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ON THE GEOMETRY OF BIHARMONIC SUBMANIFOLDS
IN SASAKIAN SPACE FORMS

DOREL FETCU AND CEZAR ONICIUC

Communicated by Ivaïlo Mladenov

Abstract. We classify all proper-biharmonic Legendre curves in a Sasakian

space form and point out some of their geometric properties. Then we provide

a method for constructing anti-invariant proper-biharmonic submanifolds in the

Sasakian space forms. Finally, using the Boothby-Wang fibration, we determine all

proper-biharmonic Hopf cylinders over homogeneous real hypersurfaces in com-

plex projective spaces.

1. Introduction

As defined by Eells and Sampson in [14], harmonic maps f : (M, g) → (N, h)
are the critical points of the energy functional

E(f) =
1

2

∫
M

‖df‖2 vg

and they are solutions of the associated Euler-Lagrange equation

τ(f) = trg∇df = 0

where τ(f) is called the tension field of f . When f is an isometric immersion

with mean curvature vector field H , then τ(f) = mH and f is harmonic if and

only if it is minimal.

The bienergy functional (proposed also by Eells and Sampson in 1964, [14]) is

defined by

E2(f) =
1

2

∫
M

‖τ(f)‖2 vg.

The critical points of E2 are called biharmonic maps and they are solutions of the

Euler-Lagrange equation (derived by Jiang in 1986, [20]):

τ2(f) = −Δfτ(f) − trgR
N (df, τ(f))df = 0

21
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where Δf is the Laplacian on sections of f−1TN and RN (X, Y ) = ∇X∇Y −
∇Y ∇X−∇[X,Y ] is the curvature operator on N ; τ2(f) is called the bitension field
of f . Since all harmonic maps are biharmonic, we are interested in studying those

which are biharmonic but non-harmonic, called proper-biharmonic maps.

Now, if f : M → Nc is an isometric immersion into a space form of constant

sectional curvature c, then

τ(f) = mH and τ2(f) = −mΔfH + cm2H.

Thus f is biharmonic if and only if

ΔfH = mcH.

In a different way, Chen defined the biharmonic submanifolds in an Euclidean

space as those with harmonic mean curvature vector field ( [10]). Replacing c = 0
in the above equation we just reobtain Chen’s definition. Moreover, let f : M →
R

n be an isometric immersion. Set f = (f 1, . . . , fn) and H = (H1, . . . , Hn).
Then ΔfH = (ΔH1, . . . ,ΔHn), where Δ is the Beltrami-Laplace operator on

M , and f is biharmonic if and only if

ΔfH = Δ(
−Δf

m
) = − 1

m
Δ2f = 0.

There are several classification results for the proper-biharmonic submanifolds in

Euclidean spheres and non-existence results for such submanifolds in the space

forms manifolds Nc, c ≤ 0 ( [4, 5, 7–10, 13]), while in spaces of non-constant

sectional curvature only a few results were obtained ( [1, 12, 18, 19, 25, 29]).

We recall that the proper-biharmonic curves of the unit Euclidean two-dimensional

sphere S
2 are the circles of radius

1√
2

, and the proper-biharmonic curves of S
3 are

the geodesics of the minimal Clifford torus S
1

(
1√
2

)
×S

1

(
1√
2

)
with the slope

different from ±1. The proper-biharmonic curves of S
3 are helices. Further, the

proper-biharmonic curves of S
n, n > 3, are those of S

3 (up to a totally geodesic

embedding). Concerning the hypersurfaces of S
n, it was conjectured in [4] that

the only proper-biharmonic hypersurfaces are the open parts of S
n−1

(
1√
2

)
or

S
m1

(
1√
2

)
× S

m2

(
1√
2

)
with m1 + m2 = n − 1 and m1 �= m2.

Since odd dimensional unit Euclidean spheres S
2n+1 are Sasakian space forms

with constant ϕ-sectional curvature one, the next step is to study the biharmonic
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submanifolds of Sasakian space forms. In this paper we mainly gather the results

obtained in [15–17].

We note that the proper-biharmonic submanifolds in pseudo-Riemannian mani-

folds are also intensively-studied (for example, see [2, 3, 11]).

For a general account of biharmonic maps see [22] and The Bibliography of Bi-
harmonic Maps [28].

Conventions. We work in the C∞ category, that means manifolds, metrics, con-

nections and maps are smooth. The Lie algebra of the vector fields on N is de-

noted by C(TN).

2. Sasakian Space Forms

In this section we briefly recall some basic facts from the theory of Sasakian man-

ifolds. For more details see [6].

A contact metric structure on a manifold N 2n+1 is given by (ϕ, ξ, η, g), where ϕ
is a tensor field of type (1, 1) on N , ξ is a vector field on N , η is an one-form on

N and g is a Riemannian metric, such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), g(X, ϕY ) = dη(X, Y )

for any X, Y ∈ C(TN).

A contact metric structure (ϕ, ξ, η, g) is Sasakian if it is normal, i.e.,

Nϕ + 2dη ⊗ ξ = 0

where for all X, Y ∈ C(TN)

Nϕ(X, Y ) = [ϕX, ϕY ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ] + ϕ2[X, Y ]

is the Nijenhuis tensor field of ϕ.

The contact distribution of a Sasakian manifold (N, ϕ, ξ, η, g) is defined by {X ∈
TN ; η(X) = 0}, and any integral curve of the contact distribution is called

Legendrian curve.

A submanifold M of N which is tangent to ξ is said to be anti-invariant if ϕ maps

any vector tangent to M and normal to ξ to a vector normal to M .

Let (N, ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a two-plane

generated by X and ϕX , where X is an unit vector orthogonal to ξ, is called
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ϕ-sectional curvature determined by X . A Sasakian manifold with constant ϕ-

sectional curvature c is called a Sasakian space form and it is denoted by N(c).

A contact metric manifold (N, ϕ, ξ, η, g) is called regular if for any point p ∈ N
there exists a cubic neighborhood of p such that any integral curve of ξ passes

through the neighborhood at most once, and strictly regular if all integral curves

are homeomorphic to each other.

Let (N, ϕ, ξ, η, g) be a regular contact metric manifold. Then the orbit space

N̄ = N/ξ has a natural manifold structure and, moreover, if N is compact then

N is a principal circle bundle over N̄ (the Boothby-Wang Theorem). In this case

the fibration π : N → N̄ is called Boothby-Wang fibration. The Hopf fibration

π : S
2n+1 → CP

n is a well-known example of a Boothby-Wang fibration.

Theorem 1 ([24]) Let (N, ϕ, ξ, η, g) be a strictly regular Sasakian manifold. Then
on N̄ can be given the structure of a Kähler manifold. Moreover, if (N, ϕ, ξ, η, g)
is a Sasakian space form N(c), then N̄ has constant sectional holomorphic cur-
vature c + 3.

Even if N is non-compact, we still call the fibration π : N → N̄ of a strictly

regular Sasakian manifold, the Boothby-Wang fibration.

3. Biharmonic Legendre Curves in Sasakian Space Forms

Let (Nn, g) be a Riemannian manifold and γ : I → N a curve parametrized by

arc length. Then γ is called a Frenet curve of osculating order r, 1 ≤ r ≤ n,

if there exists orthonormal vector fields E1, E2, . . . , Er along γ such that E1 =
γ′ = T , ∇T E1 = κ1E2, ∇T E2 = −κ1E1 + κ2E3, . . . , ∇T Er = −κr−1Er−1,

where κ1, . . . , κr−1 are positive functions on I .

A geodesic is a Frenet curve of osculating order one, a circle is a Frenet curve

of osculating order two with κ1 = const, a helix of order r, r ≥ 3, is a Frenet

curve of osculating order r with κ1, . . . , κr−1 constants and a helix of order three

is called, simply, helix.

In [16] we studied the biharmonicity of Legendre Frenet curves and we obtained

the following results.

Let (N2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional curva-

ture c and γ : I → N a Legendre Frenet curve of osculating order r. Then γ is



On the Geometry of Biharmonic Submanifolds 25

biharmonic if and only if

τ2(γ) = ∇3
T T − R(T,∇T T )T

= (−3κ1κ
′
1)E1 +

(
κ′′

1 − κ3
1 − κ1κ

2
2 +

(c + 3)κ1

4

)
E2

+ (2κ′
1κ2 + κ1κ

′
2)E3 + κ1κ2κ3E4 +

3(c − 1)κ1

4
g(E2, ϕT )ϕT

= 0.

The expression of the bitension field τ2(γ) imposed a case-by-case analysis as

follows.

Case I (c = 1)

Theorem 2 ([16]) If c = 1 then γ is proper-biharmonic if and only if n ≥ 2 and
either γ is a circle with κ1 = 1 or γ is a helix with κ2

1 + κ2
2 = 1.

Case II (c �= 1 and E2 ⊥ ϕT )

Theorem 3 ([16]) Assume that c �= 1 and E2 ⊥ ϕT . We have

1) if c ≤ −3 then γ is biharmonic if and only if it is a geodesic;

2) if c > −3 then γ is proper-biharmonic if and only if either

a) n ≥ 2 and γ is a circle with κ2
1 =

c + 3

4
, or

b) n ≥ 3 and γ is a helix with κ2
1 + κ2

2 =
c + 3

4
·

Case III (c �= 1 and E2 ‖ ϕT )

Theorem 4 ([16]) If c �= 1 and E2 ‖ ϕT , then {T, ϕT, ξ} is the Frenet frame
field of γ and we have

1) if c < 1 then γ is biharmonic if and only if it is a geodesic

2) if c > 1 then γ is proper-biharmonic if and only if it is a helix
with κ2

1 = c − 1 and κ2 = 1.

Remark 5. In dimension three the result was obtained by Inoguchi in [19] and
explicit examples are given in [15].



26 Dorel Fetcu and Cezar Oniciuc

Case IV (c �= 1 and g(E2, ϕT ) is not constant 0, 1 or −1)

Theorem 6 ([16]) Let c �= 1 and γ a Legendre Frenet curve of osculating order r
such that g(E2, ϕT ) is not constant 0, 1 or −1. We have

1) if c ≤ −3 then γ is biharmonic if and only if it is a geodesic;

2) if c > −3 then γ is proper-biharmonic if and only if r ≥ 4,
ϕT = cos α0E2 + sinα0E4 and

κ1, κ2, κ3 = const > 0

κ2
1 + κ2

2 =
c + 3

4
+

3(c − 1)

4
cos2 α0

κ2κ3 = −3(c − 1)

8
sin(2α0)

where α0 ∈ (0, 2π) \ {π

2
, π,

3π

2
} is a constant such that

c + 3 + 3(c − 1) cos2 α0 > 0, 3(c − 1) sin(2α0) < 0.

In order to obtain explicit examples of proper-biharmonic Legendre curves given

by Theorem 2 we used the unit Euclidean sphere S
2n+1 as a model of a Sasakian

space form with c = 1 and we proved the following

Theorem 7 ([16]) Let γ : I → S
2n+1(1), n ≥ 2, be a proper-biharmonic Legen-

dre curve parametrized by arc length. Then the parametric equation of γ in the
Euclidean space E

2n+2 = (R2n+2, 〈 , 〉) is either

γ(s) =
1√
2

cos
(√

2s
)
e1 +

1√
2

sin
(√

2s
)
e2 +

1√
2
e3

where {ei, Iej} are constant unit vectors orthogonal to each other, or

γ(s) =
1√
2

cos(As)e1 +
1√
2

sin(As)e2 +
1√
2

cos(Bs)e3 +
1√
2

sin(Bs)e4

where A =
√

1 + κ1, B =
√

1 − κ1, κ1 ∈ (0, 1), {ei} are constant unit vectors
orthogonal to each other such that

〈e1, Ie3〉 = 〈e1, Ie4〉 = 〈e2, Ie3〉 = 〈e2, Ie4〉 = 0

A〈e1, Ie2〉 + B〈e3, Ie4〉 = 0

and I is the usual complex structure on R
2n+2.
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Remark 8. For the Cases II and III we also obtained the explicit equations of
proper-biharmonic Legendre curves in odd dimensional spheres endowed with
the deformed Sasakian structure introduced in [27].

In [21] are introduced the complex torsions for a Frenet curve in a complex man-

ifold. In the same way, for γ : I → N a Legendre Frenet curve of osculat-

ing order r in a Sasakian manifold (N 2n+1, ϕ, ξ, η, g), we define the ϕ-torsions

τij = g(Ei, ϕEj) = −g(ϕEi, Ej), i, j = 1, . . . , r, i < j.

It is easy to see that we can formulate

Proposition 9. Let γ : I → N(c) be a proper-biharmonic Legendre Frenet curve
in a Sasakian space form N(c), c �= 1. Then c > −3 and τ12 is a constant.

Moreover

Proposition 10. If γ is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c), c > −3, c �= 1, of osculating order r < 4, then it is a circle or
a helix with constant ϕ-torsions.

Proof: From Theorems 3, 4 and 6 we see that if γ is a proper-biharmonic Legen-

dre Frenet curve of osculating order r < 4, then τ12 = 0 or τ12 = ±1 and,

obviously, we only have to prove that when γ is a helix then τ13 and τ23 are con-

stants.

Indeed, by using the Frenet equations of γ, we have

τ13 = g(E1, ϕE3) = − 1

κ2
g(ϕE1,∇E1

E2 + κ1E1) = − 1

κ2
g(ϕE1,∇E1

E2)

=
1

κ2
g(E2,∇E1

ϕE1) =
1

κ2
g(E2, ϕ∇E1

E1 + ξ) = 0

since

g(E2, ξ) =
1

κ1
g(∇E1

E1, ξ) = − 1

κ1
g(E1,∇E1

ξ) =
1

κ1
g(E1, ϕE1) = 0.

On the other hand, it is easy to see that for any Frenet curve of osculating order

three we have τ23 =
1

κ1
(τ ′

13 + κ2τ12 + η(E3)) and

η(E3) = g(E3, ξ) =
1

κ2
(g(∇E1

E2, ξ) + κ1g(E1, ξ)) = − 1

κ2
g(E2,∇E1

ξ)

= − 1

κ2
τ12.
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In conclusion τ23 =
1

κ1
(τ ′

13 + κ2τ12 −
1

κ2
τ12) = const. �

Proposition 11. If γ is a proper-biharmonic Legendre Frenet curve in a Sasakian

space form N(c) of osculating order r = 4, then c ∈ (
7

3
, 5) and the curvatures of

γ are

κ1 =

√
c + 3

2
, κ2 =

1

2

√
6(c − 1)(5 − c)

c + 3
, κ3 =

1

2

√
3(c − 1)(3c − 7)

c + 3
·

Moreover, the ϕ-torsions of γ are given by

τ12 = ∓
√

2(5 − c)

c + 3
, τ13 = 0, τ14 = ±

√
3c − 7

c + 3

τ23 = ∓ 3c − 7√
3(c − 1)(c + 3)

, τ24 = 0, τ34 = ±
√

2(5 − c)(3c − 7)

3(c − 1)(c + 3)
·

Proof: Let γ be a proper-biharmonic Legendre Frenet curve in N(c) of osculating

order r = 4. Then c �= 1 and τ12 is different from 0, 1 or −1. From Theorem 6

we have ϕE1 = cos α0E2 + sinα0E4. It results that

τ12 = − cos α0, τ13 = 0, τ14 = − sinα0 and τ24 = 0.

In order to prove that τ23 is constant we differentiate the expression of ϕE1 along

γ and using the Frenet equations we obtain

∇E1
ϕE1 = cos α0∇E1

E2 + sinα0∇E1
E4

= −κ1 cos α0E1 + (κ2 cos α0 − κ3 sinα0)E3.

On the other hand, ∇E1
ϕE1 = κ1ϕE2 + ξ and therefore we have

κ1ϕE2 + ξ = −κ1 cos α0E1 + (κ2 cos α0 − κ3 sinα0)E3. (1)

We take the scalar product in (1) with ξ and obtain

(κ2 cos α0 − κ3 sinα0)η(E3) = 1. (2)

In the same way as in the proof of Proposition 10 we get

η(E3) = g(E3, ξ) =
1

κ2
(g(∇E1

E2, ξ) + κ1g(E1, ξ))

= − 1

κ2
g(E2,∇E1

ξ)

= − 1

κ2
τ12 =

cos α0

κ2
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and then, from (2), κ2 sinα0 = −κ3 cos α0. Therefore α0 ∈ (
π

2
, π) ∪ (

3π

2
, 2π).

Next, from Theorem 6, we have

κ2
1 =

c + 3

4
, κ2

2 =
3(c − 1)

4
cos2 α0, κ2

3 =
3(c − 1)

4
sin2 α0

and so c must be greater than one.

Now, we take the scalar product in (1) with E3, ϕE2 and ϕE4, respectively, and

we get

κ1τ23 = −(κ2 cos α0 − κ3 sinα0) + η(E3) = − κ2

cos α0
+

cos α0

κ2
(3)

κ1 sin2 α0 = −(κ2 cos α0 − κ3 sinα0)τ23 = − κ2

cos α0
τ23 (4)

0 = κ1 cos α0 sinα0 + (κ2 cos α0 − κ3 sin α0)τ34

= κ1 cos α0 sinα0 +
κ2

cos α0
τ34

(5)

and then, equations (3) and (4) lead to κ2
1 sin2 α0 =

κ2
2

cos2 α0
− 1. We come to

the conclusion that sin2 α0 =
3c − 7

c + 3
, so c ∈

(
7

3
, 5

)
, and then we obtain the

expressions of the curvatures and the ϕ-torsions. �

Remark 12. The proper-biharmonic Legendre curves given by Theorem 7 (for
the case c = 1) have also constant ϕ-torsions.

4. A Method to Obtain Biharmonic Submanifolds in a Sasakian Space
Form

In [16] we gave a method to obtain proper-biharmonic anti-invariant submanifolds

in a Sasakian space form from proper-biharmonic integral submanifolds.

Theorem 13 ([16]) Let (N 2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space
form with constant ϕ-sectional curvature c and let i : M → N be an r-dimensional
integral submanifold of N , 1 ≤ r ≤ n. Consider

F : M̃ = I × M → N, F (t, p) = φt(p) = φp(t)

where I = S
1 or I = R and {φt}t∈I is the flow of the vector field ξ. Then

F : (M̃, g̃ = dt2 + i∗g) → N is a Riemannian immersion and it is proper-
biharmonic if and only if M is a proper-biharmonic submanifold of N .
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The previous Theorem provides a classification result for proper-biharmonic sur-

faces in a Sasakian space form, which are invariant under the flow-action of ξ.

Theorem 14 ([16]) Let M 2 be a surface of N 2n+1(c) invariant under the flow-
action of the characteristic vector field ξ. Then M is proper-biharmonic if and
only if, locally, it is given by x(t, s) = φt(γ(s)), where γ is a proper-biharmonic
Legendre curve.

Also, using the standard Sasakian 3-structure on S
7, by iteration, Theorem 13

leads to examples of three-dimensional proper-biharmonic submanifolds of S
7.

5. Biharmonic Hopf Cylinders in a Sasakian Space Form

Let (N2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian manifold and ī : M̄ → N̄
a submanifold of N̄ . Then M = π−1(M̄) is the Hopf cylinder over M̄ , where

π : N → N̄ = N/ξ is the Boothby-Wang fibration.

In [19] the biharmonic Hopf cylinders in a three-dimensional Sasakian space form

are classified.

Theorem 15 ([19]) Let Sγ̄ be a Hopf cylinder, where γ̄ is a curve in the orbit
space of N3(c), parametrized by arc length. We have

1) if c � 1, then Sγ̄ is biharmonic if and only if it is minimal;

2) if c > 1, then Sγ̄ is proper-biharmonic if and only if the curvature κ̄ of γ̄
is constant κ̄2 = c − 1.

In [17] we obtained a geometric characterization of biharmonic Hopf cylinders of

any codimension in an arbitrary Sasakian space form. A special case of our result

is the case when M̄ is a hypersurface.

Proposition 16 ([17]) If M̄ is a hypersurface of N̄ , then M = π−1(M̄) is bihar-
monic if and only if

Δ⊥H =

(
−‖B‖2 +

c(n + 1) + 3n − 1

2

)
H

2trA∇⊥

·
H(·) + n grad(‖H‖2) = 0

where B, A and H are the second fundamental form of M in N , the shape op-
erator and the mean curvature vector field, respectively, and ∇⊥ and Δ⊥ are the
normal connection and Laplacian on the normal bundle of M in N .
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Proposition 17 ([17]) If M̄ is a hypersurface and ‖H̄‖ = const �= 0, then M =
π−1(M̄) is proper-biharmonic if and only if

‖B̄‖2 =
c(n + 1) + 3n − 5

2
·

Remark 18. From the last result we see that there exist no proper-biharmonic

hypersurfaces of constant mean curvature M = π−1(M̄) in N(c) if c ≤ 5 − 3n

n + 1
,

which implies that such hypersurfaces do not exist if c ≤ −3, whatever the dimen-
sion of N is.

In [26] Takagi classified all homogeneous real hypersurfaces in the complex pro-

jective space CP
n, n > 1, and found five types of such hypersurfaces (see also

[23]). The first type (with subtypes A1 and A2) are described in the following.

We shall consider u ∈ (0,
π

2
) and r a positive constant given by

1

r2
=

c + 3

4
·

Theorem 19 ([26]) The geodesic spheres (Type A1) in complex projective space

CP
n(c + 3) have two distinct principal curvatures: λ2 =

1

r
cotu of multiplicity

2n − 2 and a =
2

r
cot 2u of multiplicity one.

Theorem 20 ([26]) The hypersurfaces of Type A2 in complex projective space

CP
n(c+3) have three distinct principal curvatures: λ1 = −1

r
tanu of multiplicity

2p, λ2 =
1

r
cotu of multiplicity 2q, and a =

2

r
cot 2u of multiplicity one, where

p > 0, q > 0, and p + q = n − 1.

We note that if c = 1 and M̄ is of type A1 or A2 then π−1(M̄) = S
1(cos u) ×

S
2n−1(sinu) ⊂ S

2n+1 or π−1(M̄) = S
2p+1(cos u) × S

2q+1(sinu), respectively.

By using Takagi’s result we classified in [17] the biharmonic Hopf cylinders M =
π−1(M̄) in a Sasakian space form N 2n+1 over homogeneous real hypersurfaces

in CP
n, n > 1.

Theorem 21 ([17]) Let M = π−1(M̄) be the Hopf cylinder over M̄ .

1) If M̄ is of Type A1, then M is proper-biharmonic if and only if either

a) c = 1 and tan2u = 1, or
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b) c ∈
[−3n2 + 2n + 1 + 8

√
2n − 1

n2 + 2n + 5
, +∞

)
\ {1} and

tan2u = n + 2c−2
c+3 ±

√
c2(n2+2n+5)+2c(3n2−2n−1)+9n2−30n+13

c+3 ·

2) If M̄ is of Type A2, then M is proper-biharmonic if and only if either

a) c = 1, tan2u = 1 and p �= q, or

b) c ∈
[−3(p − q)2 − 4n + 4 + 8

√
(2p + 1)(2q + 1)

(p − q)2 + 4n + 4
, +∞

)
\{1}

and

tan2u = n
2p+1 + 2c−2

(c+3)(2p+1)

±
√

c2((p−q)2+4n+4)+2c(3(p−q)2+4n−4)+9(p−q)2−12n+4

(c+3)(2p+1) ·

Theorem 22 ([17]) There are no proper-biharmonic hypersurfaces M = π−1(M̄)
when M̄ is a hypersurface of Type B, C, D or E in the complex projective space
CP

n(c + 3).
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