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Abstract. We consider complete integrability of the Hamiltonian of the geodesic

flow of two particular solutions, the Kerr-Newman and the FRLW metrics of the

Einstein equations in the sense of Liouville. We construct recursion operators using

first integrals, and then obtain constants of motion of the geodesic flows by using

the recursion operators.
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1. Introduction

We consider two particular solutions of the Einstein equations, the Kerr-Newman

and the FRLW metrics. The Kerr-Newman metric is a metric of space-time sym-

metry axis representing the black hole that was charged to rotation (see e.g. [6]).

The FRLW metric stands for the Friedmann-Lemaître-Robertson-Walker metric,

which is widely used as a first approximation of the expanding universe model

(see e.g., [8]). These metrics are well-known as the exact solutions of the Einstein

equations.

In [10], we get complete integrability of the Hamiltonian of the geodesic flows of

four solutions of the Einstein equations: Schwarzschild, Reissner-Nordström, Kerr

and Kerr-Newman metrics. In this paper, we show the Hamiltonian function of

the geodesic flow of the Kerr-Newman metric and the FRLW metric are system of

separation of variables, and then we get complete integrability of the Hamiltonian

of the geodesic flow of the Kerr-Newman metric and the FRLW metric in the sense

of Liouville, respectively.

In [1] and [2] the authors proposed a new characterization of integrable systems,

which is called a recursion operator. A recursion operator is a (1, 1)-tensor field

which satisfies the conditions: 1) Lie derivative is zero under a dynamical vector
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field, 2) it has a vanishing Nijenhuis torsion, 3) it has doubly degenerate eigenval-

ues with nowhere vanishing differentials. Also, it is known that traces of the recur-

sion operators are the constants of motions (see e.g., [4], [9], [11], [12]). However,

up to now, a few concrete examples of a recursion operator are known. The Ke-

pler dynamics is well known integrable systems. In [5], the Kepler dynamics get

functionally independent constants of motion by constructing a recursion operator.

Using the complete integrability, they have considered a quantization-problem of

the Kepler problem (see also e.g., [3], [7], [13]). In [12], a construction of a re-

cursion operator of the rigid body shows the integrability of the systems. In [10],

we construct recursion operators for the geodesic flows of four solutions of the

Einstein equations.

In this paper, we construct recursion operators of the Hamiltonian of the geodesic

flow of two particular solutions of the Einstein equations using the first integrals.

And then we obtain constants of motion of the geodesic flows by using that recur-

sion operators.

We introduce the definition and the Minkowski metric of the simplest example

among the pseudo-Riemannian metrics of the recursion operator in Section 2. In

Section 3, we construct recursion operators of the geodesic flow for the Kerr-

Newman and the FRLW metrics. Using the recursion operators, we see that the

geodesic flows for the Kerr-Newman and the FRLW metrics are integrable sys-

tems and we obtain the respective constants of motion.

2. Recursion Operator

The recursion operator is introduced in [1] and [2] as a new characterization of

integrable systems. In this section, we describe the definition of the recursion

operator, and the theorem concerning the separability and complete integrability

of the recursion operator (Theorem 1), and prove a lemma about construction of

the recursion operator (Lemma 3). Then, we construct a recursion operator for the

Hamiltonian of the geodesic flow of the Minkowski metric using the first integral.

This construction is a simple example of a geodesic flow of a pseudo-Riemannian

metric.

For that purpose let us consider a vector field on 2n-dimensional manifold M2n.

Then, the following definition and theorem are given in [12].

Theorem 1. A vector field X is separable, integrable and Hamiltonian for certain
symplectic structure when X admits an invariant, mixed, diagonalizable (1, 1)-
tensor field T with vanishing Nijenhuis torsion and doubly degenerate eigenvalues
without stationary points. Then, the vector field X is a separable and completely
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integrable Hamiltonian system with respect to the symplectic structure in the sense
of Liouville.

Definition 2. A (1, 1)-tensor field in above theorem is called a recursion operator.

In a particular case, a recursion operator can be constructed in [10] as follows

Lemma 3. Let us consider vector fields

Xj = − ∂

∂xn+j
, j = 1, . . . , n

on R
2n and let U be a (1, 1)-tensor field on R

2n given by

U =
n∑

i=1

xi

(
∂

∂xi
⊗ dxi +

∂

∂xn+i
⊗ dxn+i

)
.

Then we have vanishing Nijenhuis torsion NU = 0 and LXj
U = 0. That is, a

(1, 1)-tensor field U is a recursion operator for Xj .

Next, we introduce an example using pseudo-Riemannian metrics.

2.1. The Geodesic Flow for the Minkowski Metric

Now, we consider geodesic flows in pseudo-Riemannian metrics. In particular, we

consider the Hamiltonian of the geodesic flow of the Minkowski metric. For details

we refer to [10].

First, we construct a vector field X on the phase space for the geodesic flow for

the Minkowski metric. A matrix gij of the Minkowski metric is

gij = gij =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
and the equation of geodesics is

d2qκ

dt2
+ Γ κ

μν

dqμ

dt

dqμ

dt
=

d2qκ

dt2
= 0, κ = 1, 2, 3, 4.

If we put vκ =
dqκ

dt
then we have a first order differential equation on TM

q̇κ = vκ, v̇κ = −Γ κ
μνv

μvν = 0.
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From the above equations, we get a geodesic spray

X = vκ
∂

∂qκ
− Γ κ

μνv
μvν

∂

∂vκ
= vκ

∂

∂qκ
·

By setting pκ = gκεv
ε, the vector field X is equivalently transformed to the vector

field X on T ∗M such that

X =
4∑

k=1

(
q̇k

∂

∂qk
− ṗk

∂

∂pk

)
= −p1

∂

∂q1
+

4∑
k=2

pk
∂

∂qk
·

The vector field X is a Hamiltonian vector field of a certain Hamiltonian function.

We put a symplectic form ω as

ω =
4∑

k=1

dpk ∧ dqk

and a function H as

H =
1

2

(
−p21 +

4∑
k=2

p2k

)
. (1)

Then, we have

iXω = −dH.

The vector field X is a Hamiltonian vector field of the Hamiltonian function H
which will be denoted by XH . Next, we consider the Hamilton-Jacobi equation

with the Hamiltonian function (1). The Hamiltonian function (1) does not include

qk (k = 1, 2, 3, 4), therefore pk (k = 2, 3, 4) are circular coordinates. Let us

consider the respective Hamilton-Jacobi equation

E = H

(
q,

∂W

∂q

)
where E is a constant. We set a generating function as

W =

4∑
i=1

Wi(qi).

Since pk =
∂Wk(qk)

∂qk
(k = 2, 3, 4) are first integrals, we set ak =

∂Wk(qk)

∂qk
. Then

we have

2E = −
(
∂W1(q1)

∂q1

)2

+
4∑

k=2

a2k.
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Thus, the generating function W is

W = q1

√√√√ 4∑
k=2

a2k − 2E +
4∑

k=2

akqk.

In addition, we determine a canonical coordinate system using the generating func-

tion W . We put

Q1 = H, Qk =
∂Wk(qk)

∂qk
, k = 2, 3, 4

and then a canonical coordinate system (P,Q) is given by

Q1 = H, Qk =
∂Wk

∂qk
, P1 = − ∂W

∂Q1
=

q1
p1

, Pk = − ∂W

∂Qk
= −q1pk

p1
− qk.

Here we regard parameters Qk (k = 1, 2, 3, 4) variables. Hence, the relationship

between a canonical coordinate system (P,Q) and the original coordinate system

(p, q) is

p1 =

√√√√ 4∑
k=2

Q2
k − 2Q1, q1 = P1

√√√√ 4∑
k=2

Q2
k − 2Q1, pk = Qk, qk = −Pk −QkP1.

We put a tensor field T of (1, 1) type as

T =

4∑
i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
. (2)

From Lemma 3, we have that LXH
T = 0, NT = 0 and degQi = 2 for the equation

(2). Thus, the (1, 1)-tensor field T is a recursion operator for XH .

It is known the traces Tr(T ), Tr(T 2), Tr(T 3) and Tr(T 4) are constants of motion

(see, [1]). If we express in the original coordinate system (q, p), T and Tr(T �) are

written respectively as

T =
4∑

i,j=1

((
tA
)i
j

∂

∂pi
⊗ dpj +Bi

j

∂

∂qi
⊗ dpj +Ai

j

∂

∂qi
⊗ dqj

)
Tr(T �) =

1

2�−1

(
−p21 + p22 + p23 + p24

)�
+ 2

(
p�2 + p�3 + p�4

)
, � = 1, 2, 3, 4

where A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

H 0 0 0
p2
p1

(p2 −H) p2 0 0

p3
p1

(p3 −H) 0 p3 0

p4
p1

(p4 −H) 0 0 p4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, B =

q1
p1

(tA−A).
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Thus, we get a recursion operator of the simplest example among the pseudo-

Riemannian metrics.

3. Geodesic Flows for Two Types Solutions of Einstein Equations

In this section, we consider geodesic flows for two particular solutions of Einstein

equations, and we construct recursion operators. These solutions of Einstein equa-

tions are the Kerr-Newman and the FRLW metrics. We describe a construction of

a recursion operator for the solution of Einstein equations. And we get constants

of motions with recursion operators.

3.1. The Geodesic Flow for the Kerr-Newman Metric

The Kerr-Newman metric is one of the exact solution of Einstein equations of

general relativity, it is a metric of space-time symmetry axis representing the black

hole that was charged to rotation. If the charge is equal to zero, the Kerr-Newman

metric is the Kerr metric. At very large radii, the curvature and dragging effects of

the central object are negligible, so the Kerr metric becomes flat as can be seen by

letting t → ∞ (see [6]). Of the several forms of the Kerr-Newman metric, the most

useful expression for our purpose is given by the Boyer-Lindquist coordinates.

We consider the Kerr-Newman metric by the Boyer-Lindquist coordinates

ds2 = − κ

ρ2
(
dt− a sin2 θdφ

)2
+

sin2 θ

ρ2
((
r2 + a2

)
dφ− adt

)2
+

ρ2

κ
dr2 + ρ2dθ2

where t ∈ (−∞,∞), r ∈ (2M,∞), θ ∈ (0, π), φ ∈ (0, 2π), κ ≡ r2 − 2rM +
a2 + Q2, ρ2 ≡ r2 + a2 cos2 θ and aM = J . M is the mass of the black hole,

Q is the electric charge and J is the angular momentum. In addition, the Kerr-

Newman geometry has a horizon, and therefore describes a black hole, if and only

if M2 ≥ Q2 + a2.

Here, for simplicity of notation, we put t = q1, r = q2, θ = q3 and φ = q4

ds2 = − κ

ρ2
(
dq1 − a sin2 q3dq4

)2
+

sin2 q3
ρ2

((
q22 + a2

)
dq4 − adq1

)2
+

ρ2

κ
dq22 + ρ2dq23. (3)

For the canonical symplectic structure, we have the Hamiltonian vector field XH

of the geodesic flow for the Kerr-Newman metric

XH =
4∑

k=1

(
Uk

∂

∂qk
+ Vk

∂

∂pk

)
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where

U1 =
2

ρ2

(
aB sin q3 −

A

κ
(Ap1 + ap4)

)
, U2 =

2κp2
ρ2

, U3 =
2p2
ρ2

U4 =
2

κ

(
C(κ− ρ2 +A)

ρ2
− ap1

)
V1 = 0, V2 =

2q2
ρ4

(C2 − q23 + κp22)−
4q2p1
κρ2

(Ap1 + ap4)− (M − q2)p
2
2

V3 =
2 sin q3 cos q3

ρ2

(
a2

ρ2

(
B2 + κp22 −

2p24
sin2 q3

)
+B2 − 2ap1p4

sin2 q3

)
, V4 = 0

A = a2 + q22, B = ap1 sin q3 +
p4

sin q3
, C = ap1 cos q3 +

p4
sin q3

·

The Hamiltonian function H of the vector field XH is

H =
1

2

[(
a2

ρ2
sin2 q3 −

(q22 + a2)2

κρ2

)
p21 +

κ

ρ2
p22

+
1

ρ2
p23 +

(
a2

κρ2
− 1

ρ2 sin2 q3

)
p24 + 2

(
a

ρ2
− a(q22 + a2)

κρ2

)
p1p4

]
.

We see that the Hamiltonian function H does not include q1 and q4. Hence, p1
and p4 are first integrals, and we put p1 = α, p4 = β. Then, we consider the

Hamilton-Jacobi equation

2Eq22 +
(q22 + a2)2

κ
α2 − κ

(
dW2

dq2

)2

+
a2

κ
β2 +

2a(q22 + a2)

κ
αβ

= −2Ea2 cos2 q3 + a2α2 sin2 q3 +

(
dW3

dq3

)2

− β2

sin2 q3
+ 2aαβ (4)

where W =
4∑

k=1

Wk(qk) is the generating function. Since the equation (4) is a type

of separation of variables, we put K as

K = −2Ea2 cos2 q3 + a2α2 sin2 q3 +

(
dW3

dq3

)2

− β2

sin2 q3
+ 2aαβ

where K is the third integral. Therefore, we have a generating function

W = αq1 +

∫
dW2

dq2
dq2 +

∫
dW3

dq3
dq3 + βq4 = αq1 +W2 +W3 + βq4.
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Next, we determine the canonical coordinate system (P,Q) using a generating

function W . Thus, we get

Q1 = E, Q2 = K, Q3 =
dW1

dq1
, Q4 =

dW4

dq4

P1 = −∂W2

∂Q1
− ∂W3

∂Q1
, P2 = −∂W2

∂Q2
− ∂W3

∂Q2

P3 = −q1 −
∂W2

∂Q3
− ∂W3

∂Q3
, P4 = −∂W2

∂Q4
− ∂W3

∂Q4
− q4

by considering a canonical coordinates in the same manner as the geodesic flow

for the Minkowski metric. We consider that Qk (k = 1, 2, 3, 4) are variables. In

terms of the canonical coordinate system, a vector field XH and symplectic form

ω are written as

XH = {H,E} = − ∂

∂P1
, ω =

4∑
k=1

dPk ∧ dQk.

We put a (1, 1)-tensor field T as

T =
4∑

i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

Then, from Lemma 3, T is a recursion operator for XH . In additon, the constants

of motion Tr(T �) (� = 1, 2, 3, 4) of the geodesic flow of the Kerr-Newman metric

is

Tr(T �) = 2
(
E� +K� + α� + β�

)
, � = 1, 2, 3, 4.

Now, if Q = 0, (3) is the Kerr metric. If J = 0, (3) is the Reissner-Nordström

metric. And if Q = 0 and J = 0, (3) is the Schwarzschild metric. Then it enables

us to get the other three respective recursion operators for the Kerr metric, the

Reissner-Nordström metric and the Schwarzschild metric.

3.2. The Geodesic Flow for the FRLW Metric

Now, we consider the following metric

ds2 = −dt2 +R(t)2
(

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
(5)



On the Construction of Recursion Operators for the Kerr-Newman and ... 93

where R(t) is a scale factor and k is a constant representing the curvature of the

space. The metric (5) is called the Friedmann-Lemaître-Robertson-Walker met-

ric. Also called simply the FRLW metric. This metric is widely used as a first

approximation of the expanding universe model.

Notice that we can, without loss of generality, scale the coordinate r in such a

way as to make k take one of the three values +1, 0, −1 ([8]). That is, if R(t)
becomes to c times, then the curvature becomes 1/c2 times. In other words, radius

of the universe swells to c times. Let t0 be the present time. And we assume that

R(t0) = 1. Then, k will be the curvature of present universe.

Also, if k = 0, (5) is called the flat FRLW metric. And if k = +1, (5) is called

the closed, or spherical FRLW metric. Moreover, if k = −1, (5) is called the

hyperbolic, or open FRLW metric.

Here, for simplicity of notation, we put t = q1, r = q2, θ = q3 and φ = q4, the

metric (5) becomes

ds2 = −dq21 +R2(q1)

(
dq22

1− kq22
+ q22

(
dq23 + sin2 q3dq

2
4

))
where q1 ∈ (−∞,∞), q2 ∈ (2M,∞), q3 ∈ (0, π), q4 ∈ (0, 2π).

For the canonical symplectic structure, we have the Hamiltonian vector field XH

of the geodesic flow for the FRLW metric

XH =
4∑

i=1

(
Ui

∂

∂qi
+ Vi

∂

∂pi

)

where

U1 = −p1, U2 =
1− kq22
R2(q1)

p2, U3 =
1

R2(q1)q22
p3, U4 =

1

R2(q1)q22 sin
2 q3

p4

V1 =
1

R3(q1)

((
1− kq22

)
p22 +

p23
q22

+
p24

q22 sin
2 q3

)
dR(q1)

dt

V2 =
q2

R2(q1)

(
kp22 +

p23
q42

+
p24

q42 sin
2 q3

)
, V3 =

cos q3

R2(q1)q22 sin
3 q3

p24, V4 = 0.

Then, the Hamiltonian function H of the vector field XH is

H = −1

2
p21 +

1− kq22
2R2(q1)

p22 +
1

2R2(q1)q22
p23 +

1

2R2(q1)q22 sin
2 q3

p24.
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We see that the Hamiltonian function H does not include q4. Hence, p4 is first

integrals, and we put p4 = α. Then, we consider the Hamilton-Jacobi equation

2E = −
(
dW1

dq1

)2

+
1− kq22
R2(q1)

(
dW2

dq2

)2

+
1

R2(q1)q22

(
dW3

dq3

)2

+
α2

2R2(q1)q22 sin
2 q3

(6)

where W =
4∑

k=1

Wk(qk) is the generating function. Since the equation (6) is a type

of separation of variables, we put K and L as

K = (1− kq22)

(
dW2

dq2

)2

+
1

q22

(
dW3

dq3

)2

+
1

q22 sin
2 q3

α2

L =

(
dW3

dq3

)2

+
1

sin2 q3
α2.

K and L are the third integral. Therefore, we have a generating function

W =

∫
dW1

dq1
dq1 +

∫
dW2

dq2
dq2 +

∫
dW3

dq3
dq3 + αq4 = W1 +W2 +W3 + αq4.

Next, we determine the canonical coordinate system (P,Q) using a generating

function W . Thus, we get

Q1 = E, Q2 = K, Q3 = L, Q4 = α

P1 = −∂W1

∂Q1
, P2 = −∂W1

∂Q2
− ∂W2

∂Q2

P3 = −∂W2

∂Q3
− ∂W3

∂Q3
, P4 = −∂W3

∂Q4
− q4

by considering a canonical coordinates in the same manner as the geodesic flow

for the Minkowski metric. In terms of the canonical coordinate system, a vector

field XH and symplectic form ω are written as

XH = {H,E} = − ∂

∂P1
, ω =

4∑
k=1

dPk ∧ dQk.

We put a (1, 1)-tensor field T as

T =

4∑
i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.
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Then, from the Lemma 3, T is a recursion operator for XH . In additon, the con-

stants of motion Tr(T �) (� = 1, 2, 3, 4) of the geodesic flow of the FRLW metric

is

Tr(T �) = 2
(
E� +K� + α� + β�

)
, � = 1, 2, 3, 4.

These results provide new examples of recursion operators of the geodesic flow for

pseudo-Riemannian metrics.

Acknowledgements

The author would like to thank Professor Akira Yoshioka for fruitful discussions

and support.

References

[1] De Filippo S., Marmo G., Salerno M. and Vilasi G., A New Characterization
of Completely Integrable Systems, Nuovo Cimento B 83 (1984) 97–112.

[2] De Filippo S., Marmo G. and Vilasi G., A Geometrical Setting for the Lax
Representation, Phys. Lett. B 117 (1982) 418–422.

[3] Kanazawa T. and Yoshioka A., Star Product and Its Application to the MIC-
Kepler Problem, J. Geom. Symmetry Phys. 25 (2012) 57–75.

[4] Landi G., Marmo G. and Vilasi G., Recursion Operators: Meaning and Exis-
tence for Completely Integrable Systems, J. Math. Phys. 35 (1994) 808–815.

[5] Marmo G. and Vilasi G., When Do Recursion Operators Generate New Con-
servation Laws?, Phys. Lett. B 277 (1992) 137–140.

[6] Misner W., Thorne S. and Wheeler J., Gravitation, W. H. Freeman and Co.,

San Francisco 1973.

[7] Mladenov I. and Tsanov V., Geometric Quantization of the Multidimensional
Kepler Problem, J. Geom. Phys. 2 (1985) 17–24.

[8] Schutz B., A First Course in General Relativity, Cambridge University Press,

New York 2009.

[9] Sparano G. and Vilasi G., Noncommutative Integrability and Recursion Op-
erators, J. Geom. Phys. 36 (2000) 270–284.

[10] Takeuchi T., A Construction of a Recursion Operator for Some Solutions of
Einstein Field Equations, Geometry, Integrability & Quantization 15 (2014)

249–258.



96 Tsukasa Takeuchi

[11] Vilasi G., On the Hamiltonian Structures of the Korteweg-de Vries and Sine-
Gordon Theories, Phys. Lett. B 94 (1980) 195–198.

[12] Vilasi G., Hamiltonian Dynamics, World Scientific, River Edge 2001.

[13] Yoshioka A. and Ii K., The Quantization Condition in the Presence of a
Magnetic Field and Quasiclassical Eigenvalues of the Kepler Problem with a
Centrifugal Potential and Dirac’s Monopole Field, J. Math. Phys. 31 (1990)

1388–1394.

Received 16 September 2014

Tsukasa Takeuchi

Department of Mathematics

Tokyo University of Science

1-3 Kagurazaka, Shinjuku-ku

Tokyo, JAPAN

E-mail address: 1112702@ed.tus.ac.jp


