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Abstract. We discuss the precanonical quantization of fields which is based on

the De Donder–Weyl (DW) Hamiltonian formulation which treats the space and

time variables on an equal footing. Classical field equations in DW Hamiltonian

form are derived as the equations on the expectation values of precanonical quan-

tum operators. This field-theoretic generalization of the Ehrenfest theorem demon-

strates the consistency of three aspects of precanonical field quantization: (i) the

precanonical representation of operators in terms of the Clifford (Dirac) algebra

valued partial differential operators, (ii) the Dirac-like precanonical generalization

of the Schrödinger equation without the distinguished time dimension, and (iii) the

definition of the scalar product in order to calculate expectation values of operators

using the precanonical wave functions.
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1. Introduction

The canonical Hamiltonian formalism in field theory is not the only possible ex-

tension of the Hamiltonian formalism from mechanics to field theories described

by multiple integral variational problems (see e.g. [23, 30]). Moreover, the alter-

native extensions, such as the De Donder–Weyl (DW) theory [2, 35], actually do

not need to distinguish a time dimension and, therefore, are not restricted to the

globally hyperbolic space-times. It is natural to ask if the alternative Hamiltonian

formulations can lead to a certain reformulation of the quantization procedure in

field theory, which would be more general than the canonical quantization. Though

the DW theory has been known in the calculus of variations since the 1930s, the

lack of a suitable generalization of the Poisson bracket to this framework made it

impossible to use for field quantization. When such a generalization was found in

1993 [8, 13, 14], it has paved the way to the approach to field quantization based

on the DW theory, which I later called precanonical quantization. The term re-

flects the nature of mathematical structures of the DW theory, which are in a sense

intermediate between the Lagrangian formalism and the canonical Hamiltonian

formalism.

The Ehrenfest theorem initially has been playing an important heuristic role in de-

veloping a field quantization based on the DW Hamiltonian formulation in field

theory. However, the importance of this role is probably not obvious from the

papers which I have published at different stages of the development of the the-

ory [9–12]. In this paper I would like to present a more systematic treatment of the

Ehrenfest theorem in the quantum theory of fields, which is based on precanoni-

cal quantization. A more naive treatment, which is found in my earlier papers, is

now improved by a proper definition of the scalar product of Clifford-valued wave

functions and a modified notion of the self-adjointness of operators with respect to

this scalar product, which comply with the fact that a quantum formalism result-

ing from precanonical quantization is essentially the one with an indefinite metric

Hilbert space.

Note that the ability of precanonical quantization to reproduce the correct classical

field equations on the average can be considered as a test of precanonical represen-

tation of operators, the precanonical analogue of the Schrödinger equation and the

prescription for the calculation of expectation values of operators using the Clifford

algebra valued precanonical wave functions.
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We proceed as follows. In Section 2 we discuss precanonical quantization starting

from the outline of the DW Hamilonian formulation and the Poisson-Gerstenhaber

brackets on differential forms which generalize the Poisson brackets to DW theory.

The quantization based on these brackets is outlined in Section 2.3. In Section 2.4

we briefly discuss a connection between the precanonical field quantization and the

functional Schrödinger representation in QFT. Different aspects of the Ehrenfest

theorem in the context of precanonical field quantization are discussed in Sections

3–5. We consider the Ehrenfest theorem in the case of interacting scalar fields in

flat space-time in Section 3, pure Yang-Mills theory in Section 4, and the scalar

fields in curved space-time in Section 5. The latter consideration allows us to iden-

tify the connection term in the curved space-time generalization of the precanonical

Schrödinger equation with the spin-connection. The concluding remarks are found

in Section 6.

2. Precanonical Field Quantization

Let us first outline the basic elements of precanonical quantization. Instead of us-

ing the canonical Hamiltonian formalism, which requires a decomposition into the

space and time, we start from the De Donder–Weyl extension of Hamiltonian for-

mulation of Euler-Lagrange equations to field theory [23,30], where no distinction

between the space and time variables is required.

2.1. De Donder–Weyl Hamiltonian Formulation

Let us consider a field theory given by a Lagrangian density L = L(ya, yaμ, x
ν),

which is a function of the space-time variables xμ, field variables ya and the co-

ordinates of their first space-time derivatives (first jets) yaμ, such that on a specific

field configuration ya = ya(x), yaμ = ∂μy
a(x). We can define new Hamiltonian-

like variables without the distinction between the space and time variables: the

polymomenta

pμa :=
∂L

∂yaμ
(1)

and the DW Hamiltonian function

H(ya, pμa , x
μ) := yaμ(y, p)p

μ
a − L. (2)

Then, if the DW Legendre transformation (ya, yaμ) → (ya, pμa) is regular, i.e.,

det||∂2L/∂yaμ∂y
b
ν || �= 0 (3)
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the Euler-Lagrange field equation can be written in the DW Hamiltonian form

∂μy
a(x) =

∂H

∂pμa
, ∂μp

μ
a(x) = −∂H

∂ya
· (4a, b)

In what follows we denote
∂

∂ya
as ∂a.

Note that it is also possible to construct an analogue of the Hamilton-Jacobi (HJ)

theory associated with the DW Hamiltonian formulation. The corresponding DWHJ

equation [23, 30, 35]

∂μS
μ +H (ya, pμa = ∂aS

μ, xμ) = 0 (5)

defines the solutions of field equations in terms of the wave fronts corresponding

to the eikonal functions Sμ(ya, xμ) on the finite dimensional analogue of the con-

figuration space, i.e., the space of field variables ya and space-time variables xμ.

The very existence of such Hamilton-Jacobi theory on the finite dimensional space

of ya and xμ rises the question about the existence of a formulation of quantum

field theory in terms of the wave functions on this space which leads to the DWHJ

equation in the classical limit.

2.1.1. Example 1: Interacting Scalar Fields

In the case of the theory of interacting scalar fields ya with the Lagrangian

L =
1

2
∂μy

a∂μya − V (y) (6)

where V (y) includes both the mass terms like 1
2
m2

�2
y2 in the case of the single

scalar field and the interactions, we obtain pμa = ∂μya and

H =
1

2
pμap

a
μ + V (y). (7)

The DW Hamiltonian equations obtained from (4)

∂μp
μ
a = −∂aV, ∂μy

a = paμ (8)

are just the first order form of the coupled nonlinear Klein-Gordon equations for ya.

The DWHJ equation (5) for interacting scalar fields takes the form of a partial dif-

ferential equation

∂μS
μ +

1

2

∂Sμ

∂ya
∂Sμ

∂ya
+ V (y) = 0 (9)
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where Sμ(ya, xμ) are eikonal functions on the finite dimensional covariant config-

uration space. In [16] we have shown that by treating the space x and time t := x0

variables differently and constructing a functional

S([ya(x)], t) :=

∫
dx S0(ya = ya(x), t)

we can show that, as a consequence of the DWHJ equation (9), the functional S

obeys the standard Hamilton-Jacobi equation in functional derivatives, which is

familiar from the canonical Hamiltonian formalism.

∂tS+

∫
dy
(
∂tS+

∫
dy
(1
2

(
∇ya(x)

)2
+ V
(
y(x)
)))

.

This is one of the examples of how the DW (precanonical) Hamiltonian structures

precede the canonical ones.

2.2. Poisson Brackets in DW Hamiltonian Formulation

Quantization based on the DW Hamiltonian-like framework requires a suitable

generalization of Poisson brackets. We found a generalization of the geometric

construction of Poisson brackets in analytical mechanics (see e.g. [32]) to the DW

Hamiltonian framework, where it is based on a higher degree generalization of

the symplectic structure to the extended polymomentum phase space of variables

zM := (ya, pμa , xμ). Namely, this generalization is given by the polysymplectic
form1 [8, 13]

Ω = dpμa ∧ dya ∧�μ (10)

where �μ := ∂μ � and � := dx1 ∧ .. ∧ dxn. Thus, in field theory on n-

dimensional space-time a generalization of the symplectic form is a form of degree

(n + 1). The particular form of (10) follows from the Poincaré-Cartan (PC) form

corresponding to the DW theory [4] and the geometric representation of solutions

of classical field equations in terms of multivector fields on the polymomentum

phase space (see [8, 13] for details). Namely, the DW Hamiltonian equations can

be represented as the equations of the integral surfaces of n-multivector fields
n
X ,

such as [8, 13]
n
X Ω = (−1)ndH. (11)

Thinking about the introduction of a Poisson bracket, we conclude that the map

between 0-forms and n-multivectors in (11) should be generalized to include the

1This object can be defined as a representative of a certain equivalence class of forms, see [13].
For the related discussions see also [3, 25, 27, 29].
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horizontal (semi-basic) forms of other degrees

n−p

X Ω = d
p

F , p = 0, 1, ..., (n− 1) (12)

where
p

F := 1
p!Fμ1...μp

(ya, pνa, x
ν) dxμ1 ∧ ... ∧ dxμ1 . This map is also suggested

by the polysymplectomorphism symmetry introduced in [8] in terms of the Lie

derivatives with respect to the multivector fields. Note that the map in (12) exists

only for a special class of forms called Hamiltonian forms in [8, 13] (see also [14]

for an explicit formula for the Hamiltonian forms) and it maps those forms to the

equivalence classes of multivector fields modulo the annihilators of Ω:
p

X Ω =
0, p = 2, ..., n.

The above constructions lead to the following formula for the Poisson bracket of

two Hamiltonian forms
p

F 1 and
q

F 2

{[
p

F 1,
q

F 2 ]} = (−1)(n−p)
n−p

X 1 d
q

F 2 (13)

which gives rise to the graded Lie algebra structure on Hamiltonian forms, where

the grade of a p-form with respect to the bracket operation is (n − p − 1). It

is easy to see that the bracket of p and q forms is a Hamiltonian form of degree

(p+ q − n+ 1).

If we want a true Poisson bracket, we also need the bracket to obey an analogue

of the Leibniz rule. From the definition of Hamiltonian forms in (12) it follows

that Hamiltonian p-form is poly-linear of degree (n − p) in polymomenta [14].

Therefore, the exterior product of two Hamiltonian forms is not a Hamiltonian

form in general. Nevertheless, we found the product operation with respect to

which the space of Hamiltonian forms is closed. It is called the co-exterior product
[14] and denoted as •

p

F •
q

F := ∗−1(∗
p

F ∧ ∗
q

F ) (14)

where ∗ is the Hodge duality operator on the space-time. This product requires

only a volume n-form on the space-time for its definition [12].

Thus we see that a p-form has the grade (n−p) with respect to the •-product, which

is different by one from its degree with respect to the bracket operation {[ · , · ]}. We

can also check that the bracket in (13) is a graded derivation with respect to the co-

exterior product, i.e., the graded Leibniz rule is fulfilled by the graded Lie bracket

with respect to the graded commutative product •. Therefore, the space of Hamil-

tonian forms with the operations {[ · , · ]} and • is the Gerstenhaber algebra [13,14].

This structure generalizes the Poisson algebra structure to field theory within the
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DW Hamiltonian formulation. In this formulation the dynamical variables are rep-

resented by the Hamiltonian forms on the polymomentum phase space.

A connection between the Poisson-Gerstenhaber brackets on forms in DW theory

and the standard Poisson brackets in the canonical Hamiltonian formalism, which

are defined on the functionals of field configurations in the canonical phase space,

has been discussed in [6, 13, 33].

The bracket defined in (13) allows us to calculate simple brackets between Hamil-

tonian forms constructed from the field and polymomenta variables, which will

generalize the canonical brackets, viz.

{[pμa�μ, y
b ]} = δba, {[pμa�μ, y

b�ν ]} = δba�ν , {[pμa , yb�ν ]} = δbaδ
μ
ν . (15a, b, c)

Moreover, the Poisson-Gerstenhaber bracket in (13) allows us to write the equa-

tions of motion of Hamiltonian (n − 1)-forms F := F μ(ya, pμa , x)�μ in terms of

the bracket with the DW Hamiltonian function H . In n-dimensional Minkowski

space

d•F = (−1)n{[H,F ]}+ dh•F (16)

where d• denotes the total co-exterior differential of a p-form
p

F

d•
p

F :=
1

(n− p)!

∂

∂zM
Fμ1 ... μn−p ∂μz

M (x)dxμ •�μ1 ... μn−p
(17)

�μ1 ... μn−p
:= ∂μ1 ... μn−p

�, and dh is the horizontal co-exterior differential

dh•
p

F :=
1

(n− p)!
∂μF

μ1 ... μn−pdxμ •�μ1 ... μn−p
. (18)

By substituting the (n−1)-form variables from the fundamental brackets (15) into

(16) we reproduce the DW Hamiltonian equations (4). Note that equation (16)

generalises the Poisson bracket form of the equations of motion of a function on

the phase space F (q, p, t) in mechanics: d
dtF = {H,F}+ ∂tF .

2.3. Precanonical Quantization

Precanonical quantization is based on a generalization of the Dirac rule of canoni-

cal quantization, which relates the Poisson brackets with the commutators of quan-

tum operators, to the Poisson-Gerstenhaber brackets in DW theory

[Â, B̂] = −i� ̂{[A,B ]}. (19)



50 Igor V. Kanatchikov

The mathematical and physical reasons of why the Dirac quantization rule allows

us to obtain quantum description from the classical one, though not uniquely, is a

separate great issue which we have very little to say about. Here we take it as a

technical postulate of quantum theory.

Let us quantize the fundamental precanonical brackets in (15) (see [10,11]). In the

y-representation, when yb are multiplicative operators, from quantization of (15a)

we obviously obtain

p̂νa�ν = −i�∂a (20)

i.e., a classical (n−1)-form is represented by a quantum operator of form degree 0.

This representation is also consistent with quantization of (15b), which, however,

does not specify the operator of the form �̂ν . Quantization of (15c) leads to the

commutator

[p̂μa , y
b�̂ν ] = p̂μa ◦ yb�̂ν − yb�̂ν ◦ p̂μa = i�δbaδ

μ
ν (21)

where ◦ denotes a composition law of operators. Therefore, p̂μa = i�ε̂μ ⊗ ∂a and

ε̂μ ◦ �̂ν = δμν , ε̂μ ◦ �̂ν − �̂ν ◦ ε̂μ = 0. (22)

It is easy to see that these relations can be fulfilled if ε̂μ and �̂ν are represented by

Dirac matrices and ◦ is their symmetric product, i.e.,

�̂ν =
1

κ
γν , ε̂μ = κγμ (23)

where 1
κ

is a small constant with the dimension of (n− 1)-volume, which appears

on the purely dimensional grounds. Therefore, the polymomenta are represented

by the Clifford algebra valued operators

p̂μa = −i�κγμ∂a. (24)

The bracket form of field equations in (16) allows us to guess the form of pre-

canonical Schrödinger equation

i�κγμ∂μΨ = ĤΨ. (25)

where the precanonical wave function Ψ is a Clifford-valued wave function on

the finite dimentional covariant configuration space: Ψ(ya, xμ). In the following

sections we will see that this form of the Schrödinger equation is consistent with

the Ehrenfest theorem.

Note that the Dirac operator in the left hand side of (25) is a quantum version

of (−1)n−1d•, which is generated by the bracket with H in (16). Hence, we

can identify the quantum operator of dxμ• with (−1)n−1κγμ. We will use this

observation in the calculation in equation (44).
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2.3.1. Example 2: Interacting Scalar Fields.

We can obtain an explicit expression of the operator of DW Hamiltonian for the

system of interacting scalar fields (7) by calculating the bracket

{[pμapaμ, yb�ν ]} = 2pbν (26)

and quantizing it using the already known representation of p̂μa and �̂ν . The result

is [9–11]

Ĥ = −1

2
�2κ2 ∂2

∂ya∂ya
+ V (y). (27)

For the free scalar field V (y) ∼ m2y2, so that Ĥ represents a harmonic oscillator in

the space of field variables y. This theory can be easily solved and the precanonical

wave functions can be written down explicitly (see e.g. [11, 15]).

2.4. Precanonical Quantization and Standard QFT

The functional Schrödinger representation is one of the standard descrptions of

quantum fields, though not the most widely used one. There is an excellent text-

book by Hatfield [5], which treats many standard aspects of QFT using the func-

tional Schrödinger representation. In this picture the states of quantum fields are

described by the Schrödinger wave functionals Ψ([ya(x)], t), which are function-

als of field configurations ya(x) at a given instant of time t (we use the notation

xμ := (x, t)).

It is natural to ask how this description is related to the description in terms of

precanonical wave functions Ψ(ya, xμ). A comparison of the probabilistic inter-

pretations of the Schrödinger wave functional Ψ([ya(x)], t) (an amplitude of find-

ing a field configuration ya(x) at the instant t) and the precanonical wave function

Ψ(ya, xμ) (an amplitude of finding a value of the field ya at the space-time point

xμ) suggests that the former can be represented as a combination of the latter taken

along a specific configuration ya = ya(x). This idea has been explored in several

papers [9,16–18] and it has resulted in the following formula, which expresses the

Schrödinger wave functional in terms of the Volterra’s multidimensional product
integral [31, 34] of precanonical wave functions restricted to the surface Σ in the

space of (ya, xμ), which represents the field configuration y = y(x) at the instant

of time t

Ψ([y(x)], t) = Tr

{∏
x

e−iy(x)αi∂iy(x)dxΨΣ(y(x),x, t)| 1
κ
β 	→dx

}
. (28)
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Here the notation Ψ| 1
κ
β 	→dx

means that every β/κ in the expression of Ψ is re-

placed by dx before the product integral is evaluated. In [17, 18] it is shown that

the canonical functional derivative Schrödinger equation onΨ([y(x)], t) can be de-

rived from the precanonical Schrödinger equation (25) in the vanishing 1/κ limit

or, more precisely, in the singular limit when βκ is mapped to δn−1(0). Formula

(28) is a consequence of this derivation. In [18] it has been explicitly demonstrated

how equation (28) allows us to construct the well known expression of the vacuum

state wave functional of the free scalar field [5] from the ground state solution of

the precanonical Schrödinger equation for the free scalar field.

The conclusion from those considerations is that the standard QFT obtained from

the canonical quantization is a limiting case corresponding to an infinitesimal
1
κ
→ 0 of the description of quantum fields obtained from the precanonical quan-

tization.

3. Ehrenfest Theorem

There has been some uncertainty regarding the nature of the wave function in pre-

canonical quantization. In my earlier papers [9–11] I was tending to assume that

the precanonical wave function Ψ(y, x) is spinor-valued rather than Clifford alge-

bra valued. One of the reasons was that the analogue of the Ehrenfest theorem was

most straightforwadly provable with the spinor-valued wave functions. Besides,

the positive definiteness of Ψγ0Ψ for Dirac spinors, and the corresponding con-

servation law, which was following from the Dirac-like precanonical Schrödinger

equation (25), seemed to be a guarantee that the theory does have a meaningful

probabilistic interpretation, in spite of the fact that the prescription of the calcu-

lation of expectation values of operators was based essentially on the scalar ΨΨ,

which is not positive definite and even not preserved under the space-time trans-

lations. Such a dichotomy of inner products is typical for the theories with an

indefinite metric Hilbert space. Thus the principal advantage of preferring the

Dirac spinor wave function over the Clifford algebra valued wave functions seems

to disappear and we have to take seriously into account the fact that the quantum

formalism which we obtain from precanonical quantization is the one with an in-

definite metric Hilbert space.

In a later work on the relation of precanonical wave functions with the Schrödinger

wave functional [17, 18] we have seen that the constructions most naturally work

for matrix-valued (i.e., the space-time Clifford-Dirac algebra valued) precanonical

Ψ-s rather than spinor-valued ones (i.e., valued in the minimal ideals of the Clifford

algebra).
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The treatment of the Ehrenfest theorem in this paper is different from our previous

more naive considerations in that the precanonical wave function is taken to be

Clifford algebra valued, and the definitions of the scalar product and the notion of

self-adjointness of operators is consistent with the constructions known from the

theories of the indefinite metric Hilbert spaces, with β = γ0 playing the role of the

so-called J-metric [1].

If the wave function is a spinor Ψ, its conjugate is Ψ := Ψ†β. However, for a

general Clifford-valued wave function the conjugate one is defined as Ψ := βΨ†β.

By taking the Hermite conjugate of the precanonical Schrödinger equation (25)

and multiplying it from the left and right by β, and assuming that the operator Ĥ

is generalized self-adjoint in the sense that βĤ†β = H , we can write the equation

of Ψ in the form

i�κ∂μΨγμ = −ĤΨ (29)

where we have also used the property βγ†μβ = γμ.

Now we can prove the conservation law

∂μ

∫
dyTr
(
ΨγμΨ

)
= 0 (30)

where dy :=
∏

a dy
a. Indeed (for simplicity, we assume henceforth in calculations

that � = 1,κ = 1)

i∂μ

∫
dy Tr
(
ΨγμΨ

)
=

∫
dy Tr
(
i∂μΨγμΨ+Ψγμi∂μΨ

)
(31)

=

∫
dy Tr
(
− ĤΨΨ+ΨĤΨ

)
= 0.

Similarly, we can obtain

i∂μ

∫
dy Tr
(
Ψγμ∂aΨ

)
=

∫
dy Tr
(
i∂μΨγμ∂aΨ+Ψγμi∂μ∂aΨ

)
=

∫
dy Tr
(
− ĤΨ∂aΨ+Ψ∂a ◦ ĤΨ

)
(32)

=

∫
dy Tr
(
−ΨĤ ◦ ∂aΨ+Ψ∂a ◦ ĤΨ

)
=

∫
dy Tr
(
Ψ(∂aĤ)Ψ

)
= 〈∂aĤ〉.

Taking into account the precanonical representation of the operator of polymo-

menta (24) this result shows that the second DW Hamiltonian equation (4b) is

fulfilled on the average

∂μ〈p̂μa〉 = −〈∂aĤ〉 (33)



54 Igor V. Kanatchikov

if the following prescription for the calculation of expectation values of precanon-

ical operators is adopted

〈Ô〉(x) =
∫
dy Tr
(
−Ψ(y, x)ÔΨ(y, x)

)
. (34)

Note that the right hand side of (33) can be understood as follows

− 〈∂aĤ〉 = 〈[Ĥ, ∂a]〉 = 〈[Ĥ,
i

�
p̂νa�ν ]〉 = 〈 ̂{[H, pνa�ν ]}〉. (35)

Next, let us consider

∂μ〈y〉 =

∫
dy Tr
(
∂μΨyΨ+Ψy∂μΨ

)
. (36)

By multiplying the precanonical Schrödinger equation (25) and its conjugate (29)

by γμ we can write

i∂μΨ = γμĤΨ− iγμν∂
νΨ, i∂μΨ = −ĤΨγμ + i∂νΨγμν . (37)

By substituting equations (37) into (36) we obtain

i∂μ〈y〉 =

∫
dy Tr
((

− ĤΨγμ + i∂νΨγμν
)
yΨ+Ψy

(
γμĤΨ− iγμν∂

νΨ
))

(38)

=

∫
dy Tr
(
Ψ
(
[yγμ, Ĥ]− iyγμν

↔
∂ν
)
Ψ
)

where a
↔
∂μ b := a∂μb− (∂μa)b.

While the first term in (38) reproduces the statement of the Ehrenfest theorem for

the first DW Hamiltonian equation in (4a), the nature of the second term is not

clear. In fact, equations (37) are formal and their use should take into account the

integrability condition ∂[μ∂ν]Ψ = 0, which leads to a rather complicated system

of additional equations. For this reason the use of equations (37) to prove the

Ehrenfest theorem, in the way it is done in (38), does not appear to be justified.

In order to prove the Ehrenfest theorem for the first DW Hamiltonian equation in

(4a) by exploiting the same mechanism as in (32), let us use the fact that, accord-

ing to the precanonical fundamental bracket in (15c), the variable (precanonically)

conjugate to pμa is an (n−1)-form ya�ν , for which equation (4a) can be rewritten

as

∂μ(ya�μ) =
∂H

∂pμa
�μ = pμa�μ (39)



Ehrenfest Theorem in Precanonical Quantization 55

where in the last equality we use the expression of the DW Hamiltonian for the

interacting scalar fields, see (7). For the expectation value of the operator ŷa�ν =
1
κ
yaγμ we obtain

i∂μ〈ŷa�μ〉 = i∂μ

∫
dy Tr
(
ΨγμyaΨ

)
= i

∫
dy Tr
(
∂μΨγμyaΨ+Ψyaγμ∂μΨ

)
=

∫
dy Tr
(
− ĤΨyaΨ+ΨyaĤΨ

)
=

∫
dy Tr
(
Ψ[ya, Ĥ]Ψ

)
(40)

=

∫
dy Tr
(
Ψ∂aΨ
)
= i〈p̂μa�μ〉

where in the last line we use the expression of the DW operator of interacting scalar

fields (27).

Thus, we have shown in (40) that the first DW Hamiltonian equation in (4a) written

in the form (39) is satisfied on the average as the equation on the expectation values

of the corresponding operators. Together with equation (33) it proves the Ehrenfest

theorem for the precanonically quantized system of interacting scalar fields in flat

space-time: the classical DW Hamiltonian equations of this system are fulfilled by

the expectation values of the corresponding precanonical operators.

However, there remains certain dissatisfaction due to the fact that we were able

to prove the Ehrenfest theorem only for a specific form of the DW Hamiltonian

equation: namely, the one given by (39).

Looking on the proofs in equations (32) and (40), we see that the right hand sides

of the DW Hamiltonian equations are reproduced as expectation values of certain

commutators with Ĥ . It suggests that the Ehrenfest type statement is more nat-

urally obtained for the Poisson bracket form of the DW Hamiltonian equations

rather than for their naive form in (4).

Let us recall that in the DW Hamiltonian theory we have shown that the DW Hamil-

tonian equations in Minkowski space can be written in the form (cf. (16))

d • pμa�μ = (−1)n{[H, pμa�μ ]} (41)

d • ya�μ = (−1)n{[H, ya�μ ]}. (42)

Equation (32) can be understood as tantamount to the following statement

(−1)n∂μ〈d̂xμ• ◦ p̂νa�ν〉 = 〈 i
�
[Ĥ, p̂νa�ν ]〉 = 〈 ̂{[H, pμa�μ ]}〉 (43)

which is an Ehrenfestian version of (41), provided d̂xμ• is identified with

(−1)n−1κγμ. Note that the operator ε̂μ in the representation of p̂μa in (22) can be

identified, up to a sign factor, with d̂xμ•. An independent evidence of that could
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be in principle obtained also from the consideration of geometric quantization of

Poisson-Gerstenhaber brackets in the DW Hamiltonian theory (see [12]), given the

fact that dxμ• acts on forms similarly to the contraction with the multivector of

degree (n− 1): εμμ1...μn−1∂μa
∧ ... ∧ ∂μn−1

.

Now, let us consider an Ehrenfestian version of equation (42). The operator version

of the r.h.s. of equation (42): d • ya�μ = ∂ν(dx
ν • ya�μ), can be written as

∂ν(d̂xν• ◦ ŷa�μ). Let us consider its average

∂ν〈d̂xν• ◦ ŷa�μ〉 = ∂ν

∫
dy Tr
(
Ψd̂xν• ◦ ŷa�μΨ

)
=

∫
dy Tr
(
∂νΨd̂xν• ◦ ŷa�μΨ+Ψd̂xν• ◦ ŷa�μ∂νΨ

)
(44)

= (−1)ni

∫
dy Tr
(
ĤΨya�̂μ −Ψya�̂μĤΨ

)
= (−1)ni

∫
dy Tr
(
Ψ[Ĥ, ya�̂μ]Ψ

)
= (−1)n〈{[H, ya�μ ]}〉

where in the third line we have used the property of the composition of operators

d̂xμ• and �̂ν : d̂xμ• ◦ �̂ν − �̂ν ◦ d̂xμ• = 0, d̂xμ• ◦ �̂ν = δμν , which results from

quantization of one of the fundamental brackets in (21) and (22). Thus we have

shown that the bracket form of the second DW Hamiltonian equation (42) is also

fulfilled on the average.

4. Ehrenfest Theorem in Pure Yang–Mills Theory

The Lagrangian density of pure Yang–Mills theory reads

L = −1

4
FaμνF

aμν (45)

where

F a
μν := ∂μA

a
ν − ∂νA

a
μ + gCa

bcA
b
μA

c
ν (46)

g is the Yang-Mills self-coupling constant and Cabc are totally antisymmetric struc-

ture constants which fulfill the Jacobi identity

Ce
abC

d
ec + Ce

bcC
d
ea + Ce

caC
d
eb = 0. (47)

The polymomenta and the DW Hamiltonian are given by

πνμ
a :=

∂L

∂(∂μAa
ν)

= −∂μAν
a + ∂νAμ

a − gCabcA
b
μA

c
ν = F νμ

a (48)

H= πνμ
a ∂μA

a
ν − L = −1

4
πaμνπ

aμν +
g

2
Ca

bcA
b
μA

c
νπ

μν
a . (49)
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The definition of polymomenta leads to the primary constraint (in the sense of the

DW Hamiltonian theory2)

πμν
a + πνμ

a ≈ 0. (50)

The Yang-Mills field equations in DW Hamiltonian form read

∂μπ
νμ
a = − ∂H

∂Aa
ν

= −g CabcA
b
μπ

νμ
c (51)

∂[μA
a
ν] =

∂H

∂πνμ
a

=
1

2
πa
μν −

1

2
g Ca

bcA
b
μA

c
ν . (52)

The antisymmetrization in the left hand side of the second equation makes the DW

Hamiltonian equations consistent with the primary constraints.

Let us note that the related treatments of classical YM theory within the multi-

symplectic framework in [7, 24, 26]. Precanonical quantization of YM theory, its

connection with the functional Schrödinger representation, and a potential appli-

cation to the mass gap problem have been discussed earlier in [20].

Precanonical quantization leads to the representation of polymomenta as

π̂μν
a = −i�κγν∂Aa

μ
. (53)

The primary constraint (50) is taken into account as the constraint on the physical

quantum states

π̂(νμ)
a |Ψ〉 phys = 0 (54)

whence it follows 〈π̂(νμ)
a 〉phys = 0. From (49) we obtain the DW Hamiltonian

operator

Ĥ =
1

2
�2κ2 ∂

∂Aμ
a∂Aa

μ

− 1

2
ig�κCa

bcA
b
μA

c
νγ

ν ∂

∂Aa
μ

· (55)

Note that in quantum YM theory the DW Hamiltonian operator is not scalar and the

second term, which is responsible for self-interaction, is Clifford algebra valued.

The quantum states are represented by Clifford-valued wave functions Ψ(Aμ
a , xν)

with the scalar product given by

〈Φ|Ψ〉 =
∫
[dA] Tr

(
ΦΨ
)

(56)

where the measure [dA] =
∏

a,μ dA
a
μ. The conservation law

∂μ

∫
[dA] Tr

(
ΨγμΨ

)
= 0 (57)

2An extension of the Dirac’s theory of constraints and the Dirac bracket to the DW Hamiltonian
theory has been discussed in [19].
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follows from the precanonical Schrödinger equation (25) and its conjugate (29),

and the fact that the DW Hamiltonian operator of pure YM system is generalized

self-adjoint in the sense that Ĥ = βĤ†β, because βγμ†β = γμ.

Now, a straightforward calculation yields

∂ν〈π̂μν
a 〉 = −i�κ∂ν

∫
[dA] Tr

(
Ψγν∂Aa

μ
Ψ
)

(58)

=

∫
[dA] Tr

(
(ĤΨ)∂Aa

μ
Ψ−Ψ∂Aa

μ
◦ ĤΨ
)
= −〈∂Aa

μ
Ĥ〉.

Therefore, the first of the YM field equations in DW Hamiltonian form, equation

(51), is proven to be satisfied on the average.

The validity of the Ehrenfest theorem for the second YM field equation (52) can

be proven similarly to the calculation in (44)

∂[νA
a
μ] = (−1)n∂α〈(Aa

[μdx
α • ◦�ν])

op〉

= (−1)n∂α

∫
[dA] Tr

(
ΨAa

[μd̂x
α• ◦ �̂ν]Ψ

)
= i

∫
[dA] Tr

(
ĤΨAa

[μ�̂ν]Ψ−ΨAa
[μ�̂ν]ĤΨ

)
(59)

= i

∫
[dA] Tr

(
Ψ[Ĥ, Aa

[μ�̂ν]]Ψ
)

=

∫
[dA] Tr

(
Ψ({[H,Aa

[μ�ν] ]})opΨ
)
=
〈 ∂̂H

∂πμν
a

〉
.

Thus, we have shown that the DW Hamiltonian form of YM field equation arises

as the equation for the expectation values of precanonically quantized operators.

5. Ehrenfest Theorem in Curved Space-Time

Let us consider interacting scalar fields on curved space-time background gμν(x).
The dynamics is given by the Lagrangian density

L =
1

2

√
ggμν∂μy

a∂νya −
√
gV (y) (60)

where g := |detgμν |, and the designation of the parametric dependence from x-s

is omitted here and in what follows. In this case the polymomenta

p
μ
a =

∂L

∂∂μya
=

√
ggμν∂μya (61)
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the DW Hamiltonian density

H =
√
gH =

1

2
√
g
gμνp

μ
ap

aν +
√
gV (y) (62)

and the polysymplectic structure

Ω = dpμa ∧ dφa ∧�μ (63)

are densities of the weight +1, which parametrically depend on the space-time

coordinates x. Note that in our notation the differentials d in (63) do not act on x-

s, as they are“vertical” (for the mathematical details of the definition of this notion,

see [13]).

The DW Hamiltonian equations of the system of scalar fields given by L read

∂μp
μ
a(x) = − ∂H

∂ya
, ∂μy

a(x) =
∂H

∂pμa
(64)

where ∂μ acts both on the parametric dependence on x via gμν(x) and the depen-

dence on x due to the pull back to a specific section in the polymomentum phase

space of variables (pμa , ya), which represents a solution of classical field equations.

Note that we could obtain the same equations by applying the usual rules of co-

variantization to the DW equations in flat space-time.

The Poisson bracket operation defined by the weight +1 density valued polysym-

plectic structure (63) has a density weight −1, so that, for example,

{[pμa(x), yb�ν ]} = δbaδ
μ
ν . (65)

The Dirac quantization rule in curved space-time is also modified to make sure

that density valued quantities are quantized as density valued operators of the same

weight

[Â, B̂] = −i�
√
g ̂{[A,B ]}. (66)

It leads to the following representations

p̂
μ
a = −i�κ

√
gγμ∂a, Ĥ = −1

2
�2κ2∂a∂

a + V (y) (67)

where the x-dependent γ-matrices are introduced such that γμγμ + γμγμ = 2gμν .

Note that the operator of the DW Hamiltonian does not contain x-dependent quan-

tities.

The curved space-time version of precanonical Schrödinger equation (25) takes the

form

i�κγμ(x)∇μΨ = ĤΨ (68)
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where ∇μ := ∂μ +ωμ(x) is a covariant derivative of Clifford algebra valued wave

functions. Let us see if the requirement that the Ehrenfest theorem would extend

also to the case of curved space-time can help us to specify the connection term

ωμ(x).

Before we proceed, let us find the precanonical Schrödinger equation for the con-

jugate wave function Ψ := β̄Ψ†β̄, where γ̄I , I = 0, ..., n− 1 are the flat (tangent)

space Dirac matrices, such that γ̄I γ̄J + γ̄J γ̄I = 2ηIJ , ηIJ is the Minkowski met-

ric, and β̄ := γ̄0. If Ĥ is generalized self-adjoint: Ĥ = β̄Ĥ†β̄, by multiplying the

Hermite conjugate of (68) by β̄ from the left and right, and inserting β̄2 = 1 where

needed, we obtain

i�κΨ(
←
∂μ +ωμ)γ

μ = −ĤΨ (69)

where ωμ := β̄ω†
μβ̄ (not to be confused with �μ in (63)!).

Let us consider a conservation law, which would generalize (31) to curved space-

time

i∂μ

∫
dy Tr
(
Ψ
√
gγμΨ
)
= i

∫
dy Tr
(
∂μΨ

√
gγμΨ+Ψ

√
gγμ∂μΨ

+Ψ∂μ(
√
gγμ)Ψ

)
=

∫
dy Tr
(
Ψ
√
g
(
− Ĥ − iωμγ

μ
)
Ψ+Ψ

√
g
(
Ĥ − iγμωμ

)
Ψ+Ψi∂μ(

√
gγμ)Ψ

)
=

∫
dy Tr
(
Ψi
(
−√

gωμγ
μ −√

gγμωμ + ∂μ(
√
gγμ)
)
Ψ
)
.

Therefore, the covariant version of the conservation law (31)

∂μ

∫
dy Tr
(
Ψ
√
gγμΨ
)
= 0

is fulfilled if the connection ωμ satisfies the equality

√
gωμγ

μ +
√
gγμωμ − ∂μ(

√
gγμ) = 0. (70)

Furthermore

i∂μ

∫
dy Tr
(
Ψ
√
gγμ∂aΨ

)
=

∫
dy Tr
(
i∂μΨ

√
gγμ∂aΨ

+Ψ∂a
√
gγμi∂μΨ+Ψi∂μ(

√
gγμ)Ψ

)
. (71)
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By substituting the precanonical Schrödinger equation in curved space-time and its

conjugate we obtain in the r.h.s. of (71)∫
dy Tr
(
−√

gĤΨ∂aΨ− iΨ
√
gωμγ

μ∂aΨ

+Ψ∂a ◦
√
g
(
Ĥ − iγμωμ

)
Ψ+ iΨ∂μ(

√
gγμ)∂aΨ

)
. (72)

The terms with Ĥ yield∫
dy Tr
(
−Ψ

√
gĤ ◦ ∂aΨ+Ψ∂a ◦

√
gĤΨ
)

=

∫
dy Tr
(
−Ψ(∂aĤ)Ψ

)
= −〈∂aĤ〉. (73)

Therefore, the first DW Hamiltonian equation in (64) is fulfilled on the average if

the remaining three terms in (72)∫
dy Tr
(
Ψ
(
−√

gωμγ
μ −√

gγμωμ + ∂μ(
√
gγμ)
)
∂aΨ
)

(74)

produce a vanishing result. This condition limits the choice of the connection ωμ

and it coincides with (70).

Now, let us consider the covariant version of equation (38)

∇μ(y�
μ) = ∂μ(y

a�μ) +
1

2
y∂μ(ln g)�

μ. (75)

Let us see if we can obtain it on the average from the precanonical Schrödinger

equation on curved space-time. By a straightforward calculation we obtain

i∂μ〈ŷa�μ〉 = i

∫
dy Tr
(
∂μΨyaγμΨ+Ψyaγμ∂μΨ+Ψya(∂μγ

μ)Ψ
)

=

∫
dy Tr
(
Ψ
(
−

←
Ĥ −iωμγ

μ
)
yaΨ+Ψya

(
Ĥ − iγμωμ

)
Ψ+Ψya(i∂μγ

μ)Ψ
)

=

∫
dy Tr
(
Ψ[ya, Ĥ]Ψ + iΨ(−ωμγ

μ − γμωμ + ∂μγ
μ)yaΨ

)
. (76)

Therefore, equation (75) and the second DW Hamiltonian equation in (64) are

fulfilled on the average if the connection ωμ satisfies the condition

ωμγ
μ + γμωμ − ∂μγ

μ =
1

2
∂μ(ln g)γ

μ (77)

which is again equivalent to the condition obtained in (70).
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One can view equation (75) on the connection term as a consequence of a co-

variant constancy of the curved space-time Dirac matrices γμ(x) or, equivalently,

the vielbeins eμI (x). This is what identifies the connection term ωμ in (68) with

the spin-connection: ωμ = ωIJ
μ γ̄IJ = −ωμ with real coefficients ωIJ

μ . As the

Clifford-valued precanonical wave function can be also viewed as a spinor field

with two spinor indices originating from the indices of γ-matrices, the appearance

of the spin connection in the Dirac operator in (68) is natural here (see e.g. [28] for

a related discussion).

6. Conclusions

We have shown that in the context of precanonical quantization of fields the evo-

lution (or rather, space-Time variation) of expectation values of fundamental op-

erators is consistent with classical field equations in DW Hamiltonian form. This

property can be considered as a consistency test of three different aspects of pre-

canonical quantization playing together: the precanonical representation of quan-

tum operators, in terms of Clifford-valued operators the precanonical Schrödinger

equation in (25), and the scalar product for the calculation of the expectation values

of operators using thee Clifford-valued precanonical wave functions.

We have explicitly demonstrated that the Ehrenfest theorem can be proven for the

system of interacting scalar fields both in flat and curved space-time, and for pre-

canonically quantized pure Yang-Mills theory. In curved space-time the consider-

ation of the Ehrenfest theorem leads to the condition on the admissible connection

term in the Dirac operator in the precannonical Schrödinger equation, which is

compatible with the known properties of the spin-connection.

In our recent papers we have considered an application of precanonical quanti-

zation to the problem of quantization of gravity both in metric [21] and viel-

bein [22] variables. We hope that it will be possible to demonstrate that the Einstein

equations are also satisfied on the average as a consequence of our precanonical

Schrödinger equation for quantum gravity, precanonical representation of quan-

tum operators appearing in our formulation, and the definition of the analogue of

the Hilbert space of the theory which, in vielbein formulation [22], involves an

operator-valued measure on the space of spin-connection coefficients.
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