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CODIMENSION TWO HOLOMORPHIC FOLIATIONS

D. CERVEAU & A. Lins NETO

Abstract

This paper is devoted to the study of codimension two holo-
morphic foliations and distributions. We prove the stability of
complete intersection of codimension two distributions and foli-
ations in the local case. Converserly we show the existence of
codimension two foliations which are not contained in any codi-
mension one foliation. We study problems related to the singular
locus and we classify homogeneous foliations of small degree.

1. Introduction

There are many works devoted to the study of codimension one holo-
morphic foliations on complex manifolds. The local theory is well under-
stood in small dimensions (2 and 3), with results concerning reduction of
singularities ([33], and [7]) and applications to unfolding theory, topo-
logical classification ([27] and [28]), spaces of moduli ([29]), existence
and construction of invariant hypersurfaces [5], first integrals ([30] and
[14]), among other topics.

In the global case, there is an intensive activity concerning the de-
scription of the “irreducible components” of the space of codimension
one holomorphic foliations on a compact complex manifold ([9], [3] and
[12]). One of the most popular challenges is to know if any codimension
one foliation on P™, n > 3, is either the meromorphic pull-back of a fo-
liation on a complex surface, or has a “geometric” transverse structure
([13] and [11)).

In the present work, we focus our attention on singular foliations and
distributions of codimension ¢, ¢ > 2, with special emphasis in the case
q = 2. Local and global results are obtained. For example, a way to
construct a singular codimension two distribution is to intersect two
singular codimension one distributions. In the local case we prove in
theorem 2 the “stability” of such construction, under natural assump-
tions. As a consequence, using Malgrange’s singular Frobenius theorem,
we show the persistence of first integrals (theorem 1). Conversely, we
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prove the existence of codimension two foliations which are not “con-
tained” in any codimension one foliation; this fact is proved in the local
context and on rational manifolds (see proposition 3, corollary 1 and
remark 2.5).

Next the following problem is studied: is there a germ at 0 € C*
of codimension two foliation with an isolated singularity at 0?7 Indeed,
there are examples of holomorphic codimension two distributions on C*
with an isolated singularity at 0 € C*. An example of this type was
given in [19] in the context of vector bundles on P3: it is defined by a
homogeneous 2-form on C*, that is a 2-form with coefficients homoge-
neous of the same degree. In contrast with this example we prove in
theorem 3 that a codimension two foliation on C*, defined by a homo-
geneous 2-form with a singularity at 0 € C*, has always a straight line
in its singular set; in other words the singular set has dimension > 1.

Finally, we describe with some details homogeneous foliations of small
degree. That description is related to the classification of codimension
one foliations of degree < 2 on P, n > 3.

2. Definitions and some results

2.1. Local definitions. A holomorphic singular distribution of codi-
mension ¢ (or dimension 7 — ¢) on a Stein open set U C C™, 0 < ¢ < n,
can be defined by a holomorphic ¢-form 1 which is locally decomposable
outside the singular set Sing(n) := {z € U |n, = 0}, in the sense that
any z, € U \ Sing(n) has an open neighborhood V' C U such that

(1) 7]|V:w1/\.../\wq,

where wy, ...,w, € QL(V). It follows that we can define in U \ Sing(n) a
holomorphic distribution D,; of codimension ¢ by

Dy(p) = {v € T,U |i,n(p) = 0}.
If pe U\ Sing(n) and wy, ...,w, are as in (1) then
Dy(p) = [ Ker(w;(p)).
1<5<q

A g-form 7 satisfying (1) is said to be locally decomposable.
A g-form n which satisfies (1) is integrable if it satisfies Frobenius’
integrability condition:

(2) dwjAn=0,VYj=1,..4¢,on the open set U.

If 1) satisfies (1) and (2) then the distribution D, is integrable and so
71 defines a holomorphic codimension ¢ foliation on U \ Sing(n). This
foliation will be denoted by F,.

The leaves of F are the immersed codimension ¢ submanifolds £ C
U\ Sing(n) for which the tangent space to £ at m € U is T\, L := Dy(m).
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When Sing(n) = 0 then the integrability condition (2) is equivalent
to the existence of a holomorphic 1-form 6 such that

(3) dn=mnAN§.

When Sing(n) # 0 then (3) is only true locally in U \ Sing(n), unless
we allow 6 to be meromorphic.

Example 1. Complete intersection. Let Fi,...,F; be ¢ foliations
of codimension one defined by integrable 1-forms wy,...,w, € Q(U),
1 <q<n (wpAdw, =0, Vk) such that n := wi A ... Awg # 0. The
foliation complete intersection F = JF; N ... N Fy is associated to the ¢
1-forms w;, 1 < ¢ < ¢q. The leaves of F are the connected components
of the intersection of the leaves L of Fi, 1 < k <gq.

Example 2. Foliations associated to a Lie algebra of vector fields
or to an action of a Lie group. Let £ be a Lie algebra of vector fields
defined on an open Stein subset U C C". Given m € U set

d(m) = dimc (X(m)| X € L) .

Let d = max{d(m)|m € U} and assume that 1 < d < n. Since U is
connected, then the set Z = {m € U |d(m) < d} is a proper analytic
subset of U, so that V = U \ Z is open dense in U and connected. In
particular, £ defines a dimension d distribution on V'

Lm)=(X(m)| X eL), meV.

The Lie algebra L defines a codimension ¢ = n — d foliation F, on
V. The foliation F, can be extended to U as a singular foliation with
singular set Z.

When L is associated to a group action G x U — U we will say that
Fr is associated to the action of G.

Remark 2.1. If n € Q¥(U) is integrable and cod(Sing(n)) = 1 then
we can write n = h.n’, where n’ € QF(U) and cod(Sing(Q')) > 2. We
would like to observe that n’ is also integrable. The foliation F,/ can
be considered as an “extension” of F,.

Remark 2.2. If 5 is an integrable g-form and dn # 0 then relation
(3) implies that dn is locally decomposable outside Sing(n). Since dn
is closed it is integrable and defines a singular foliation of codimension
g+ 1. Relation (3) implies also that any leaf of dn is n-invariant, in the
sense that, either it is contained in a leaf of n, or in Sing(n).

Example 3. Let F; and F2 be the codimension one foliations of C"
defined by the 1-forms 7; = x1...2,.w;, 7 = 1,2, where w; and wy are
the logarithmic closed forms

n n
dx; dx; )
w =) )‘j?jj , wp =) w}j , Aj oy €CT 1< <n.
j=1 =1
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We assume that wi and we are not colinear, which is equivalent to the
non-colinearity of the vectors A = (A1,..., A\p) and p = (p1, ..., 4n). The
intersection F1 N F3 is defined outside ¥ := [J;{z; = 0} by

dr; dz;

w1 N\ w2 :Z()\iuj—)\jui) Ly gty

1<j

Note that wy A wa(m) # 0, for all m € C™\ ¥. Moreover, the divisor of
poles of wy A wo is x7...7, and the form

ZT; ZCj

N i=T1... T w1 AWy = ZO‘Z Wi — Nj ) X1 Zj Ty Ty dy A d
1<j
is holomorphic on C", so that n defines the codimension two foliation
F1NFy := F on C". By convention, T; means the omission of the factor
x; in the product.
Observe that the hyperplanes (z; = 0), 1 < j < n, are F-invariant.
For instance, when j = 1 we have 7|(,,—o) = dx1 A 11, where

m = Z()\l My — )‘j Nl) :Egl/‘}xn d$j,
i>1
and 11 #Z 0, because otherwise A and p would be colinear. In particular,

Sing(n) has codimension > 2 and is contained in ¥. In fact, if A; p; —
Aj i # 0 for all ¢ < j then

Sing(n) = U (i =z =2, =0)
has codimension three.

Another fact, is that 7 is not decomposable, whereas
w9.

1

T1...Tn

n=uwi A

2.2. Globalization. Let M be a complex manifold of dimension n > 2.
A holomorphic (singular) foliation F of codimension ¢,1 < ¢ < n, on M
is defined by a covering (U;);e.s of M by Stein open sets, a collection of
integrable ¢-forms (n;) ey, with n; € Q4(U;) and cod(Sing(n;)) > 2, and
a collection (gij)v,nu,#0 with gi; € O*(U; NUj), satisfying the glueing
condition n; = g;jn; on U; NU; # 0. If U;NU; # ( then the glueing
condition implies that the leaves of F, | UiNU; coincides with the leaves
of Fy,lu,nu; and that

(4) Sing(mi)|vinu; = Sing(n;)|u,nu;-
Relation (4) implies that
Sing(F) = U Sing(n;)
jeJ
is an analytic subset of M of codimension > 2. Observe that this defines
a non-singular foliation of codimension ¢ on the set M \ Sing(F).



CODIMENSION TWO HOLOMORPHIC FOLIATIONS 389

2.3. Complete intersection of foliations. Let F1, ..., 7, be codimen-
sion one foliations on some polydisc U C C", defined by integrable
1-forms wy, ...,wy such that n’ := wy A ... Awy # 0 (generically inde-
pendent). Note that there exists f € O(U) and n € Q4(U) such that
n' = f.n and cod(Sing(n)) > 2. Clearly, n is integrable.

By definition, the foliation F,,, defined by 7, is the topological inter-
section of the foliations Fi, ..., Fy. When cod(Sing(n’)) > 2 (or equiva-
lently f € O*(U)) we will say that F is a complete intersection. Clearly,
these two definitions can be germified or globalized (as in §2.2).

Remark 2.3. We will see in § 2.7 that there are germs of codimension
two foliations F that are not topological intersections of two codimen-
sion one foliations. In this case, F is defined by a germ of integrable
2-form, say 7, which is meromorphically decomposable, n = a A 5, but
for any such decomposition, neither o nor § is integrable.

A direct consequence of a theorem due to Malgrange (cf. [24] and
[25]) is the following:

Theorem 2.1. Let n be a germ at 0 € C" of integrable g-form holo-
morphically decomposable, 1 = aq A ... AN ay. If cod(Sing(n)) > 3 then
Fy, the foliation defined by n, is a complete intersection. More precisely,
there are f1,..., fg € On and h € O}, such that

n=h.dfi A... \df,.

On the other hand, as we have seen in example 3 of § 2.1, for generic
values of \; and u;, the form n = Zi<j()‘i:uj —Ajlhi) X1 T Ty Ty Ay A
dx; is integrable and satisfies cod(Sing(n)) > 3, but F,, is not a complete
intersection. Therefore, the hypothesis of holomorphic decomposability
in Malgrange’s theorem is crucial.

2.4. Special case: ¢ =2 and n = 4. Let n be a 2-form on a polydisc
U c C* We fix coordinates 1, 2,23, 24 and a non-vanishing 4-form,
for instance, v = dx1 A ... A dzg. The 3-form dn can be written as

dn =1ixv,

where X is a holomorphic vector field on U, called the rotational of n:
X = rot(n). The foliation associated to the rotational is independent
of the choice of v. On the other hand, if we change n by h7, where h €
O*(U), then rot(hn) and rot(n) are not in general colinear. Although
this notion is not intrinsic, it is convenient (see [20]). For instance, in
the two following propositions, the first valid in any dimension.

Proposition 1. Let n € Q*(U), a 2-form on an open set U of C".
Then 1 is meromorphically decomposable if, and only if, 1> = nAn = 0.

The proof of proposition 1 can be found in [16] page 211.
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Proposition 2. Let U be a domain of C* and n € Q*(U), n #0. If
rot(n) # 0 then n is integrable if, and only if, i, mn = 0.

Proof. Let us denote Y := rot(n); dn = iyv, v =dz A... Adzy. Since
n € Q%(U), we can write n? = F.v, where F € O(U). If iyn = 0 then

. . Y #0
lyT}2:0 — F.iyr=0 :#> F=0 = 7)2:0.
Therefore, by proposition 1 we can write n = w; A wy, where w; and ws
are meromorphic. We are going to prove that dwi An = dwas Anp =20

(which implies the integrability). From iyn = 0 we have

0= iy(w1 /\UJQ) = iy(wl).WQ — iy(wg).wl = iy w] =1ty ws =0,

because w; and wy are linearly independent in an open and dense set.
On the other hand, w; A v =0 and so

O=iy (w1 A\ V):—wl ANiyv=—wi Adn=—wi A (dw1 N wa—wi A dCUQ) -
dwi A n=dwy A w1 A we=w1 A dwi A wa=0.

Similarly, dws A n = 0. The converse is left to the reader. q.e.d.

Remark 2.4. If rot(n) = 0, i.e., if i is closed, then 7 is integrable if,
and only if, n? = 0. The proof can be found in [20].

Example 4. Codimension two distributions and the generic quadric
of P°. A 2-form 7 on an open set U C C* can be written as

n = AdxaNdxs+ B dxsNdr1+C dxy Adxo+(E dey+F dea+G drg) Adzy.
As the reader can check directly, the condition n? = 0 is equivalent to:
AE+BF+CG=0.

Therefore, 1 defines a singular codimension two distribution on U if,
and only if, the image of the map ® = (A,B,C,D,E,F): U — C5
is contained in the quadric @ = (2023 + 2124 + 2225 = 0). When
the components of ® are homogeneous polynomials of the same degree
then ® defines a rational map ¢: P3— — @, where @ C P° is the
projection on P° of the quadric Q. The indetermination set of ¢ is of
course the projection on P? of the set ®~1(0). In §3.2 we will study the
homogeneous case with ®~1(0) = {0}. This corresponds to the case in
which the form 1 has an isolated singularity at 0 € C*.

2.5. Singularities and the rotational. Let n be a germ at 0 € C* of
integrable 2-form with a singularity at 0. We will examine two cases:

2.5.1. The Kupka—Reeb phenomenon. When rot(n)(0) # 0 we can

find local coordinates z = (z1,x2,3,24) around 0 € C* such that

rot(n) = %. In these coordinates the form 7 does not depends on
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the variable x4 and on dxy4. More precisely, we can write n = iz dx; A
dxy A dzs, where Z is a germ of vector field as below

3
0
(5) Z:ZA]<.’E1,.T2,$3) 8737]
7j=1
In particular, the foliation F;, can be interpreted as the pull-back by the
projection x + (1, z2, 23) of the germ of foliation on (C?,0) defined by
the vector field Z (cf. [31]).

2.5.2. The case in which rot(n) has an isolated singularity. When
rot(n)(0) = 0 and 0 is an isolated singularity of rot(n) we can apply the
division theorem of De Rham-Saito [15] as follows: the integrability
condition i,,4,n = 0 implies that there exists a germ of holomorphic
vector field S such that

(6) n=-1g irot(n) dx1 ANdxo Adxg A dxy.

In other words, the tangent bundle of F decomposes globally outside
Sing(Fy): TF = C.S @ C.rot(n). Note that (6) implies that Lgn =7,
where L denotes the Lie derivative.

Two sub-cases were studied in [20]:

1%t. When the linear part of rot(n) at 0 is non-degenerate. In this case,
under generic conditions, it is possible to find germs of vector fields
X, Y generating the O4-module T'F and such that [X,Y] = 0: the
foliation is generated by a local action of C2.

. When the linear part of rot(n) at 0 is nilpotent. In this case, it is
proved in [20] that the eigenvalues of DS(0) are rational positive.
In particular, S is holomorphically normalizable; S = S; + N,
where S; = DS(0) and N is nilpotent and [S1, N] = 0. It is proved
also that there exist local coordinates x = (z1, 2, 3, 24) in which
the rotational satisfies [S1,rot(n)] = Arot(n), where A € Q4. In
other words, S and rot(n) generate a local action of the affine
group of C.

2nd

2.6. Stability of complete intersections. Case of 2-forms. This
section is devoted to the following result:

Theorem 1. Let 19 be a germ at 0 € C" of decomposable and inte-
grable 2-form: ng = o A Bo, where cod(Sing(ng)) > 3. Let

Ns =Moo +sm+ ... :Zsjnj , S € ((C7O)
Jj=0
be a holomorphic family of germs of integrable 2-forms such that ng =
Ns|s=0. Then there exist holomorphic families of germs of functions fs,

gs and us, us € O, such that ns = usdfs A dgs. In particular, the
foliation associated to ns has two independent first integrals.

Proof. In the proof we use the following:
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Theorem 2. Let 19 be a germ at 0 € C™ of holomorphic decom-
posable 2-form, o = ag A Po, where ag, Bg € QY(C",0). Assume that
cod(Sing(no)) > 3. Let ns, s € (C,0), be a holomorphic family of
germs of 2-forms such that n> = 0. Then ns is decomposable, i.e.,
there exist holomorphic families of 1-forms as = oy + sa1+... and
Bs = Bo + s P1+... such that ns = as A Bs.

Proof of theorem 2. 1t is sufficient to prove that we can write ny =
as A s, where ag = ijo s’ aj and fBs = ijo s/ B; are formal power
series. In fact, the existence of a formal solution of the equation ns —
as A Bs = 0 implies the existence of a convergent solution by Artin’s
approximation theorem (cf. [1]).

Given a power series 0, = Y s/ 0 we set i*(0s) = Z?:o s76;. We
will prove by induction on k > 0 that there exist germs o := Z?:o s a;
and 3 .= Z?:o s/ B; such that

(7) 7* (ns — i A BY) =0.

The first step of the induction is the hypothesis j%(ns — ag A By) = 0.
Suppose by induction that there exist of~! and S5~ satisfying (7) for
k=/¢—12>0,and let us prove that there exist o, and ¢ satisfying (7),
371 alb) = &7 and j471(BY) = BEL. Observe first that

Jns = ABTH =",

where

/-1
p=me— > aiABei.
i=1
By Saito’s division theorem the induction step can be reduced to the
following (cf. [34]):

Claim 2.1. If p is as above then ag A\ By A = 0.

In fact, if claim 2.1 is true then, since cod(Sing(ag A Bo)) > 3, by
Saito’s theorem there are germs «y and [, such that

p=ao A Be+ ag A Bo.

Therefore, if we set aﬁ = aﬁfl + st ap and ﬁf = Bffl + s By then
J(ns — ag A Bg) = 0,

as the reader can verify directly.

Proof of claim 2.1. Here we use the relation 72 = 0, which implies

Ozn?zZsT Z NMm ANy = Z Nm Anp =0, Vr > 0.
T

m—+n=r m—+n=r
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The induction hypothesis implies

-1
Sostny =i ) = T A BT =
j=0
.
UrZZOéi/\ﬁr—i, 0<r<f{-1
=0
Therefore,
®) 0= D> mmAn=2mAm+ > aiABiAarAB.
m-+n=~¢ i+j+r4s=~
i+i>1
r+s>1

Since a; A ; = 0 and B; A B; = 0, Vi, we can assume that the
summation set in the sum of the right hand side of (8) is

S={(,grs)li+tj+r+s=Li+j>1,r+s>1,i#r, j#s}

For simplicity of notation, given a subset A C S we will set

Z a; ABjAap A By = Z(A).

(Z7J7T7S)€A

The set S can be decomposed into two disjoint subsets S = S7 U So,
where S = {(i,j,r,s) € S|i=s=0o0rj=r =0} and Sy = S\ 5.
Note that Sy = {(4,4,7,s) € S| at most one of the indexes i, j, r or s is
=0}.

We assert that Y (S2) = 0. This assertion follows from the fact that
there exists a permutation ¢: Sy — S with the following properties:

(i). ¢(x) # = and ¢(¢p(x)) = z, Vo € Ss.
(ii). If x = (4,4,7,s) € Sy and ¢(x) = (i',5',r',s’) then

Oél'/\ﬂj/\ozr/\ﬁs = —Oéi//\ﬁj//\ozr//\ﬁsu

In fact, (i) and (ii) imply that ¢ induces a partition S = S5 U Sy,
¢(S3) = Sy, ¢(S4) = 53, such that Z(Sg) = — 2(54) Therefore,
>(92) =32(83) + 2>2(S4) = 0.

The permutation ¢ is constructed as follows: fix (i, j,r,s) € So. We
have three possibilities:

1. i,7,7,s8 > 1. In this case we set ¢(i,j,r,s) = (1, 7,1, S).

2. i=0or r = 0. In this case we set ¢(i, 4,7, s) = (i,5,7,7).

3. j=0or s =0. In this case we set ¢(i,j,r,s) = (1, 7,1, 5).

We leave to the reader the verification that ¢ is well defined and satisfies
properties (i) and (ii).

Finally, we can write S = S5U Sg where S5 = {(7,0,0,£—1) |1 <1i <

¢—1} and Sg = {(0,¢ —4,4,0)|1 <4 < ¢—1}. Since

a; NBoNag A Bj=agABjANa; A By=—ag A Po A a; A Bj,
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we get
-1 ®)
2(51) = —QQOA,BOAZaiAﬂg_Z- = agABoAp=0.
i=1

q.e.d.

End of the proof of theorem 1. Theorem 2 implies the existence of two
holomorphic families of 1-forms as and s such that ns = ag A Bs, Vs €
(C,0). Consider on (C" x C, (0,0)) the pffafian system generated by the
forms a;, Bs and ds. This system is integrable. Since cod(cn o) (Sing(aoA
Bo)) = 3, by semi-continuity we have cod(cn gy (Sing(asABs)) > 3. Since
as N\ Bs does not contain terms with ds we can conclude that

cod(cnxc,0)(Sing(as A Bs Ads)) > 3.

Therefore, by Malgrange’s theorem (see theorem 2.1) there exist F, G €
Opt1 and U € Oy, such that

as N\ Bs Nds =UdF NdG A ds.
Hence, we can take the families fs, gs and ug as

fri=Fls=r, gr :== Gls=r and u; := Uls=;. q.e.d.

2.7. Codimension two foliations not contained in a codimen-
sion one foliation. In the construction of the examples we will use a
result due to X. Gomez-Mont and I. Luengo [26]:

Theorem 2.2. There exists a polynomial vector field on C3 with an
isolated singularity at 0 € C* and without germ of analytic invariant
curve through 0.

A consequence of theorem 2.2 is the following:

Proposition 3. Let Z be a germ at 0 € C? of vector field with an
1solated singularity at 0 and without germ of invariant curve through
0. Then Z cannot be tangent to a germ at 0 € C3 of holomorphic
codimension one foliation.

Proof. Suppose by contradiction that Z is tangent to some a germ at
0 € C3? of codimension one foliation F. Let w be a germ of integrable 1-
form defining F and with cod(Sing(w)) > 2. We assert that Sing(w) =
{0}.

Note first that the tangency condition is equivalent to izw = 0, which
implies that Sing(w) is Z-invariant. Therefore, Sing(w) cannot contain
a germ of curve, for otherwise this curve would be Z-invariant. Hence,
Sing(w) C {0} and we have two possibilities, either Sing(w) = 0, or
Sing(w) = {0}. On the other hand, if Sing(w) was empty then by
integrability there exists a local chart x = (x1,...,x,) such that w =
udxy, where u(0) # 0. This implies that izdxy = Z(z1) = 0 and this
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contradicts the fact that O is an isolated singularity of Z. Therefore,
Sing(w) = {0} as asserted.

Let n = iz dzy N dza A drs and observe that the relation izw = 0
is equivalent to w A p = 0. Since cod(Sing(w)) = 3 by De Rham’s
theorem [15] there exists a germ of 1-form € such that n = w A 6.
However, a decomposable 2-form 1 = w A 6 with a singularity at 0 € C3
vanishes necessarily on a curve through 0. This contradicts the fact that
Sing(n) = Sing(Z) = {0}. q.e.d.

Corollary 1. For all n > 3 there are germs at 0 € C" of holo-
morphic codimension two foliations which are “not contained” in any
holomorphic foliation of codimension one: if a germ like this is defined
by an integrable 2-form n then there is no integrable 1-form w such that
wAn=0.

Proof. If n = 3 the corollary is a direct consequence of proposition 3:
take 1 = iz dx1 A dxo N dxs, where Z is like in theorem 2.2. If n > 3
then let II: C" = C3 x C"3 — C? be the projection Il(z,y) = = and

n= H*(iz dri N dxo A d.’L‘3).
Suppose by contradiction that there exists a germ of integrable 1-form

w such that w An = 0. Note that in the coordinates (z,y) € C3 x C"~3,
y = (Y1, .-, Yn—3) the definition of 1 implies that i o n =0, V1 < j <

By]-
n — 3. Therefore,

0=io (WAN)=ios (w).n = iaiw:O,Vj.
Vi

Oy; Oy
Hence, we can write w = 23:1 Aj(z,y)dx;. On the other hand, the
integrability condition w A dw = 0 implies that
Qéi-Aj.aAi
Oy, Oy,
The relations in (9) imply that there exist u € O} and Bi, Ba, B3 € O3
such that

Aj(e,y) = ulwy). Bya) , 1< <3 — w=uIl"@),

9) 4. =0,Vk=1,.,n—3,V1<i<j<3.

where w = Z?Zl Bj(x) dx; is integrable and WA (iz dxi Adxa Adxg) = 0.
This contradicts proposition 3. q.e.d.

Remark 2.5. In fact, corollary 1 is a local version of the main result
of [32]. Indeed, theorem 1 of [32] says that on any projective manifold
of dimension at least three, a “very general” foliation by curves is not
contained in a foliation or web of dimension greater than one.

We would like to observe that corollary 1 also implies this result in
rational manifolds: since the vector field Z is polynomial, in any rational
manifold of dimension n > 3 there are examples of codimension two
foliations that are not contained in a codimension one foliation.
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3. Homogeneous foliations

3.1. Homogeneous foliations. In this section, we fix a coordinate
system (z1,...,z,) of C". A p-form Q is said to be homogeneous of
degree m if its components are homogeneous polynomials of degree m.
The radial vector field of C™ will be denoted by R:

R = Z:r] oz,

The p-form 2 is said to be dzcmtzcal if ip © = 0. Otherwise we say that
Q) is non-dicritical.
If © is a p-form of degree m we have

(10) LrQ=irdQY+d(irQ) = (m+p)Q (Euler’s identity).
Next we state some useful results.

Proposition 4. Letn be a homogeneous 2-form of degree m. Assume
that n is closed and n> = n An = 0. Then there exists a homogeneous
integrable dicritical 1-form w such that n = dw. In particular, wAn = 0.

Remark 3.1. The relation wAn = 0 in the statement of proposition 4
means that the leaves of the codimension two foliation F;, are contained
in the leaves of the codimension one foliation F,,. In this case, we will
say that the foliation F, is contained in the foliation F,.

Proof of proposition 4. The proof can be found in [17], but it is also
an easy consequence of Euler’s identity: set w = ign. Since dn = 0,
from (10) we get

do=d(ign) =Lpn=(m+2)n = n=dw,w=m+2)"1a
Finally,
0=ir(nAn)=2ir(N)An = wAdw=(m+2)" ir(n)An=0.
q.e.d.

Remark 3.2. We would like to note that if the 1-form w is integrable,
but not closed, then the 2-form dw is integrable and the foliation Fy,
is contained in the foliation /. For instance, if

df; X o,
o= Fredy N N €T NAN Vi A,
~ J
J
where f; is holomorphic Vi, then
dw = Aj
Z J fy

In this case, the leaves of Fy, are the connected components of the
intersection of the levels of fi...f, with the leaves of F,.
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Let us mention that the foliation Fy,, is contained in infinitely many
codimension one foliations: all members of the family of foliations F,,,

where if,
wr=fron fp 3 (A +N) TJ
: J

J

, AeC.

An analogous result in the homogeneous non-closed and non-dicritical
case is the following:

Proposition 5. Let n be a homogeneous integrable and non-dicritical
2-form on C", n > 3. Then the 1-form w := irn is integrable. More-
over, the foliation F, is contained in the foliation F,.

Proof. We want to prove that w A dw = 0. From 7 = 0 we get
0=ir(n*) =2ign An=2wAn = wAn=0.

If v is a constant vector field such that f := i, w # 0 then

wAN=0 = dy(wAn) =fn—wAhi,n=0 = n=wAuw,
where @ = f~1.4,n. Therefore,

w=igpn=—Iipw.w = igpw=—1.
On the other hand, the integrability of n implies that
WwAWNdw =0 = 0=ir(wWAWAdw)=—(irwW). WAdwF+wWAWAIR dw =—>
wWAdw=wAwAigdw.

Finally, if k£ = deg(w) then (10) implies

(k+1))w=Lrw=tipdw = ipdwAw=0 — wAdw=0.

q.e.d.

Let us state a result that will be important in what follows. Let w be
a homogeneous integrable 1-form on C", n > 4. We assume that w is
dicritical of degree k and cod(Sing(w)) > 2. Euler’s identity (10) implies
ipdw = (k+ 1)w. The form w induces a codimension one foliation F
on the space P"~! whose singular set is the projectivisation of Sing(w);
Sing(F) = II(Sing(w) \ {0}), where II: C*\ {0} — P"~! is the natural
projection.

A Kupka singularity of F is a point p € Sing(F) for which there is a
local generator a of the germ F, with da(p) # 0. The Kupka set of F
is, by definition, K (F) = {p € Sing(F) | p is a Kupka singularity of F}.
A Kupka component of F is an irreducible component K of Sing(F)
with K C K(F). It is known that a Kupka component of F is a smooth
sub-variety of codimension two along which the foliation is locally trivial
(see §2.5.1, [18] and [31]). If K is an irreducible component of Sing(w)
such that dw(p) # 0 for all p € K \ {0} then II(K \ {0}) is a Kupka
component of F. The next statement resumes some results proven in

[10], [2] and [4]:
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Theorem 3.1. Let F andw be as above. If F has a Kupka component
K then K is a complete intersection of hypersurfaces, in homogeneous
coordinates (F' = G = 0). Moreover, if degree(F)/degree(G) = p/q,
where p,q € N and (p,q) = 1, then F is the algebraic pencil of hyper-
surfaces given by the rational function %, or equivalently by the 1-form
qFdG — pGdF (in homogeneous coordinates).

Remark 3.3. In fact, theorem 3.1 says that we can choose F' and G
in such a way that w = ¢ F 'dG —p G dF. We would like to note also that
the hypothesis n > 4 is necessary; in dimension n = 3 the statement is
false.

Corollary 2. Let w be an integrable homogeneous and dicritical 1-
form on C", n > 4. Then 0 € C™ cannot be an isolated singularity of
the 2-form dw.

Proof. Note first that 0 € C" is not an isolated singularity of w. This
is a consequence of Malgrange’s theorem: if 0 was an isolated singularity
of w then w = df, by Malgrange’s theorem, where f is homogeneous.
However, by Euler’s identity we have

0=ipw=rtigdf =deg(f).f = [f=0 = w=0,

a contradiction.

Suppose by contradiction that Sing(dw) = {0}. In this case, all irre-
ducible components of II(Sing(w) \ {0}) are contained in the Kupka set
K (F). Therefore, by theorem 3.1 and remark 3.3 we can suppose that
w=qFdG—-pGdF, so that dw = (p+q) dF NdG and dw is decompos-
able. However, this implies that dim(Sing(dw)) > 1, a contradiction.

q.e.d.

3.2. Singularities of codimension two foliations. We would like to
pose the following problem:

Problem 1. Is there a germ of codimension two foliation with an
isolated singularity at the origin of C*?

First of all, in the case of dimension three there are such foliations.
In fact, the codimension two foliations with an isolated singularity at
the origin of C? are generic.

Next, there are homogeneous codimension two distributions in C*
with an isolated singularity at the origin. An example, due to [19], is
given by the decomposable but non-integrable 2-form

0 = :E% dxy A dxs — 23 dxs A dxy + (21 T2 + 23 24) d2y A dTo+

22 dxy + 23 dag + (21 19 — 23 24) d23] A day.

The form 6 has an isolated singularity at 0 € C*. It defines a distribution
of 2-planes on C*\ {0} because 6 A § = 0.
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In fact, we don’t know the answer of problem 1 in general, but the
next statement contrasts with the previous example.

Theorem 3. Let 1 be a homogeneous integrable 2-form on C*. Then
dim(Sing(n)) > 1.

Proof. We denote by Z the rotational of . We start by the case
where 7 is closed, which means Z = 0.

1- n is closed. Let w = ipn. By proposition 5, w is integrable and by
Euler’s identity we have

dw = (m+2)n,

where m is the degree of 7. Since dim(Sing(dw)) > 1 by corollary 2,
we obtain the result in this case.

2- n is not closed, Z # 0. Let us consider first the case where ign =
0. In this case, since 0 is an isolated singularity of R, by De Rham’s
division theorem there exists a homogeneous vector field Y such that
n =iriyv, v =dx; A..Adzxy. Since dim(Sing(RAY)) > 1, we get
dim(Sing(n)) > 1. In the same way, if cod(Sing(Z)) > 3, sinceizn =0
then De Rham’s division theorem implies that there exists a vector field
Y such that n = iz iy v and again dim(Sing(n)) > 1.

Therefore, we can suppose that cod(Sing(Z)) <2 and w :=ign Z 0.
In this case, by proposition 5 the form w is integrable and induces
a codimension one foliation on P? of degree < m, the degree of the
coefficients of . From Euler’s identity (10) we get:

(11) dw=dign=Lgn—igdn=(m+2)n—irizv.
Since iz = 0 the above equality implies that iz dw = 0. Hence,
Lyw=izdw+dizw=d(izirn) =0 =
(12) Ly dw = 0.
Let us establish a technical variant of corollary 2.

Lemma 3.1. Let w be a homogeneous dicritical and integrable 1-
form on C", n > 4. Suppose that Sing(w) contains a hypersurface
(h = 0), w = h.w, where h(0) = 0 and cod(Sing(w)) > 2. Then
dim(Sing(dw)) > 1.

Proof. Suppose by contradiction that Sing(dw) = {0}. Since

dw = dh N w + hdw,
we obtain that
wim)=0, m#0 = dw(m)#0 = dw(m)#0.

In particular, the singularities of w in C™ \ {0} are of Kupka type and
by theorem 3.1 we have w = kFdG — {GdF, where F' and G are
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homogeneous polynomials. Hence,
dw=dhN(kFdG —(GdF)+ (k+{)hdF NdG,

and so dw vanishes on the set (h = F = G = 0), which in dimension
n > 4 has dimension > 1. q.e.d.

Let us suppose now, by contradiction, that the 2-form n has an isolated
singularity at 0 € C*. It follows from corollary 2 and lemma 3.1 that
the 2-form dw vanishes at least on some straight line L through 0 € C*.
Moreover, from (12) the form dw is invariant by the local flow of Z.
In particular, if we denote by S the irreducible component of Sing(dw)
that contains L, then S is invariant by the local flows of Z and of the
radial vector field R. Hence, Z and R are tangent to S. By Euler’s
identity (11), if m € S\ {0} then dw(m) = 0 and n(m) # 0, imply that
R(m) and Z(m) must be independent along S. Therefore, dim(S) > 2.
Since Z # 0 along S\ {0} (SN Sing(Z) = {0}) and we have supposed
that cod(Sing(Z)) < 2, of course we must have

dim(S) = dim(Sing(Z)) =2 =
S\ {0} is smooth and connected =—-

its projectivisation in P3, I' = TI(S \ {0}), is a smooth curve. Let G be
the one dimensional foliation on P2 defined in homogeneous coordinates
by the form igizv. Since RA Z # 0 along S\ {0} the curve I' is an
algebraic leaf of G such that Sing(G) NT = (). However, this is not
possible by [22]: any algebraic curve invariant by a one dimensional
foliation G of P™, n > 2, must contain at least one singularity of G (see
proposition 2.4 in [22]). q.e.d.

Remark 3.4. In general we don’t know the answer of problem 1.
However, a case in which dim(Sing(F,)) > 1 is when there exists a germ
of holomorphic vector field Z such that izn = 0 and cod(Sing(Z)) >
3. Indeed, if this is true then by De Rham’s division theorem we can
write n = dyizv. This implies that dim(Sing(F,;)) > 1, as in the
argument of theorem 3. In particular, when cod(Sing(rot(n))) > 3 then
dim(Sing(Fy)) > 1.

3.3. Homogeneous integrable 2-forms of small degree. In this
section, 1 will be a homogeneous integrable 2-form on C”, n > 4. Here
we will describe with some detail the foliation F,, when 0 < deg(n) < 2.

3.3.1. The case deg(n) = 0. Here n has constant coefficients, and so it
is closed. Since n? = 0, by Darboux’s theorem there exists a coordinate
system x = (21, ...,@y) such that = dxi A dzo. The leaves of F,, are
the level surfaces (x1 = ¢1,22 = ¢2). The space of foliations given by
such forms is the projectivisation of the space of the antisymetric n x n
matrices of rank two.



CODIMENSION TWO HOLOMORPHIC FOLIATIONS 401

3.3.2. The case deg(n) = 1. We consider the 3-form with constant
coefficients drn. Either the form 7 is closed or, up to linear conjugacy,
dn = dx1 A dxs A drs. By using these facts Medeiros shows in [31]
that either n = dL A d@Q, L linear and @) quadratic, or  “depends only
on three variables”; meaning that n = o*(1,), where o: C* — C3 is a
linear morphism of rank three and 7, is a linear 2-form in C3. As a
consequence we can describe the space of foliations defined by this type
of form:

Proposition 6. The space of codimension two foliations given by
homogeneous 2-forms of degree one in C™, n > 4, has two irreducible
components. Fach of these components can be considered as a Zariski
open and dense subset of a compact rational variety.

3.3.3. The case deg(n) = 2. This case is more difficult. We again
distinguish the two cases, dn = 0 and dn # 0. If dn = 0 then by
proposition 4 there exists a dicritical homogeneous 1-form of degree
three w such that n = dw. The form w is the homogeneous expression
of some codimension one foliation on P"~! of degree two. According to
[9] the space of such foliations has six irreducible components:

15t R(2,2). Here the generic member has a rational first inte-
gral of the form g, where P and @ are quadrics. In this case, w =
%(P dQ — QdP) and nn = dP N dQ. The foliation F;, has the first inte-
gral (P,Q): C" — C2.

27d: R(1,3). Here the generic member has a rational first integral
of the form %, where C' is a cubic and L linear. In this case, w =
1(LdC —3CdL) and n = dL A dC. The foliation F,, has the first
integral (L,C): C" — C2.
37e: L(1,1,1,1). Here the generic member can be expressed in ho-
mogeneous coordinates by a the 1-form
dlLq dLo dLs dLy
=1Lq1.Lo.L3. Ly | A Ay — + A + A
w 1234<1L+2L2+3L3 4L4>
where the L; is linear, A\; € C*, 1 < j <4, and Zj Aj = 0. In this case,
we have
1 dL; dL
— N = — A Aj—2L
Ly Ly L3 Ly " L, EJ: L
and F, is the intersection of the two foliations Fy 1, r,1,1,) and Fe.

4" I,(1,1,2). Here the generic member can be expressed as

dL a2  _d
w:Ll.Lg.Q()\l L )\2—+/\ Q)
Ly Q
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where L1 and Ly are linear, ) a quadric and A; + Ay +2XA = 0. Again the
foliation JF, is the intersection of two others: the foliations Fg(r,, 1, @)
and F,.

5th: E(n —1). Here the generic member has a first integral of the
form F = g—i where C'is a cubic and @ a quadric. The form C. Q dTF =
2QdC — 3C dQ has a linear factor. It is proved in [9] that in some

homogeneous coordinate system x = (z1, ..., Z4, ..., Tp) We can write
3 2
2 7 7
C=x3x4—x1x2x4+§ and Q:x2x4—?,

and the linear factor is 4. In these coordinates we have w = i (2QdC—

3CdQ) and
o (cQ aC _dQ

the foliation F,, is the intersection of Fycq/sz,) and Fu.

6": S(2,n). Here the foliation induced by w in P! is a linear pull-
back of a degree two foliation on P?. This means that there exist ho-
mogeneous coordinates © = (x1, x2, T3, ..., Ty) on C" and homogeneous
polynomials of degree three P, () and R, depending only on x1, x2, T3,
such that 1 P+ 22 + 23 R =0 and

w = P(x1,x2,x3) dr1 + Q(1, 22, x3) dxo + R(x1, 22, 23) dvs —

n=dP ANdxi+dQ Ndxo 4+ dR A dxs.

In other words, F, is the pull-back by a projection z € C" — (z1,
x9,23) € C3, of a homogeneous foliation of degree two and codimension
two in C3.

Let us mention that in the above case, all leaves of F,, are ruled: they
contain the fibers of the projection (z1,...,2,) — (x1,z2,23). On the
other hand, in general a foliation of degree two on P? has no algebraic
leaves. Therefore, in general the leaves of the foliations F,, and F, are
Zariski dense. We obtain the following result:

Theorem 4. The space of foliations of codimension two in C"*, n > 4,
defined by closed 2-forms homogeneous of degree two, has six irreducible
components corresponding to the siz components of the space of folia-
tions of codimension one and degree two on P"1.

In the case dn # 0 we need some definitions. If F: C* — C3 is
a polynomial map of degree two, and « is a polynomial 2-form, also
of degree two, in general the 2-form F*« is of degree five. However,
there are special configurations of pairing (F, ) with the property that
deg(F*a) < 5. The next four families of examples will be impor-
tant to us. The first three examples will be of the form F(a) where
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a = du A [A(z1, 22) dz1 + B(z1, 22) dz2] + [au + q(z1, 22)] dz1 A dze and
Fj(z1,22, ..., 2n) = (21,22,u(2)) = (21,22,u), 1 < j < 3. In the form
« the polynomials A and B are linear and ¢ is quadratic. In the map
F; the polynomial u;(z) is a quadratic form on C", 1 < j < 3. The
following possibilities will appear in our considerations:

(1). 771 = F(a1), where u;(2) = z3 24 and a1 = a.

(2). M2 := Fy(az), where ug(2) = 22 — 221 24 and ag = a.
(3). m3 := F3(cg), where us(z) = 22 23 — 21 24 and ag = .
(4). ng = Fj(a ), where aig = Audzy Adzo+ A1 21 dzaAdu+Ag 22 dzg A

du and F4( ) = (21, 22, u4(2)) = (21, 22, ), with uy(z) a quadratic form
on C".

In each case the 2-form 7); is integrable and homogeneous of degree
two. Another remark is that the foliations defined in C? by the 2-forms
a and ay are Liouville integrable (in other words, the forms a and oy
can be written as iz dz; A dzs A du and the flow associated to the vector
fields Z can be explicitly integrated).

We will say that the configuration (Fj},q;) is nice of type (j), 1 <
Jj<4

The next result describes all possibilities for the foliations defined by
non-closed 2-forms homogeneous of degree two:

Theorem 5. Let n be a non-closed homogeneous integrable 2-form
of degree two in C", n > 4, and F, be the codimension two foliation
associated to it. Then F, is of one of the following types:

(a). Associated to a two dimensional lie algebra L of linear vector fields,
either abelian or affine.

(b). A linear pull-back of a one dimensional foliation on C3 defined by
a homogeneous vector field of degree two.

(c). Up to linear conjugacy, associated to a nice pair (Fj, a;), 1 < j <
4.

In the proof of the theorem, normal forms will appear naturally.
These normal forms will be useful for the reader interested in a precise
description of the irreducible components of the space of such foliations,
in particular, to understand the possible degenerated cases.

Proof of theorem 5. The proof will be divided in several cases and
subcases. First of all we consider the case n = 4.

Case 1. n = 4 and cod(Sing(dn)) > 3. This is equivalent to
cod(Sing(X)) > 3, where X = rot(n). As we will see below this case
corresponds to case (a) of theorem 5.

Lemma 3.2. In case 1 we have

n=rtdyixv, v=dz Ndze ANdz3 N\ dzy,
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where Y is a linear vector field satisfying [Y,X] =AX, A=1—-tr(Y).
Moreover,
(a). If X is not nilpotent then A =0 and tr(Y') = 1. In particular, X
and Y commute.
(b). If X is nilpotent and X # 0 then after a linear change of variables
we have

X—zi—f-zi—i-zi
- laZ2 28Z3 38Z47
and
0 0 0 0
Y = prie 4 (p— Moo+ (p — 20) 23—
p21621+(p )\)zzaz2+( )\)2383+(p 3)\)2484

where 4p — 5\ = 1.

Proof. Recall that dn = ixv, v = dx1 A ... A dxy. Since 7 is homo-
geneous of degree two, X is a linear vector field with ¢r(X) = 0. Since
cod(sing(X)) > 3, by the division theorem, there exists another linear
vector field Y such that

n=tyixv = Lyn=iydn=n = Lydn=dn.
The last relation implies
dn=ixv=Ly(ixv)=idyxjvtix Lyv=iyxv+tr(Y)ixv =
YV, X|=1-tr(Y)X:=XX, A=1—-tr(Y).
Consider X as a derivation X = Z L X 2 Ba; O (C**. Since X is

linear the k' power operator X*, k > 2, is also a derivation X* =

Z 1 X Jk’ ag Moreover, if the eigenvalues of X are A1, ..., A4 then the

elgenvalues of Xk are AF AL

As a derivation, the relation [Y, X] = A X can be written as Y. X —
X.Y = MAX. It implies that Y. X* — X* Y = kA XF, for all & > 1.
The proof is by induction on k£ > 1. Let us assume, by induction, that
Y. Xk — X* Y = kA X" for some k > 1. Then

Y. XF - Xk Yy =k)\XF Y. Xk XF Y. X = k)X .
V.X-XY=)\X Xk Y. X — Xkt y = )\ Xkt

Y. XEH XML Y = (B4 1) A XRTL

Therefore, Y. X¥ — X*. Y = kA X* for all k > 1. If A # 0 then tr(X*) =
E~L A"t tr(Y. Xk — X*.Y) = 0 for all £ > 1. However, this implies
that Ay = ... = Ay = 0 and that X is nilpotent. Therefore, if X is not
nilpotent then A = 0, which proves (a).

Assume that X is nilpotent and )\ # 0. After a linear change of
variables we can assume that X = z; 8 + 29 8z3 + 23 6 . As a derivation
we have [V, X] =Y. X - X. Y =\ X. If we apply both members in z;
then we get X (Y (z1)) = 0 which implies that Y'(z1) is an eigenvector of
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X:Y(z1)=pz1, p€ C. When we apply in 22 then (Y.X — X.Y)(22) =
Y(Zl) — X(Y(ZQ)) = )\Zl —
XY(2)=(p-N=n = Y(2)=(p-Nzntazn,acC

By a similar argument we obtain

Y(23) = (p—2N)z3+az + bz and

Y(24) =(p—3N)za+azs+bz+cz, b, ceC.
In particular, the eigenvalues of Y are p, p— A, p—2 A and p—3 A. Hence,
tr(Y) =4p—6 X and since A = 1—tr(Y') we get the relation 4p—5\ = 1.
The eigenvalues of Y are two by two distinct and so it is diagonalizable.
Therefore, Y has an eigenvector w = z4 + a 23 + S22 + v 21, where
Y(w) = (p—3Nw. Set z := X(w) = z3+az+ 2,y :=X(z) =
z9 + az; and z := X(y) = z1. Finally,

Y(X(w) - XY (w) =AX(w) = Y(z)=(p—2\) =z

Similarly, Y(y) = (p — A\)y and Y (z) = px. This finishes the proof.
q.e.d.

In case (a) of lemma 3.2, where [X,Y] = 0, the vector fields X and
Y generate an action of C2 on C*. We will assume the generic case, in
which the X and Y are diagonalizable in the same basis of C*. This
means that after a linear change of variables we can assume that X =

4 0 4 o)
PIFEPY Zjgy; and Y = D i1y Zj5s;» where ;A =0and ) pu; =1
We will assume also that A; j1; — Aj p1; # 0 if ¢ # j. In this case, we have

dz; \dz;
13 =ylxV = 21 29 23 Z Pl iier
(13) n YixX 12223 4;,% 2 2 )

where v = dz; A dzo A dzs A dza, pre = £(Akpe — Aepr;) and {k, £} =
{1,2,3,4} \ {4,j}. In particular, f := 21292324 is an integrating factor
of n: d ( f) —0.

As we will see next, in case (b) of lemma 3.2 the form 7 also has an
integrating factor. Indeed, in case (b) we can write Y = p R—\ S, where
R = Z?:l Zja%j is the radial vector field and S = Z?ZQ(j — 1)z, 8%]-‘
In particular, S| R, X generate a Lie algebra of linear vector fields with
the relations [S, R| = [R, X] =0 and [S, X] = —X. Set a :=igixv and
B :=irixv, so that n = p. B8 — . a. Let f := g.h/z1, where
(14) g=123 — 3212023 +32% 24 and h = 25 — 22; 23.

The reader can check directly that df Ao = f.da and df A 5 = f.dpS,
which is equivalent to d (% a) =0 and d (% B) = 0 and this implies

d (% 77) = 0. It follows also that %a and %B are logarithmic 2-forms
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with pole divisor z;.g. h; they belong to the vector space generated by
dgndh - dhAdz g g dzzllAgdg . In fact, the reader can check directly that

gh  hzn
za_ (ldg 1dhy cdz 2B 1dhadg |z
gh \3g 2h 21 gh 6 hg gh’
so that
(15) zln_AdhAdg+BdgAdzl+Cdz1/\dh

gh hg 921 zh
where A=p/6, B=(p—\)/3and C = (p—\)/2.

Remark 3.5. As we have seen in proposition 5 the form w := ign
is integrable; w A dw = 0. Since ipdw = 4w, if w Z 0 then dw #Z 0. We
would like to observe that for every s € C the form ns := n 4+ sdw is

integrable. Let us prove this fact.
First of all Euler’s identity implies that

(16) dw=digpn=4n—igdn=4n—igixy —
doANn=—igixVv Niyixyv =0 —

n2 = (n+sdw)® =0,

because 1? = dw? = 0. On the other hand, rot(ns) = rot(n) = X and
from (16) we get ixns = 0.

Case 2. n =4 and cod(Sing(dn)) < 2. This case will be divided in
two sub-cases: 7 is dicritical or non-dicritical.

Case 2.1. ign = 0. We assert that in this case we have: n = %iR ix V,
v =dz1 \...\dz. In particular, F, is defined by a commutative action.
In fact, ign = 0 implies that n = iy, where u is a 3-form homogeneous
of degree one. In particular, there exits a linear vector field Y such that
W =1iyv, so that n = igiyv. On the other hand, Euler’s identity implies

ixV=dn=diguw=Lgp—igdpy=4p—igduy =41ty v —igdu.

Since du is homogeneous of degree zero, then dy = pv, where p € C.
Therefore, the above relation implies that

1
X=4Y -pR = n:ZiRiXVa

as asserted.

Case 2.2. igpn # 0. We will divide in two sub-cases: Sing(X) has
codimension one or two.

Case 2.2.1. cod(Sing(X)) = 1. We will see that this case corresponds
to case (b) in the statement of theorem 5.
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We can write X = H.Y, where H is linear and Y a constant vector

field. After a linear change of variables we can assume that Y = 8%47

and so

H
dn=Hdz Ndzs Ndzz — g:O = H = H(z1, 22, 23).
Z4

Since 1xn = 0 we can write

n= Aidz Ndzg + A2 dzg Ndz1 + Asdzi ANdzo =iz dz A dZQ VAN ng,

vvhereZ—XD;3 1 Jaz . From dn = Hdz N dze N dzs, we get az 1 =0,
1<j<4,and Y7 182
J

degree two homogeneous one dimensional foliation on C3: the foliation
defined by Z on C3.

= H. Therefore, 7, is a linear pull-back of a

Remark 3.6. In general n has no rational integrating factor in this
case. Indeed, if it had a rational integrating factor, say f = fi/fo,
d4n =0, then df An = f.dn, which implies that 5L =0 and Z(f;) =
g;- fj, J = 1,2. In other words, the foliation defined by Z has at least
one invariant homogeneous hypersurface. However, this is not true in
general. In fact, consider the 1-form

w =1Rizdz1 Ndzy N dzs.

The form w can be considered as the homogeneous expression of a degree
two foliation on P2, say G. Also, w has the same invariant homogeneous
hypersurfaces as 7. A homogeneous invariant hypersurface for n gives
origin to an algebraic invariant curve for G. However, it is known that
a generic foliation of degree two on P? has no invariant algebraic curve
(cf. [17] and [21]).

Case 2.2.2. cod(Sing(X)) = 2. Since X is linear and tr(X) = 0, it
corresponds to a rank two 4 X 4 matrix with vanishing trace. There are

three possible Jordan canonical forms: z; 8%1 — 29 8%2 21 822 + 29 623

o] o)
and 2155 T 2255

Case 2.2.2.1. X =z 8%1 — 29 8%27 or dn = d(z1 z2) A\ dzg A dzy.

We will see that this case corresponds to the nice pair (Fi,a;). In
fact, From ixn = 0 we get z1.9. 0 1 = 29.1 a n = there exists
a l-form B, homogeneous of degree1 one, such that 1 a n = z2.0 and
1o m==z.0. Notethati » B=1i0 =0 —= ﬁ Ad23+de4,

D29 dz1 Ozg
where A and B are linear. If we set n =3, <, Pij dzi A\ dzj then

{22. (Adzs+ Bdza) =i o n =Y., P1jdz
z1

Zl.(Ad23+BdZ4):iainzzj#QPdeZj =
P

P12 :0, P13 = ZQ.A, P14 :ZQ.B, P23 = zl.AandP24 :Zl.B.
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It follows that
n =d(z122) N (Adzs + Bdzy) + Cdzs A dzy,

where C' = P34 is quadratic and A, B are linear. Now, recall that
Lxn =0 and so

0= Lx [d(z122) A\ (Adzs + Bdzy) + Cdzg ANdzg] =
=d(z122) N (X(A)dzzs + X(B)dzy) + X(C)dzzg Ndzy =
X(A)=XB)=X((C)=0 =
A = A(zs,z4), B = B(z3,24) and C = 5(21.22,23,24) = a.z1.29 +
q(zs, 2z4), q quadratic. Therefore,
1N = d(z1 22) N(A(z3, 24) dzs+B(z3, 24) dz4)+(a.21.204+q(z3, 24) ) dz3Ndz4.
In particular, n is a pull-back of a 2-form on C3?, n = ®*(%), where
D (21, 29, 23, 24) = (21.22, 23, 24) = (u, 23, 24) and
N =duA (A(zs, z4) dzg + B(z3,24) dz4) + (au + q(z3, 24)) dzg A dz4.
Note also that F;, and JF5 are contained in Fg, 8 = Adz3 + Bdzy,
because n AB=nAp =0.

Case 2.2.2.2. X = =, 8%2 + 29 8%3’ or dn = —z1dz; Adzg A dzg +
zodz1 Ndzo N\ dzy.

We will see that this case corresponds to the nice pair (F», as). In fact,
the integrability relation ixn = 0 implies that z;. zaa n = —29.1% a i

= i 5 n—zgﬁandz a n = —z1.03, where g = Ad21+BdZ4, Aand
B hnear2 With an argument similar to the preceding case, we get
n = (z2dzy — z1dz3) N (Adz1 + Bdzy) + Cdz A dzy,

where C' is homogeneous of degree two. The reader can check that the
condition Lyn = 0 is equivalent to X(A4) = X(B) = 0 and X(C) +
z9 B = 0. Since the first integrals of X are generated by 21, z4 and
23 — 221 23, we get

A = A(z1,21), B= B(z1,2) and
C = —23 B(21,24) + a(z% — 221 23) + q(21, 24),

where a € C and ¢ is homogeneous of degree two. In particular, we get
n = ®*(7n), where

D (21, 29, 23, 24) = (21, 24, 25 — 221 23) = (21, 24, ).
and )
n= idu/\ [Adz; + Bdzy] + [a.u+ q] dz1 A dzy.

Case 2.2.2.3. X = 8%3 + 29 a%.
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We will see that this case corresponds to the nice pair (F3,a3). In
fact, with an argument similar to the preceding cases we get

N = (z2dz3 — z1dzg) N (Adz1 + Bdzy) + Cdz A dza,

where A, B are linear and C homogeneous of degree two. From the
condition Lxn = 0 we get

X(A)=X(B)=0and X(C)+ 2z A+ 2z B =0.

Since the first integrals of X are generated by z1, 20 and 2923 — 21 24
we get A = A(z1,29) B = B(z1, 22) and

C = —23 A(21,22) — 24 B(21, 22) + a(22 23 — 21 24) + (21, 22), where
a € C and ¢ is homogeneous of degree two. Here we obtain n = ®*(7)
where ®(z1, 29, 23, 24) = (21, 22, 22 23 — 21 24) = (21, 22, u) and

N = du A [A(z1, 22) dz1 + B(z1, 22) dz2| + [au + q(z1, 22)] dz1 A dza.

Next we will extend the result to n > 5. Let us consider first the
case where 7 is dicritical: 1gn = 0. From Euler’s identity we get: 47 =
Lrn = igdn. The form dn is integrable and has degree one. Here we
use a result due to Medeiros [31]: we have two possibilities:

e cither there exists a projection IT: C* — C* and a linear 3-form 6
on C* such that dn = IT*(6),

e or dn = 4dL; N dLs N dQ, where @ is quadratic and L1, Lo are
linear.

In the first possibility we can assume that II(zq, ..., 2,) = (21, ..., 24)
and 6 can be written as 8 = 4iz dzy A... Ndzy4, where Z is a linear vector
field in C*. We have

N =1R, 1z dz1 Ndzo Ndzg Ndzy = +ip, izt 0 .1 o dz1 N ... Ndzy,.
Ozy Ozn

We are in case (a) of the statement of theorem 5.
In the second possibility we have

1
n= ZiRd?’]ZQQdLl/\dL2+L1dL2/\dQ—L2dL1/\dQ.

This case corresponds to a nice pair (Fy, ay).

Let us assume that w = ign # 0. We can write w = h.w; where:

1. cod(Sing(w)) = 2 and w; = w. In this case w defines a codimension
one foliation G of degree two on pr—1,

2. deg(h) = 1 and w; defines a foliation G of degree one on P"~ 1.

3. deg(h) = 2 and w; defines a foliation G of degree zero on P"~1.

In the proof we will use the classification of the components of the space
of codimension one foliations of degree < 3.

In some components of these spaces the form w; can be expressed
with &k variables, where k € {2,3,4}. In other words, wy can be written
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as

w1 = Z Ai(zl,...,zk)dzi.

1<i<k
This happens in the following cases:

la. Ge L(1,1,1,1) UE(n — 1) US(2,n — 1), if the degree of G is two.
2.a. G € L(1,1,1), if the degree of G is one.
3. If the degree of G is zero.

We will see that, in cases 1.a and 2.a the 2-form 1 can be written with
four variables. This reduces the study of these cases to the case n = 4.
In case 3 this is not the case, as we will see.

Claim 3.1. Ifw; = Zle Bi(z1, ..., z) dzi \ dz; then

n="+aAw,

where

1, = Zl§i<j§k Aij(2)dz Ndzj, and

ea=0ifw=w anda =3}, Cj(z)dz if w=h.wi, deg(h) > 0.

Proof. If 'n = > i<, Aij(2)dzi A dz; then set n, =
> 1<icj<k Aij(7) dz A dz;. Note that

2wAn=1ip(n?) =0 = w An=0.
If we assume By, # 0 then
O=dz1 A...Ndzp_1 ANwi An=DBrdzxy A...Ndzpk A =
dzi N .. Ndzp An=0 = .
n=mno+ Zaj Adzj , where a; = ZAij dz;.
>k =1
From wi An =0 we get
wl/\no+2w1/\aj/\dzj =0 = wiAha;=0,Vj>k
>k

From the division theorem [15] we get o; = hj.w;, where h; = 0 if

w1 = w and deg(h;) = 2 — deg(w1) if deg(w1) < 3. When deg(w;) < 3
we get 1) =1, + @ Awy, where a = — 3., h; dz;. q.e.d.

Claim 3.2. Letn = 21§i<j§k Aii(z1, ..., 2n) dzi Ndzj be an integrable
homogeneous 2-form on C", where k € {3,4} and cod(Sing(n)) > 2.
Then %Azj =0 for all ¢ > k. In particular, n can be written with k
variables.

Proof. We first note that iai n =0 for all j > k. In particular, the
%

singular distribution defined by ker(n) contains <6%j |j> k:>o. In fact,
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in the case k = 3, we have

0 0
ker(n) = <Y, 8724, ceey 8z>o = D,

where Y = A23 9o A13 2 3% +A12 9% . Note also that in the case k = 4
we have ker(n) D D, where

0 0
D= <}qa}§ayaaylvék%)'”7ék:> )
n/ o

and Yj is defined by

iy, i 2 d21 A Ndzg = g Ars(2) dzr A dzs.
1<r<s<4
7,577

Since 7 is integrable, in both cases the distribution D is involutive and
we can use a result of [6]: the coefficients of Y, or of Y7, ...,Ys, do not
depend on the variables zp41,..., 2,. This proves the claim. q.e.d.

Let us return to the cases in which we can reduce the variables.

Case 1.a. When G € L(1,1,1,1) U E(n — 1) then w can be written
with four variables: after a linear change of variables we can write w =
ir,iyix dz1 A ... Adzy, where Ry is the radial in C* Y = Z?Zl I zj%

J

and either X = YNz i£G € LILLLL), or X = 2% +

297 82 + 23 if G € E(n—1) (see lemma 3.2). In this case, we can
apply dlrectly claims 3.1 and 3.2.

In the case G € S(2,n — 1), in which £ = 3 in claim 3.1, we have
W =R, ix dz1iNdzaNdz3, R3 =Y 1 14 zm%i and X is a quadratic vector
field on C3. In this case, applying claim 3.2 we get n = iz dz1Ndzg Ndzs,
where X = X + g. R3 and g is linear. Therefore, 7 is like in (b) of the
statement of theorem 5.

Case 2.a. In this case, w1 = iRyixdz; A dza A dz3, where X is a
linear vector field on C3, and N =1 + a Aw; where « is a 1-form with
constant coefficients. Hence, o = df, where f is linear. If df A dz; A
dzo A dzz = 0 then n = Zl§i<j§3 Aij(z1, 22, 23) dz; A\ dzj by claim 3.2.
If df A dz1 A dze A dzs # 0 then we can assume that df = dz4 and
N= 2 1<icj<a Aij(21, 22, 23, 24) dz; A dzj by claim 3.2.

Case 3. If the degree of G is zero then we can assume w; = z1 dzo —
29 dz1. By claim 3.1 we can write n = A(z) dz1 Adzo+a Awy, where A is
a homogeneous polynomial of degree two and o =}, , Cy(2) dzp, with
Cy linear, 3 < ¢ < n. Let us consider the blowing-up I1(¢, 21, 23, ..., 2,) =
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(z1,t 21, 23, .., 2n). Then
H*(U) = A(Zl,tZl,Zg, ,Zn) H*(d21 AN dZQ)
+ZCj(Zl,tZl,Zg,...,Zn) de /\H*(wl)

7>2
:Zlg(t 21523, ey 2n) dz1 A dt
+ 27 ZC’ (t, 21,23, ..., 2n) dzj Ndt = z1. f A dt,

7>2

where [ = ﬁ(t,zl,z;),,...,zn)dzl + 21 Zj>2 éj(t,zl,zg,...,zn)dzj. The
strict transform of I1*(n) is 7 = S A dt. Since [ does not depends on dt,
it can be considered as a 1-parameter family of 1-forms in C"~!. Given
¢ € C, set B, := Bli=c- The integrability condition for 77 is dBABAdt = 0,
which implies 5; A dB; = 0, so that B; is integrable and homogeneous of
degree two for each fixed ¢t € C. We assert that z; hy is an integrating
factor for B, where hy(z1, 23, ..., 2n) = h(z1,t 21, 23, ..., 2n) (recall that
ign =h.wi). B

In fact, let R be the radial vector field on C*'; R = zla%l +
> 3<j<n zja%j. In [14] it is proven that if f; := iz8; # 0 then it is

an integrating factor of f;: d (% ﬁt) = 0. Since R = IT*(R), we get

22 h(z1,t 21, 23, ..y 2n) di
=1II"(h.w1) = 0*(irn) =ig(z1 A dL) = 21 (iB) dt =

ft = Zﬁﬁ =z h(zl,tzl,zg, ,Zn) = Zl.ht,

which proves the assertion.

We have two possibilities, either h; is irreducible for generic ¢, or
h: is reducible for all ¢t. For simplicity, in the second possibility we will
assume that hy = f;. gt, where f; and g; are linear and dz; Adfi Adgs # 0
for generic ¢. In both cases ﬁﬁt is a logarithmic 1-form. According

o [14] we can write:

3.a. If h; is irreducible then

dz dhy

Zlhtﬁt_a() 2 +b(t) ht

3.b. If hy = f;. g+, where f; and g are linear and dz; A df; A dg: # for
generic t then

, where a(t),b(t) € C.

1 1
21 htﬂt Y
B dzy dft dgt
= a(t) — 4+ b(t) = + ¢(t) — , where a(t), b(t),c(t) € C.

fi gt
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Now, from II*(n) = 21 B A dt we get

21 By Ndt «( M 2 1
22 hy <z% h) A 21 hy P

Therefore, in case 3.a we get

nzz%hl’h([ ()dzl+b()dhht] /\dt)

21 t
=a(ze/z1) hdz Ndzg + b(22/21) dh A wy.

dt =
Z1 htﬁ /\

Since 7 is homogeneous of degree two, we obtain that a and b are con-
stant. This case corresponds to the nice pair (Fy, ay).
In case 3.b, by the same type of computation we get

n=afgdx Ndz + (bgdf +cfdg) Awr,

where a,b,c € C* and h = f.g, with f and g linear. This case corre-
sponds to (a) in theorem 5

In case 2, where w = wy and cod(Sing(w)) = 2 there are three cases
more: G € R(1,3), G € R(2,2) and G € L(2,1,1).

Let us consider the case G € L(2,1,1). In this case we have

dh 5,2y, df3)

w= A

AWERE < 1 7 7,
where A1, A2, A3 € C, f3 is quadratic and f; linear, j = 1,2. We will
assume that \; € C*, Vj, that cod(Sing(dfs)) > 5 and df; Adfa # 0. We
assert that in this case we have

_ dfa df3 % df1 dfv , df2
a7 "f1f2f3<’“f G THe Ny s flAfz)’

where p, pu1, uo € C. Since dfy A dfs # 0 we can assume that f; = 21
and fg = Z9.

From w Anp =0 we obtain w Adn =0 = A3z122dfs ANdn = f3a,
where a = —(\1 2z2dz; + A2 21 dz2) A dn. This implies that f3 divides
dfs A dn, because f3 does not divide z;. z9. In particular, we can write
dfs N dn = fsa, where a is a 4-form with constant coefficients. This
implies that dfs A & = 0. Since cod(Sing(dfs)) > 5 the division theorem
[15] and [34] and the fact that & has constant coefficients imply that
a = 0. Hence, dfs A dn = 0 and again by the division theorem dn =
dfs N\ B, where (8 is a 2-form with constant coefficients. Therefore,

0=wAdn=wAdfsA\B = f3(M 2z2dz1+X221d22) N\ = a1 AB=0

where oy = A\ 29 dz1 + A9 21 dzo. However, since 8 has constant coeffi-
cients, w; A B = 0 implies that 8 = pdzi Adze and dn = pdfs Adzy Adzo,
where we can assume p € C*. Now, from Euler’s identity we have
4n = dw + igdn and the reader can check directly that dw, irdn €
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(fzdz1 Ndza, 21 dza A dfs, 22 dzy A df3)e which implies (17). This case
corresponds to the nice pair (Fy, ay).

Let us assume now that G € R(p, q), where (p,q) € {(1,3),(2,2)}. In
this case,

We will assume that cod(Sing(df)), cod(Sing(dg)) > 5, which is the
generic case. We assert that 7 is closed and we are in the situation of
theorem 4.

Let us consider the case ¢ = 3; deg(g) = 3. By an argument similar
to the case of L(2,1,1), we have dg A dn = 0. Since deg(dn) = 1 and
deg(dg) = 2, the division theorem implies in this case that dn = 0. In
the case, p = ¢ = 2 we get similarly that df A dn = dg A dn = 0. Hence,
dn = df N a1 = dg A as, by the division theorem, and this implies again
that dn = 0. q.e.d.

Remark 3.7. In the proof of theorem 5 we have assumed in some of
the sub-cases a generic situation for the foliation G induced by w = ign.
For instance, when we consider the case G € X, where X = L(2,1,1)
or X =L(1,1,1,1), we have supposed that w has a reduced integrating
factor. In the complement X \ X there are foliations of codimension
one and degree two that are represented in C" by a form w with non-
reduced integrating factors. In the case of G € L(2,1,1) \ L(2,1,1)
we have non-reduced integrating factors of the form L?. L3 and L3.Q,
where L1, Lo are linear and () quadratic, whereas in the case of G €
L(1,1,1,1)\ L(1,1,1,1) we have non-reduced integrating factors of the
form L3. Ly. L3, L3. L3 and L3 Ly, where Ly, Ly and Lg are linear. We
would like to mention that all these cases can be treated as in the
previous proof. At the end we find degenerations of the cases we have
found, but the assertions of statement of the theorem are still valid in
all these cases.
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