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TUBE FORMULA, BEREZINIANS, AND DWORK FORMULA

HOVHANNES M. KHUDAVERDIAN

Communicated by Theodore Voronov

Abstract. We consider an example of tubes of hypersurfaces in Euclidean space
and generalise the tube formula to supercase. By this we assign to a point of the
hypersurface in superspace a rational characteristic function. Does this rational
function appear when we calculate the ζ-function of an arithmetic variety?

Introduction

I would like to make a remark on relations between tube formula and Dwork
formula for ζ-function for arithmetic varietes. I have been thinking about this
relation and have discussed it for several years with many colleagues. In particular
I spoke about it in Białowieża last summer. Recently a very interesting paper [1]
appeared in the web which touches on a related circle of ideas.

1. Tubes of Hypersurfaces

Recall some simple facts concerning tubes of hypersurfaces in Euclidean space.

Let M be a surface in Euclidean space E
n+1. By a tube we shall understand

the set of points in E
n+1 that are at distance h from M , h ≥ 0. If M is an

orientable hypersurface (surface of codimension 1), then a direction of normal
vector can be chosen. This defines sign of the distance between a point and the
surface. In such a case the tube of radius h is the disconnected union of two
half-tubes Mh and M−h. We consider here only oriented hypersurfaces and later
denote by Mh a half-tube for any h ∈ R. The n-dimensional volumes of tubes
and half-tubes are polynomials in h if h is small enough. These formulae can be
traced to Steiner (1840), who derived them for a polygon and a polyhedron. In
1939 Weyl gave general formulae for polynomials expressing volumes of tubes
and half-tubes. The coefficients of these polynomials are integrals of expressions
which are formed from the second quadratic form at n-dimensional surface. For
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tubes (not half-tubes) these coefficients do not change under isometries of the
surface; they are expressed via internal curvature tensor. An excellent exposition
on tube formula containing full references is given in [2].

Consider first a toy example. Let M be the boundary of a convex polygon. Then
it is evident that vol Mh = vol M +2πh and vol (Mh∪M−h) = 2vol M . Hence-
forth the volume of a k-dimensional surface M is denoted vol M . If M is one-
dimensional, then vol M is length, if M is two-dimensional, then vol M is area.

Now let M be a closed orientable hypersurface in E
n+1 and n be normal unit

vector field of M . Consider new coordinates (u1, . . . , un, t) in a tubular neigh-
borhood of M defined by the relations xa(u, t) = xa(u) − tna(x(u)), where
xa = xa(u) is a local parameterisation of M . Straightforward calculations show
that the Jacobian of transformation from Cartesian coordinates (x1, . . . , xn+1) to
these new coordinates

J =det

(
∂
(
x1, . . . , xn+1

)
∂ (u1, . . . , un, t)

)
= det

(
∂xa(u)

∂ui
− t

∂na(x(u))

∂ui
, na(x(u))

)

=
√

detgij(u)det(1 + tS(u)) .

(1)

Here gij = ∂xa

∂ui

∂xa

∂uj is induced Riemannian metric on M (the first quadratic form).
It defines volume form dσu =

√
detgij(u)dnu on the surface M in the parame-

terisation xa(u). The linear operator S is variant of second quadratic form. It
is Weingarten (shape) operator defined by the relation Sv = −∂vn for an arbi-
trary tangent vector v: Sj

i
∂xa

∂uj = −∂na

∂ui and Sj
i = gjkna ∂2xa

∂uk∂ui
. (Henceforth we

will not distinguish between upper and lower indices in Euclidean space and we
suppose summation over repeated indices.)

Using the Jacobian (1) one can easy calculate the volume of the half-tube Mh

for small h. Let ρ(t) (t ∈ R) be an arbitrary (smooth) function such that it van-
ishes outside of sufficiently large neighborhood of zero. Consider the integral∫

ρ (t(x)) dn+1x, t(xa) being the distance between the point (x1, . . . , xn) and
surface M . On one hand this integral is equal to

∫
ρ(t)vol Mtdt. On the other

hand, by using formula (1) we arrive at

∫
ρ(t(x))dn+1x =

∫
dtρ(t)

⎛
⎝∫

M

det(1 + tS(u))dσu

⎞
⎠ . (2)

In particular it follows that if M is closed and h is small enough then the volume
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of half-tube is equal to

vol Mh =

∫
M

det(1 + hS(u))dσu =

n∑
k=0

ckh
k . (3)

Coefficients ck are as follows: c0 =
∫
M

dσ = vol (M), c1 =
∫
M

TrSdσ, the

integral of mean curvature over surface, etc. The last coefficient cn =
∫
M

detSdσ

is equal to the volume of unit n-dimensional sphere multiplied by the degree of

Gaussian map M
n(u)−→ Sn. (If n is even then the degree is equal up to a factor

to Euler characteristic χ(M)). E.g. if M is two-dimensional closed (oriented)
hypersurface in E

3, then det(1 + tS) = 1 + tTr + t2detS = 1 + tH + t2K,
where H = k1 + k2 is mean curvature, K = k1k2 is Gaussian curvature (k1,2 are
principal curvatures). The volume (area) of half-tube Mh is equal to vol Mh =
vol M +h

∫
M

Hdσ+h2
∫
M

Kdσ = vol M +h
∫
M

Hdσ+2πχ(M)h2. Respectively,

the volume of the tube Mh ∪M−h is equal to 2vol M + 4πχ(M)h2.

Summarizing we can say the following: To an arbitrary hypersurface M in E
n+1

one can assign a local characteristic polynomial

PM (t, x(u)) = det(1 + tS(u)) (4)

and its integral over the surface, the characteristic polynomial

PM (t) =

∫
M

PM (t, u)dσu =

∫
M

det(1 + tS(u))dσu . (5)

The local characteristic polynomial PM (t, u) defines a measure density in a vicin-
ity of a point x(t, u) in tubular neighborhood of oriented hypersurface M . If
f(xa) is an arbitrary function which decreases rapidly enough and vanishes out-
side sufficiently large tubular neighborhood of the surface M , then∫

f(x)dn+1x =

∫
dt

(∫
f (x(u, t)) PM (t, ui)dσu

)
. (6)

In particular, the polynomial PM (h) measures the volume of the half tube Mh if
M is closed hypersurface.

2. Dual Approach

In the previous section we considered surfaces specified by parametric equations
xi = xi(u). It is very useful to develop a dual approach, i.e., to write the integrals
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for hypersurface defined by an equation Φ(x) = 0. Formulae written in this
language becomes much more transparent and easier to generalise to supercase.

If we consider a reparameterisation invariant integral
∫

A
(
x, ∂x

∂u , ∂2x
∂u∂u . . .

)
dnu

over a surface specified by parametric equations xi = xi(u), then the integrand A
is a density, which obeys the condition

A

(
x,

∂x

∂ũ
,

∂2x

∂ũ∂ũ
. . .

)
= A

(
x,

∂x

∂u
,

∂2x

∂u∂u
. . .

)
· det

(
∂u

∂ũ

)
if we consider new parameterisation x(ũ) = x(u(ũ)). In the dual approach we
come to the integral

∫
A
(

∂Φ(x)

∂x , ∂2Φ(x)

∂x∂x , . . .
)

δ(Φ)dn+1x, if a surface is defined
by an equation Φ(x) = 0. The function A in this integral is a dual density. It
obeys the condition

A

(
∂Φ̃(x)

∂x
,
∂2Φ̃(x)

∂x∂x
, . . .

)∣∣∣
Φ=0

= G(x)A

(
∂Φ(x)

∂x
,
∂2Φ(x)

∂x∂x
, . . .

) ∣∣∣
Φ=0

(7)

if Φ̃(x) = G(x)Φ(x). This condition guarantees that the integral
∫

Aδ(Φ)dn+1x
does not change if we replace a function Φ defining the surface M by the new
function Φ̃ = GΦ (G|M �= 0).

Proposition 1. The function

A
vol

(∂Φ) =
√

∂aΦ∂aΦ (8)

defines the dual density corresponding to the volume element at M . If the hyper-
surface M is given by an equation Φ(x) = 0, then

vol M =

∫
A

vol
(∂Φ) δ(Φ)dn+1x .

The function

A
mcurv

(∂Φ, ∂2Φ) = −∂a∂aΦ +
∂aΦ∂bΦ∂a∂bΦ

∂cΦ∂cΦ
(9)

defines density corresponding to mean curvature. At any point x of the surface M
defined by the equation Φ(x) = 0 the ratio A

mcurv
/A

vol
of these densities is equal

to the mean curvature H(x)

H(∂Φ, ∂2Φ)
∣∣∣
x : Φ(x)=0

=
A

mcurv

(
∂Φ, ∂2Φ

)
A

vol
(∂Φ)

∣∣∣
x : Φ(x)=0

. (10)
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We have∫
A

mcurv
(∂Φ, ∂2Φ)δ(Φ)dn+1x =

∫
Hdσu =

∫
nagkrxa

kr

√
det (gij)d

nu︸ ︷︷ ︸
integral of the mean curvature over M

.

Proof: If we replace Φ → G(x)Φ(x), then ∂aΦ|Φ=0 → G∂aΦ|Φ=0 and
∂a∂bΦ|Φ=0 → G∂a∂bΦ|Φ=0 + ∂aG∂bΦ|Φ=0 + ∂bG∂aΦ|Φ=0. This implies that
A

mcurv
and A

vol
obey condition (7) and are dual densities. To prove that the den-

sity A
vol

defines volume, note that if the hypersurface is given by the equation
Φ(x) = xn+1 − f(x1, . . . , xn), then we have∫

A
vol

(Φ)δ(Φ)dn+1x =

∫ √
1 + f 2

1 + · · ·+ f 2
ndx1dx2 . . . dxn.

Now consider the ratio A
mcurv

/A
vol

. If Φ → GΦ, then A
mcurv

/A
vol
|Φ=0 remains

unchanged. Hence it is a well-defined function on the surface M . For any point
on M one can consider adjusted Cartesian coordinates in the ambient Euclidean
space such that Φ(x) = xn+1 −Aijx

ixj + o(x2) (i, j = 1, . . . , n) in the vicinity
of this point. Mean curvature at this point is equal to H = Aii. The RHS of
formula (10) gives the same answer. �

Remark 2. Note that according to the general philosophy one can come to the
dual density corresponding to mean curvature by taking the variational derivative
of the volume functional

δ

δΦ

(∫ √
∂aΦ∂aΦδ(Φ)dn+1x

)
= − ∂aΦ∂aΦ√

∂cΦ∂cΦ
+

∂aΦ∂bΦ∂b∂aΦ

(∂cΦ∂cΦ)3/2

=
A

mcurv
(∂Φ, ∂2Φ)

A
vol

(∂Φ)
·

Now we shall find an expression for characteristic polynomial (4) in the dual
approach.

Consider the following expression:

Mab(∂Φ, ∂2Φ) = −∂a∂bΦ−
∂aΦ∂bΦ∂d∂dΦ

∂cΦ∂cΦ
+

∂aΦ∂dΦ∂d∂bΦ + ∂bΦ∂dΦ∂d∂aΦ

∂cΦ∂cΦ
·

(11)
Recall that we do not distinguish between upper and lower indices and implicitly
understand summation over repeated indices.
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Proposition 3. Formula (11) defines a matrix-valued dual density. The ratio of
this dual density and the dual density A

vol
(∂Φ) =

√
∂aΦ∂aΦ defines a linear op-

erator S on E
n+1 depending on a point of the surface M specified by an equation

Φ(x) = 0 :

Sab(∂Φ, ∂2Φ)
∣∣∣
x : Φ(x)=0

=
Mab(∂Φ, ∂2Φ)√

∂cΦ∂cΦ

∣∣∣
x : Φ(x)=0

. (12)

The linear operator S is the direct sum of the Weingarten (shape) operator S
acting on vectors tangent to M and the scalar operator of the multiplication by
the mean curvature on vectors orthogonal to M :

S = S ⊕H, if v = v
tangent

+ v
orthogonal

, Sv = Sv
tangent

+ Hv
orthogonal

(13)

where H = TrS is mean curvature at point x ∈ M .

The relation

det(1 + tS(x)) = det(1 + tS(x))(1 + tH(x)) (14)

holds for an arbitrary point of the surface M , and the local characteristic poly-
nomial of the surface M is given by the formula

PM (x, t) =
det(1 + tS(x))

(1 + tH(x))
· (15)

Proof: In the same way as above, one can see that formula (11) defines a matrix-
valued dual density. Hence Sab is well-defined at the points x : Φ(x) = 0 as the
ratio of two densities. It is easy to see that for an arbitrary point x on M in adjusted
Cartesian coordinates Sij = Aij , S0i = Si0 = 0 and Sn+1,n+1 = Aii = H
(i, j = 1, . . . , n). This implies (13) and (14). �

The dual analog of the formula (6) has the following appearance:
∫

f(x)dn+1x =

∫
dt

(∫
f (xa − tna(∂Φ))

det
(
1+tS(∂Φ, ∂2Φ)

)
A

vol
(∂Φ)+tA

mcurv
(∂Φ, ∂2Φ)

A2

vol
(∂Φ)δ(Φ)dn+1x

)

where na(∂Φ(x)) = ∂aΦ(x)

A
vol

= ∂aΦ(x)√
∂bΦ(x)∂bΦ(x)

is a unit normal vector field to the

surface Φ = 0 at the point x : Φ(x) = 0. (Note that the surface defined by an
equation Φ = 0 is orientable.)
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3. Tube Formula for Hypersurfaces in Superspace

Now we analyze how our constructions look in a superspace. We will see that
the local characteristic function of surfaces in a superspace appearing in the tube
formula is no longer a polynomial. It is a rational function.

Consider an (n+1|2m)-dimensional Euclidean superspace with coordinates zA =
(xa, θα) (a = 1, . . . , n + 1, α = 1, . . . , 2m), where xa are even coordinates
and θα are odd ones (xaxb = xbxa, xaθβ = θβxa, but θαθβ = −θβθα), with a
Riemannian metric GAB such that GABzAzB = xaxa+2θ1θ2+· · ·+2θ2m−1θ2m.

A hypersurface, i.e., a (1|0)-codimensional (or (n − 1|2m)-dimensional) surface
can be specified by parametric equations: zA = zA(w), where wI = (ui, ηµ) =
(u1, . . . , un−1; η1, . . . η2m), ui are even and ηµ are odd parameters. In the dual
approach a hypersurface can be defined by an equation Φ(z) = 0, where Φ is an
even function.

Two words about integration in superspace:
∫

θdθ = 1 and
∫

θαdθβ = 0 if
α �= β. Let f(z) = f(x, θ) = f0(x) + fα(x)θα + · · · + f

1...q
(x)θ1 . . . θq be a

function on the p|q-dimensional superspace. Then∫
f(z)dp+qz =

∫
f(x, θ)dpxdqθ =

∫
f

1...q
(x)dpx .

The Jacobian of a coordinate transformation zA = zA(z̃), (zA = (xa, θα), is
given by the Berezinian (superdeterminant) of the matrix

(
∂zA

∂z̃A′

)
=

⎛
⎝∂xa(x̃,θ̃)

∂x̃a′

∂xa(x̃,θ̃)

∂θ̃α′

∂θα(x̃,θ̃)

∂x̃a′

∂θα(x̃,θ̃)

∂θ̃α′

⎞
⎠ .

(We suppose that all functions of x are smooth and rapidly decreasing at infinity).

The Berezinian of an even p|q × p|q matrix M is given by the following formula

BerM = Ber

(
M00 M01

M10 M11

)
=

det
(
M00 −M01M

−1
11 M10

)
detM11

· (16)

Here M00, M11 are p× p and q × q matrices with even entries and M01, M10 are
p× q and q × p matrices with odd entries.

The formulae of the previous sections for the first quadratic form, mean curvature
and Weingarten operator can be easily extended to the supercase. We just have
to be cautious with the sign rule and consider Ber instead det. For example if a
hypersurface is given by a parameterisation zA = zA(w), then the first quadratic
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form is defined by the matrix: g
IJ

= ∂zA

∂wI GAB
∂zB

∂wJ (−1)p(B)(p(J)+1) . (By p(A)

we denote the parity of the corresponding coordinate zA.) The volume element
is given by

√
Berg

IJ
and volume is given by the integral

∫ √
Berg

IJ
d2p+qw.

For hypersurfaces the dual density corresponding to the volume form is equal to
A

vol
=
√

∂AΦGAB∂BΦ(−1)p(B). Calculations in the dual approach for hyper-
surfaces are typically easier.

The tube formula for a hypersurface contains the local characteristic function

RM (t, w) = Ber(1 + tS(w)) . (17)

The essential difference with the previous case (see (4)) is that this local function
is no longer a polynomial in t, because the Berezinian is a rational function of the
matrix entries.

Recall the following important properties of the Berezinian of a linear operator
(see [3]). Let A be a linear operator in a p|q-dimensional space. Let RA(t) =
Ber(1+tA) be its characteristic function. (We suppose that A is an even operator.)
Then

• RA(t) = Ber(1 + At) is a rational function, the ratio of polynomials of
degrees p and q respectively:

RA(t) = Ber(1 + At) =
1 + a1t + · · ·+ apt

p

1 + b1t + · · ·+ bqtq
· (18)

• The expansion of the characteristic function at zero leads to traces of the
exterior powers of the operator A:

Ber(1 + tA) =

∞∑
k=0

ck(A)tk, where ck(A) = Tr ∧k A.

• The expansion of the characteristic function at infinity leads to traces of the
exterior powers of the inverse matrix:

Ber(1 + tA) =

∞∑
k=q−p

c∗−k(A)t−k, c∗−k(A) = BerA ·Tr ∧p−q+k A−1.

• The sequences ck (k = 0, 1, 2, . . . ) and c∗k (k = p − q, p − q − 1, . . . ) are
recurrent sequences with period q. Moreover, the sequence γk = ck − c∗k
k ∈ Z is a recurrent sequence with period q.
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• The following important formula holds: BerA = Ber+A
Ber−A

, where Ber± are
invariant polynomial functions of the matrix entries of an operator A (in
fact, polynomials of ck = Tr ∧k A). If A is presented by a diagonal matrix
diag[λ1, . . . , λp;µ1, . . . , µq], then

Ber+A = R ·
p∏

a=1

λa, Ber−A = R ·
q∏

α=1

µa

where

R =

p,q∏
a=1,α=1

(λa − µα)

is the resultant of numerator and denominator of the fraction RK(t).

Note that polynomials arising from the direct application of the original formula
(16) are not invariant polynomials of matrix entries and they, in general, have
degrees p + pq and q + pq respectively.

Applications of these results to RHS of the tube formula (17) gives information
about the structure of differential-geometrical invariants of hypersurfaces in su-
perspace.

Unlike the ordinary case where integration of a polynomial function (4) over the
surface leads to a polynomial function (5), integration of the rational local char-
acteristic function of a surface in a superspace leads in general to a non-rational
function.

4. Discussion

Berezinians and characteristic functions of linear operators in superspace can nat-
urally appear in situations which originally are not related to anything “super”.

Consider the following example. Let A be a linear operator in an ordinary linear
space V . Suppose that a linear subspace M of V is invariant with respect to the
action of the operator A: Av ∈ M for v ∈ M . Thus the action of the operator A
is well-defined on the factor-space N = V/M . The characteristic polynomial of
the operator A on the factor-space N is equal to the fraction

PA|N
(t) = det(1 + tA|N ) =

det(1 + tA|V )

det(1 + tA|M )
·
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One can naturally define an action of the operator A on the superspace V ⊕ΠM ,
where Π is parity reversion functor, by setting A(Πv) = Π (Av). We see that

PA|N
(t) =

det(1 + tA|V )

det(1 + tA|M )
= Ber (1 + tA|V ⊕ΠM ) = RA|V ⊕ΠM

(t) .

Therefore the rational characteristic function of a linear operator in superspace
naturally appears if we consider operators on a factor-space. We have met this
phenomenon for the Weingarten operator of hypersurfaces in dual approach (see
(15)). One can say that the characteristic polynomial of the Weingarten operator
S of a hypersurface in Euclidean space E

n+1 can be obtained as the characteristic
function of the operator S extended to (n + 1|1)-dimensional superspace.

In the above example the fraction is reducible. The numerator and denominator
of the fraction RA|V ⊕ΠM

contain a common factor, the polynomial PA|M
.

Proposition 4. Let A be a linear operator on a superspace V and M be an in-
variant subspace for the operator A. Then the characteristic functions of the
operator A on the superspaces V/M and V ⊕ΠM coincide:

RA|V/M
(t) = RA|V ⊕ΠM

(t) . (19)

This simple but important statement demonstrates that a characteristic function
can be considered as a multiplicative version of the Euler characteristic. It is this
property of Berezinian which makes it an adequate tool for describing Reidemeis-
ter torsion. Let us recall its construction. Consider a complex (E = E0 ⊕ E1, d)
as a superspace. Here the differential d is an odd operator. Denote by Z the
kernel of the operator d and by B, its image. Then the cohomology of d is
H = Z/B. Denote by Ber(V ) the space of volume forms on a superspace V .
Then Ber(Z) = Ber(H)⊗Ber(B) and Ber(E) = Ber(Z)⊗Ber(ΠB), because
the differential d is an odd linear operator. Hence the space Ber(E) is canonically
isomorphic to the space Ber(H). The Reidemeister torsion can be understood as
this canonical isomorphism1 .

We can say something more.

Proposition 5. For an arbitrary (even) operator A on a complex E = (E, d)
commuting with the differential d the following equality holds:

RA|H
(t) = RA(t)

1This construction was studied by A. S. Schwarz and applied by him in particular to the partition
function of a degenerate quadratic functional in Quantum Field Theory (see [4]).
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where H = H(E, d) is the cohomology.

Proof: According to (19), RA|H
(t) = RA|Z/B

(t) = RA|Z⊕ΠB
(t) = RA(t). �

Our considerations reveal that a rational function R(t) such that R(1) = 1 can
be interpreted as the characteristic function of the linear operator on a superspace.
Furthermore, if we interpret a linear operator as the Weingarten operator of a
surface in a superspace, then this rational function can be considered as a density
of supervolume of a tube.

A is linear
operator in
superspace

←→

R is rational
function
R(t) =
RA(t) =
Ber(1 + tA)

←→

A is a Weingarten operator at a
given point of a surface in a su-
perspace. RA(t) is the density of
volume form in a vicinity of the
corresponding point on the tube
Mt

Let us consider an example of a different origin.

Let X be an arithmetic variety given by a polynomial PX in n variables with
coefficients in a finite field, say Fp (p is a prime number). Denote by νk the
number of points of X over the field extension Fpk ⊃ Fp, i.e., the number of
solutions of the equation PX = 0 in the space F

n
pk . The zeta-function of an

arithmetic variety can be defined as

ZX(t) = exp

∞∑
k=0

νk

k
tk (20)

(see, e.g., the book [5]). One of the deep results in algebraic number theory is that
ZX(t) is a rational function of the argument t. It is the first of the famous Weil
conjectures, which was proved by Dwork in 1960.

In view of the above we can suggest that this rational function is a characteristic
function of a linear operator on a superspace. The properties expressed in Proposi-
tions 3 and 4 reveal a cohomological interpretation of this operator. Furthermore,
one can interpret this characteristic function as the volume density of a “tubular
neighborhood”, i.e. an analogue of Weyl tube formula. Philosophically it should
not be a surprise, since the definition (20) of the zeta-function can be seen as a
formula for the “volume” of a formal neighborhood of a single point. The whole
surface X̄ ⊃ X over the algebraic closure of F̄p ⊃ Fp can be viewed as a “tubular
neighborhood” of this single point. A full understanding of this relation is yet to
be achieved.
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