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Abstract. We analyze several types of soliton solutions to a family of Tzitzeica

equations. To this end we use two methods for deriving the soliton solutions: the

dressing method and Hirota method. The dressing method allows us to derive two

types of soliton solutions. The first type corresponds to a set of six symmetrically

situated discrete eigenvalues of the Lax operator L; to each soliton of the second

type one relates a set of twelve discrete eigenvalues of L. We also outline how one

can construct general N soliton solution containing N1 solitons of first type and N2

solitons of second type, N = N1 + N2. The possible singularities of the solitons

and the effects of change of variables that relate the different members of Tzitzeica

family equations are briefly discussed. All equations allow quasi-regular as well as

singular soliton solutions.
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1. Introduction

In the present paper we continue our investigations of the famous equation due to

the Romanian mathematician Gheorghe Tzitzeica1, which we call now as Tzitzeica1

equation [27,28] and a closely related equation which we call Tzitzeica 2. In what

follows we will denote them by T1 and T2. It was initially proposed as an equation

describing special surfaces in differential geometry for which the ratio K/d4 is

constant, where K is the Gauss curvature of the surface and d is the distance from

the origin to the tangent plane at the given point. Later on it turned out that the

equation has wider importance, being nowadays used as an important evolutionary

equation in nonlinear dynamics. The explicit form of T1 and T2 equations is

2
∂2φ1

∂ξ∂η
= e2φ1 − e−4φ1 , 2

∂2φ2

∂ξ∂η
= −(e2φ2 − e−4φ2) (1)

i.e., T1 and T2 have different signs at the right hand sides. The transition between

T1 and T2 can be performed by several simple changes of variables (see below),

some of which substantially modify the singularity properties of their solutions.

Tzitzeica equations attracted a lot of attention at the end of the ’70s when for

some time it was believed, that it is the only known equation, allowing a finite

number of higher integrals of motion [8]. Soon however, it was proved that in

fact, it possesses, like the other soliton equations, an infinite number of integrals

of motion [30]. Next it was discovered that the equation has a hidden Z3 sym-

metry, which becomes evident in its Lax representation [21, 22]. This important

discovery led Mikhailov to the notion of the reduction group and to the family

of two-dimensional Toda field theories (TFT) related to the sl(n) algebras [21].

Soon after it was established that: i) two-dimensional TFT can be related to any

of the simple Lie algebras [9, 19, 23, 24], ii) other classes of integrable NLEE may

also possess such symmetries [7,9,12,13], and iii) the expansions over the squared

solutions and the theory of their recursion operators can be constructed [15,18,29].

In previous papers [4, 5] we presented in the derivation of the soliton solutions

of T1. Both versions of Tzitzeica equation allow Lax representation proposed by

1Actually the name of the famous Romanian mathematician contains the Romanian letter Ţ,
which may be spelled as Tz. The factor 2 in equation (1) can be easily removed, but is kept for
historical reasons.
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Mikhailov [21, 22]. This allows one to apply the dressing method of Zakharov-

Shabat-Mikhailov [21,32,33] for calculating their soliton solutions. In fact all these

equations are particular examples of two-dimensional Toda field theories (TFT)

[9,19,21,23,24]. They all can be solved exactly using the inverse scattering method

[10, 16, 31].

In the present paper we start with the analysis of a more general class of equations,

which we call Tzitzeica family equations. Their general form is

2
∂2φ

∂ξ∂η
= ε1c

2
1e

2φ + ε2c
2
2e

−4φ (2)

where ε21 = ε22 = 1 and c1 and c2 are some positive real constants. Obviously

equation T1 (respectively equation T2) is obtained from (2) by putting ε1 = 1,

ε2 = −1, c1 = c4 = 1 (respectively ε1 = −1, ε2 = 1, c1 = c4 = 1). We will call

T3 and T4 the equations

2
∂2φ3

∂ξ∂η
= −e2φ3 − e−4φ3 , 2

∂2φ4

∂ξ∂η
= e2φ4 + e−4φ4 (3)

which follow from (2) with ε1 = ε2 = −1, c1 = c4 = 1 and ε1 = ε2 = 1,

c1 = c4 = 1 respectively.

The paper is organized as follows. In Section 2 we study a class of changes of

variables that interrelate different members of Tzitzeica family. We shall see that

equations T1 – T4 allow Lax representations so they can be solved exactly by

the inverse scattering method, [6, 22]. In Section 3 the Zakharov-Shabat dressing

method [33], adapted to systems with deep reductions [21, 22] is used to construct

their soliton solutions. As a result we derive the soliton solutions of first and sec-

ond types and analyze their singularities. Indeed, we find that even the simplest

one-soliton solutions of first type may have an infinite number of singularities for

finite values of ξ, η. Such singularities are characteristic also for other soliton-type

equations, e.g. for Liouville equation [1, 2, 25, 26], for sinh-Gordon equation and

others, see e.g. [11, 20, 25] and the references therein. At the same time, using an

appropriate change of variables we obtain a solution having singularities at only

two points which we call ‘quasi-regular’. In Section 4 we outline how the dress-

ing formalism can be extended to derive the N -soliton solution of the considered

model with N1 solitons of first type and N2 solitons of second type, N = N1+N2.

In Section 5 we demonstrate how Hirota method can be applied for deriving the

soliton solutions of Tzitzeica equations and show that it results compatible with the

ones of the dressing method. In Section 6 we briefly outline the spectral properties

of the Lax operators L. We demonstrate that the resolvent of L has pole singulari-

ties that coincide with the poles of the dressing factor and its inverse. We end by a

discussion and conclusions.
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2. Lorentz (Anti-)Invariance in Two-Dimensions

Obviously each of the TFT mentioned above can be viewed as a member of a

hierarchy of NLEE which can be solved by applying the ISM to the corresponding

Lax operator. However the Lorentz invariance singles out the TFT models from

all the other members of NLEE in the hierarchy. Indeed, the TFT models allow

changes of variables which may drastically change, as we shall demonstrate below,

the properties of the soliton solutions.

2.1. Changes of Variables and the Lorentz (Anti-)Invariance

Let us now consider how simple linear change of variables

�Y ′ = A�Y , �Y ′ =
(
ξ′

η′

)
, �Y =

(
ξ
η

)
, A =

(
a b
c d

)
(4)

affect the solutions of Tzitzeica equations Obviously this transformations have to

preserve, up to a sign, ∂2

∂ξ∂η which means that

ATσ1A = ±σ1, σ1 =

(
0 1
1 0

)
(5)

which is equivalent to the relations

ac = bd = 0, ad+ bc = ±1. (6)

These relations are satisfied in two cases

1) A±
1 =

(
a 0
0 ±1/a

)
, 2) A±

2 =

(
0 b

±1/b 0

)
. (7)

Here a and b can be, in general, arbitrary complex numbers. However, below we

will consider two cases: i) a and b – real and ii) a and b – purely imaginary.

Second class of transformations involves shifts of the field φ

φ(ξ, η) → φ′(ξ, η) = φ(ξ, η)− ln c0 + s0
πi

2
(8)

where c0 > 0 is a real constant and s0 takes the values 0 and 1. If s0 = 0 and

c0 = c1 then T1 goes into

2
∂2φ′

1

∂ξ∂η
= c21e

2φ′

1 − c−4
1 e−4φ′

1 (9)
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Table 1. Changes of variables that relate different members of Tzitzeica

family equations.

T1 T2 T3 T4

A+
1,2, s0 = 0 T1 T2 T3 T4

A−
1,2, s0 = 0 T2 T1 T4 T3

A+
1,2, s0 = 1 T3 T4 T1 T2

A−
1,2, s0 = 1 T4 T3 T2 T1

and similar expression for the T2 equation for φ2, but with opposite signs for the

terms in the right hand side.

If we now choose s0 = 1 and c0 = c1 then T1 goes into

2
∂2φ′

1

∂ξ∂η
= −c21e

2φ′

1 − c−4
1 e−4φ′

1 (10)

which for c1 = 1 coincides with T3 equation. We have listed the results of several

such transformations in Table 1.

2.2. The Lax Representation of T2 Equation

Since different members of Tzitzeica family are related by changes of variables

(see Table 1), then it will be enough to consider the Lax representation and soliton

solutions of only one of them, say the second equation in (1) T2. It admits the

following Lax representation

L1Ψ(ξ, η, λ) ≡ i
∂Ψ(ξ, η, λ)

∂ξ
+ 2iφξH0Ψ(ξ, η, λ) + λJΨ(ξ, η, λ) = 0

L2Ψ(ξ, η, λ) ≡ i
∂Ψ(ξ, η, λ)

∂η
+ λ−1V1Ψ(ξ, η, λ) = 0

(11)

where

H0 =

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠, J =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠, V1(ξ, η) =

⎛⎝ 0 0 e−4φ

e2φ 0 0
0 e2φ 0

⎞⎠ . (12)

The reductions of the Lax pair for T2 equation are similar but not the same as for

the well known T1 equation [4]

1. Z3-reduction

Q−1Ψ(ξ, η, λ)Q = Ψ(ξ, η, qλ), Q =

⎛⎝ 1 0 0
0 q 0
0 0 q2

⎞⎠, q = e2πi /3 (13)
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which restricts H0, J and V1 by

Q−1H0Q = H0, Q−1JQ = qJ , Q−1V1Q = q−1V1. (14)

These conditions are satisfied identically.

2. First Z2-reduction

Ψ∗(ξ, η,−λ∗) = Ψ(ξ, η, λ) (15)

i.e.,

H0 = H∗
0 , J1 = J∗

1 , V1 = V ∗
1 (16)

which means that φ = φ∗.

3. Second Z2-reduction

A−1
0 Ψ†(ξ, η, λ∗)A0 = Ψ−1(ξ, η, λ), A0 =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ (17)

i.e.,

A−1
0 H†

0A0 = −H0, A−1
0 J †A0 = J , A−1

0 V †
1 A0 = V1. (18)

3. The Dressing Method and Dressing Factors for T2 Equation

Let us start with a Lax representation of the form

L10Ψ0 ≡ i
∂Ψ0

∂ξ
+ λJΨ0 = 0, L20Ψ0 ≡ i

∂Ψ0

∂η
+ λ−1J 2Ψ0 = 0. (19)

The fundamental solution Ψ0(ξ, η, λ), known also as the ‘naked’ solution, has as

potential the trivial solution of T2 equation: φ0(ξ, η) = 0

The ‘dressed’ Lax pair, given by (11), admits the “dressed” fundamental solution

Ψ(ξ, η, λ), with the potential the nontrivial solution φ(ξ, η).

The fundamental solutions Ψ and Ψ0 are related by the dressing factor u(ξ, η, λ)

Ψ(ξ, η, λ) = u(ξ, η, λ)Ψ0(ξ, η, λ)u
−1
+ (λ), u+(λ) = lim

ξ→∞
u(ξ, η, λ) (20)
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which means that u(ξ, η, λ) must satisfy

i
∂u

∂ξ
+ 2iφξH0u(ξ, η, λ) + λ [J , u(ξ, η, λ)] = 0

(21)

i
∂u

∂η
+

1

λ
V1u(ξ, η, λ)−

1

λ
u(ξ, η, λ)J 2 = 0.

Since both Lax pairs (the dressed (11) and the naked one (19)) satisfy the three

reductions, then also the dressing factor must satisfy them

a) Q−1u(ξ, η, λ)Q = u(ξ, η, qλ), b) u∗(ξ, η,−λ∗) = u(ξ, η, λ)

c) A−1
0 u†(ξ, η, λ∗)A0 = u−1(ξ, η, λ)

(22)

where A0 is defined by equation (17).

3.1. One Soliton Solution of First Type

A natural anzatz for the dressing factor with simple poles in λ is [21]

u(ξ, η, λ) = 11 +
1

3

(
A1

λ− λ1
+

Q−1A1Q

λq2 − λ1
+

Q−2A1Q
2

λq − λ1

)
(23)

where A1(ξ, η) is a 3× 3 degenerate matrix of the form

A1(ξ, η) = |n(ξ, η)〉〈mT (ξ, η)|, (A1)ij(ξ, η) = ni(ξ, η)mj(ξ, η). (24)

The first reduction (22a) on u(x, t, λ) is automatically satisfied by the anzatz (23).

The second reduction (22b) leads to

ηj−knkmj

λ3 − λ∗,3
1

= −
ρj−kn

∗
km

∗
j

λ3 + λ∗,3
1

· (25)

Here and below j − k is understood modulo 3 and

η0 = λ2
1, η1 = λλ1, η2 = λ2

ρ0 = λ∗,2
1 , ρ1 = −λλ∗

1, ρ2 = λ2.
(26)

In addition we must have

λ∗,3
1 = −λ3

1

and

λ∗,2
1 n∗

im
∗
i = −λ2

1nimi, λ∗
1n

∗
im

∗
i+1 = λ1nimi+1, n∗

im
∗
i+2 = −nimi+2
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where again all matrix indices are understood modulo 3. These relations can be

rewritten as

argni + argmi =
π

2
− 2 arg λ1, argni + argmi+1 = − arg λ1

argni + argmi+2 =
π

2
, arg λ1 = (2k + 1)

π

6
, k = 0, 1, ..., 5.

(27)

So we can consider with no limitations that λ1 = −λ∗
1 and A1 = −A∗

1. More

specifically we will assume that the vector 〈mT (ξ, η)| is real, while the vector

|n(ξ, η)〉 has purely imaginary components.

The third reduction (22c) on u(x, t, λ) can be put in the form

u(ξ, η, λ)A−1
0 u†(ξ, η, λ∗)A0 = 11. (28)

Let us now multiply (28) by λ − λ1, take the limit λ → λ1 and take into account

equation (14). This gives

mk =
n∗
4−k

λ3
1 − λ∗,3

1

3∑
k=1

κs−kmsm
∗
4−s (29)

where

κ0 = λ∗,2
1 , κ1 = λ2

1, κ2 = λ1λ
∗
1. (30)

Thus, taking into account that λ1 = i ρ1, ρ1 – real and mk = m∗
k, we obtain

n1 =
2λ3

1m
∗
3

λ2
1m

∗
3m1 + |λ1|2|m2|2 + λ2,∗

1 m∗
1m3

=
2i ρ1m3

2m1m3 −m2
2

n2 =
2λ3

1m
∗
2

λ2,∗
1 m∗

3m1 + λ2
1|m2|2 + |λ1|2m∗

1m3

=
2i ρ1
m2

n3 =
2λ3

1m
∗
1

|λ1|2m∗
3m1 + λ2,∗

1 |m2|2 + λ2
1m

∗
1m3

=
2i ρ1m1

m2
2

·

(31)

In order to obtain the vectors |n〉 and 〈mT | in terms of ξ and η we first impose the

limit λ → λ1 in equation (21). We obtain that the residue A1 must satisfy

i
∂A1

∂ξ
+ 2iφξH0A1 + λ1[J , A1] = 0

i
∂A1

∂η
+ λ−1

1 V1A1 − λ−1
1 A1J 2 = 0.

(32)
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Since A1 = |n〉〈mT | we find that (32) is satisfied if

i
∂|n〉
∂ξ

+ 2iφξH0|n〉+ λ1J |n〉 = 0, i
∂〈mT |
∂ξ

− λ1〈mT |J = 0

i
∂|n〉
∂η

+ λ−1
1 V1|n〉 = 0, i

∂〈mT |
∂η

− λ−1
1 〈mT |J 2 = 0

(33)

i.e.,

|n〉 = Ψ(ξ, η, i ρ1)|n0〉, 〈mT | = 〈mT
0 |(Ψ0)

−1(ξ, η, i ρ1) (34)

which means that |n(ξ, η)〉 is an eigenfunction for the “dressed” Lax pair L1, L2,

while 〈mT (ξ, η)| is an eigenfunction for the “naked” Lax pair L10, L20.

From (19), using direct calculation we obtain

Ψ0(ξ, η, λ) = f0e
iλJξ+iλ−1J2ηf−1

0
(35)

f0 =
1√
3

⎛⎝ q 1 q2

1 1 1
q2 1 q

⎞⎠ , f−1
0 =

1√
3

⎛⎝ q2 1 q
1 1 1
q 1 q2

⎞⎠ , J = diag (q2, 1, q)

which means that

〈mT | = 〈mT
0 |f0eρ1Jξ−ρ−1

1
J2ηf−1

0 . (36)

Using the notation

〈mT
0 |

1√
3
f0 = (μ01, μ02, μ03) (37)

we obtain the following explicit forms for the components of vector 〈mT (ξ, η)|
m1(ξ, η) = q2μ01e

−X1e−i Ω1 + μ02e
2X1 + qμ03e

−X1ei Ω1

m2(ξ, η) = μ01e
−X1e−i Ω1 + μ02e

2X1 + μ03e
−X1ei Ω1

m3(ξ, η) = qμ01e
−X1e−i Ω1 + μ02e

2X1 + q2μ03e
−X1ei Ω1

(38)

where

X1 =
1

2

(
ρ1ξ −

η

ρ1

)
, Ω1 =

√
3

2

(
ρ1ξ +

η

ρ1

)
. (39)

For μ0,1 = μ∗
0,3 = |μ01|eiα0 and μ0,2 = μ∗

0,2 we can rewrite mi from (38) as the

following real-valued functions

m1(ξ, η) = μ02e
2X1 + 2|μ01|e−X1 cos

(
Ω1 − α01 +

2π

3

)
m2(ξ, η) = μ02e

2X1 + 2|μ01|e−X1 cos (Ω1 − α01)

m3(ξ, η) = μ02e
2X1 + 2|μ01|e−X1 cos

(
Ω1 − α01 −

2π

3

)
.

(40)



10 Corina N. Babalic, Radu Constantinescu and Vladimir S. Gerdjikov

The components of the vector |n〉 in (31) become

n1 =
2i ρ1m3

2m1m3 −m2
2

, n2 =
2i ρ1
m2

, n3 =
2i ρ1m1

m2
2

· (41)

In order to obtain the solution of T2 equation we impose the limit λ → 0 in (21)

with the result

2φξ

⎛⎝ 1 0 0
0 0 0
0 0−1

⎞⎠ = −∂u

∂ξ
u−1(ξ, η, 0) (42)

where

u(ξ, η, 0) = 11− 1

3λ1
(A1+Q−1A1Q+Q−2A1Q

2) =

(
1− 1

λ1
A1,jk

)
δjk (43)

which means that

2φξ = −∂u0;11
∂ξ

1

u0;11
= − ∂

∂ξ
lnu0;11 (44)

or

2φ(ξ, η) = − ln

∣∣∣∣1− n1m1

λ1

∣∣∣∣ = ln

∣∣∣∣2m1m3 −m2
2

m2
2

∣∣∣∣ . (45)

After introducing mi from (40) we obtain the one-soliton solution of the first type

for λ1 = i ρ1

φ1s(ξ, η) =
1

2
ln

∣∣∣∣∣∣
|μ01|2e−3X1

(
4 cos2(Ω̃1)− 6

)
− 8|μ01|μ02 cos(Ω̃1) + μ2

02e
3X1

4|μ01|2e−3X1 cos2(Ω̃1) + 4|μ01|μ02 cos(Ω̃1) + μ2
02e

3X1

∣∣∣∣∣∣
(46)

where Ω̃1 = Ω1−α01. We observe that this is not a travelling wave solution. Only

if we take the limit μ02 → 0 we obtain a travelling wave solution of the form

φ(ξ, η) = i
π

2
+

1

2
ln

[
3

2
tan2

(√
3

2
(ρ1ξ + ρ−1

1 η)− α01

)
+

1

2

]
. (47)

The solution is singular and it blows up for
√
3
2 (ρ1ξ+ρ−1

1 η)−α01 = (2k+1)π/2,

k = 0,±1, . . . .
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For α01 → α01 + π
2 (m10,m20,m30 ∈ C and they are purely imaginary), the

solution (47) becomes

φ(ξ, η) = i
π

2
+

1

2
ln

[
3

2
cot2

(√
3

2
(ρ1ξ + ρ−1

1 η)− α01

)
+

1

2

]
. (48)

The above solution is also singular and it blows up for
√
3
2 (ρ1ξ+ρ−1

1 η)+α0 = kπ,

k = 0,±1, . . . .

Remark 1. It is easy to check, that the real parts of φ(ξ, η) in equations (47) and
(48) are in fact solutions to T4 equation.

In order to get ‘quasi-regular’ solutions of T2 equation, we can apply the changes

of variables A+
1 with a = i or A+

2 with b = i . This gives the following solutions

expressed in terms of hyperbolic functions

φ(ξ, η) =
1

2
ln

[
3

2
tanh2

(√
3

2
(ρ1ξ − ρ−1

1 η)− α01

)
− 1

2

]
(49)

and

φ(ξ, η) =
1

2
ln

[
3

2
coth2

(√
3

2
(ρ1ξ − ρ−1

1 η)− α01

)
− 1

2

]
(50)

which are singular at the points for which

tanh

(√
3

2
(ρ1ξ − ρ−1

1 η)− α01

)
= ± 1√

3

or

coth

(√
3

2
(ρ1ξ − ρ−1

1 η)− α01

)
= ± 1√

3

respectively. These solutions have also been found by Mikhailov in [21]. As com-

pared with the previous solutions, that have an infinite number of singularities,

these ones have singularities at only two points. That is why we took the liberty to

call them ‘quasi-regular’.

3.2. The Singularity Properties of the Soliton Solutions

Here we will discuss the types of singularities of the one-soliton solutions and how

they are influenced by the changes of variables. As we already mentioned, the

singularities in the soliton solutions are not rare, see [11, 20].
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Let us first see how the changes of variables affect the Lax representation (11) and,

as a consequence, how they affect the fundamental solution. We will be particularly

interested in the properties of the ‘naked’ Lax pair and its fundamental solution

Ψ0(ξ, η, λ). This comes from the fact, that the soliton solution is constructed as a

rational function of the elements of Ψ0(ξ, η, λ).

Let us start with the change of variables A+
1 . Here the situation is simple as we

readily get

L1(λ) →
1

a
L1(λ/a), L2(λ) → aL2(aλ)

Ψ0(ξ
′, η′, λ′) → Ψ0

(
aξ,

η

a
,
λ

a

)
.

(51)

In other words this change of variables leaves invariant the compatibility of the

Lax pair, so obviously it will map a solution of T2 into a solution of T2. However

now we have to keep in mind, that the change of variables must be extended also to

the spectral parameter λ → λ/a and, of course to the discrete eigenvalues of L1,2:

λ1 → λ1/a and therefore ρ1 → ρ1/a.

In particular, from equation (39) we see, that

X ′
1(ξ

′, η′, λ′
1) =

1

2

(
λ′
1ξ

′ +
η′

λ′
1

)
= X1(ξ, η, λ1)

Ω′
1(ξ

′, η′, λ′
1) =

1

2

(
λ′
1ξ

′ +
η′

λ′
1

)
= Ω1(ξ, η, λ1)

(52)

i.e., X1 and Ω1 are invariant with respect to A+
1 transformations provided

λ′
1 =

λ1

a
· (53)

Now it is a bit more interesting to analyze the changes A+
2

L′′
1(λ) ≡ b

(
i

∂

∂η′′
+ 2iφη′′H0 + λJ

)
Ψ(ξ′′, η′′, λ) = 0

L′′
2(λ) ≡ b

(
i

∂

∂ξ′′
+

1

λb
V1(ξ

′′, η′′)
)
Ψ(ξ′′, η′′, λ) = 0.

(54)

Let us apply a gauge transformation, i.e., change from Ψ(ξ ′′, η′′, λ) to

Ψ̃(ξ′′, η′′, λ)A0e
2φH0Ψ(ξ′′, η′′, λ′′) (55)

where H0 and A0 are defined in equations (16) and (17) respectively. This gives us

L′′
1(λ

′′) = L2(λ), L′′
2(λ

′′) = L1(λ), λ′′ =
1

bλ
· (56)
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So the A+
2 change is equivalent to interchanging the Lax operators L1 and L2,

which again preserves their compatibility condition. Applied to X1 and Φ1 these

transformations lead to

Ψ′′
0(ξ

′, η′, λ′′
1) = A0Ψ0(ξ, η, λ1)A0. (57)

Of course, analyzing the fundamental solutions we have to pay attention also

whether the parameters a and b are real or purely imaginary. In addition we have to

take into account, that λ1 could be purely imaginary as above, but for other cases

it could also be real. It is precisely this choice of the parameters a, b and λ1 that

may change the singularity properties of the solutions.

3.3. One Soliton Solutions of Second Type

Our anzatz for the dressing factor is

u(ξ, η, λ) = 11 +
1

3

(
A1

λ− λ1
+

Q−1A1Q

λq2 − λ1
+

Q−2A1Q
2

λq − λ1

)
− 1

3

(
A∗

1

λ+ λ∗
1

+
Q−1A∗

1Q

λq2 + λ∗
1

+
Q−2A∗

1Q
2

λq + λ∗
1

) (58)

which obviously satisfies the Z3-reduction and the first Z2-reduction.

In order to find how the components of the vector |n〉 are expressed in terms of the

vector |mT 〉 we use the same procedure as in the three-poles case. First we rewrite

the dressing factor in the following form

u(ξ, η, λ) = 11 +
1

λ3 − λ3
1

A1(ξ, η, λ)−
1

λ3 + λ3,∗
1

A∗
1(ξ, η,−λ∗) (59)

where

A1(ξ, η, λ) =

⎛⎝ η0n1m1 η1n1m2 η2n1m3

η2n2m1 η0n2m2 η1n2m3

η1n3m1 η2n3m2 η0n3m3

⎞⎠

A∗
1(ξ, η,−λ∗) =

⎛⎝ ρ0n
∗
1m

∗
1 ρ1n

∗
1m

∗
2 ρ2n

∗
1m

∗
3

ρ2n
∗
2m

∗
1 ρ0n

∗
2m

∗
2 ρ1n

∗
2m

∗
3

ρ1n
∗
3m

∗
1 ρ2n

∗
3m

∗
2 ρ0n

∗
3m

∗
3

⎞⎠
(60)

with
η0 = λ2

1, η1 = λλ1, η2 = λ2

ρ0 = λ∗,2
1 , ρ1 = −λλ∗

1, ρ2 = λ2.
(61)
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We insert the dressing factor u(ξ, η, λ) into the second Z2-reduction, multiply by

λ− λ1, and take the limit λ → λ1 in order to obtain

〈mT |A0 = 〈mT |A0

[
− 1

λ3
1 − λ∗,3

1

A†
1(λ

∗
1) +

1

2λ3
1

AT
1 (−λ1)

]
. (62)

After direct calculation we obtain

m3 = ζ1K1n
∗
1 + c1P1n1, m2 = ζ1K2n

∗
2 + c1P2n2, m1 = ζ1K3n

∗
3 + c1P3n3

where

K1 = λ∗,2
1 m3m

∗
1 + λ1λ

∗
1m2m

∗
2 + λ2

1m1m
∗
3, P1 = 2m1m3 −m2

2

K2 = λ2
1m3m

∗
1 + λ∗,2

1 m2m
∗
2 + λ1λ

∗
1m1m

∗
3, P2 = m2

2

K3 = λ1λ
∗
1m3m

∗
1 + λ2

1m2m
∗
2 + λ∗,2

1 m1m
∗
3, P3 = m2

2

ζ1 = − 1

λ3
1 − λ∗,3

1

, c1 =
1

2λ1
·

(63)

We rewrite the above result in a matrix form

|μ〉 =

⎛⎜⎜⎜⎜⎜⎜⎝

m3

m2

m1

m∗
3

m∗
2

m∗
1

⎞⎟⎟⎟⎟⎟⎟⎠ , |ν〉 =

⎛⎜⎜⎜⎜⎜⎜⎝

n1

n2

n3

n∗
1

n∗
2

n∗
3

⎞⎟⎟⎟⎟⎟⎟⎠ , |μ〉 = M|ν〉 (64)

where

M =

⎛⎜⎜⎜⎜⎜⎜⎝

c1P1 0 0 ζ1K1 0 0
0 c1P2 0 0 ζ1K2 0
0 0 c1P3 0 0 ζ1K3

ζ1K
∗
1 0 0 c1P

∗
1 0 0

0 ζ1K
∗
2 0 0 c1P

∗
2 0

0 0 ζ1K
∗
3 0 0 c1P

∗
3

⎞⎟⎟⎟⎟⎟⎟⎠ . (65)

The result is

|ν〉 = M−1|ν〉

M−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−c∗1P̃
∗
1 0 0 ζ1K̃1 0 0

0 −c∗1P̃
∗
2 0 0 ζ1K̃2 0

0 0 −c∗1P̃
∗
3 0 0 ζ1K̃3

ζ∗1K̃
∗
1 0 0 −c1P̃1 0 0

0 ζ∗1K̃
∗
2 0 0 −c1P̃2 0

0 0 ζ∗1K̃
∗
3 0 0 −c1P̃3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(66)
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where

P̃ ∗
s =

P ∗
s

ds
, P̃s =

Ps

ds
, K̃s =

Ks

ds
, K̃∗

s =
K∗

s

d1

d1 = ζ1ζ
∗
1K1K

∗
1 − c1c

∗
1P1P

∗
1

d2 = ζ1ζ
∗
1K2K

∗
2 − c1c

∗
1P2P

∗
2

d3 = ζ1ζ
∗
1K3K

∗
3 − c1c

∗
1P3P

∗
3 .

(67)

From the above equations we obtain |n〉 in terms of 〈mT |

n1 =
1

d1
(−c∗1P

∗
1m3 + ζ1K1m

∗
3)

n2 =
1

d2
(−c∗1P

∗
2m2 + ζ1K2m

∗
2)

n3 =
1

d3
(−c∗1P

∗
3m1 + ζ1K3m

∗
1).

(68)

In this case we choose a general form for the poles: λ1 = ρ1e
iβ1 . Without restric-

tions we can choose 0 < β1 <
π
6 and determine the expressions of 〈mT | as

m1 = q2μ01e
iX1−Y1 + μ02e

iX2−Y2 + qμ03e
iX3−Y3

m2 = μ01e
iX1−Y1 + μ02e

iX2−Y2 + μ03e
iX3−Y3

m3 = qμ01e
iX1−Y1 + μ02e

iX2−Y2 + q2μ03e
iX3−Y3

(69)

where

X1 = −
(
ξρ1 +

η

ρ1

)
cos

(
β1 −

2π

3

)
, Y1 = −

(
ξρ1 −

η

ρ1

)
sin

(
β1 −

2π

3

)
X2 = −

(
ξρ1 +

η

ρ1

)
cos (β1) , Y2 = −

(
ξρ1 −

η

ρ1

)
sin (β1)

X3 = −
(
ξρ1 +

η

ρ1

)
cos

(
β1 +

2π

3

)
, Y3 = −

(
ξρ1 −

η

ρ1

)
sin

(
β1 +

2π

3

)
.

(70)

We determine the one-soliton solution for the second kind of solitons using exactly

the same technique

Φ = −1

2
ln

∣∣∣∣1− 1

λ1
n1m1 −

1

λ∗
1

n∗
1m

∗
1

∣∣∣∣ . (71)
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4. The Generic N -Soliton Solution for T2 Equation

Let us consider the dressing factor of the following form

u(ξ, η, λ) = 11 +
1

3

2∑
s=0

⎛⎝ N1∑
l=1

Q−sAlQ
s

λqs − λl
+

N∑
r=N1+1

(
Q−sArQ

s

qsλ− λr
− Q−sA∗

rQ
s

λqs + λ∗
r

)⎞⎠
(72)

with 3N1 + 6N2 complex poles from which N1 are purely imaginary, satisfying

the condition λp = −λ∗
p.

Then we write down the residues Ak(ξ, η) as degenerate 3×3 matrices of the form

Ak(ξ, η) = |nk(ξ, η)〉〈mT
k (ξ, η)|, (Ak)ij(ξ, η) = nki(ξ, η)mkj(ξ, η). (73)

From the second Z2-reduction, A−1
0 u†(ξ, η, λ∗)A0 = u−1(ξ, η, λ), after taking the

limit λ → λk, we obtain algebraic equation for |nk〉 in terms of 〈mT
k |

|ν〉 = M−1|μ〉. (74)

Below, for simplicity, we write down the matrix M for N1 = N2 = 1

|ν〉 =

⎛⎝ |n1〉
|n2〉
|n∗

2〉

⎞⎠ , |μ〉 =

⎛⎝A0|m1〉
A0|m2〉
A0|m∗

2〉

⎞⎠ , M =

⎛⎝ A B B∗

B D E
−B∗ −E∗ D∗

⎞⎠ (75)

A =
1

2λ3
1

diag (Q(1), Q(2), Q(3)), B =
1

λ3
1 + λ3

2

diag (P (1), P (2), P (3))

D =
1

2λ3
2

diag (T (1), T (2), T (3)), E =
1

λ∗,3
2 − λ3

2

diag (K(1),K(2),K(3))

Q(j) = 〈mT
1 |Λ

(j)
11 (λ1, λ1)|m1〉, P (j) = 〈mT

1 |Λ
(j)
12 (λ1, λ2)|m2〉

T (j) = 〈mT
2 |Λ

(j)
22 (λ2, λ2)|m2〉, K(j) = 〈mT

2 |Λ
(j)
22 (λ2,−λ∗

2)|m∗
2〉

(76)

with

Λ
(j)
lp = −λlλpE3−j,1+j + λ2

lE2−j,2+j + λ2
pE1−j,3+j , j = 1, 2, 3. (77)

In order to obtain the two-soliton solution of the Tzitzeica equation we take the

limit λ → 0 in the equations satisfied by the dressing factor u(ξ, η, λ) and integrate

to get

φNs(ξ, η) = −1

2
ln

∣∣∣∣1− n1,1m1,1

λ1
− n2,1m2,1

λ2
−

n∗
2,1m

∗
2,1

λ∗
2

∣∣∣∣ . (78)

The above formulae can be easily generalized for any N1 and N2.
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5. Hirota Method for Building One-soliton Solution of T2 Equation

There are many methods for deriving the soliton solutions and we have demon-

strated two of the most used: the dressing method and the Hirota method [3,6,17].

Both methods give the same results both for the kinks and for the breathers.

We build the Hirota bilinear form of T2 equation using the substitution

φ(ξ, η) =
1

2
ln

g(ξ, η)

f(ξ, η)
· (79)

Introducing it into the second equation in (1) and decoupling in the bilinear disper-

sion relation and the soliton-phase constraint, we obtain the following system

∂2g

∂ξ∂η
g − ∂g

∂ξ

∂g

∂η
− f2 + g2 = 0,

∂2f

∂ξ∂η
g − ∂f

∂ξ

∂f

∂η
− fg + f2 = 0. (80)

We impose that

g(ξ, η) = 1 + az(ξ, η) + bz2(ξ, η), f(ξ, η) = 1 +Az(ξ, η) +Bz2(ξ, η) (81)

where z(ξ, η) = ekξ−ωη, k - the wave number, ω - the angular frequency.

Using a software for analytical computation like Mathematica, we obtain that

g(ξ, η) = 1− 2Aekξ−
3

k
η +

A2

4
ekξ−

3

k
η

f(ξ, η) = 1 +Aekξ−
3

k
η +

A2

4
ekξ−

3

k
η

(82)

where the dispersion relation is ω = 3
k ·

Using the above results our one-soliton solution for T2 acquires the following form

φ(ξ, η) =
1

2
ln

[
3

2
tanh2

(
1

2
(kξ − 3

k
η)

)
− 1

2

]
. (83)

This solution coincide with the one obtained by Mikhailov in [21] for k =
√
3ρ1.

In this very direct manner, Hirota method gives immediately the one-soliton so-

lution of the first type, which we have obtained also in (49) through the dressing

method, as a particular case of a more general form (46).

One can also use the standard Hirota technique to derive N -soliton solution of

first type each parametrized with real eigenvalue ρk and a vector (μk,1, μk,2, μk,3)
with μk,2 = 0. We believe, that using Hirota method one can derive also more

complicated cases of one- and N -soliton solutions. To this end, however one needs
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a more complicated ansatz for the functions f(ξ, η) and g(ξ, η) which would solve

equation (80) but could not be reduced to functions of z(ξ, η) only.

Of course, the equation (80) can be solved in a more general case, but the only

one solution we were able to obtain by now, using the well known ansatz (81),

was (82), which corresponds to the soliton solutions of first type. To find g(ξ, η)
and f(ξ, η) corresponding to the second type of soliton solutions is still an open

problem for us and it will be tackled in a next paper. A possible approach could

be to start from the second type solitons given by the dressing factor method and,

on this basis, to guess the ansatz which should be imposed to obtain g(ξ, η) and

f(ξ, η) verifying (80).

6. The Spectral Properties of the Dressed Lax Operator

Here we shall demonstrate that each dressing adds to the discrete spectrum of L
sets of discrete eigenvalues.

In our previous paper we showed that the Lax operator has a set of 6 fundamental

analytic solutions. We will denote them by χν(ξ, η, λ) where ν = 0, . . . , 5 denotes

the number of the sector Ων ≡ (2ν+1)π
6 ≤ arg λ ≤ (2ν+3)π

6 , i.e., those are the

sectors closed by the rays (lν , lν+1).

The dressing factor for solitons of first type (23) obviously has simple poles located

at |λ1|e2πi k/3, k = 0, 1, 2. The inverse of this dressing factor has also simple poles

located at |λ1|eπi (2k+1)/3, k = 0, 1, 2.

Each dressing factor for soliton of second type (58) has 6 simple poles located at

|λ2|eiβ1+2πi k/3 and |λ2|e−iβ1+πi (2k+1)/3, k = 0, 1, 2. The inverse of this dressing

factor has also 6 simple poles located at |λ2|eiβ1+πi (2k+1)/3 and |λ2|e−iβ1+2πi k/3,

k = 0, 1, 2.

The FAS can be used to construct the kernel of the resolvent of the Lax operator

L. In this section by χν(ξ, λ) we will denote

χν(ξ, λ) = u(ξ, λ)χν
0(ξ, λ)u

−1
− (λ), u−(λ) = lim

ξ→−∞
u(ξ, η, λ) (84)

where χν
0(ξ, λ) is a regular FAS and u(ξ, λ) is a dressing factor of general form

(72). Let us introduce

Rν(ξ, ξ′, λ) =
1

i
χν(ξ, λ)Θν(ξ − ξ′)χ̂ν(ξ′, λ)

(85)

Θν(ξ − ξ′) = diag
(
η(1)ν θ(η(1)ν (ξ − ξ′)), η(2)ν θ(η(2)ν (ξ − ξ′)), η(3)ν θ(η(3)ν (ξ − ξ′))

)
where θ(ξ − ξ′) is the step-function and η

(k)
ν = ±1, see the Table 2.
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Figure 1. The contour of the RHP with Z3-symmetry fills up the rays

l0, . . . , l5. The symbols × and ⊗ (respectively + and ⊕) denote the locations

of the discrete eigenvalues corresponding to a soliton of first (respectively

second) type.

Table 2. The set of signs η
(k)
ν for each of the sectors Υν (86).

Υ0 Υ1 Υ2 Υ3 Υ4 Υ5

η
(1)
ν − − − + + +

η
(2)
ν + + − − − +

η
(3)
ν − + + + − −

Then the following theorem holds true [4]

Theorem 2. Let Q(ξ) be a Schwartz-type function and let λ±
j be the simple zeroes

of the dressing factor u(ξ, λ) (72). Then

1. The functions Rν(ξ, ξ′, λ) are analytic for λ ∈ Υν where

bν : arg λ =
π(ν + 1)

3
, Υν :

π(ν + 1)

3
≤ arg λ ≤ π(ν + 2)

3
(86)

having pole singularities at ±λ±
j

2. Rν(ξ, ξ′, λ) is a kernel of a bounded integral operator for λ ∈ Υν
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3. Rν(ξ, ξ′, λ) is uniformly bounded function for λ ∈ bν and provides a kernel
of an unbounded integral operator

4. Rν(ξ, ξ′, λ) satisfy the equation

L(λ)Rν(ξ, ξ′, λ) = 11δ(ξ − ξ′). (87)

Remark 3. The dressing factor u(ξ, λ) has 3N1 + 6N2 simple poles located at
λlq

p, λrq
p and λ∗

rq
p where l = 1, . . . , N1, r = 1, . . . , N2 and p = 0, 1, 2. Its

inverse u−1(ξ, λ) has also 3N1+6N2 poles located −λlq
p, −λrq

p and −λ∗
rq

p. In
what follows for brevity we will denote them by λj , −λj for j = 1, . . . , 3N1+6N2.

It remains to show that the poles of Rν(ξ, ξ′, λ) coincide with the poles of the

dressing factors u(ξ, λ) and its inverse u−1(ξ, λ).

The proof follows immediately from the definition of Rν(ξ, ξ′, λ) and from equa-

tion (84), taking into account that the limiting value u−(λ) commutes with the

corresponding matrix Θν(ξ − ξ′).

Thus we have established that dressing by the factor u(ξ, λ), we in fact add to

the discrete spectrum of the Lax operator 6N1 + 12N2 discrete eigenvalues. For

N1 = N2 = 1 they are shown on Figure 1.

7. Conclusions

Shortly before finishing this paper we became aware of the fact, that appropriate

combination of changes of variables, considered in Section 2 can take each member

of Tzitzeica family (2) into one of its four versions that we introduced. Let us

demonstrate how this can be done for the equation

∂2φ

∂ξ∂η
= −c21e

2φ + c22e
−4φ (88)

where c1 and c2 are real positive constants. Now we shall use somewhat more

general change of variables. First we apply the transformation (8) with s0 = 0 and

φ′ = φ + ln(c1/c2). Then we change ξ → ξ′/k, η → η′/k where k is also real

positive constant taken to be k = 3
√
c21c2. Easy calculation shows that as a result

equation (88) goes into T2 for φ′(ξ, η). Using in addition Table 1 we can transform

each member of Tzitzeica family into T2 and then solve it using the results above.

Let us consider the soliton solutions Tzitzeica equation in a small neighborhood

around the singularities, where φas(ξ, η) tends to ∞. Then the second term in the
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T2 equation can be neglected and the asymptotically we get

2
∂φas

∂ξ∂η
= e2φas .

Similarly if in a small neighborhood around the singularity φ′
as(ξ, η) tends to −∞

we have

2
∂φ′

as

∂ξ∂η
= −e−4φ′

as .

In both cases we find equations, equivalent to the Liouville equation. Thus the

asymptotical behavior of the solutions of Tzitzeica equation around the singulari-

ties must be the same as the singularities of Liouville equation [26].

Acknowledgements

One of us (VSG) is grateful to Professor A. V. Mikhailov and Professor A. K.

Pogrebkov for useful discussions. This work has been supported in part by a joint

project between the Bulgarian academy of sciences and the Romanian academy

of sciences. One of the authors (CNB) acknowledges the support of the strategic

grant POSDRU/159/1.5/S/133255, Project ID 133255 (2014), co-financed by the

European Social Fund within the Sectorial Operational Program Human Resources

Development 2007-2013, and also the support of the project IDEI, PN-II-ID-PCE-

2011-3-0083 (MECTS).

References

[1] Arkad’ev V., Pogrehkov A., and Polivanov M., The Inverse Scattering Method
Applied to Singular Solutions of Nonlinear Equations. II, Teor. Mat. Fiz. 54
(1983) 23-37.

[2] Arkad’ev V., Pogrebkov A. and Polivanov M., Singular Solutions of the KdV
Equation and the Inverse Scattering Method (in Russian), Zap. Nauch. Sem.

Leningr. Otd. Mat. Inst. 133 (1984) 17-37.

[3] Babalic C. and Carstea A., On Some New Forms of Lattice Integrable Equa-
tions, Central European Journal of Physics 12 (2014) 341-347.

[4] Babalic N., Constantinescu R. and Gerdjikov V., On Tzitzeica Equation and
Spectral Properties of Related Lax Operators, Balkan Journal of Geometry

and Its Applications 19 (2014) 11-22.

[5] Babalic N., Constantinescu R. and Gerdjikov V., Two Soliton Solutions of
Tzitzeica Equation, Physics AUC 23 (2014) 36-41.



22 Corina N. Babalic, Radu Constantinescu and Vladimir S. Gerdjikov

[6] Babalic N. and Carstea A., Alternative Integrable Discretisation of Korteweg
de Vries Equation, Physics AUC 21 (2011) 95-100.

[7] Constantin A., Lenells J. and Ivanov R., Inverse Scattering Transform for the
Degasperis-Procesi Equation, Nonlinearity 23 (2010) 2559-2575.

[8] Dodd R. and Bullough R., Polynomial Conserved Densities for the Sine-
Gordon Equations, Proc. Roy. Soc. London Ser. A 352 (1977) 481-503.

[9] Drinfel’d V. and Sokolov V., Lie Algebras and Korteweg-de Vries type Equa-
tions (in Russian), VINITI, Contemporary Problems of Mathematics. Recent

Developments Moscow, 24 (1984) 81–180. English translation: Drinfel’d V.

and Sokolov V., Lie Algebras and Equations of Korteweg - de Vries Type,

Sov. J. Math. 30 (1985) 1975-2036.

[10] Faddeev L. and Takhtadjan L., Hamiltonian Method in the Theory of Solitons,

Springer, Berlin 1987.

[11] Fan E., Soliton Solutions for a Generalized Hirota-Satsuma Coupled KdV
Equation and a Coupled mKdV Equation, Phys. Lett. A 282 (2001) 18–22.

[12] Gerdjikov V., ZN–Reductions and New Integrable Versions of Derivative
Nonlinear Schrödinger Equations, In: Nonlinear Evolution Equations: Inte-

grability and Spectral Methods, A. Fordy, A. Degasperis and M. Lakshmanan

(Eds), Manchester University Press 1981, pp. 367-372.

[13] Gerdjikov V., Derivative Nonlinear Schrödinger Equations with ZN and DN–
Reductions, Romanian Journal of Physics 58 (2013) 573-582.

[14] Gerdjikov V., Algebraic and Analytic Aspects of N -Wave Type Equations,

Contemporary Mathematics 301 (2002) 35-68.

[15] Gerdjikov V. and Yanovski A, CBC Systems with Mikhailov Reductions by
Coxeter Automorphism. I. Spectral Theory of the Recursion Operators, Stud-

ies in Applied Mathematics (2014). DOI: 10.1111/sapm.12065;

Gerdjikov V. and Yanovski A., Riemann-Hilbert Problems, Families of Com-
muting Operators and Soliton Equations, Journal of Physics: Conference Se-

ries 482 (2014) 012017; doi:10.1088/1742-6596/482/1/012017.

[16] Gerdjikov V., Vilasi G. and Yanovski A., Integrable Hamiltonian Hierarchies.
Spectral and Geometric Methods, Lecture Notes in Physics 748, Springer,

Berlin 2008.

[17] Hirota R., Bilinear Integrable Systems: From Classical to Quantum and Con-
tinuous to Discrete, L. Faddeev, P. Van Moerbeke and F. Lambert (Eds),

Springer, Berlin 2006, pp 113-122.

[18] Gürses M., Karasu A. and Sokolov V., On Construction of Recursion opera-
tors from Lax Representation, J. Math. Phys. 40 (1999) 6473-6490.



On the Soliton Solutions of a Family of Tzitzeica Equations 23

[19] Leznov A. and Savelev M., Group-Theoretical Methods for Integration of
Nonlinear Dynamical Systems, Translation from Russian by D. Leites, Basel,

Birkhauser 1992.

[20] Matsuno Y., Smooth and Singular Multisoliton Solutions of a Modified
Camassa-Holm Equation with Cubic Nonlinearity and Linear Dispersion,
arXiv:1310.4011.

[21] Mikhailov A., The Reduction Problem and the Inverse Scattering Method,

Physica D 3 (1981) 73-117.

[22] Mikhailov A., Reduction in the Integrable Systems. Reduction Groups (in

Russian), Lett. JETPh 32 (1979) 187-192, Pis’ma Zh. Eksp. Teor. Fiz. 30
(1979) 443-448.

[23] Mikhailov A., Olshanetskii M. and Perelomov A., Two Dimensional Gener-
alized Toda Lattice, Comm. Math. Phys. 79 (1981) 473-488.

[24] Olive D. and Turok N., The Toda Lattice Field Theory Hierarchies and Zero-
curvature Conditions in Kac-Moody Algebras, Nucl. Phys. B 265 (1986) 469-

484.

[25] Pogrebkov A., Singular Solutions: An Example of a Sine-Gordon Equation,

Lett. Math. Phys. 5 (1981) 277-285.

[26] Pogrebkov A., Complete Integrability of Dynamical Systems Geneated by
Singular Solutions of Liouville’s Equation, Teoreticheskaya i Matematich-

eskaya Fizika 45 (1980 ) 161-170.

[27] Tzitzeica G., Sur une nouvelle classe de surfaces, C. R. Acad. Sc. 150 (1910)

955-956.

[28] Tzitzeica G., Sur une nouvelle classe de surfaces, C. R. Acad. Sc. 150 (1910)

1227-1229.

[29] Yanovski A., Geometry of the Recursion Operators for Caudrey-Beals-
Coifman System in the Presence of Mikhailov Zp Reductions, J. Geom. Sym-

metry Phys. 25 (2012) 77-97.

[30] Zhiber A. and Shabat A., Klein-Gordon Equations with a Nontrivial Group,

Soviet Physics Doklady 24 (1979) 607-609

Zhiber A. and Shabat A., The Klein-Gordon Equation with Nontrivial Group
(in Russian), Dokl. Akad. Nauk SSSR 247 (1979) 1103-1107.

[31] Zakharov V., Novikov S., Manakov S. and Pitaevskii L., Theory of Solitons:

The Inverse Scattering Method, Consultants Bureau, New York 1984.

[32] Zakharov V. and Mikhailov A., On the Integrability of Classical Spinor Mod-
els in Two-Dimensional Space-Time, Comm. Math. Phys. 74 (1980) 21-40;

Relativistically Invariant Two-Dimensional Models of Field Theory which are



24 Corina N. Babalic, Radu Constantinescu and Vladimir S. Gerdjikov

Integrable by Means of the Inverse Scattering Problem Method, Zh. Eksp.

Teor. Fiz. 47 (1978) 1017-1027.

[33] Zakharov V. and Shabat A., A Scheme for Integrating Nonlinear Equations of
Mathematical Physics by the Method of the Inverse Scattering Transform. I.,
Funct. Annal. and Appl. 8 (1974) 43-53;

A Scheme for Integrating Nonlinear Equations of Mathematical Physics by
the Method of the Inverse Scattering Transform. II., Funct. Anal. Appl. 13
(1979) 13-23.

Received 11 August 2014

Corina N. Babalic

Department of Physics

University of Craiova

St. Alexandru Ioan Cuza 13

200585 Craiova, ROMANIA

E-mail address: b coryna@yahoo.com

Radu Constantinescu

Department of Physics

University of Craiova

St. Alexandru Ioan Cuza 13

200585 Craiova, ROMANIA

E-mail address: rconsta@yahoo.com

Vladimir S. Gerdjikov

Institute for Nuclear Research and Nuclear Energy

Bulgarian Academy of Sciences

1784 Sofia, BULGARIA

E-mail address: gerjikov@inrne.bas.bg



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'High Quality No Color Changes'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


