
JGSP 10 (2007) 51–71
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Abstract. We give an exposition of some recent crucial achievements in the
theory of multidimensional Poisson brackets of hydrodynamic type. In particular,
we solve the well-known Dubrovin–Novikov problem posed as long ago as 1984 in
connection with the Hamiltonian theory of systems of hydrodynamic type, namely,
the classification problem for multidimensional Poisson brackets of hydrodynamic
type. In contrast to the one-dimensional case, in the general case, a nondegenerate
multidimensional Poisson bracket of hydrodynamic type cannot be reduced to a
constant form by a local change of coordinates. We obtain the classification of all
nonsingular nondegenerate multidimensional Poisson brackets of hydrodynamic
type for any number N of components and for any dimension n by differential-
geometric methods. This problem is equivalent to the classification of a special
class of flat pencils of metrics. A key role in the solution of this problem was
played by the theory of compatible metrics that had been earlier constructed by the
present author.

1. Introduction

In this paper we study multidimensional Poisson brackets of hydrodynamic type,
i.e., field-theoretic Poisson brackets of the form

{ui(x), uj(y)} =

n∑
α=1

(
gijα(u(x))δα(x− y) + bijα

k (u(x))uk
α(x)δ(x − y)

)
(1)

where u = (u1, . . . , uN ) are local coordinates on a certain smooth N -dimensional
manifold M or in a domain of R

N , x = (x1, . . . , xn), y = (y1, . . . , yn) are
independent variables, the coefficients gijα(u), bijα

k (u) are smooth functions of
the local coordinates (u1, . . . , uN ), 1 ≤ i, j, k ≤ N, 1 ≤ α ≤ n, u(x) =
(u1(x), . . . , uN (x)) are smooth functions (N -component fields) of n independent
variables x1, . . . , xn with values in the manifold M , uk

α(x) = ∂uk/∂xα and δ(x)
is the Dirac delta-function and δα(x− y) = ∂δ(x − y)/∂xα.
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The condition of skew-symmetry and the Jacobi identity for a Poisson bracket
of the form (1) impose very severe restrictions on the coefficients g ijα(u) and
bijα
k (u) (we shall talk about these restrictions below).

The general class of Poisson brackets of the form (1) was introduced by Dub-
rovin and Novikov in [4] (the one-dimensional case n = 1) and [5] (the mul-
tidimensional case of arbitrary n) in connection with the Hamiltonian theory of
systems of hydrodynamic type, and such Poisson brackets are also called by multi-
dimensional Dubrovin–Novikov brackets. The very natural differential-geometric
Hamiltonian approach to systems of hydrodynamic type, i.e., evolution systems
of homogeneous quasilinear equations with partial derivatives of the first order,
proposed in [4] and [5], is connected with the general class of Poisson brackets of
the form (1).

If det(gijα(u)) �= 0 for all α, then the bracket (1) is called nondegenerate.
The one-dimensional nondegenerate Poisson brackets of hydrodynamic type were
completely classified by Dubrovin and Novikov in [4], where they proved that the
one-dimensional nondegenerate Poisson brackets of hydrodynamic type are gen-
erated by arbitrary flat metrics, so that each such Poisson bracket can be reduced
to a constant form by a local change of coordinates and can be characterized by a
unique invariant, namely, by signature of the metric of the bracket.

Afterwards this Hamiltonian approach led to the creation of the remarkable and
very fruitful theory of integrable one-dimensional systems of hydrodynamic type
(see [22], [6]), and at present one can consider that the Hamiltonian and integrabil-
ity properties of one-dimensional systems of hydrodynamic type are well studied
(although in the one-dimensional case also many very important problems remain
still unsolved).

However, the case of multidimensional systems of hydrodynamic type is consider-
ably more complicated and, in fact, has not been studied as yet from the viewpoint
of the general Hamiltonian and integrability properties (see [8]). In the multidi-
mensional case, very serious problems arise already under studying the simplest
natural invariant class of suitable local Hamiltonian structures (1).

In [5] Dubrovin and Novikov posed the classification problem for nondegenerate
multidimensional Poisson brackets of the form (1) and they showed therewith that
for the multidimensional brackets, in contrast to one-dimensional, the statement
on reducing to a constant form by a local change of coordinates is definitely not
true, since, in particular, the two-dimensional nondegenerate Poisson bracket of
hydrodynamic type, generated by the Lie algebra of vector fields on the plane and
related to the two-dimensional Euler hydrodynamics, cannot be reduced to a con-
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stant form by a local change of coordinates (there are nonzero tensor obstructions
in this case). In the same paper [5] Dubrovin and Novikov undertook an unsuc-
cessful attempt to obtain a classification of these brackets in the case N = 1 and
in the first nontrivial case n = N = 2 (it was shown in [12] by the author of the
present paper that these results in [5] were erroneous).

It was clear immediately that the classification problem for nondegenerate mul-
tidimensional Poisson brackets of hydrodynamic type is equivalent to the clas-
sification of a special class of compatible nondegenerate one-dimensional Pois-
son brackets of hydrodynamic type. The natural and very important problem
of description of all compatible nondegenerate one-dimensional Poisson brack-
ets of hydrodynamic type arose at once after the introduction of the brackets by
Dubrovin and Novikov in [4] due to the remarkable and well-known theory of
compatible Poisson brackets discovered and developed by Magri in [11], but this
problem has been solved quite recently by the present author in [15]– [18] (in a
more late terminology, this is the problem of the classification of all compatible
flat metrics [15] or, in other words, flat pencils of metrics [3]).

A complete classification of all one-component (N = 1, n arbitrary) and all non-
degenerate two-component (N = 2, n arbitrary) Poisson brackets of the form (1)
was obtained by the present author in [12], where a complete classification was
also obtained for 1 ≤ N ≤ 4, for which it was necessary to develop powerful
algebraic machinery, but all attempts to solve the problem for an arbitrary number
N of components by algebraic methods have so far been unsuccessful.

In the general case, a nondegenerate multidimensional Poisson bracket of hydro-
dynamic type cannot be reduced to a constant form by a local change of coor-
dinates, in contrast to the one-dimensional case, but according to the results of
Dubrovin and Novikov [5], and also the present author [12], for any such Poisson
bracket, there always exist special local coordinates such that the bracket is linear
with respect to the fields (generally speaking, linear nonhomogeneous).

Multidimensional Poisson brackets of hydrodynamic type that are linear with
respect to the fields are generated by special infinite-dimensional Lie algebras
(Lie algebras of hydrodynamic type) and special two-cocycles on these infinite-
dimensional Lie algebras (for nonhomogeneous linear brackets). A classification
of these Lie algebras for n ≥ 2 was obtained for the cases 1 ≤ N ≤ 4 by the
author of the present paper in [12]. One-dimensional Dubrovin–Novikov brackets
that are linear with respect to the fields and algebraic structures related to them
were studied in [1].

The classification problem for multidimensional nondegenerate Poisson brackets
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of hydrodynamic type, for an arbitrary number of components, was absolutely
inaccessible and inapproachable up to the papers [19], [20]. In this paper we
present the classification of all nonsingular nondegenerate multidimensional Pois-
son brackets of the form (1) (in any case, for the situation of brackets of the
form (1) in general position) for arbitrary number N of components and for arbi-
trary n obtained by differential-geometric methods. A key role in the solution of
this problem was played by the theory of compatible metrics constructed by the
present author in [15].

2. Multidimensional Homogeneous Brackets of the First Order and
Poisson Brackets of Hydrodynamic Type

The requirement of bilinearity and the fulfilment of the Leibniz identity for a
bracket of the form (1), i.e., an arbitrary multidimensional homogeneous bracket
of the first order, is equivalent to the condition that on arbitrary functionals I and
J on the space of fields u(x) the bracket has the form

{I, J} =

n∑
α=1

∫
δI

δui(x)

(
gijα(u(x))

d

dxα
+bijα

k (u(x))uk
α(x)

)
δJ

δuj(x)
dnx (2)

where d/dxα is the total derivative with respect to the independent variable xα

d

dxα
=

∂

∂xα
+ ui

α

∂

∂ui
+ ui

βα

∂

∂ui
β

+ · · ·+ ui
β1···βsα

∂

∂ui
β1···βs

+ · · · (3)

ui
β1···βs

=
∂sui

∂xβ1 · · · ∂xβs

(4)

where summation over repeating upper and lower indices is assumed, moreover,
in this case the summation over β1, . . . , βs is taken over distinct (up to arbitrary
permutations) sets of these indices (one can consider that these sets of indices are
ordered: β1 ≤ · · · ≤ βs).

The class of brackets of the form (2) is invariant with respect to local changes of
coordinates (u1, . . . , uN ). Here for each α the coefficients gijα(u) and bijα

k (u)
of the brackets are transformed as differential-geometric objects. For any bracket
of the form (2) the coefficient gijα(u) for each α is a contravariant two-valent
tensor on the manifold M . For any nondegenerate bracket of the form (2) and
for each α we can introduce coefficients Γkα

ij (u) by the formulae Γkα
ij (u) =

−gα
is(u)bskα

j (u), where gα
is(u) is a covariant two-valent tensor inverse to the ten-

sor gijα(u), gijα(u)gα
jk(u) = δi

k. Here for any nondegenerate bracket of the form
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(2) and for each α the coefficients Γjα
sk (u) are transformed as the coefficients of

an affine connection on the manifold M . Thus a nondegenerate bracket of the
form (2) is given by n arbitrary nondegenerate contravariant two-valent tensors
gijα(u), 1 ≤ α ≤ n, and n arbitrary affine connections Γjα

sk (u), 1 ≤ α ≤ n, on
the manifold M .

Note that among brackets of the form (2) there are, in particular, very simple,
but very important brackets that do not depend on the fields u(x) at all, namely,
constant brackets (brackets of a constant form). All such brackets are given by
the conditions gijα(u) = const, bijα

k (u) = 0. The problem is to find to what the
simplest canonical forms can be reduced Poisson brackets of the form (2) by local
changes of coordinates.

First of all, we shall show the general relations on the coefficients of Poisson
brackets of the form (2).

Theorem 1. ([14]) A bracket (2) is a Poisson bracket, i.e., is skew-symmetric and
satisfies the Jacobi identity, if and only if the following relations for the coefficients
of the bracket are fulfilled

gijα = gjiα (5)

∂gijα

∂uk
= bijα

k + bjiα
k (6)∑

(α,β)

(
gsiαbjrβ

s − gsjβbirα
s

)
= 0 (7)

∑
(i,j,r)

(
gsiαbjrβ

s − gsjβbirα
s

)
= 0 (8)

∑
(α,β)

[
gsiα
(∂bjrβ

s

∂uq
− ∂bjrβ

q

∂us

)
+ bijα

s bsrβ
q − birα

s bsjβ
q

]
= 0 (9)

gsiβ ∂bjrα
q

∂us
− bijβ

s bsrα
q − birβ

s bjsα
q = gsjα ∂birβ

q

∂us
− bjiα

s bsrβ
q − bisβ

q bjrα
s (10)

∂

∂uk

[
gsiα
(∂bjrβ

s

∂uq
− ∂bjrβ

q

∂us

)
+ bijα

s bsrβ
q − birα

s bsjβ
q

]
+
∑

(i,j,r)

[
bsiβ
q

(∂bjrα
k

∂us
− ∂bjrα

s

∂uk

)]

+
∂

∂uq

[
gsiβ
(∂bjrα

s

∂uk
− ∂bjrα

k

∂us

)
+ bijβ

s bsrα
k − birβ

s bsjα
k

]
+
∑

(i,j,r)

[
bsiα
k

(∂bjrβ
q

∂us
− ∂bjrβ

s

∂uq

)]
= 0.

(11)
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Relations (5) and (6) are equivalent to the skew-symmetry of a bracket (2), and
relations (7)–(11) are equivalent to the fulfilment of the Jacobi identity for a skew-
symmetric bracket of the form (2).

We do not assume nondegeneracy of brackets and do not impose any additional
conditions on the coefficients of brackets (2) in Theorem 1. Moreover, this theo-
rem remains true for the important case (for example, in the theory of nonlinear
chains), when the indices run an infinite set of values (for example, the sets of
all integer or natural numbers) and any function under consideration (i.e., all the
coefficients of brackets) depends on an arbitrary, but finite, number of the vari-
ables (in the one-dimensional case, a similar observation was made by Dorfman
in [2]). The signs

∑
(α,β)

and
∑

(i,j,k)
mean summations over all cyclic permuta-

tions of the indicated indices, i.e., in the given case, the indices (α, β) and (i, j, k)
respectively. In the one-dimensional case the general relations on the coefficients
of the Poisson brackets of hydrodynamic type (without the assumption of nonde-
generacy) were shown in [10], where there is an error in the formulae, corrected
in [13] under construction of the nonlocal generalization of the one-dimensional
Dubrovin–Novikov brackets.

In particular, the following important lemma immediately follows from the rela-
tions of Theorem 1.

Lemma 2. For each multidimensional Poisson bracket of the form (2) and for
each α the corresponding summand on the right-hand side of the formula (2)
is a one-dimensional Poisson bracket of hydrodynamic type, i.e., each multidi-
mensional Poisson bracket of the form (2) is always the sum of one-dimensional
Poisson brackets with respect to each of the independent variables xα.

Besides, in the multidimensional case, for n ≥ 2, the relations of Theorem 1 im-
pose additional nontrivial restrictions on the coefficients of these one-dimensional
Poisson brackets.

First of all, let us consider the relations (5)–(11) in the one-dimensional case
(for n = 1). It is obvious that in the one-dimensional case the relation (8) fol-
lows from the relation (7) and, moreover, in this case the relation (10) follows
from the relations (9), (7) and (6). In the nondegenerate one-dimensional case
(det(gijα(u)) �= 0, x = xα) we have: the relation (5) gives the condition that
a nondegenerate tensor gijα is symmetric, i.e., gijα is a Riemannian or pseudo-
Riemannian contravariant metric on the manifold M ; the relation (6) means that
the connection Γkα

ij = −gα
isb

skα
j is compatible with the metric gijα, i.e., the cor-

responding covariant derivative of the metric is equal to zero; the relation (7) is
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equivalent to the condition that the connection Γkα
ij is symmetric, i.e., Γkα

ij = Γkα
ji

and the relation (9) means exactly that the connection is flat, i.e., the Riemannian
curvature tensor vanishes. The relation (11) for α = β and for a nondegenerate
metric gijα follows from the relations (7) and (9).

This proves the Dubrovin–Novikov theorem [4] that an arbitrary nondegenerate
one-dimensional Poisson bracket of hydrodynamic type is uniquely determined by
an arbitrary flat metric gij(u) and is reduced to a constant form in any flat coor-
dinates of this metric, and Γk

ij(u) = −gis(u)bsk
j (u) is the Levi-Civita connection

generated by the metric gij(u).

Thus, by virtue of Lemma 2 and the Dubrovin–Novikov theorem for nondegener-
ate one-dimensional Poisson brackets of the form (1) [4], all the tensors g ijα(u)
are flat metrics (metrics of zero Riemannian curvature), and each the correspond-
ing affine connection Γjα

sk (u) is compatible with the respective metric gijα(u)
and has zero torsion and zero Riemannian curvature, i.e., the affine connection
Γjα

sk (u) is the Levi-Civita connection and is uniquely determined by the flat met-
ric gijα(u).

Hence, each nondegenerate Poisson bracket of the form (2) is uniquely determined
by the flat metrics gijα(u), which are connected by additional severe restrictions
in the multidimensional case, and our problem is reduced to a classification of the
admissible sets of the flat metrics gijα(u), 1 ≤ α ≤ n.

Let us consider an arbitrary nondegenerate multidimensional Poisson bracket of
the form (2) and introduce the tensors T iαβ

jk (u) = Γiβ
jk(u) − Γiα

jk(u) defined for

each pair of distinct indices α and β. The tensors T iαβ
jk (u) are obstructions for re-

ducing nondegenerate multidimensional Poisson brackets of the form (2) to con-
stant brackets, i.e., an arbitrary nondegenerate Poisson bracket of the form (2) can
be reduced to a constant bracket by a local change of coordinates if and only if all
the obstruction tensors T iαβ

jk (u) are identically equal to zero.

Indeed, if even one of these tensors is not equal to zero identically, then the Pois-
son bracket cannot be reduced to a constant form by a local change of coordinates,
since for any constant bracket the coefficients of all the connections Γiα

jk(u) are
equal to zero identically, and, consequently, in these coordinates all the tensors
T iαβ

jk (u) should be equal to zero identically. The converse statement is also ob-

vious. Indeed, if all the tensors T iαβ
jk (u) are equal to zero identically, then all the

connections Γiα
jk(u) are equal one to another and, consequently, all of them are

equal to zero in any flat coordinates of the metric gij1(u), and all the metrics of
the bracket are necessarily constant in these coordinates by virtue of compatibility
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of the metrics with the corresponding connections.

The following theorem gives a complete set of tensor relations defining the class
of nondegenerate Poisson brackets of the form (2).

Theorem 3. ([12]) Flat nondegenerate metrics gijα(u) define a multidimensional
Poisson bracket of the form (2) if and only if the following relations are fulfilled:

T ijkαβ(u) = T kjiαβ(u) (12)∑
(i,j,k)

T ijkαβ(u) = 0 (13)

T ijsαβ(u)T rαβ
st (u) = T irsαβ(u)T jαβ

st (u) (14)

∇α
r T ijkαβ(u) = 0 (15)

where T iαβ
jk (u) = Γiβ

jk(u) − Γiα
jk(u), T ijkαβ(u) = gksβ(u)girα(u)T jαβ

rs (u), the
sign
∑

(i,j,k)
means summation over all cyclic permutations of indices (i, j, k),

∇α
r is the covariant derivative given by the connection Γiα

jk(u), and Γiα
jk(u) is the

Levi-Civita connection generated by the metric gijα(u).

The relations (12) and (14) were found by Dubrovin and Novikov in [5]. It was
proved by the present author in [12] that this set of tensor relations is not complete,
and the complete system of tensor relations (12)–(15) for nondegenerate Poisson
brackets of the form (2) was obtained in [12]. The relations (13) and (15) are
very essential and play an important role under classifying the multidimensional
Poisson brackets of hydrodynamic type.

If all metrics gijα are nondegenerated, then we obtain from Theorem 1 that for
α �= β the condition (7) gives the relation (12) for the obstruction tensors, the
condition (8) is equivalent to the relation (13), the condition (9) is equivalent to
the relation (14) and the condition (10) is equivalent to the relation (15) while the
condition (11) for nondegenerate metrics is a direct consequence of the relations
(5)–(10) (this is not true in the general case and so the condition (11) is essential
in the case of degenerate metrics).

It is not complicated to obtain a complete classification of all one-component (de-
generate and nondegenerate) Poisson brackets of the form (2). Let us prove that
for N = 1 and arbitrary n all the obstruction tensors are identically equal to zero.
Indeed, in the one-component case the relations (5), (7), (9) and (11) are automat-
ically fulfilled, the relation (6) gives ∂gα/∂u = 2bα(u), from the relation (8) we
obtain that gα(u)bβ(u) = gβ(u)bα(u), and the relation (10) follows from (6) and
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(8). Thus in the one-component case for any n and for any indices α and β we
have Γα(u) = −bα(u)/gα(u) = −bβ(u)/gβ(u) = −(1/(2gα(u)))∂gα/∂u =
−(1/(2gβ(u)))∂gβ/∂u = Γβ(u), i.e., gα(u) = cαg(u), where g(u) is an ar-
bitrary nonzero function, and cα are arbitrary nonzero constants. Hence, all the
obstruction tensors T αβ(u) = Γβ(u) − Γα(u) are identically equal to zero, and
each multidimensional one-component Poisson bracket of the form (2) is reduced
to a constant form by a local change of the unique coordinate u = u1 (in the de-
generate case, i.e., if gα(u) = 0, then also bα(u) = 0 by virtue of the relation (6)).
Hence, we obtain a complete classification of all one-component (degenerate and
nondegenerate) Poisson brackets of the form (2).

3. Linear Poisson Brackets of Hydrodynamic Type, Lie Algebras,
Frobenius and Quasi-Frobenius Algebras

Each flat metric gijα(u) can be reduced to a constant form by a local change of
coordinates. Let us reduce one of the metrics (for definiteness, we reduce the first
one) of an arbitrary nondegenerate Poisson bracket of the form (2) to a constant
form.

Theorem 4. If for a nondegenerate multidimensional Poisson bracket of the form
(2) we have gij1 = const, then either this Poisson bracket is constant in these
local coordinates, or it has nonzero obstruction tensors, i.e., this Poisson bracket
cannot be reduced to a constant form by local changes of coordinates at all.

Indeed, if in the given coordinates Γiα
jk = 0 for all α, then bijα

k = 0 for all α and
the Poisson bracket is constant by virtue of the relation (6). But if for a certain
α not all of the coefficients of the connection Γiα

jk are equal to zero, then also the
obstruction tensor T i1α

jk , which coincides in the given local coordinates with Γiα
jk,

is not equal to zero, and, consequently, this Poisson bracket cannot be reduced to
a constant form by local changes of coordinates.

The following important theorem is a simple consequence of Theorem 3.

Theorem 5. ([5], [12]). If gij1 = const for a nondegenerate multidimensional
Poisson bracket of the form (2), then all the other metrics are linear with respect
to the local coordinates ui, and the Poisson bracket is linear with respect to the
fields u(x):

gijα(u) = (bijα
k + bjiα

k )uk + gijα
0 , bijα

k = const, gijα
0 = const, 2 ≤ α ≤ n.
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Let the metric gij1 be constant. Then in these local coordinates we have Γi1
jk = 0.

It follows from the relation (15) that in these coordinates T ijk1α = const for
all α. Let us prove that all the coefficients bijα

k are also constant in these co-
ordinates. Indeed, we have bijα

k = −gisαΓjα
sk = −gisαΓjα

ks = −gisαT j1α
ks =

−gkq1g
isαgqr1T j1α

rs = −gkq1T
qji1α = const. Here, we have used the fact that all

the connections Γiα
jk are symmetric. Then the linearity of all the metrics in these

local coordinates and the linearity of the bracket with respect to the fields follows
from the relation (6).

For N ≥ 3 Theorem 5 was proved by Dubrovin and Novikov in [5]. The study
of the cases N = 1 and N = 2 in [5] is erroneous, since the study is based on an
incomplete set of relations for the obstruction tensors, which is obtained in [5] and
which is insufficient in order to guarantee that the bracket (2) is a Poisson bracket.
In the complete form Theorem 5 was proved by the present author in [12].

Let us recall here very briefly, in a necessary for us form, a general scheme (see
also [9]) that goes back to Sophus Lie and concerns interconnections between
Lie algebras and Poisson structures whose coefficients depend linearly (possibly,
nonhomogeneously) on coordinates (the Lie–Poisson brackets).

For the general infinite-dimensional case we shall describe special infinite-dimen-
sional Lie algebras corresponding to arbitrary Poisson structures whose coeffi-
cients depend linearly (possibly, nonhomogeneously) on the field variables ui(x)
and their derivatives ui

(k)
, (k) = (k1, . . . , kn), where

ui
(k)

= ∂|k|ui/(∂(x1)k1 · · · ∂(xn)kn), |k| = k1 + · · ·+ kn.

An operator M ij determining a Poisson bracket (a Poisson structure)

{I, J} =

∫
δI

δui(x)
M ij δJ

δuj(x)
dnx (16)

is called Hamiltonian.

Consider arbitrary Hamiltonian operators given by differential operators whose
coefficients depend linearly (generally speaking, nonhomogeneously) on the field
variables ui(x) and their derivatives, i.e., Hamiltonian operators of the form

M ij =
(
aij,(k)(p)

s us
(k)

+ bij,(p)
) d|p|

d(x1)p1 · · · d(xn)pn

(17)

where a
ij,(k)(p)
s and bij,(p) are constants.
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Consider the infinite-dimensional space S of sequences (ξ1, . . . , ξN ), where ξi ∈
C∞(Tn) are smooth functions on an n-dimensional torus. Then if ξ and η belong
to the space S, we have

(ξ,M(η)) ≡
∫

Tn

ξiM
ijηj dnx =

∫
Tn

us[ξ, η]s dnx+

∫
Tn

ξib
ij,(p)ηj(p) dnx. (18)

Thus on the space S a bilinear operation [ · , · ]

(ξ, η) �→ ζ = [ξ, η] ∈ S, ζs = [ξ, η]s =
∑

i,j,(k),(p)

(−1)|k|aij,(k)(p)
s (ξiηj(p))(k) (19)

and a bilinear form
ω(ξ, η) =

∫
Tn

ξib
ij,(p)ηj(p) dnx (20)

are defined.

An arbitrary operator M ij of the form (17) is skew-symmetric if and only if the
corresponding bilinear operation (19) and bilinear form (20) are skew-symmetric
on the space S, i.e., [ξ, η] = −[η, ξ] and ω(ξ, η) = −ω(η, ξ).

An arbitrary operator M ij of the form (17) is Hamiltonian if and only if the corre-
sponding space S is a Lie algebra with respect to the corresponding bilinear oper-
ation (19), i.e., this bilinear operation is skew-symmetric and satisfies the Jacobi
identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, and, in addition, the corresponding
bilinear form (20) is a two-cocycle on this Lie algebra, i.e., this bilinear form is
skew-symmetric and satisfies the closedness identity

(dω)(ξ, η, ζ) ≡ ω([ξ, η], ζ) + ω([η, ζ], ξ) + ω([ζ, ξ], η) = 0.

Note that a two-cocycle ω(ξ, η) defined by a Hamiltonian operator of the form
(17) is cohomologous to zero, i.e., ω(ξ, η) = (df)(ξ, η) ≡ f([ξ, η]), where f is a
one-form on the Lie algebra S, if and only if this two-cocycle can be annihilated
by a shift of the field variables ui �→ ui− ci, where ci are arbitrary constants, i.e.,
provided that bij,(p) = a

ij,(0)(p)

k ck.

Lemma 6. A multidimensional Poisson bracket of the form (2) is linear (possibly,
nonhomogeneously) with respect to the fields u(x) if and only if

gijα(u) = (bijα
k +bjiα

k )uk+gijα
0 , bijα

k = const, gijα
0 = const, 1 ≤ α ≤ n. (21)

Here the constants bijα
k and gijα

0 satisfy nontrivial quadratic relations following
from the relations (5)–(11) of Theorem 1 and define n compatible algebras Bα,
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1 ≤ α ≤ n, of Frobenius and quasi-Frobenius type with structural constants
bijα
k and symmetric bilinear forms gijα

0 on these algebras (one can consider that
there is one N -dimensional algebra with the basis e1, . . . , eN furnished with n

compatible multiplications and n symmetric bilinear forms, ei α◦ ej = bijα
k ek,

〈ei, ej〉α = gijα
0 , 1 ≤ α ≤ n). To each multidimensional Poisson bracket of

the form (2) that is linear (possibly, nonhomogeneously) with respect to the fields
u(x) it corresponds an infinite-dimensional Lie algebra of a special type with a
two-cocycle of a special type on it (a Lie algebra of hydrodynamic type

[ξ, η]k = bijα
k ((ηi)αξj − ηj(ξi)α) (22)

bijα
k = const, ξ = (ξ1, . . . , ξN ), ξi(x) ∈ C1(Tn) (23)

ω(ξ, η) =

∫
Tn

gijα
0 (ηj(x))αξi(x) dnx, gijα

0 = const. (24)

The classification of multidimensional Poisson brackets of the form (2) that are
linear (possibly, nonhomogeneously) with respect to the fields u(x) and the clas-
sification of related to them infinite-dimensional Lie algebras, admissible two-
cocycles on these Lie algebras, and also algebras Bα, 1 ≤ α ≤ n, of Frobenius
and quasi-Frobenius type generating the brackets is a separate important problem,
which is far from a complete solution for now.

In the one-dimensional case, this problem was solved by Balinsky and Novikov
in [1], where, as is important to note, was discovered its connection with the theory
of Frobenius and quasi-Frobenius algebras, although in the one-dimensional case
also many questions remained unsolved.

In the multidimensional case for n ≥ 2 this problem was studied by the present
author in [12], where the theory of the corresponding algebras was developed and
complete classification results were obtained for the cases, when the number of
components is not more than four. The results on this problem and, in particular,
on the theory of the corresponding quasi-Frobenius algebras will be published in
a separate paper.

Theorem 7. Each nondegenerate multidimensional Poisson bracket of the form
(2) is defined by a certain infinite-dimensional Lie algebra of the form (22), (23)
with a certain two-cocycle of the form (24) on this Lie algebra for which

bij1
k = 0, det

(
(bijα

k + bjiα
k )uk + gijα

0

)
�= 0, 1 ≤ α ≤ n. (25)

Theorem 7 immediately follows from Theorem 5 and Lemma 6. The theory of
infinite-dimensional Lie algebras of hydrodynamic type (22), (23), (24) and alge-
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bras Bα with (and also without) the additional conditions (25) was developed by
the present author in [12], where complete classification results were obtained for
the cases, when the number of components is not more than four.

4. Poisson Bracket Generated by Lie Algebra of Vector Fields
on n-dimensional Torus T

n and Two-component Classification

In this case N = n. The commutator of vector fields ξ and η has the form

[ξ, η]k = ξs
∂ηk

∂xs
− ηs

∂ξk

∂xs
(26)

where ξ = (ξ1(x), . . . , ξn(x)), η = (η1(x), . . . , ηn(x)) and x = (x1, . . . , xn),
x ∈ T

n.

Then for the corresponding Hamiltonian operator M ij we obtain∫
Tn

uk[ξ, η]k dnx =

∫
Tn

uk
(
ξi

∂ηk

∂xi
−ηj

∂ξk

∂xj

)
dnx

=

∫
Tn

ξi

(
ui d

dxj
+uj d

dxi
+

∂ui

∂xj

)
ηj dnx =

∫
Tn

ξiM
ijηj dnx

(27)

M ij = ui d

dxj
+ uj d

dxi
+

∂ui

∂xj
=
(
uiδjα + ujδiα

) d

dxα
+ δi

kδ
jαuk

α (28)

gijα = uiδjα + ujδiα, bijα
k = δi

kδ
jα. (29)

It follows from the relations of Theorem 1 that if for a two-cocycle on the Lie
algebra of vector fields on T

n the corresponding Poisson structure remains in the
class of Poisson structures of hydrodynamic type (2) (see formulae (18) and (20)),
then this two-cocycle is cohomologous to zero.

For n ≤ 2 the Poisson structure (28) is nondegenerate, but for n > 2 all the
metrics in (28) are degenerate.

For n = 1 the only metric has the form g(u) = 2u, and the Hamiltonian operator
has the form

M = 2u
d

dx
+ ux. (30)

For n = 2 both the metrics are nondegenerate and indefinite:

(gij1) =

(
2u1 u2

u2 0

)
, (gij2) =

(
0 u1

u1 2u2

)
(31)



64 Oleg I. Mokhov

and the Hamiltonian operator has the form

(M ij) =

(
2u1 u2

u2 0

)
d

dx1
+

(
0 u1

u1 2u2

)
d

dx2
+

(
u1

x1 u1
x2

u2
x1 u2

x2

)
. (32)

The Poisson structure (32) cannot be reduced to a constant form by a local change
of coordinate, since the obstruction tensor T ijk12 is not equal to zero identically:

T ijkαβ = gksβgirα
(
Γjβ

rs − Γjα
rs

)
= −girαbkjβ

r + gksβbijα
s = −gikαδjβ + gkiβδjα

= −
(
uiδkα + ukδiα

)
δjβ +

(
uiδkβ + ukδiβ

)
δjα

= ui
(
δjαδkβ − δjβδkα

)
+ uk
(
δjαδiβ − δjβδiα

)
.

(33)

In particular, T 11212 = u1.

This example is connected to the two-dimensional Euler hydrodynamics of ideal
incompressible fluid (with further reduction to divergence-free vector fields).

Theorem 8. ([12]) If for N = n = 2, for a nondegenerate Poisson structure of
the form (2), the obstruction tensor T i12

jk (u) is not equal to zero identically, i.e.,
this Poisson structure cannot be reduced to a constant form by a local change
of coordinates, then it can be reduced to a canonical form generated by the flat
metrics

(gij1) =

(
1 0
0 −1

)
, (gij2) =

(
2u2 u1 + u2

u1 + u2 2u1

)
. (34)

Both the metrics (34) are indefinite and therefore, in particular, if one of the met-
rics of a two-dimensional two-component nondegenerate Poisson bracket of hy-
drodynamic type is positive or negative definite, then this Poisson bracket can be
reduced to a constant form. The Poisson structure generated by the canonical flat
metrics (34) is connected to the Lie algebra of vector fields on a two-dimensional
torus T

2.

By virtue of Theorem 4, it is obvious that the canonical Poisson structure gener-
ated by the metrics (34) cannot be reduced to a constant form by local changes of
coordinates. The obstruction tensor T ijk12 of this Poisson structure is not equal
to zero: T ijk12 = gks2gir1(Γj2

rs − Γj1
rs) = gks2εiδirΓj2

rs = gks2εiΓj2
is = −εibkj2

i ,
ε1 = 1, ε2 = −1, in particular, T 21112 = b112

2 = 1.
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The Poisson structure

{wi(x), wj(y)} =
(
wi(x)δjα + wj(x)δiα

)
δα(x− y) + δi

kδ
jαwk

α(x)δ(x − y)

generated by the Lie algebra of vector fields on a two-dimensional torus T
2 is

reduced to the canonical form given by the metrics (34) by the following local
quadratic change of coordinates [12]

w1 =
1

2
((u1)2 − (u2)2), w2 =

1

2
(u1 + u2).

Each two-dimensional two-component nondegenerate Poisson structure of hydro-
dynamic type either can be reduced to a constant form or is generated by the Lie
algebra of vector fields on a two-dimensional torus T

2 [12].

For n > 2 each multidimensional two-component nondegenerate Poisson struc-
ture of hydrodynamic type either can be reduced to a constant form or can be
reduced to the two-dimensional canonical Poisson bracket given by the metrics
(34) by a local change of coordinates and by an unimodular change of the inde-
pendent space variables xi [12].

Note that each constant multidimensional (for an arbitrary dimension n) two-
component Dubrovin–Novikov bracket is reduced by an unimodular change of the
independent space variables xi to a constant Dubrovin–Novikov bracket whose di-
mension is not more than three (but it cannot be reduced, generally speaking, to a
two-dimensional bracket).

5. Compatible Metrics and Flat Pencils of Metrics

Two pseudo-Riemannian contravariant metrics gij
1 (u) and gij

2 (u) are called com-
patible if for any linear combination gij(u) = λ1g

ij
1 (u) + λ2g

ij
2 (u) of these

metrics, where λ1 and λ2 are arbitrary constants, the coefficients of the cor-
responding Levi-Civita connections and the components of the corresponding
Riemannian curvature tensors are related by the same linear relation: Γij

k (u) =

λ1Γ
ij
1,k(u) + λ2Γ

ij
2,k(u), Rij

kl(u) = λ1R
ij
1,kl(u) + λ2R

ij
2,kl(u) (see [15]).

Indices of the coefficients of connections and indices of the curvature tensors are
raised and lowered by the metrics corresponding to them: Γij

k (u) = gis(u)Γj
sk(u),

Rij
kl(u) = gis(u)Rj

skl(u).

If for any linear combination of metrics the above-mentioned relation only for
the corresponding Levi-Civita connections is fulfilled, then the metrics are called
almost compatible.
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The theory of compatible and almost compatible metrics is constructed by the
present author in the paper [15]. This theory is closely connected to the theory of
compatible Poisson brackets of hydrodynamic type (local and nonlocal), the the-
ory of Frobenius manifolds and integrable systems. Recall that Poisson brackets
are called compatible if each their linear combination is a Poisson bracket [11].

Theorem 9. ([14]) All metrics gijα(u), 1 ≤ α ≤ n, defining a multidimensional
Poisson bracket of the form (2) are mutually compatible. All one-dimensional
Dubrovin–Novikov brackets forming a multidimensional Poisson bracket (see Lem-
ma 2) are also mutually compatible.

This important theorem immediately follows from the tensor relations of compat-
ibility of metrics [15], [18]. For two arbitrary pseudo-Riemannian metrics g ijα(u)
and gijβ(u) consider an analog of the obstruction tensors that were defined above
for flat metrics of multidimensional Dubrovin–Novikov brackets: T iαβ

jk (u) =

Γiβ
jk(u)−Γiα

jk(u), T ijkαβ(u) = gksβ(u)girα(u)T jαβ
rs (u), where Γiα

jk(u) is the Levi-
Civita connection generated by the metric gijα(u). Then we have the following
theorem.

Theorem 10. ([15], [18]) Any two pseudo-Riemannian metrics g ijα(u) and
gijβ(u) are compatible if and only if the relations (12) and (14) of Theorem 3
are fulfilled. Moreover, the condition of almost compatibility is equivalent to the
relation (12).

Note that namely the relations (12) and (14) for flat metrics of multidimensional
Poisson brackets of hydrodynamic type were found by Dubrovin and Novikov
in [5].

Thus the description and the classification of multidimensional Poisson brack-
ets of hydrodynamic type correspond to the description and the classification of
an important special subclass of compatible one-dimensional Poisson brackets of
hydrodynamic type. This subclass is singled out by the additional relations (13)
and (15).

The problem of the description of compatible one-dimensional Poisson brack-
ets of hydrodynamic type that is equivalent to the description of flat pencils of
compatible metrics or, in other words, local quasi-Frobenius manifolds, plays an
important role in the theory of integrable systems of hydrodynamic type, the the-
ory of Frobenius manifolds, the modern differential geometry and mathematical
physics (see [3]).
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The problem of the description of all nonsingular pairs of compatible flat metrics
was solved by the present author in [16], [17] (see also [18]), where were ob-
tained the nonlinear equations describing all nonsingular pairs of compatible flat
metrics (these nonlinear equations are a nontrivial nonlinear reduction of the Lamé
equations defining all the curvilinear orthogonal coordinate systems in a pseudo-
Euclidean space). The integrability of these nonlinear equations was proved by
the inverse scattering method, moreover, was found an explicit integration and
linearization procedure, which reduces the integration of these nonlinear equa-
tions to the solution of linear problems. Thus a local classification of semisimple
quasi-Frobenius manifolds was also obtained (see also [15], where the results
were announced). Afterwards for these nonlinear equations also a Lax pair was
found in [7].

A pair of metrics gij
1 (u) and gij

2 (u) is called nonsingular if all eigenvalues of this
pair of metrics, i.e., the roots of the equation det(gij

1 (u) − λgij
2 (u)) = 0, are

distinct (the situation of a pair of metrics in general position).

Theorem 11. ([15]) If a pair of metrics gij
1 (u) and gij

2 (u) is nonsingular, then
these metrics are compatible if and only if for the affinor v i

j(u) = gis
1 (u)g2,sj(u)

the Nijenhuis tensor

Nk
ij(u) = vs

i (u)
∂vk

j

∂us
− vs

j (u)
∂vk

i

∂us
+ vk

s (u)
∂vs

i

∂uj
− vk

s (u)
∂vs

j

∂ui

vanishes (here g2,sj(u) is the corresponding covariant metric and gis
2 (u)g2,sj(u) =

δi
j).

In this case, by virtue of the Nijenhuis theorem [21] there exist local coordinates
(generally speaking, complex) in which the affinor vi

j(u) is diagonal in a domain:
vi
j(u) = λi(u)δi

j . Then, in these special local coordinates, both the metrics g ij
1 (u)

and gij
2 (u) are also necessarily diagonal. Indeed, the eigenvalues λi(u), 1 ≤

i ≤ N, of the affinor vi
j(u) coincide with the eigenvalues of the pair of metrics

gij
1 (u) and gij

2 (u) and, by our condition, they are distinct (the pair of metrics is
nonsingular): λi(u) �= λj(u) for i �= j. Then, in the special local coordinates, in
which the affinor vi

j(u) is diagonal in a domain, we have gij
1 (u) = λi(u)gij

2 (u).
By virtue of symmetry of metrics we obtain (λi(u)−λj(u))gij

2 (u) = 0, therefore
if i �= j, then gij

1 (u) = gij
2 (u) = 0, i.e., the metrics are diagonal. Moreover, the

following important theorem is valid:

Theorem 12. ([15]) If a pair of metrics gij
1 (u) and gij

2 (u) is nonsingular, then
these metrics are compatible if and only if there exist local coordinates u =
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(u1, . . . , uN ) (possibly, complex) such that gij
2 (u) = gi(u)δij and gij

1 (u) =
f i(ui)gi(u)δij , where f i(ui), i = 1, . . . ,N, are functions of one variable (possi-
bly, complex).

Note here that for an arbitrary pair of metrics the condition of vanishing the cor-
responding Nijenhuis tensor is equivalent to the condition of almost compatibility
of the metrics, but not compatibility (there are corresponding counterexamples)
(cf. [15]).

6. Classification Theorem

Theorem 13. If for a nondegenerate multidimensional Poisson bracket of the
form (2) one of the metrics gijα(u) forms nonsingular pairs with all the remaining
metrics of the bracket, then this Poisson bracket can be reduced to a constant form
by a local change of coordinates.

Let us prove that all the obstruction tensors T iαβ
jk (u) are equal to zero identically.

Without loss of generality we can consider that the metric gij1(u) forms nonsingu-
lar pairs with all the remaining metrics of the bracket. Let β �= 1, then by Theorem
9 the metrics gijβ(u) and gij1(u) are compatible. By Theorem 12 there exist local
coordinates u = (u1, . . . , uN ) (possibly, complex) such that gijβ(u) = gi(u)δij

and gij1(u) = f i(ui)gi(u)δij , where f i(ui), i = 1, . . . ,N, are functions of one
variable (possibly, complex). In these local coordinates Γiβ

jk(u) = 0 if all the in-

dices i, j, k are distinct, Γiβ
ik(u) = Γiβ

ki(u) = −(1/(2gi(u)))(∂gi/∂uk) for any
indices i, k, Γiβ

jj(u) = (gi(u)/(2(gj(u))2))(∂gj/∂ui) for i �= j. For the ob-
struction tensor T ijk1β(u) in the local coordinates under consideration we obtain:
T ijk1β(u) = 0 if all the indices i, j, k are distinct, T ijj1β(u) = T iij1β(u) = 0
for i �= j; T iii1β(u) = ((gi(u))2/2)(df i(ui)/dui), T iji1β(u) = ((f i(ui) −
f j(uj))/2)(∂gi/∂uj) for i �= j. From the relation (13) of Theorem 3 we ob-
tain that T iii1β = 0, f i(ui) = µi = const, and T iji1β(u) = 0 for i �= j,
gi(u) = gi(ui) are functions of one variable. Thus T ijk1β(u) = 0 for any β.
Since for all indices α and β the identity T iαβ

jk (u) = T i1β
jk (u) − T i1α

jk (u) holds,

we obtain that T iαβ
jk (u) = 0 for all α and β.

Thus all pairs of metrics defining Dubrovin–Novikov brackets that cannot be re-
duced to a constant form, in particular, all nonconstant canonical pairs of metrics
(they are connected to nontrivial Lie algebras of hydrodynamic type and nontrivial
quasi-Frobenius algebras), are nonsingular, i.e., they have coinciding eigenvalues.
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In particular, for the unique nonconstant canonical pair of two-component metrics
(34) we have: det(gij2 − λgij1) = 0, λ1 = λ2 = u2 − u1. The theory of singu-
lar nondegenerate multidimensional (and also all degenerate) Dubrovin–Novikov
brackets and algebras related to them is far from completeness at present.
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