its adjoint equation

(3.8) λφ(s)−
∫ +∞

−∞
κ(t− s)z(s)φ(t) dt = ψ(s), s ∈ R,

with κ ∈ L1, z ∈ L∞. Of course, these are equations (1.1) and (3.1),
respectively, with

k(s, t) = κ(s− t)z(t), kT (s, t) = k(t, s) = κ(t− s)z(s).

In operator notation we can abbreviate (3.7) and (3.8) as λφ−Kφ = ψ
and λφ−KTφ = ψ, respectively, with

K = KMz, KT = MzKT ,

where Mz is the operation of multiplication by z and K is the convolu-
tion integral operator defined by

Kφ(s) =
∫ +∞

−∞
κ(s− t)φ(t) dt, s ∈ R.

It is easy to see that
KT = RKR

where R is the reflection operator defined by

Rφ(s) = φ(−s), s ∈ R.

Thus
KT = MzRKR = RMRzKR.

But our first result will consider the case when κ is even so thatKT = K.
In addition to Theorems 3.1 3.3, it requires, for its proof, only the
following simple result.

Lemma 3.6. Suppose that, for some Banach space Y and λ �= 0,
A,B, (λ−AB)−1 ∈ B(Y ). Then also (λ−BA)−1 ∈ B(Y ) and

(3.9) (λ−BA)−1 = λ−1 + λ−1B(λ−AB)−1A.
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Proof. We easily check that the right-hand side of (3.9) is indeed a
right and left inverse for λ−BA.

Theorem 3.7. Suppose that 1 ≤ q ≤ r ≤ p ≤ ∞ (with 1/p+1/q = 1)
and that κ(s) = κ(−s), s ∈ R. Then the spectra of K = KMz and
KT = MzKT = MzK are related by

0 ∈ ΣLr(K) = ΣLr(KT ) ⊂ ΣLp(K) = ΣLq (K).

Further, ΣL∞(K) = ΣX(K).

Proof. We show first that 0 ∈ ΣLr (K) ∩ ΣLr(KT ), 1 ≤ r ≤ ∞. Let
χ ∈ C∞

0 (R) := {φ ∈ C∞(R) : φ is compactly supported} with χ �≡ 0
and define φn(s) = χ(s)eins, s ∈ R, n ∈ N. Then (φn) ⊂ Lr with
‖φn‖r = ‖χ‖r �= 0 but ‖Kφn‖r → 0 as n → ∞, so that K(Lr) is
not closed. (That ‖Kφn‖r → 0 is easy to see when κ ∈ C∞

0 (R) and
follows from the denseness of C∞

0 (R) in L1 in the general case.) Thus
K and hence K is not surjective so that 0 ∈ ΣLr(K). Further, KT is
not surjective: this is clearly true if Mz is not surjective; and if Mz

is surjective, then ess. infs∈R |z(s)| > 0 so that Mz is injective and
K(Lr) �= Lr ⇒ (MzK)(Lr) �= Lr. Thus 0 ∈ ΣLr(KT ).

Given that 0 ∈ ΣLr(K) ∩ ΣLr(KT ) it follows from Lemma 3.6 that
ΣLr(K) = ΣLr(KT ), 1 ≤ r ≤ ∞. Thus, and by (3.4),

ΣLp(K) = ΣLq(KT ) = ΣLq(K).

It follows from Theorem 3.3 that ΣLr(K) ⊂ ΣLq(K) ∩ ΣLp(K), for
q ≤ r ≤ p. That ΣL∞(K) = ΣX(K) follows from Lemma 3.5.

Our next result combines the above arguments with Theorem 2.1
and illustrates the application of that theorem. We use extensively the
weak∗-convergence and topology on L∞ = (L1)∗ already used briefly

in the proof of Lemma 3.5. For (ψn) ⊂ L∞, ψ ∈ L∞, we write ψn
w∗→ ψ

if (ψn) converges weak∗ to ψ, i.e., if

∫ +∞

−∞
ψn(t)φ(t) dt −→

∫ +∞

−∞
ψ(t)φ(t) dt, φ ∈ L1.
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A useful characterization of weak∗-convergence is that
ψn

w∗−→ ψ ⇐⇒ sup
n

‖ψn‖∞ < ∞

and ∫ +∞

−∞
ψn(t)φ(t) dt −→

∫ +∞

−∞
ψ(t)φ(t) dt, φ ∈ C∞

0 (R).

We shall say that V ⊂ L∞ is weak∗-sequentially compact if every
sequence in V has a subsequence converging weak∗ to an element of V .

Given κ ∈ L1 and V ⊂ L∞, we will consider families of kernels
W = {kz : z ∈ V } where kz(s, t) := κ(s − t)z(t), s, t ∈ R. One
significance of weak∗-convergence and weak∗ sequential compactness
for our purposes is the relationship with the σ-convergence introduced
in Section 2, expressed in the following lemmas.

Lemma 3.8 [18, Lemma 3.1]. If (zn) ⊂ L∞, z ∈ L∞, zn
w∗→ z, then

kzn

σ→ kz.

Lemma 3.9 [18, Lemma 3.2]. If V ⊂ L∞ is weak∗-sequentially
compact, then W = {kz : z ∈ V } satisfies Au and Bu and is σ-
sequentially compact.

Theorem 3.10. Suppose V ⊂ L∞ is weak∗-sequentially compact,
R(V ) = V and Tr(V ) = V for some r ∈ R \ {0}. Suppose further that
λ �= 0, that λ /∈ ΣpX(KMz) for z ∈ V , and that for every z ∈ V there
exists (zn) ⊂ V such that zn

w∗→ z and (λ − KMzn
)(X) = X for each

n. Then, for z ∈ V , (λ−KMz)−1 ∈ B(X) and (λ−KMz)−1 ∈ B(Lp),
1 ≤ p ≤ ∞. Further,

sup
z∈V

‖(λ−KMz)−1‖X < ∞,(3.10)

sup
z∈V

1≤p≤∞
‖(λ−KMz)−1‖Lp < ∞.(3.11)

Proof. By Lemma 3.9, W := {kz : z ∈ V } satisfies conditions (i) and
(ii) of Theorem 2.1, and W clearly also satisfies conditions (iii) (v).
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Thus, Theorem 3.1 applies to give that (λ − KMz)−1 ∈ B(X), z ∈ V
and the bound (3.10). From Lemma 3.5, (λ−KMz)−1 ∈ B(L∞), z ∈ V ,
and

(3.12) sup
z∈V

‖(λ−KMz)−1‖L∞ < ∞.

By Lemma 3.6 we obtain that (λ−MzK)−1 ∈ B(L∞), z ∈ V , and that
these inverse operators are also uniformly bounded. Since

R(λ−MzK)R = λ−MRzRKR = λ− (KMRz)T ,

it follows that (λ − (KMRz)T )−1 ∈ B(L∞) and, by (3.4), also (λ −
KMRz)−1 ∈ B(L1). Further, and since R(V ) = V and R is an
isometrical isomorphism,

(3.13)

sup
z∈V

‖(λ−KMz)−1‖L1 = sup
z∈V

‖(λ−KMRz)−1‖L1

= sup
z∈V

‖(λ− (KMRz)T )−1‖L∞

= sup
z∈V

‖(λ−MzK)−1‖L∞ < ∞.

Thus (λ − KMa)−1 ∈ B(L∞) ∩ B(L1) and, by Theorem 3.3, also
(λ − KMz)−1 ∈ B(Lp), 1 < p < ∞. In view of (3.12), (3.13) and
(3.3), the inequality (3.11) holds.

We can obtain from the above result a statement about the spectra
of the operators KMz.

Corollary 3.11. Suppose V ⊂ L∞ is weak∗-sequentially compact,
R(V ) = V and Tr(V ) = V for some r ∈ R \ {0}. Suppose also that for
every z̃ ∈ V there exists (zn) ⊂ V such that zn

w∗→ z̃ and

ΣX(KMzn
) ⊂ {0} ∪

⋃
z∈V

ΣpX(KMz).

Then, for 1 < r < ∞, p = 1,∞,
⋃
z∈V

ΣLr (KMz)⊂
⋃
z∈V

ΣLp(KMz)=
⋃
z∈V

ΣX(KMz)={0}∪
⋃
z∈V

ΣpX(KMz).
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Proof. Examining the first part of the proof of Theorem 3.7, we
see that the argument there applies to show that K(Lr) �= Lr, 1 ≤
r ≤ ∞. Thus, for z ∈ L∞, (KMz)(Lr) �= Lr, 1 ≤ r ≤ ∞,
so that 0 ∈ ΣLr(KMz), 1 ≤ r ≤ ∞, z ∈ V . Hence, and as a
corollary of the last theorem, we obtain that {0} ⊂ ⋃

z∈V ΣLr(KMz) ⊂
{0} ∪ ⋃

z∈V ΣpX(KMz), 1 ≤ r ≤ ∞.

By Lemma 3.5, since kz satisfies A and B, ΣL∞(KMz) = ΣX(KMz).
Examining the proof of Theorem 3.10, which uses Lemma 3.6 and (3.4),
we see that the argument there is easily strengthened to obtain that,
for λ �= 0,

⋃
z∈V

(λ−KMz)−1 ⊂ B(L1) ⇐⇒
⋃
z∈V

(λ−KMz)−1 ⊂ B(L∞).

Thus
⋃
z∈V ΣL1(KMz) =

⋃
z∈V ΣL∞(KMz). Putting these results

together we obtain the stated corollary.

We finish this section by illustrating the above theorems and those of
Section 2 by using them to derive results for the following application,
considered briefly in [6]. For Q ⊂ C, let LQ := {φ ∈ L∞ : φ(s) ∈
Q, for almost all s ∈ R}. It is shown in [10] that V := LQ is weak∗-
sequentially compact if and only if Q is compact and convex. Whatever
the choice of Q, clearly R(V ) = V and Tr(V ) = V , r ∈ R. Further,
we can satisfy the remaining condition of Corollary 3.11 in a variety
of ways, as discussed in [6]. For example, given z ∈ V , choose
(zn) ⊂ V so that zn(s) = z(s), |s| ≤ n and so that zn(s) = q ∈ Q
otherwise. Then, setting z̃(s) = q, s ∈ R, kzn

− kz̃ satisfies A,B
and C so that KMzn

− KMz̃ is compact on X. Hence, and since
KMz̃ = qK so that, see (1.4), ΣX(KMz̃) = {0} ∪ ΣpX(KMz̃), it follows
that ΣX(KMzn

) ⊂ ΣpX(KMzn
) ∪ ΣX(KMz̃) ⊂ {0} ∪ ΣpX(KMzn

) ∪
ΣpX(KMz̃) ⊂ {0} ∪ ⋃

z∈V ΣpX(KMz).

We see that all the conditions of Theorem 3.10 and Corollary 3.11 are
satisfied by the choice V := LQ if Q is compact and convex. In view
of Lemma 3.9, it follows that, provided (1.6) holds for some b > 1, the
conditions of Theorem 2.2 are also satisfied. Thus, applying Theorems
3.10 and 2.2, we have the following result, a significant extension of [6,
Corollary 4.5], which only considers the cases E = X and E = Xa.
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Corollary 3.12. Suppose κ ∈ L1, Q ⊂ C is compact and convex,
and λ �= 0. Then (i) and (ii) are equivalent if E denotes one of X,L1

or L∞ and (i) implies (ii) if E = Lp with 1 < p < ∞.

(i) For every z ∈ LQ, the equation

(3.14) λφ(s) =
∫ +∞

−∞
κ(s− t)z(t)φ(t) dt, s ∈ R,

has only the trivial solution in X.

(ii) For every z ∈ LQ the equation

(3.15) λφ(s) = ψ(s) +
∫ +∞

−∞
κ(s− t)z(t)φ(t) dt, s ∈ R,

has exactly one solution φ ∈ E for every ψ ∈ E and, for some constant
C > 0 depending only on λ, κ and Q, ‖φ‖E ≤ C‖ψ‖E.

If also κ(s) = O(s−b) as |s| → ∞ for some b > 1, then (i) and (ii) are
also equivalent for E = Xa, 0 < a ≤ b.

As pointed out in [6], a boundary integral equation to which this
result can be applied is obtained in [11] from a boundary value problem
for the Helmholtz equation ∆u+k2u = 0, k > 0, in the upper half-plane
U := {(x1, x2) ∈ R2 : x2 > 0} with impedance boundary condition
∂u/∂x2+ikβu = f on ∂U = R. (In the boundary condition, β, f ∈ L∞

are given boundary data.) The integral equation is of the form (3.15)
with λ = 1, z = i(1− β) and κ ∈ L1 with κ(s) = O(s−3/2) as |s| → ∞.
It is shown in [11] that the homogeneous equation (3.14) has only
the trivial solution in X if β ∈ L∞ satisfies ess. sup�β > 0. Thus if
Q = {i(1− w) : w ∈ P} with P a compact, convex subset of the right-
hand complex plane, the conditions of Corollary 3.12 are satisfied and
(i) in Corollary 3.12 holds. It follows that (ii) in Corollary 3.12 holds,
with E = Lp, 1 ≤ p ≤ ∞ and E = Xa, 0 ≤ a ≤ 3/2.

We consider a related scattering problem in more detail in Section 4.

3.2 Results for general kernels. We turn now to a study of more
general forms of kernel. To an extent our results on the solvability of
(1.1) and its adjoint equation (3.1) in Lp, 1 ≤ p ≤ ∞, are obtained using
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the same methods as in Section 3.1, in particular Theorems 3.1 and 3.2
relating the spectrum of K in Lp to that of KT in Lq, and Lemma 3.5.
However, we no longer have the possibility as in Section 3.1 of relating
the spectra of K and KT in the same space Lp via Lemma 3.6. With
this key step in the argument missing we are obliged to make additional
assumptions on k and kT which, in fact, exclude the case K = KMz

unless z ∈ X. We also make an essential use of the result on solvability
in weighted spaces obtained in Section 2.

Our main result is the following.

Theorem 3.13. Suppose W ⊂ K, WT := {kT : k ∈ W} ⊂ K, λ �= 0,
and

(i) W satisfies A′
u and (1.6) holds for some b > 1.

(ii) W and WT satisfy Bu.

(iii) W and WT are σ-sequentially compact.

(iv) T (2)
r (W ) = W for some r ∈ R \ {0}.

(v) For every k̃ ∈ W there exists (kn) ⊂ W such that kn
σ→ k̃ and,

for each n,
λ /∈

⋃
k∈W

ΣpX(Kk) =⇒ λ /∈ ΣX(Kkn
);

this statement also holds with W replaced by WT .

(vi) λ /∈ ΣpX(Kk), k ∈ W .

Then λ /∈ ΣX(Kk), λ /∈ ΣLp(Kk) for k ∈ W ∪WT and 1 ≤ p ≤ ∞, and

sup
k∈W∪WT

‖(λ−Kk)−1‖X < ∞,(3.16)

sup
1≤p≤∞
k∈W∪WT

‖(λ−Kk)−1‖Lp < ∞.(3.17)

Proof. Conditions (i) (v) of Theorem 2.3 are satisfied by W . It
follows from Theorem 2.3 that λ /∈ ΣXa

(Kk), k ∈ W , 0 ≤ a ≤ b, and
then, from Lemma 3.5, that λ /∈ ΣL∞(Kk), k ∈ W . Moreover, from
Theorem 2.3 and Lemma 3.5 we have that

c := sup
k∈W

‖(λ−Kk)−1‖L∞ = sup
k∈W

‖(λ−Kk)−1‖X < ∞.
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Since, for k ∈ W , λ /∈ ΣXb
(Kk) and Xb ⊂ L1, it follows that

(λ − Kk)(L1) ⊃ (λ − Kk)(Xb) = Xb which is dense in L1. Since, by
Theorem 3.2, KkT ∈ B(L∞) = B((L1)∗) is the adjoint of Kk ∈ B(L1)
(and Kk ∈ B(L∞) is the adjoint of KkT ∈ B(L1))) it follows from
Theorem 3.1(ii) that λ /∈ ΣpL∞(Kk) = ΣpX(Kk), k ∈ WT . We can
now repeat the first part of the argument for we have established that
conditions (i) (v) of Theorem 2.3 are satisfied by WT . In particular,
it follows that λ /∈ ΣX(Kk) = ΣL∞(Kk), k ∈ WT , and that

cT := sup
k∈WT

‖(λ−Kk)−1‖L∞ = sup
k∈WT

‖(λ−Kk)−1‖X < ∞.

The proof is completed by applying Theorem 3.1(iii) to deduce that
λ /∈ ΣL1(Kk) ∪ ΣL1(KkT ), k ∈ W , and that

sup
k∈W

‖(λ−Kk)−1‖L1 = cT , sup
k∈WT

‖(λ−Kk)−1‖L1 = c.

It follows from Theorem 3.3 that also λ /∈ ΣLp(Kk), k ∈ W ∪ WT ,
1 < p < ∞, and that

sup
k∈W∪WT

‖(λ−Kk)−1‖Lp ≤ max(c, cT ),

for 1 ≤ p ≤ ∞.

We can obtain, from the above result and some additional arguments,
the following statement about the spectra of the operators Kk.

Corollary 3.14. Suppose W ⊂ K, WT := {kT : k ∈ W} ⊂ K and
conditions (i) (iv) of Theorem 3.13 are satisfied. Suppose also that, for
every k̃ ∈ W and k∗ ∈ WT , there exist (k̃n) ⊂ W and (k∗n) ⊂ WT such
that k̃n

σ→ k̃, k∗n
σ→ k∗, and such that

ΣX(Kk̃n
) ⊂ {0} ∪

⋃
k∈W

ΣpX(Kk),

ΣX(Kk∗n) ⊂ {0} ∪
⋃

k∈WT

ΣpX(Kk),
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for each n. Then, for 1 < r < ∞, p = 1,∞, V = W , WT ,
⋃
k∈V

ΣLr(Kk) ⊂
⋃
k∈V

ΣLp(Kk) =
⋃
k∈V

ΣX(Kk)

= {0} ∪
⋃
k∈W

ΣpX(Kk)

= {0} ∪
⋃

k∈WT

ΣpX(Kk).

Proof. Since k and kT satisfy A and B it follows from Lemma 3.5
that 0 ∈ ΣX(K), 0 ∈ ΣX(KT ). Hence, and from Theorem 3.13, it
follows that, for V = W , WT ,

λ /∈ {0} ∪
⋃
k∈V

ΣpX(Kk) =⇒ λ /∈
⋃

k∈W∪WT

ΣX(Kk)

=⇒ λ /∈ {0} ∪
⋃
k∈V

ΣpX(K
T
k ).

Further, Theorem 3.13 implies that

λ /∈ {0} ∪
⋃
k∈V

ΣpX(Kk) =⇒ λ /∈
⋃
k∈V

ΣLr(Kk),

for 1 ≤ r ≤ ∞. Moreover, by Lemma 3.5, ΣL∞(K) = ΣX(K) and
ΣL∞(KT ) = ΣX(KT ), while by Theorem 3.1(iii) and Theorem 3.2,
ΣL1(K) = ΣL∞(KT ) and ΣL1(KT ) = ΣL∞(K). Hence the corollary
follows.

We will illustrate the above general result by considering its applica-
tion to a particular class of kernel which appears in the application in
Section 4. Let R̃2 := {(s, t) ∈ R2 : s �= t}, suppose that we are given
κ ∈ L1 and, for z ∈ BC(R̃2), consider the kernel κz ∈ K defined by

(3.18) κz(s, t) = κ(s− t)z(s, t), s, t ∈ R.

It is not difficult to see that kernels of this type satisfy conditions A′

and B: see Lemma 3.16 below. Clearly,

κTz (s, t) := κz(t, s) = κ(t− s)z(t, s)
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is a kernel of the same type which thus also satisfies A′ and B.
For (zn) ⊂ BC(R̃2), z ∈ BC(R̃2), we will write zn

s̃→ z if
supn ‖zn‖BC(R̃2) < ∞ and zn(s, t) → z(s, t) uniformly on compact
subsets of R̃2. We will say that V ⊂ BC(R̃2) is s̃-sequentially com-
pact if every sequence (zn) ⊂ V has a subsequence (znm

) such that
znm

s̃→ z ∈ V . For z ∈ BC(R̃2) define zT ∈ BC(R̃2) by

zT (s, t) := z(t, s), (s, t) ∈ R̃2.

Clearly,

(3.19) zn
s̃−→ z =⇒ zTn

s̃−→ zT .

The following lemmas enable the application of Theorem 3.13 to kernels
of the type (3.18).

Lemma 3.15 [18, Lemma 3.4]. If zn
s̃→ z, then κzn

σ→ κz.

Lemma 3.16. If V ⊂ BC(R̃2) is s̃-sequentially compact, then
W := {κz : z ∈ V } satisfies A′

u and Bu and is σ-sequentially compact.

Proof. Since V is s̃-sequentially compact, it is bounded and so A′
u

holds. It is shown in [18, Lemma 3.5] that also Bu holds and W is
σ-sequentially compact.

Remark 3.17. If V ⊂ BC(R̃2) is s̃-sequentially compact, then by
(3.19) so is V T := {zT : z ∈ V }, and therefore, by Lemma 3.16,
WT := {κTz : z ∈ V } also satisfies A′

u and Bu and is σ-sequentially
compact.

Combining Theorems 2.3 and 3.13 with Lemmas 3.15 and 3.16, and
bearing in mind the above remark, we see that the following result
holds.

Theorem 3.18. Suppose κ ∈ L1, λ �= 0, V ⊂ BC(R̃2), W := {κz :
z ∈ V } and
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(i) (1.6) holds for some b > 1.

(ii) V is s̃-sequentially compact.

(iii) T (2)
r (V ) = V for some r ∈ R \ {0}.

(iv) For every z̃ ∈ V there exists (zn) ⊂ V such that zn
s̃→ z̃ and, for

each n,
λ /∈

⋃
z∈V

ΣpX(Kκz
) =⇒ λ /∈ ΣX(Kκzn

);

this statement also holds with κz, κzn
replaced by κTz , κTzn

.

(v) λ /∈ ΣpX(Kk), k ∈ W .

Then λ /∈ ΣX(Kk), λ /∈ ΣLp(Kk) and λ /∈ ΣXa
(Kk) for k ∈ W ∪WT ,

1 ≤ p ≤ ∞, 0 ≤ a ≤ b. Further, (3.16) and (3.17) hold, and

sup
k∈W∪WT

‖(λ−Kk)−1‖Xa
< ∞,

for 0 ≤ a ≤ b.

We will consider an important application of this theorem in the next
section.

4. An application to rough surface scattering. We consider in
this section the scattering of a time-harmonic wave field incident on an
infinite boundary given as the graph of a bounded function f . More
precisely, denote by C1,1(R) the Hölder space

C1,1(R) :=
{
φ ∈ C1(R) : ‖φ‖C1,1(R)

:= ‖φ‖∞ + ‖φ′‖∞ + sup
s,t∈R,s 
=t

|φ′(s)− φ′(t)|
|s− t| < ∞

}
.

Given f ∈ C1,1(R), define the domain D := {x = (x1, x2) ∈ R2 :
x2 > f(x1)}, and let Γ := ∂D denote the boundary of D. We assume
that the time-harmonic incident field ui is a solution to the Helmholtz
equation

∆u+ k2u = 0 in D,

with wavenumber k > 0 and that ui is continuous up to the boundary
Γ with ui|Γ bounded and restrict our attention to the case where the
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total field vanishes on the boundary. Then the scattered field u has
to satisfy the Helmholtz equation in D and the boundary condition
u = −ui on Γ. Set, for h ∈ R, Γh := {x ∈ R2 : x2 = h} and
Uh := {x ∈ R2 : x2 > h}. In order to ensure uniqueness of solution
to this problem, we further require that the scattered field be bounded
in the horizontal strip D \ Uh for every h > 0 and that it satisfy the
upward propagating radiation condition proposed in [11, 17]: that, for
some h > supx1∈R f(x1) and φ ∈ L∞(Γh),

(4.1) u(x) = 2
∫

Γh

∂Φ(x, y)
∂y2

φ(y) ds(y), x ∈ Uh,

where Φ(x, y) := (i/4)H(1)
0 (k|x − y|), x, y ∈ R2, x �= y, is the free

field Green’s function for the Helmholtz equation and H
(1)
0 denotes the

Hankel function of the first kind and of order 0.

Thus the rough surface scattering problem we are considering is a
special case of the following Dirichlet boundary value problem

Problem 4.1. Given g ∈ BC(Γ), determine u ∈ C2(D)∩C(D) such
that

1. ∆u+ k2u = 0 in D,

2. u = g on Γ,

3. u is bounded in D \ Uh for all h > 0,

4. u satisfies the UPRC (4.1).

It has been shown in [17, 14] that Problem 4.1 admits a unique
solution for any boundary function g ∈ BC(Γ).

We will now study an equivalent boundary integral formulation of
Problem 4.1 derived in [14], applying the results of the preceding
sections. Let G(x, y) := Φ(x, y) + Φ(x, y′) + P (x − y′) for x, y ∈ U0,
x �= y, where y = (y1, y2), y′ = (y1,−y2) and

P (x) :=
eik|x|

π

∫ ∞

0

t−1/2e−k|x|t(1 + γ(1 + it))√
t− 2i(t− i(1 + γ))2

dt, x ∈ U0,

with γ = x2/|x|. It follows from this definition, see [11, 12], that
G(x, y) is the Green’s function for the operator ∆ + k2 in the upper
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half-plane U0 which satisfies the impedance boundary condition

∂G(x, y)
∂x2

+ ikG(x, y) = 0, x ∈ Γ0, y ∈ U0, x �= y.

Moreover, it was shown in [13] that G(x, y) exhibits a more rapid decay
than Φ(x, y) as |x1 − y1| → ∞ with x2, y2 bounded, as expressed in the
bounds
(4.2)

|G(x, y)|, |∇yG(x, y)| ≤ C
(1 + x2)(1 + y2)

|x− y|3/2 , x, y ∈ U0, x �= y,

where the constant C > 0 only depends on k.

It was proposed in [13] to seek a solution to Problem 4.1 in the form
of a double layer potential

(4.3) u(x) =
∫

Γ

∂G(x, y)
∂ν(y)

ψ(y) ds(y), x ∈ D,

for some ψ ∈ BC(Γ) where ν(y) denotes the unit normal vector at
y ∈ Γ pointing out of D. Note that, by the bound (4.2), the double
layer potential exists as an improper integral for all x ∈ D. Moreover,
it was shown [17, Theorem 4.2] that u defined by (4.3) is a solution
to Problem 4.1 provided ψ ∈ BC(Γ) satisfies the boundary integral
equation

(4.4) ψ(x)− 2
∫

Γ

∂G(x, y)
∂ν(y)

ψ(y) ds(y) = −2g(x), x ∈ Γ.

Defining φ, γ ∈ BC(R) by

φ(s) := ψ((s, f(s))), γ(s) := −2g((s, f(s))), s ∈ R,

we find (4.4) to be equivalent to the integral equation on the real line,

(4.5) φ(s)− 2
∫ ∞

−∞

∂G(x, y)
∂ν(y)

φ(t)
√
1 + f ′(t)2 dt = γ(s), s ∈ R,

where x = (s, f(s)), y = (t, f(t)).
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Many of the results of the earlier sections of this paper apply not to a
single integral operator but to families of such operators whose kernels
satisfy conditions of translation invariance, Assumptions Au and Bu,
and certain other conditions. To make use of these results, for c,M > 0,
we introduce the set of surface functions Bc,M , defined by

Bc,M := {f ∈ C1,1(R) : inf f ≥ c, ‖f‖C1,1(R) ≤ M}.

For f ∈ Bc,M we define the kernel kf by

kf (s, t) := 2
∂G(x, y)
∂ν(y)

√
1 + f ′(t)2, s, t ∈ R, s �= t,

where x = (s, f(s)), y = (t, f(t)) and define the integral operator Kf
by

Kfφ(s) :=
∫ ∞

−∞
kf (s, t)φ(t) dt, s ∈ R, φ ∈ X.

The integral equation (4.5) can then be rewritten in operator notation
as

(4.6) (1−Kf )φ = γ.

From previous studies, we have the following results.

Lemma 4.2 [14, Theorem 5.1]. The integral equation (4.6) has at
most one solution in X.

Lemma 4.3 [13, Lemma 5.1]. There exists C > 0, depending only
on c,M and the wavenumber k such that, for all f ∈ Bc,M ,

(4.7) |kf (s, t)| ≤ Cκ(s− t), s, t ∈ R, s �= t,

where κ(s) := (1 + |s|)−3/2, s ∈ R.

Defining

zf (s, t) :=
kf (s, t)
κ(s− t)

, f ∈ Bc,M , s, t ∈ R, s �= t,
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we have that kf (s, t) = κ(s−t)zf(s, t). By Lemma 4.3 and since kf (s, t)
is clearly continuous for s �= t, we have that zf ∈ BC(R̃2). We set

V := {zf : f ∈ Bc,M}, W := {kf : f ∈ Bc,M}.

Lemma 4.4 [14, Lemma 4.6] and [18, Lemma 4.6].

(a) Every sequence (fn) ⊂ Bc,M has a subsequence (fnm
) such that

fnm

s→ f , f ′
nm

s→ f ′, with f ∈ Bc,M .

(b) Suppose that (fn) ⊂ Bc,M and that fn
s→ f , f ′

n
s→ f ′ with

f ∈ Bc,M . Then zfn

s̃→ zf .

From Lemma 4.4, it follows that the set V is s̃-sequentially compact.
Moreover, for r ∈ R it holds that T (2)

r (V ) = V since Tr(Bc,M ) = Bc,M .
By Lemma 4.3, (1.6) holds with b = 3/2. Finally 1 /∈ ΣpX(Kf ), for
f ∈ Bc,M by Lemma 4.2. Thus, to apply Theorem 3.18, with λ = 1,
only condition (iv) remains to be shown.

For f ∈ Bc,m, define

f̄(s) :=
sup f + inf f

2
, s ∈ R.

Note that f̄ ∈ Bc,M . For all A > 0 sufficiently large, there exists a
sequence (fn) ⊂ Bc,M such that

fn(s) =
{
f(s) |s| ≤ n,
f̄(s) |s| ≥ n+A.

Clearly fn
s→ f , f ′

n
s→ f ′, so that zfn

s̃→ zf , by Lemma 4.4(b).

Moreover, zf̃ (x, t) = z̃(s − t) for some z̃ ∈ BC(R \ {0}) so that the
operator Kf̄ is a convolution operator and, by (1.4), {0} ∪ ΣpX(Kf̄ ) =
ΣX(Kf̄ ). Hence, 1 /∈ ΣX(Kf̄ ) so that 1 − Kf̄ is Fredholm of index
zero. Furthermore, since V is s̃-sequentially compact, it follows from
Lemma 3.16 that ln := kfn

−kf̄ satisfies A and B. In view of the bound
(4.2) and since ln(s, t) = 0, if |s| ≥ n+A and |t| ≥ n+A, it is easy to
see that ln also satisfies C. Thus (see Section 2), Kfn

−Kf̄ is compact
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so that 1−Kfn
= 1−Kf̄ − (Kfn

−Kf̄ ) is also Fredholm of index zero.
Hence, 1 /∈ ΣX(Kfn

) for each n. Furthermore, if 1 /∈ ⋃
f∈Bc,M

ΣpX(K
T
f ),

then, repeating the above argument, we can show that 1 /∈ ΣX(KT
fn
)

for each n. Thus we have shown that assumption (iv) of Theorem 3.18
holds. An application of this theorem now yields the following corollary.

Corollary 4.5. For 1 ≤ p ≤ ∞, the integral equation (4.6) has
exactly one solution φ ∈ Lp for every γ ∈ Lp and f ∈ Bc,M . There
exists a constant c∗ > 0 depending only on c,M and the wavenumber k
such that ‖φ‖p ≤ c∗‖γ‖p for 1 ≤ p ≤ ∞, γ ∈ Lp, f ∈ Bc,M . If γ ∈ Xa,
for some a ∈ [0, 3/2], it holds that φ ∈ Xa. Moreover for 0 ≤ a ≤ 3/2,
there exists a constant Ca > 0, such that for all f ∈ Bc,M , γ ∈ Xa, the
solution φ of (4.6) satisfies

|φ(s)| ≤ Ca(1 + |s|)−a sup
t∈R

|(1 + |t|)aγ(t)|, s ∈ R.

The assertions of this corollary also hold with Kf replaced by KT
f in

equation (4.6).

For the original boundary value problem, Problem 4.1, we have as a
corollary the following existence result [14, Theorem 5.3].

Corollary 4.6. There exists a unique solution to Problem 4.1.

However, the ansatz (4.3) is not the only possibility to seek the
solution to the scattering problem. We can also derive an integral
equation from Green’s theorem. It is convenient for this purpose to
make the additional assumption that the incident field satisfies the
Helmholtz equation in the half-plane U−ε for some ε > 0 and further to
suppose that ui is bounded in the strip U−ε \ UH for some H > sup f .
Introducing the total field ut = ui + u, since ut = 0 on Γ and Γ is
Lyapunov, it follows from regularity estimates up to the boundary for
solutions to elliptic equations [20] that ut ∈ C2(D) ∩ C1(D). Further,
since ut is bounded in D \ Uh, arguing exactly as in the proof of [17,
Theorem 3.1], we can show that, for 0 < α < 1, h′ < H, there exists a
constant C > 0 such that

(4.8) |∇ut(x)| ≤ C(x2 − f(x1))α−1, x ∈ D \ Uh′ .
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Also, arguing as in the proof of [17, Theorem 3.2], we have that

(4.9) sup
n∈Z

∫
Γ(n,n+1)

∣∣∣∣∂u
t

∂ν

∣∣∣∣
2

ds < ∞,

where Γ(n, n+ 1) := (y = (y1, y2) ∈ Γ : n ≤ y1 < n+ 1}, n ∈ Z. These
estimates are not the strongest possible bounds, as we shall see shortly,
but are sufficient for the following derivation of the integral equation
formulation.

For A > 0 and H > h > sup f , we can apply Green’s theorem in the
domain DA,h := {y = (y1, y2) ∈ D : |y1| < A, y2 < h}, to obtain

ut(x) =
∫
∂DA,h

{
G(x, y)

∂ut

∂ν
(y)− ∂G(x, y)

∂ν(y)
ut(y)

}
ds(y), x ∈ DA,h.

In view of the bounds (4.2) and (4.8) and the boundary condition ut = 0
on Γ, it then follows, taking the limit A → ∞, that

(4.10)
ut(x) =

∫
Γh

{
G(x, y)

∂ut

∂ν
(y)− ∂G(x, y)

∂ν(y)
ut(y)

}
ds(y)

+
∫

Γ

G(x, y)
∂ut

∂ν
(y) ds(y), x ∈ D∞,h,

where the normal ν to Γh is pointing upwards, and the integral over Γ
is well defined in view of the bounds (4.2) and (4.9). Using the fact that
the scattered field u satisfies the UPRC, the terms in the first integral
in this equation containing u are seen to vanish by the equivalence of
(i) and (v) in [16, Theorem 2.9]. Thus we are left with the expression

(4.11) ut(x) = ũ(x) +
∫

Γ

G(x, y)
∂ut

∂ν
(y) ds(y), x ∈ D \ Uh,

where

ũ(x) :=
∫

Γh

{
G(x, y)

∂ui

∂ν
(y)− ∂G(x, y)

∂ν(y)
ui(y)

}
ds(y), x ∈ U0 \ Uh.

Let ur ∈ C2(U)∩C(U) denote the solution of the Helmholtz equation
in U which is bounded in the strip U \Uh for every h > 0 and satisfies
the radiation condition (4.1) and the impedance boundary condition

∂ur

∂x2
+ ikur = −

(
∂ui

∂x2
+ ikui

)
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on Γ0, in the weak sense of [11]. By [11] the unique solution to this
boundary value problem is

(4.12) ur(x) =
∫

Γ0

G(x, y)
(
∂ui

∂y2
+ ikui(y)

)
ds(y), x ∈ U.

By a similar argument to that used to derive (4.10), but applying
Green’s theorem in the region between Γh and Γ0, it follows that
ũ(x) = ui(x) + ur(x), x ∈ U0 \ Uh. Substituting in (4.11), we obtain
that

(4.13) ut(x) = ui(x) + ur(x) +
∫

Γ

G(x, y)
∂ut

∂ν
(y) ds(y),

for x ∈ D \ Uh and, by analytic continuation, this equation holds
throughoutD. Note that, for the incident fields commonly of interest, a
more explicit expression than (4.12) can be given for ur. In particular, if
ui is the incident plane wave ui(x) = exp(ikx · d) for some unit vector
d = (d1, d2) with d2 < 0, then ur(x) = R exp(ikx · d′) where d′ =
(d1,−d2) and R is the reflection coefficient R = (−d2 − 1)/(−d2 + 1).

Using standard properties of the acoustic double layer potential [19]
together with the bound (4.2) on the fundamental solution, it is not
difficult to see from (4.13) that the normal derivative ∂ut/∂ν satisfies
the following integral equation on Γ:
(4.14)

∂ut

∂ν
(x)− 2

∫
Γ

∂G(x, y)
∂ν(x)

∂ut

∂ν
(y) ds(y) = 2

(
∂ui

∂ν
(x) +

∂ur

∂ν
(x)

)
, x ∈ Γ.

This equation is equivalent to the integral equation

(4.15) φ(s)−
∫ ∞

−∞
lf (s, t)φ(t) dt = ρ(s), s ∈ R,

on the real line, where φ(s) := (∂ut/∂ν)((s, f(s))), ρ(s) := 2(∂ui/∂ν +
∂ur/∂ν)((s, f(s))), s ∈ R, and we have introduced the kernel

lf (s, t) := 2
∂G(x, y)
∂ν(x)

wf (t),
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with x = (s, f(s)), y = (t, f(t)) and wf (t) :=
√
1 + f ′(t)2. From

(4.9) it follows that supn∈Z

∫ n+1

n
|φ(t)|2 dt < ∞. Thus, and since

lf (s, t) = kf (t, s)wf (t)/wf (s) so that, by Lemma 4.3, |lf (s, t)| ≤
C(1 + |s − t|)−3/2, it follows from (4.15) and the Cauchy-Schwarz
inequality that φ ∈ L∞(R). Defining the integral operator K̃f by

K̃fφ(s) := 2
∫ ∞

−∞

∂G(x, y)
∂ν(y)

φ(t) dt, s ∈ R,

with x = (s, f(s)), y = (t, f(t)), we easily verify that Kf = K̃fMwf

where Mwf
is the operation of multiplication by wf and that equation

(4.15) can be written in operator notation as

(4.16) (1− K̃T
f Mwf

)φ = ρ.

However, by Lemma 3.6, it follows that (4.16) is solvable if the op-
erator 1 − Mwf

K̃T
f = 1 − KT

f is invertible. This result has already
been shown in Corollary 4.5. Thus, combining Lemma 3.6 with Corol-
lary 4.5, we have the following final result, a statement of well-posedness
for our second boundary integral equation formulation of the scattering
problem.

Corollary 4.7. For 1 ≤ p ≤ ∞, the integral equation (4.15) has
exactly one solution φ ∈ Lp for every ρ ∈ Lp and f ∈ Bc,M . There
exists a constant c∗ > 0, depending only on c,M and the wavenumber k
such that ‖φ‖p ≤ c∗‖ρ‖p, for 1 ≤ p ≤ ∞, ρ ∈ Lp, f ∈ Bc,M . If ρ ∈ Xa,
for some a ∈ [0, 3/2], it holds that φ ∈ Xa. Moreover, for 0 ≤ a ≤ 3/2,
there exists a constant Ca > 0 such that, for all f ∈ Bc,M , ρ ∈ Xa, the
solution φ of (4.15) satisfies

|φ(s)| ≤ Ca(1 + |s|)−a sup
t∈R

|(1 + |t|)aρ(t)|, s ∈ R.
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