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Abstract Let X be a scheme over an algebraically closed field k, and let x ∈ SpecR ⊆ X be a closed point
corresponding to the maximal ideal m ⊆ R. Then ÔX,x is isomorphic to the prorepresenting hull, or local formal
moduli, of the deformation functor DefR/m : � → Sets. This suffices to reconstruct X up to etalé coverings. For
a noncommutative k-algebra A the simple modules are not necessarily of dimension one, and there is a geometry
between them. We replace the points in the commutative situation with finite families of points in the noncommu-
tative situation, and replace the geometry of points with the geometry of sets of points given by noncommutative
deformation theory. We apply the theory to the noncommutative moduli of three-dimensional endomorphisms.
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1 Introduction

There have been several attempts to generalize the ordinary commutative algebraic geometry to the noncommutative
situation. The main problem in the direct generalization is the lack of localization of noncommutative k-algebras.
This can only be done for Ore sets, and does not give a satisfactory solution to the problem.

In the study of flat deformations of A-modules when A is a commutative, finitely generated k-algebra (k alge-
braically closed), one realizes that for each maximal ideal m, putting V = A/m, the deformation functor DefV
has a (unique up to nonunique isomorphism) prorepresenting hull (local formal moduli) Ĥ(V ) isomorphic to the
completed local ring, that is Ĥ(V ) ∼= Âm, see [5].

In the general situation with A not necessarily commutative, the deformation theory can be directly generalized
to families of right (or left) A-modules, see [1] or [3], and we can replace the local complete rings with the local
formal moduli of finite subsets of the simple modules. From now on, k denotes an algebraically closed field of
characteristic zero. An A-module M is simple if it contains no other proper submodules but the zero module (0); it
is indecomposable if it is not the sum of two proper submodules.

The following results from Eriksen [1] and Laudal [3] are assumed as a basis for this text.

Definition 1. ar is the category of r-pointed Artinian k-algebras. An object of this category is an Artinian k-algebra
R, together with a pair of structural ring homomorphisms f : kr → R and g : R → kr with g ◦ f = Id, such that
the radical I(R) = ker(g) is nilpotent. The morphisms of ar are the ring homomorphims that commute with the
structural morphisms.

For any family V = {V1, . . . , Vr} of right A-modules, there is a noncommutative deformation functor DefV :

ar → Sets. If Ext1A(Vi, Vj) has a finite k-dimension for 1 ≤ i, j ≤ r, Laudal (or equally Eriksen) proves that DefV
has a formal moduli (Ĥ, M̂

Ĥ
), unique up to nonunique isomorphism. Given this, the local reconstruction theorem

is the following.

Theorem 2 (the generalized Burnside theorem). Let A be a finite dimensional k-algebra, and let V = {V1, . . . , Vr}
be the family of simple right A-modules. Then, the (Ĥ-flat) proversal family η : A→ (Ĥij ⊗k Homk(Vi, Vj)) is an
isomorphism (Ĥij = eiĤej).

We will use Laudal and Eriksen’s results to define (geometric) formal localizations, and use this to define the
noncommutative affine spectrum SpecA. This leads to the definition of a noncommutative variety and its relation
to noncommutative moduli. We will end the paper with a classical example, the moduli of 3 × 3-matrices up to
conjugacy.

� This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).
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2 r-pointed ringed spaces

Lemma 3. Let A be a finitely generated, commutative k-algebra and m1, m2 two different maximal ideals with
corresponding simple modules Vi = A/mi, i = 1, 2. Then, Ext1A(V1, V2) = 0.

Proof. It is enough to consider

A = k
[
x1, . . . , xn

]
, m1 =

(
x1, . . . , xn

)
, m2 =

(
x1 − α1, . . . , xn − αn

)
with α1 	= 0. First of all, it is well known that

Ext1A
(
V1, V2

)
= HH1 (A,Homk

(
V1, V2

))
= Derk

(
A,Homk

(
V1, V2

))
/ Inner.

The inner derivations are given by adγ(xi) = γxi − xiγ = γαi in this case, and this determines the (inner)
derivations completely. Now, let δ : A→ Hom(V1, V2) be a derivation. Then, since A is commutative,

0 = δ
(
x1
(
xi − αi

))
= δ
((
xi − αi

)
x1
)
= −αiδ

(
x1
)
+ δ
(
xi
)
α1 =⇒ δ

(
xi
)
=
αi

α1
δ
(
x1
)
=⇒ δ = ad δ(x1)

α1

which proves that every derivation is inner.

In the noncommutative case, the above result is obviously no longer true, so that if a scheme should be a
classifying space for the simple modules of a noncommutative k-algebra, it should consider sets of points and their
infinitesimal geometry. This is then necessary for the reconstruction of k-algebras in general. We will see that in
some cases this is also sufficient.

3 Matrix algebras

To ease the explicit understanding of noncommutative varieties, we now treat the explicit case here. To introduce
notation, we give an example with an obvious generalization.

Example 4. Consider the following matrix variables

e11 =

(
1 0

0 0

)
, e22 =

(
0 0

0 1

)
, t11(1) =

(
t11(1) 0

0 0

)
, t11(2) =

(
t11(2) 0

0 0

)
,

t12 =

(
0 t12
0 0

)
, t21 =

(
0 0

t21 0

)
, t22 =

(
0 0

0 t22

)
.

The free 2× 2 matrix k-algebra generated by these elements by ordinary matrix multiplication is then denoted

F =

(
k
〈
t11(1), t11(2)

〉
t12

t21 k
[
t22
]) .

Let

f11 = t11(1)t12t21 − t11(2) =
(
t11(1)t12t21 − t11(2) 0

0 0

)
=

(
f11 0

0 0

)
.

We consider the two-sided ideal in F generated by f11, that is a = 〈f11〉, and for the quotient algebra we use the
notation

Q = F/a =

(
k
〈
t11(1), t11(2)

〉
t12

t21 k
[
t22
]) /(f11 0

0 0

)
.

In this case Q = (Qij), and k〈t11(1), t11(2)〉 maps injective into Q, but Q11 	= k〈t11(1), t11(2)〉 as for example
t12t21 ∈ Q11. However, letting 〈Q − Qii〉 be the ideal generated by the matrices in Q with 0 (i, i)-entry, we will
write Q̃11 = k〈t11(1), t11(2)〉 = Q/〈Q−Q11〉 when necessary.

Let kr → R = (Rij) be a matrix algebra. We let 〈R − Rii〉 denote the ideal generated by the matrices in R
with 0 (i, i)-entry, and we let R̃ii denote the quotient R/〈R − Rii〉. We call the algebras R̃ii the diagonal algebras
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of the matrix algebra R = (Rij). We let ιii : R → R/〈R − Rii〉 = R̃ii be the canonical morphism, and we let
τii : R̃ii → R be the natural inclusion. Then, τii obeys the rules for an algebra morphism except for the fact that
τii(1) 	= 1. Thus, τ−1

ii (a) of an ideal a is an ideal.

Proposition 5. There is a one to one correspondence between the right (left) maximal ideals in the matrix algebra
R and the right (left) maximal ideals in its diagonal algebras.

Proof. Let m ⊂ R be a maximal ideal. Then, for some i, 1 ≤ i ≤ n, τ−1
ii (m) 	= R̃ii because 1 ∈ m otherwise.

We see that for m ∈ m, τii(ιii(m)) ∈ m implying that ιii(m) ∈ τ−1
ii (m) so that m ⊆ ι−1

ii (τ−1
ii (m)). Because m

is maximal, m = ι−1
ii (τ−1

ii (m)) and τ−1
ii (m) is a maximal ideal and together with the canonical surjection ι the

correspondence is established.

4 Geometric localizations

The universal property of the localization L of a commutative k-algebra A in a maximal ideal m is a diagram

A
ρL ��

κA ����
��

��
��

L

κL

��
A/m

such that ρL(a) is a unit in L whenever κA(a) is a unit in A/m. For any other L′ with this property, there exists a
unique morphism φ : L→ L′ such that ρL′ = ρL ◦ φ.

This definition may very well be extended to the noncommutative situation, but it is well known that the
localization process works only for Ore sets. In the following, A is a not necessarily commutative k-algebra.

Lemma 6. V is a simple A module if the structure morphism ρ : A � Endk(V ) is surjective. If k is algebraically
closed, the converse holds.

Proof. Let W be a submodule of V , let 0 	= w ∈W be an element, and let v ∈ V be any element. Let φ : V → V be
the linear transformation sending w to v and all other elements in a basis for W to 0. Then, φ = ρa for some a ∈ A
because of the surjectivity. Then, v = φ(w) = a · w ∈ W . This proves that V = W and V is simple. The proof of
the converse can be found in the introductory book of Lam [2].

Definition 7. Let A be a (not necessarily commutative) k-algebra, and let V = {V1, . . . , Vn} be simple right
A-modules. Then, a k-algebra L is called a localization of A in V if there exists a diagram

A
ρL ��

κA
i ������������ L

κL
i

��
Homk

(
Vi, Vi

)
such that ρL(a) is a unit in L whenever κAi (a) is a unit in Homk(Vi, Vi) for every i, 1 ≤ i ≤ n, and if for any other
L′ with this property, there exists a unique φ : L→ L′ such that ρL′ = ρL ◦ φ.

Example 8. As an elementary example, let A be commutative and let m1, . . . ,mn be maximal ideals. Put Vi =

A/mi, 1 ≤ i ≤ n. Then, L = ⊕n
i=1Ami fulfils the condition of being a localization of A in V = {Vi, . . . , Vn}.

Notice that the set of simple modules of L are the modules V .

Example 9. Let A be any k-algebra and V1, . . . , Vn simple right A-modules. Assume that there exists a k-algebra
L = ⊕Li → ⊕Homk(Vi, Vi) = Endk(V ) such that each Li is finitely generated with Vi as the only simple Li-
module. Also assume that ĤLi

(Vi) ∼= ĤA(Vi) and that Li is miniversal (in the meaning that Li is an algebraization
of ĤA(Vi)). Then L ∼= AV , the localization of A in the family V .

Knowing that the local formal moduli exists, we can replace the localizations with this. However, we do not
know for certain that algebraizations exist. The (next) best we can do is the following: relaxing to some degree the
universal property.
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Definition 10. Let A be any k-algebra and V = {V1, . . . , Vn} a family of simple right A-modules. Then, L is called
a prolocalization of A in V if there exist diagrams

A
ρL ��

κA
i ������������ L

κL
i

��
Homk

(
Vi, Vi

)
for each i, 1 ≤ i ≤ n, such that ρL(a) is a unit in L whenever κAi (a) is a unit for each i, and if for each i one has
ĤL(Vi) ∼= ĤA(Vi). One writes L = ÂV and notices that prolocalizations are not unique.

Lemma 11. Prolocalizations exist.

Proof. Note that L = ⊕n
i=1ĤA(Vi) ⊗k Endk(Vi) satisfies the properties of the definition. The homomorphism

κLi : L → Endk(Vi) is surjective and l ∈ L is a unit whenever κLi (l) is a unit in Endk(Vi) implying that
{V1, . . . , Vn} is exactly the set of simple L-modules. Now, let Ln = ⊕n

i=1ĤA(Vi)/ rad
n⊗k Endk(Vi). Then, by

the generalized Burnsides theorem, Theorem 2, we have the matrix algebra (ĤLn
(i, j) ⊗k Homk(Vi, Vj)) ∼= Ln,

implying in particular that ĤLn
(i, i) = ĤLn

(Vi) ∼= ĤA/ rad
n(Vi). Taking the projective limit, we then end at

ĤL(Vi) ∼= ĤA(Vi) for each i, proving the claim.

Lemma 12. Let V = {V1, . . . , Vn} be a set of simple right A-modules. Let ĤV be the prolocalization of A in V .
Then, Simp(ĤV ) = V .

Proof. Note that ÂV = ⊕n
i=1ĤA(Vi)⊗kEndk(Vi) maps surjectively onto Endk(Vi), so by Lemma 6, Vi is a simple

ÂV -module, that is V ⊆ Simp(ÂV ). It is also obvious that if a ∈ ĤA(Vi)⊗k Endk(Vi) maps to a unit in Endk(Vi),
it is itself a unit. Thus, ĤA(Vi)⊗k Endk(Vi) is a local ring and the general result follows from Proposition 5.

Now we come to the main point of this section. For moduli situations, we have to be concerned with the geometry
between the different simple objects. This also strengthen the universal property of the localizations we consider.

Definition 13 (geometric prolocalizations). Let A be any k-algebra and V = {V1, . . . , Vn} a family of simple right
A-modules. Then, L is called a geometric prolocalization of A in V if there exists diagrams

A
ρL ��

κA
i ����������� L

κL
i

��
Endk

(
Vi
)

for each i, 1 ≤ i ≤ n, such that ρL(a) is a unit in L whenever κAi (a) is a unit for each i, and if there exists an
isomorphism of matrix k-algebras(

ĤL(i, j)⊗k Homk

(
Vi, Vj

)) ∼= (ĤA(i, j)⊗k Homk

(
Vi, Vj

))
.

We write L = ÂG
V , and notice that geometric prolocalizations are not unique.

Lemma 14. The geometric prolocalization ÂG
V of A in V = {V1, . . . , Vn} exists, and Simp(ÂG

V ) = V .

Proof. Put ÂG
V = (Ĥij ⊗k Homk(Vi, Vj)). Then exactly as above, ÂG

V fulfils the conditions. Notice that even for a
noncommutative k-algebra, (u + f)(p − pfp + pfpfp − pfpfpfp + · · · ) = 1 when f ∈ rad(ÂG

V ) and p is a right
unit of u (we recall that rad(ÂG

V ) = ker η, where η : ÂG
V → kn is the natural morphism).

If a (geometric) prolocation is finitely generated, we will call it an algebraic localization. This then includes the
ordinary localizations.

5 Noncommutative schemes

For any set S we consider the subset of the power set consisting of finite subsets. We use the notation P (S) = {M ⊆
S | M is finite}. We now make the direct generalization of the sheafification to the noncommutative situation:
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let A be a not necessarily commutative k-algebra, and put X = Simp(A) = {A-modules V | V is simple}. The
generalization of the topological space of A is the Jacobson topology: for f ∈ A, we define D(f) = {V ∈ SimpA |
ρ(f) : V → V is invertible}, where ρ : A→ Endk(V ) is the structure morphism. We have D(f)

⋂
D(g) = D(fg),

and so we can let the topology on SimpA be the topology with base of open subsets D(f), f ∈ A.
For f ∈ A, we define

Âf =

⎧⎨⎩φ : P
(
D(f)

) −→ ∐
c∈P (D(f))

ÂG
c | there exists a ∈ A, n ∈ N such that φ(c) = a · f−n

⎫⎬⎭ .

We then define the sheaf of regular, not necessarily commutative, functions on X = SimpA by

ÔSimpA(U) = lim←−
D(f)⊆U

Âf .

Now if all the ÂG
c are algebraizable, that is, there exist algebraic localizations AG

c of A for every finite subset c
with natural and coherent morphisms AG

c1
→ AG

c2
for each inclusion c2 ⊆ c1, we use the same definition and

constructions as above (without the hat) and we end up with the following proposition.

Proposition 15. One has the following:

(1) Γ (SimpA,OSimpA) ∼= A;
(2) if A is commutative, then (SimpA,OSimpA) ∼= (SpecA,OSpecA).

Proof. (1) We see that A ∼= A1 and so this follows by definition.
(2) This follows as

Af = lim←−
D(g)⊆D(f)

Ag.

Definition 16. We call (SimpA, ÔSimpA) an affine scheme, and we say that the set of simple A-modules | SimpA|
is a scheme for A. A not necessarily commutative scheme is an r-pointed topological space that can be covered by
affine schemes.

6 Relation to moduli problems

Consider any diagram c of A-modules, not necessarily finite. On the set |c|, we define the Jacobson topology
generated by the open subsets Dc(f) for f ∈ A given by Dc(f) = {V ∈ |c| : ρV (f) ∈ Endk(V )∗} where
ρV : A → Endk(V ) is the structure morphism and where Endk(V )∗ ⊆ Endk(V ) denotes the units in this k-
algebra. We let ÔV = (Ĥ(i, j)⊗k Homk(Vi, Vj)) when V = {V1, . . . , Vn}.

Then, we define a sheaf of r-pointed k-algebras on the topological space |c| as follows. At first, let P (U) =

{c0 ⊆ c : | c0 | is finite, c0 ⊆ U}. Then, we define

Ôf =

⎧⎨⎩φ : P
(
Dc(f)

) −→ ∐
c0∈P (Dc(f))

Ôc0 | φ
(
c0
)
= a · f−n for some a ∈ A, n ∈ N

⎫⎬⎭ .

Notice that if Dc(f) is finite, Ôf
∼= ÔDc(f). This follows directly from the definition.

Given this, we now define

Ôc(U) = lim←−
D(f)⊆U

Ôf .

Then, Ôc is a sheaf by the universal property of projective limits which exists in the category of not necessarily
commutative k-algebras.

Proposition 17. One has (Dc(f), ÔDc
) ∼= (Simp(Ôf ), ÔSimp(Ôf )

).

Proof. When c is finite, Ôc ⊆ (Ĥij ⊗ Homk(Vi, Vj)) � End(V ). As the O-construction is a closure operation
and the surjectivity gives simplicity of the representations, dividing out by powers of the radical, using the general
Burnside theorem and taking projective limits, the result follows.
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Thus, (| c |, Ô| c |) is a (not necessarily commutative) scheme. Moreover, the natural morphism ρ : A→ Ôf glues
together to a global module ρ̃ on | c |. By the geometric properties, it is reasonable to call (| c |, ρ̃) a moduli for | c |,
the original set of A-modules.

Definition 18. c is called an affine scheme for the k-algebra A if (c, Oc) ∼= (Simp(A), OSimp(A)).

7 The noncommutative moduli of rank 3 endomorphisms

In this section, we consider the problem of providing a natural algebraic geometric structure on the set of n×n Jordan
forms. It turns out that there are serious combinatorial difficulties in the general case, and also that the general case
would be hard to conclude from, in particular geometrically. The case of 2× 2 Jordan forms can be found in [4], but
this example is too simple to illustrate the geometry, thus we restrict to the case of 3 × 3 Jordan forms. The main
result of this section is the following.

Theorem 19. The noncommutative k-algebra

M = M3(k)
GL3(k) =

⎛⎜⎝k
[
s1, s2, s3

] 〈
t12(1), t12(2), t12(3)

〉 〈
t13(1), t13(2), t13(3)

〉
0 k

[
t1, t2

] 〈
t23(1), t23(2)

〉
0 0 k[u]

⎞⎟⎠ /b,

where b is the two-sided ideal generated by the relations in the generic case (see below), is the algebraic k-
algebra of the affine moduli of the GL3(k)-orbits of M3(k). Thus, it also comes with a universal family, giving
the parametrization of the closures of the orbits.

The construction of this structure is based on the noncommutative deformation theory given in [1,3]. Put
M3(k) = Spec(A), A = k[xij ]1≤i,j≤3, then G := GL3(k) acts on A by conjugacy, that is, g = (αij) ∈ G

acts linearly on A by g(xij) = (αij)(xij)(αij)
−1. Denote this action by∇ : G→ Aut(A). Let M be an A-module,

and let ∇ : G→ Aut(M) be an action such that

∇g(am) = ∇g(a)∇g(m).

Then, (M,∇) is called an A − G-module. The category of A − G-modules is equivalent to the category of A[G]-
modules, where A[G] is the skew group ring.

The affine k-algebra of the closure of a G-orbit is, by definition, an A−G-module of the form A/a where a is a
G-stable ideal of A, together with the natural G-action:

Spec(A/a) ⊂ Spec(A).

It will turn out that we have three different cases to consider: the closure of the orbits of the Jordan form with
all eigenvalues equal (called the generic case in Theorem 19), the closure of the orbits of the Jordan form with only
two different eigenvalues and the closure of the orbit of the Jordan form with three different eigenvalues.

(1) All eigenvalues equal

We are considering the Jordan forms

Mλ
1 =

⎛⎝λ 1 0

0 λ 1

0 0 λ

⎞⎠ , Mλ
2 =

⎛⎝λ 1 0

0 λ 0

0 0 λ

⎞⎠ , Mλ
3 =

⎛⎝λ 0 0

0 λ 0

0 0 λ

⎞⎠ .

(2) Two different eigenvalues

The following Jordan forms are possible, letting λ = (λ1, λ2):

M
λ
1 =

⎛⎝λ1 1 0

0 λ1 0

0 0 λ2

⎞⎠ , M
λ
2 =

⎛⎝λ1 0 0

0 λ1 0

0 0 λ2

⎞⎠ .

The case

M
λ
1 =

⎛⎝λ1 0 0

0 λ2 1

0 0 λ2

⎞⎠ , M
λ
2 =

⎛⎝λ1 0 0

0 λ2 0

0 0 λ2

⎞⎠
will be correspondingly.
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(3) Three different eigenvalues

The one and only orbit is the orbit of

M =

⎛⎝λ1 0 0

0 λ2 0

0 0 λ3

⎞⎠ .

Now we set Mλ =M − λI,

sλ1 = tr
(
Mλ), sλ2 = −

∣∣Mλ
11

∣∣− ∣∣Mλ
22

∣∣− ∣∣Mλ
33

∣∣, sλ3 =
∣∣Mλ

∣∣, sλij =
∣∣Mλ

ij

∣∣.
For simplicity, we will also use the notation

xλij = xij , i 	= j, xλii = xii − λ.

We then have the following representation of the ideals defining the closures.

Lemma 20. aλ1 = (sλ1 , s
λ
2 , s

λ
3 ), a

λ
2 = (sλ1 , s

λ
ij), a

λ
3 = (xλij).

Proof. sλ1 = s1 − 3λ, sλ2 = s2 + 2s1λ− 3λ2, sλ3 = −λ3 + s1λ
2 + s2λ+ s3. Thus

s1 = 3λ ∧ s2 = −3λ2 ∧ s3 = λ3 ⇐⇒ sλ1 = s1 − 3λ = 0 ∧ sλ2 = s2 + 2s1λ− 3λ2 = −6λ2 + 2 · 3λ2

= 0 ∧ sλ3 =−λ3+s1λ2+s2λ+s3=−λ3+3λ3−3λ3+λ3=0.

In the case with exactly two different eigenvalues λ1 	= λ2 and λ = (λ1, λ2), the orbit closures are given by the
following.

Lemma 21. aλ1 = (sλ1
1 − (λ2 − λ1), sλ1

2 , sλ1
3 ), aλ2 = (sλ1

1 − (λ2 − λ1), sλ1
ij ).

Proof. From direct computation:

sλ1
1 −

(
λ2 − λ1

)
= s1 − 2λ1 − λ2,

sλ1
2 = s2 + 2s1λ1 − 3λ21 = s2 + 2

(
2λ1 + λ2

)
λ1 − 3λ21 = s2 + 2λ1λ2 + λ21,

sλ1
3 = −λ31 +

(
2λ1 + λ2

)
λ21 +

(− 2λ1λ2 − λ21
)
λ1 + s3 = s3 − λ21λ2.

And of course, in the case with three different eigenvalues λ = (λ1, λ2, λ3), the orbit closure is given by
a = (s3 − λ1λ2λ3, s2 + λ2λ3 + λ1λ3 + λ1λ2, s1 − λ1 − λ2 − λ3).
Proposition 22. The k-dimension of Ext1A−G(Vi, Vj) is given as the (i, j) entry in the matrix⎛⎝3 3 3

0 2 2

0 0 1

⎞⎠ .

This is true in all three cases, even if the representation of the orbits differs in notation.

Proof. This is more or less straight forward computations, except for two cases.
(1) The reader may check that (1, 0) and (0, ψ),

ψ =

⎛⎜⎝x33 + x22 x21 −x31
x12 x11 + x33 x32

−x13 x23 x22 + x11

⎞⎟⎠ ,

are both elements in Ext1A−G(V2, V2) considered in the Yoneda complex.
(2) Writing up the syzygies we find that for i > j,

ext1A−G

(
Vi, Vj

) ≤ ext1A
(
Vi, Vj

)
= 0.

See [6] for a detailed computation of all cases. Notice, however, that there does not yet exist a computer program
computing this dimension (or invariants in general) under the action of an infinite group.
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8 The local formal moduli

Let Ĥ({Vi}ri=1) denote the formal local noncommutative moduli of the modules {Vi}ri=1 corresponding to the
closures of the orbits. We will compute this k-algebra in the worst case situation, which is seen to be the case where
all eigenvalues are equal, and three closures are contained in each other: the generic case.

Let φλ : A → A be the automorphism sending xij to xλij . This automorphism sends si to sλi , i = 1, 2, 3, sij to

sλij , 1 ≤ i, j ≤ 3. Because φλ obviously commutes with the group action, that is, because the diagram

A
∇g ��

φλ

��

A

φλ

��
A ∇g

�� A

obviously commutes, we get the following, first in the case with three coinciding eigenvalues as follows.

Lemma 23. For every λ ∈ k, let V λ
i = A/aλi . Then

Ĥ
(
V λ
1 , V

λ
2 , V

λ
3

) ∼= Ĥ
(
V 0
1 , V

0
2 , V

0
3

)
.

Proof. The automorphism φλ transforms every computation with tangent space bases, resolutions and Massey
products for Ĥ(V 0

1 , V
0
2 , V

0
3 ) to Ĥ(V λ

1 , V
λ
2 , V

λ
3 ).

And in the case with two coinciding eigenvalues as follows.

Lemma 24. For every λ = (λ1, λ2) ∈ k2, λ1 	= λ2, one has that

Ĥ
(
V

λ
1 , V

λ
2

)
∼= Ĥ

(
V

(0,λ2−λ1)
1 , V

(0,λ2−λ1)
2

)
.

Proof. Use the automorphism φλ1 : A → A described in the previous section. This automorphism sends s1 −
(λ2 − λ1) to sλ1

1 − (λ2 − λ1), s2 to sλ1
2 , s3 to sλ1

3 and sij to sλ1
ij for 1 ≤ i, j ≤ 3. Thus, the tangent spaces, the

resolutions and the computation of Massey Products are isomorphic.

The computations of the local formal moduli are based on resolutions of theA−G-modules and liftings of these.
The representation of the Massey products given by obstructions are given previously in [7], the full details in [6].

Because of the lemmas above, we can write up the local formal moduli of every situation V1, V2, V3 correspond-
ing to one eigenvalue, V1, V2 corresponding to two different eigenvalues and V corresponding to three different
eigenvalues.

Proposition 25. Let

T̂ =

⎛⎜⎜⎝
k
[[
t11(1), t11(2), t11(3)

]] 〈〈
t12(1), t12(2), t12(3)

〉〉 〈〈
t13(1), t13(2), t13(3)

〉〉
0 k

[[
t22(1), t22(2)

]] 〈〈
t23(1), t23(2)

〉〉
0 0 k

[[
t33(1)

]]
⎞⎟⎟⎠ .

Then, the noncommutative local formal moduli of the modules corresponding to the closure of the orbits of the
Jordan forms M1, M2, M3 is

T̂ /
(
fij(l)

)
= T̂ /b,

where b is the ideal generated by

f12(1) = t11(3)t12(2)− t11(2)t12(3)− t12(2)t22(1)− 3t12(3)t
2
22(2) + 2t12(3)t22(1)t22(2),

f12(2) = t11(3)t12(1)− t11(1)t12(3)− t12(1)t22(1) + t12(3)t22(1)t
2
22(2)− 2t12(3)t

3
22(2),
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f12(3) = t11(2)t12(1)− t11(1)t12(2)− 2t12(1)t22(1)t22(2) + 3t12(1)t
2
22(2)

+ t12(2)t
2
22(2)t22(1)− 2t12(2)t

3
22(2),

f13(1) = t11(3)t13(2)− t11(2)t13(3)− 3t13(2)t33(1)− t12(2)t23(1)− 3t12(3)t23(2)

+ 3t13(3)t
2
33(1)− 2t12(1)t22(2)t23(1)− 2t12(2)t22(2)t23(2),

f13(2) = t11(3)t13(1)− t11(1)t13(3)− 3t13(1)t33(1)− t12(1)t23(1)− t12(3)t23(2)t33(1)
− 2t12(3)t22(2)t23(2) + t13(3)t

3
33(1),

f13(3) = t11(2)t13(1)− t11(1)t13(2) + 3t12(1)t23(2)− t11(3)t13(1)t33(1) + t11(1)t13(3)t33(1)

+ t12(1)t23(1)t33(1)− t12(2)t23(2)t33(1)− 2t12(1)t22(2)t23(1)− 2t12(2)t22(2)t23(2)

+
1

3
t11(3)t13(2)t

2
33(1)− 1

3
t11(2)t13(3)t

2
33(1)− t12(3)t23(2)t233(1)− 1

3
t12(2)t23(1)t

2
33(1)

− 6t12(3)t22(2)t23(2)t33(1)− 2t12(3)t22(2)t23(1)t
2
33(1),

f23(1) = −t22(1)t23(2) + 3t23(2)t33(1) + t23(1)t
2
33(1)− 2t22(2)t23(1)t33(1) + t222(2)t23(1).

Proposition 26. Let

T̂ =

(
k
[[
t11(1), t11(2), t11(3)

]] 〈〈
t12(1), t12(2), t12(3)

〉〉
0 k

[[
t22(1), t22(2)

]] )
.

Then, the noncommutative local formal moduli of the modules corresponding to the closure of the orbits of M1

and M2 is

T̂ /
(
fij(l)

)
,

where

f12(1) = t11(3)t12(2)− t11(2)t12(3)− t12(2)t22(1)− 2λt12(3)t22(2)

+ 2t12(3)t22(2)t22(1)− 3t12(3)t
2
22(2),

f12(2) = t11(3)t12(1)− t11(1)t12(3)− t12(1)t22(1)− λt12(3)t222(2)
+ t12(3)t22(1)t

2
22(2)− 2t12(3)t

3
22(2),

f12(3) = t11(2)t12(1)− t11(1)t12(2) + 2λt12(1)t22(2)− 2t12(1)t22(2)t22(1)

+ 3t12(1)t
2
22(2)− λt12(2)t222(2) + t12(2)t

2
22(2)t22(1)− 2t12(2)t

3
22(2).

Now, it is also obvious that in the case with three different eigenvalues, the local formal moduli is

T̂ = k
[[
t11(1), t11(2), t11(3)

]]
.

All the relations defining the local formal moduli are polynomials and the choice of defining systems in the
computation of this polynomials, the proversal family, is algebraizable (see, e.g., [6]). Thus, we may replace the
double brackets with simple brackets and let

T =

⎛⎜⎝k
〈
t11(1), t11(2), t11(3)

〉 〈
t12(1), t12(2), t12(3)

〉 〈
t13(1), t13(2), t13(3)

〉
0 k

〈
t22(1), t22(2)

〉 〈
t23(1), t23(2)

〉
0 0 k

〈
t33(1)

〉
⎞⎟⎠ .

Then, M = T/b together with the universal family

ρ : A −→M ⊗k Endk(V )

is a moduli for the orbit closures. This follows from Propositions 25 and 26 proving that the restriction to subdi-
agrams are correct, and from Lemmas 23 and 24 which prove that the family above is universal. Finally, we also
need to prove that the points of this k-algebra corresponds to the orbit closures. This will follow from a study of the
geometry.
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9 The geometry

The endomorphisms with Jordan form

(
λ1 0 0
0 λ1 0
0 0 λ2

)
correspond to the points on the surface

4s31s3 − s21s22 + 18s1s2s3 − 4s32 + 27s23 = 0.

The forms

(
λ 0 0
0 λ 0
0 0 λ

)
with coinciding eigenvalues give the curve

s2 = −1

3
s21 ∧ s3 =

1

27
s31.

The geometric picture should show three generic points. The case with all three eigenvalues different is well
known to be parameterized by the points in affine 3-space. A point in this affine 3-space, on the surface, represents
a new 3-dimensional affine space glued onto this point. A point on the curve on the surface represents a new 3-
dimensional affine space which is glued onto the point. Outside the curve and the surface, all points are identified.

Necessary conditions for the k-algebra M = M3(k)
GL3(k) to be the affine ring for M3(k)/GL3(k) are that the

simple modules of this ring are in one-to-one correspondence with the orbits, and that it is closed under forming
local formal moduli for finite subsets of the simple modules. In particular, the Ext1-dimensions must coincide, and
the universal family must exist.

Recalling (again) that Ext1M (Vi, Vj) ∼= Derk(M,Homk(Vi, Vj)), we can compute the tangent space dimen-
sions Ext1M (Vi, Vj) by looking at k-derivations δ. The dimension drops if δ(f) 	= 0 for some relation f . Let
V1(t11(1), t11(2), t11(3)), V2(t22(1), t22(2)) and V3 = t33(1) be three points on the diagonal of M . Then, the
constant ext1M -locus is given as follows:

(1, 2)

f12(1) = t12(3)
(− t11(2)− 3t222(2) + 2t22(1)t22(2)

)
+ t12(2)

(
t11(3)− t22(1)

)
= 0,

f12(2) = t12(1)
(
t11(3)− t22(1)

)
+ t12(3)

(− t11(1) + t22(1)t
2
22(2)− 2t322(2)

)
= 0,

f12(3) = t12(1)
(
t11(2)− 2t22(1)t22(2) + 3t222(2)

)
+ t12(2)

(− t11(1) + t22(1)t
2
22(2)− 2t322(2)

)
= 0.

We put

t11(1) = s3, t11(2) = s2, t11(3) = s1, t22(1) = λ2, t22(2) = λ1

and we get the equations

s1 = λ2, s2 = 2λ1λ2 − 3λ21, s3 = λ21λ2 − 2λ31,

which is exactly the point ⎛⎝λ1 0 0

0 λ1 0

0 0 λ2 − 2λ1

⎞⎠
on the surface.

(1, 3)

f13(1) = t13(2)
(
t11(3)− 3t33(1)

)
+ t13(3)

(− t11(2) + 3t233(1)
)
= 0,

f13(2) = t13(1)
(
t11(3)− 3t33(1)

)
+ t13(3)

(− t11(1) + t333(1)
)
= 0,

f13(3) = t13(1)
(
t11(2)− t11(3)t33(1)

)
+ t13(2)

(
− t11(1) + 1

3
t11(3)t

2
33(1)

)
+ t13(3)

(
t11(1)t33(1)− 1

3
t11(2)t

2
33(1)

)
= 0.

We put

t11(1) = s3, t11(2) = s2, t11(3) = s1, t33(1) = λ1,
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and we get the following equations:

s1 = 3λ1 s1 = 3λ1

s2 = 3λ21 ⇐⇒ s2 = 3λ21

s3 = λ31 s3 = λ31

s2 = s1λ1

s3 =
1

3
s1λ

2
1

s3λ1 =
1

3
s2λ

2
1.

This gives the points on the curve ⎛⎝λ1 0 0

0 λ1 0

0 0 λ1

⎞⎠ .

(2, 3)

f23(1) = t23(1)
(
t233(1)− 2t22(2)t33(1) + t222(2)

)
+ t23(2)

(− t22(1) + 3t33(1)
)
.

On the curve, the above chosen parameters correspond to⎛⎝λ1 0 0

0 λ1 0

0 0 λ1

⎞⎠ =

⎛⎝λ1 0 0

0 λ1 0

0 0 3λ1 − 2λ1

⎞⎠ =

⎛⎝λ1 0 0

0 λ1 0

0 0 λ2 − 2λ1

⎞⎠ ,

that is

t22(1) = 3λ1, t22(2) = λ1, t33(1) = λ1.

This is true for both equations above:

t22(1) = 3t33(1)⇐⇒ 3λ1 = 3λ1, 2t22(2)t33(1) = t233(1) + t222(2)⇐⇒ 2λ21 = 2λ21.

Thus, the constant ext1-locus is preserved on the curve.
The constant ext1-locus for the local formal moduli for a point on the surface, that is the case with exactly two

different eigenvalues, is given by the equations (for simplicity we put λ = 1)

f12(1) = t12(3)
(− t11(2)− 2t22(2) + 2t22(1)t22(2)− 3t222(2)

)
+ t12(2)

(
t11(3)− t22(1)

)
,

f12(2) = t12(3)
(− t11(1)− t222(2) + t22(1)t

2
22(2)− 2t322(2)

)
+ t12(1)

(
t11(3)− t22(1)

)
,

f12(3) = t12(2)
(− t11(1)− t222(2) + t22(1)t

2
22(2)− 2t322(2)

)
+t12(1)

(
t11(2)+2t22(2)−2t22(1)t22(2)+3t222(2)

)
.

We let

t11(3) = s1 + 1, t11(2) = s2, t11(1) = s3, t22(2) = λ1, t22(1) = λ2.

Then, we get the equations

s1 = λ2 − 1, s2 = −2λ1 + 2λ1λ2 − 3λ21, s3 = −λ21 + λ21λ2 − 2λ31,

which are the surface ⎛⎜⎝λ1 0 0

0 λ1 0

0 0 λ2 − 1− 2λ1

⎞⎟⎠ .
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This gives the picture of the moduli for GL3(k) as the affine 3-space, the affine 2-space and the curve and proves
the main theorem of the section. Notice that the affine 2-space in the middle is the blowup of the surface along the
curve.
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