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CODIMENSION TWO HOLOMORPHIC FOLIATIONS

D. Cerveau & A. Lins Neto

Abstract

This paper is devoted to the study of codimension two holo-
morphic foliations and distributions. We prove the stability of
complete intersection of codimension two distributions and foli-
ations in the local case. Converserly we show the existence of
codimension two foliations which are not contained in any codi-
mension one foliation. We study problems related to the singular
locus and we classify homogeneous foliations of small degree.

1. Introduction

There are many works devoted to the study of codimension one holo-
morphic foliations on complex manifolds. The local theory is well under-
stood in small dimensions (2 and 3), with results concerning reduction of
singularities ([33], and [7]) and applications to unfolding theory, topo-
logical classification ([27] and [28]), spaces of moduli ([29]), existence
and construction of invariant hypersurfaces [5], first integrals ([30] and
[14]), among other topics.

In the global case, there is an intensive activity concerning the de-
scription of the “irreducible components” of the space of codimension
one holomorphic foliations on a compact complex manifold ([9], [3] and
[12]). One of the most popular challenges is to know if any codimension
one foliation on Pn, n ≥ 3, is either the meromorphic pull-back of a fo-
liation on a complex surface, or has a “geometric” transverse structure
([13] and [11]).

In the present work, we focus our attention on singular foliations and
distributions of codimension q, q ≥ 2, with special emphasis in the case
q = 2. Local and global results are obtained. For example, a way to
construct a singular codimension two distribution is to intersect two
singular codimension one distributions. In the local case we prove in
theorem 2 the “stability” of such construction, under natural assump-
tions. As a consequence, using Malgrange’s singular Frobenius theorem,
we show the persistence of first integrals (theorem 1). Conversely, we
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prove the existence of codimension two foliations which are not “con-
tained” in any codimension one foliation; this fact is proved in the local
context and on rational manifolds (see proposition 3, corollary 1 and
remark 2.5).

Next the following problem is studied: is there a germ at 0 ∈ C4

of codimension two foliation with an isolated singularity at 0? Indeed,
there are examples of holomorphic codimension two distributions on C4

with an isolated singularity at 0 ∈ C4. An example of this type was
given in [19] in the context of vector bundles on P3: it is defined by a
homogeneous 2-form on C4, that is a 2-form with coefficients homoge-
neous of the same degree. In contrast with this example we prove in
theorem 3 that a codimension two foliation on C4, defined by a homo-
geneous 2-form with a singularity at 0 ∈ C4, has always a straight line
in its singular set; in other words the singular set has dimension ≥ 1.

Finally, we describe with some details homogeneous foliations of small
degree. That description is related to the classification of codimension
one foliations of degree ≤ 2 on Pn, n ≥ 3.

2. Definitions and some results

2.1. Local definitions. A holomorphic singular distribution of codi-
mension q (or dimension n− q) on a Stein open set U ⊂ Cn, 0 < q < n,
can be defined by a holomorphic q-form η which is locally decomposable
outside the singular set Sing(η) := {z ∈ U | ηz = 0}, in the sense that
any zo ∈ U \ Sing(η) has an open neighborhood V ⊂ U such that

(1) η|V = ω1 ∧ ... ∧ ωq,

where ω1, ..., ωq ∈ Ω1(V ). It follows that we can define in U \Sing(η) a
holomorphic distribution Dη of codimension q by

Dη(p) = {v ∈ TpU | ivη(p) = 0}.

If p ∈ U \ Sing(η) and ω1, ..., ωq are as in (1) then

Dη(p) =
⋂

1≤j≤q
Ker(ωj(p)).

A q-form η satisfying (1) is said to be locally decomposable.
A q-form η which satisfies (1) is integrable if it satisfies Frobenius’

integrability condition:

(2) dωj ∧ η = 0 , ∀ j = 1, ..., q , on the open set U.

If η satisfies (1) and (2) then the distribution Dη is integrable and so
η defines a holomorphic codimension q foliation on U \ Sing(η). This
foliation will be denoted by Fη.

The leaves of F are the immersed codimension q submanifolds L ⊂
U\Sing(η) for which the tangent space to L at m ∈ U is TmL := Dη(m).
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When Sing(η) = ∅ then the integrability condition (2) is equivalent
to the existence of a holomorphic 1-form θ such that

(3) dη = η ∧ θ.
When Sing(η) 6= ∅ then (3) is only true locally in U \ Sing(η), unless
we allow θ to be meromorphic.

Example 1. Complete intersection. Let F1, ...,Fq be q foliations
of codimension one defined by integrable 1-forms ω1, ..., ωq ∈ Ω1(U),
1 ≤ q < n (ωk ∧ dωk = 0, ∀k) such that η := ω1 ∧ ... ∧ ωq 6≡ 0. The
foliation complete intersection F = F1 ∩ ... ∩ Fq is associated to the q
1-forms ωi, 1 ≤ i ≤ q. The leaves of F are the connected components
of the intersection of the leaves Lk of Fk, 1 ≤ k ≤ q.

Example 2. Foliations associated to a Lie algebra of vector fields
or to an action of a Lie group. Let L be a Lie algebra of vector fields
defined on an open Stein subset U ⊂ Cn. Given m ∈ U set

d(m) = dimC 〈X(m) |X ∈ L〉 .
Let d = max{d(m) |m ∈ U} and assume that 1 ≤ d < n. Since U is
connected, then the set Z = {m ∈ U | d(m) < d} is a proper analytic
subset of U , so that V = U \ Z is open dense in U and connected. In
particular, L defines a dimension d distribution on V

L(m) = 〈X(m) |X ∈ L〉 , m ∈ V.
The Lie algebra L defines a codimension q = n − d foliation FL on
V . The foliation FL can be extended to U as a singular foliation with
singular set Z.

When L is associated to a group action G× U → U we will say that
FL is associated to the action of G.

Remark 2.1. If η ∈ Ωk(U) is integrable and cod(Sing(η)) = 1 then
we can write η = h. η ′, where η ′ ∈ Ωk(U) and cod(Sing(Ω ′)) ≥ 2. We
would like to observe that η ′ is also integrable. The foliation Fη ′ can
be considered as an “extension” of Fη.

Remark 2.2. If η is an integrable q-form and dη 6≡ 0 then relation
(3) implies that dη is locally decomposable outside Sing(η). Since dη
is closed it is integrable and defines a singular foliation of codimension
q+ 1. Relation (3) implies also that any leaf of dη is η-invariant, in the
sense that, either it is contained in a leaf of η, or in Sing(η).

Example 3. Let F1 and F2 be the codimension one foliations of Cn
defined by the 1-forms ηj = x1...xn. ωj , j = 1, 2, where ω1 and ω2 are
the logarithmic closed forms

ω1 =

n∑
j=1

λj
dxj
xj

, ω2 =

n∑
j=1

µj
dxj
xj

, λj , µj ∈ C∗ , 1 ≤ j ≤ n.
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We assume that ω1 and ω2 are not colinear, which is equivalent to the
non-colinearity of the vectors λ = (λ1, ..., λn) and µ = (µ1, ..., µn). The
intersection F1 ∩ F2 is defined outside Σ :=

⋃
j{xj = 0} by

ω1 ∧ ω2 =
∑
i<j

(λiµj − λjµi)
dxi
xi
∧ dxj
xj

.

Note that ω1 ∧ ω2(m) 6= 0, for all m ∈ Cn \ Σ. Moreover, the divisor of
poles of ω1 ∧ ω2 is x1...xn and the form

η := x1...xn. ω1 ∧ ω2 =
∑
i<j

(λi µj − λj µi)x1...x̂i...x̂j ...xn dxi ∧ dxj

is holomorphic on Cn, so that η defines the codimension two foliation
F1∩F2 := F on Cn. By convention, x̂i means the omission of the factor
xi in the product.

Observe that the hyperplanes (xj = 0), 1 ≤ j ≤ n, are F-invariant.
For instance, when j = 1 we have η|(x1=0) = dx1 ∧ η1, where

η1 =
∑
j>1

(λ1 µj − λj µ1)x2...x̂j ...xn dxj ,

and η1 6≡ 0, because otherwise λ and µ would be colinear. In particular,
Sing(η) has codimension ≥ 2 and is contained in Σ. In fact, if λi µj −
λj µi 6= 0 for all i < j then

Sing(η) =
⋃

i<j<k

(xi = xj = xk = 0)

has codimension three.
Another fact, is that η is not decomposable, whereas 1

x1...xn
η = ω1 ∧

ω2.

2.2. Globalization. Let M be a complex manifold of dimension n ≥ 2.
A holomorphic (singular) foliation F of codimension q,1 ≤ q < n, on M
is defined by a covering (Uj)j∈J of M by Stein open sets, a collection of
integrable q-forms (ηj)j∈J , with ηj ∈ Ωq(Uj) and cod(Sing(ηj)) ≥ 2, and
a collection (gij)Ui∩Uj 6=∅ with gij ∈ O∗(Ui ∩ Uj), satisfying the glueing

condition ηi = gij ηj on Ui ∩ Uj 6= ∅. If Ui ∩ Uj 6= ∅ then the glueing
condition implies that the leaves of Fηi |Ui∩Uj coincides with the leaves
of Fηj |Ui∩Uj and that

(4) Sing(ηi)|Ui∩Uj = Sing(ηj)|Ui∩Uj .

Relation (4) implies that

Sing(F) :=
⋃
j∈J

Sing(ηj)

is an analytic subset of M of codimension ≥ 2. Observe that this defines
a non-singular foliation of codimension q on the set M \ Sing(F).
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2.3. Complete intersection of foliations. Let F1, ...,Fq be codimen-
sion one foliations on some polydisc U ⊂ Cn, defined by integrable
1-forms ω1, ..., ωq such that η ′ := ω1 ∧ ... ∧ ωq 6≡ 0 (generically inde-
pendent). Note that there exists f ∈ O(U) and η ∈ Ωq(U) such that
η ′ = f. η and cod(Sing(η)) ≥ 2. Clearly, η is integrable.

By definition, the foliation Fη, defined by η, is the topological inter-
section of the foliations F1, ...,Fq. When cod(Sing(η ′)) ≥ 2 (or equiva-
lently f ∈ O∗(U)) we will say that F is a complete intersection. Clearly,
these two definitions can be germified or globalized (as in §2.2).

Remark 2.3. We will see in § 2.7 that there are germs of codimension
two foliations F that are not topological intersections of two codimen-
sion one foliations. In this case, F is defined by a germ of integrable
2-form, say η, which is meromorphically decomposable, η = α ∧ β, but
for any such decomposition, neither α nor β is integrable.

A direct consequence of a theorem due to Malgrange (cf. [24] and
[25]) is the following:

Theorem 2.1. Let η be a germ at 0 ∈ Cn of integrable q-form holo-
morphically decomposable, η = α1 ∧ ... ∧ αq. If cod(Sing(η)) ≥ 3 then
Fη, the foliation defined by η, is a complete intersection. More precisely,
there are f1, ..., fq ∈ On and h ∈ O∗n such that

η = h. df1 ∧ ... ∧ dfq.

On the other hand, as we have seen in example 3 of § 2.1, for generic
values of λi and µi, the form η =

∑
i<j(λiµj−λjµi)x1...x̂i...x̂j ...xn dxi∧

dxj is integrable and satisfies cod(Sing(η)) ≥ 3, but Fη is not a complete
intersection. Therefore, the hypothesis of holomorphic decomposability
in Malgrange’s theorem is crucial.

2.4. Special case: q = 2 and n = 4. Let η be a 2-form on a polydisc
U ⊂ C4. We fix coordinates x1, x2, x3, x4 and a non-vanishing 4-form,
for instance, ν = dx1 ∧ ... ∧ dx4. The 3-form dη can be written as

dη = iX ν,

where X is a holomorphic vector field on U , called the rotational of η:
X = rot(η). The foliation associated to the rotational is independent
of the choice of ν. On the other hand, if we change η by h η, where h ∈
O∗(U), then rot(h η) and rot(η) are not in general colinear. Although
this notion is not intrinsic, it is convenient (see [20]). For instance, in
the two following propositions, the first valid in any dimension.

Proposition 1. Let η ∈ Ω2(U), a 2-form on an open set U of Cn.
Then η is meromorphically decomposable if, and only if, η2 = η∧η = 0.

The proof of proposition 1 can be found in [16] page 211.
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Proposition 2. Let U be a domain of C4 and η ∈ Ω2(U), η 6≡ 0. If
rot(η) 6≡ 0 then η is integrable if, and only if, irot(η)η = 0.

Proof. Let us denote Y := rot(η); dη = iY ν, ν = dz1∧ ...∧dz4. Since
η ∈ Ω2(U), we can write η2 = F. ν, where F ∈ O(U). If iY η = 0 then

iY η
2 = 0 =⇒ F. iY ν = 0

Y 6=0
=⇒ F = 0 =⇒ η2 = 0.

Therefore, by proposition 1 we can write η = ω1 ∧ ω2, where ω1 and ω2

are meromorphic. We are going to prove that dω1 ∧ η = dω2 ∧ η = 0
(which implies the integrability). From iY η = 0 we have

0 = iY (ω1 ∧ ω2) = iY (ω1). ω2 − iY (ω2). ω1 =⇒ iY ω1 = iY ω2 = 0,

because ω1 and ω2 are linearly independent in an open and dense set.
On the other hand, ω1 ∧ ν = 0 and so

0=iY (ω1 ∧ ν)=−ω1 ∧ iY ν=−ω1 ∧ dη=−ω1 ∧ (dω1 ∧ ω2−ω1 ∧ dω2) =⇒
dω1 ∧ η=dω1 ∧ ω1 ∧ ω2=ω1 ∧ dω1 ∧ ω2=0.

Similarly, dω2 ∧ η = 0. The converse is left to the reader. q.e.d.

Remark 2.4. If rot(η) = 0, i.e., if η is closed, then η is integrable if,
and only if, η2 = 0. The proof can be found in [20].

Example 4. Codimension two distributions and the generic quadric
of P5. A 2-form η on an open set U ⊂ C4 can be written as

η = Adx2∧dx3+B dx3∧dx1+C dx1∧dx2+(E dx1+F dx2+Gdx3)∧dx4.

As the reader can check directly, the condition η2 = 0 is equivalent to:

AE +B F + C G = 0.

Therefore, η defines a singular codimension two distribution on U if,
and only if, the image of the map Φ = (A,B,C,D,E, F ) : U → C6

is contained in the quadric Q = (z0 z3 + z1 z4 + z2 z5 = 0). When
the components of Φ are homogeneous polynomials of the same degree

then Φ defines a rational map φ : P3− → Q̂, where Q̂ ⊂ P5 is the
projection on P5 of the quadric Q. The indetermination set of φ is of
course the projection on P3 of the set Φ−1(0). In §3.2 we will study the
homogeneous case with Φ−1(0) = {0}. This corresponds to the case in
which the form η has an isolated singularity at 0 ∈ C4.

2.5. Singularities and the rotational. Let η be a germ at 0 ∈ C4 of
integrable 2-form with a singularity at 0. We will examine two cases:

2.5.1. The Kupka–Reeb phenomenon. When rot(η)(0) 6= 0 we can
find local coordinates x = (x1, x2, x3, x4) around 0 ∈ C4 such that
rot(η) = ∂

∂x4
. In these coordinates the form η does not depends on
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the variable x4 and on dx4. More precisely, we can write η = iZ dx1 ∧
dx2 ∧ dx3, where Z is a germ of vector field as below

(5) Z =
3∑
j=1

Aj(x1, x2, x3)
∂

∂xj
.

In particular, the foliation Fη can be interpreted as the pull-back by the
projection x 7→ (x1, x2, x3) of the germ of foliation on (C3, 0) defined by
the vector field Z (cf. [31]).

2.5.2. The case in which rot(η) has an isolated singularity. When
rot(η)(0) = 0 and 0 is an isolated singularity of rot(η) we can apply the
division theorem of De Rham–Saito [15] as follows: the integrability
condition irot(η)η = 0 implies that there exists a germ of holomorphic
vector field S such that

(6) η = iS irot(η) dx1 ∧ dx2 ∧ dx3 ∧ dx4.
In other words, the tangent bundle of F decomposes globally outside
Sing(Fη): TF = C. S ⊕ C. rot(η). Note that (6) implies that LSη = η,
where L denotes the Lie derivative.

Two sub-cases were studied in [20]:

1st. When the linear part of rot(η) at 0 is non-degenerate. In this case,
under generic conditions, it is possible to find germs of vector fields
X,Y generating the O4-module TF and such that [X,Y ] = 0: the
foliation is generated by a local action of C2.

2nd. When the linear part of rot(η) at 0 is nilpotent. In this case, it is
proved in [20] that the eigenvalues of DS(0) are rational positive.
In particular, S is holomorphically normalizable; S = S1 + N ,
where S1 = DS(0) and N is nilpotent and [S1, N ] = 0. It is proved
also that there exist local coordinates x = (x1, x2, x3, x4) in which
the rotational satisfies [S1, rot(η)] = λ rot(η), where λ ∈ Q+. In
other words, S and rot(η) generate a local action of the affine
group of C.

2.6. Stability of complete intersections. Case of 2-forms. This
section is devoted to the following result:

Theorem 1. Let η0 be a germ at 0 ∈ Cn of decomposable and inte-
grable 2-form: η0 = α0 ∧ β0, where cod(Sing(η0)) ≥ 3. Let

ηs = η0 + s η1 + ... =
∑
j≥0

sj ηj , s ∈ (C, 0)

be a holomorphic family of germs of integrable 2-forms such that η0 =
ηs|s=0. Then there exist holomorphic families of germs of functions fs,
gs and us, us ∈ O∗n, such that ηs = us dfs ∧ dgs. In particular, the
foliation associated to ηs has two independent first integrals.

Proof. In the proof we use the following:
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Theorem 2. Let η0 be a germ at 0 ∈ Cn of holomorphic decom-
posable 2-form, η0 = α0 ∧ β0, where α0, β0 ∈ Ω1(Cn, 0). Assume that
cod(Sing(η0)) ≥ 3. Let ηs, s ∈ (C, 0), be a holomorphic family of
germs of 2-forms such that η2s = 0. Then ηs is decomposable, i.e.,
there exist holomorphic families of 1-forms αs = α0 + s α1+... and
βs = β0 + s β1+... such that ηs = αs ∧ βs.

Proof of theorem 2. It is sufficient to prove that we can write ηs =
αs ∧ βs, where αs =

∑
j≥0 s

j αj and βs =
∑

j≥0 s
j βj are formal power

series. In fact, the existence of a formal solution of the equation ηs −
αs ∧ βs = 0 implies the existence of a convergent solution by Artin’s
approximation theorem (cf. [1]).

Given a power series θs =
∑

s≥0 s
j θj we set jk(θs) =

∑k
j=0 s

j θj . We

will prove by induction on k ≥ 0 that there exist germs αks :=
∑k

j=0 s
j αj

and βks :=
∑k

j=0 s
j βj such that

(7) jk
(
ηs − αks ∧ βks

)
= 0.

The first step of the induction is the hypothesis j 0(ηs − α0 ∧ β0) = 0.
Suppose by induction that there exist α`−1s and β`−1s satisfying (7) for
k = `− 1 ≥ 0, and let us prove that there exist α`s and β`s satisfying (7),
j`−1(α`s) = α`−1s and j`−1(β`s) = β`−1s . Observe first that

j`(ηs − α`−1s ∧ β`−1s ) = s` µ,

where

µ = η` −
`−1∑
i=1

αi ∧ β`−i.

By Saito’s division theorem the induction step can be reduced to the
following (cf. [34]):

Claim 2.1. If µ is as above then α0 ∧ β0 ∧ µ = 0.

In fact, if claim 2.1 is true then, since cod(Sing(α0 ∧ β0)) ≥ 3, by
Saito’s theorem there are germs α` and β` such that

µ = α0 ∧ β` + α` ∧ β0.

Therefore, if we set α`s = α`−1s + s` α` and β`s = β`−1s + s` β` then

j`(ηs − α`s ∧ β`s) = 0,

as the reader can verify directly.

Proof of claim 2.1. Here we use the relation η2s = 0, which implies

0 = η2s =
∑
r

sr
∑

m+n=r

ηm ∧ ηn =⇒
∑

m+n=r

ηm ∧ ηn = 0 , ∀r ≥ 0.
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The induction hypothesis implies

`−1∑
j=0

sj ηj = j`−1(ηs) = j`−1(α`−1s ∧ β`−1s ) =⇒

ηr =

r∑
i=0

αi ∧ βr−i , 0 ≤ r ≤ `− 1.

Therefore,

(8) 0 =
∑

m+n=`

ηm ∧ ηn = 2 η0 ∧ η` +
∑

i+j+r+s=`
i+j≥1

r+s≥1

αi ∧ βj ∧ αr ∧ βs.

Since αi ∧ αi = 0 and βi ∧ βi = 0, ∀i, we can assume that the
summation set in the sum of the right hand side of (8) is

S = {(i, j, r, s) | i+ j + r + s = ` , i+ j ≥ 1 , r + s ≥ 1 , i 6= r , j 6= s}.

For simplicity of notation, given a subset A ⊂ S we will set∑
(i,j,r,s)∈A

αi ∧ βj ∧ αr ∧ βs :=
∑

(A).

The set S can be decomposed into two disjoint subsets S = S1 ∪ S2,
where S1 = {(i, j, r, s) ∈ S | i = s = 0 or j = r = 0} and S2 = S \ S1.
Note that S2 = {(i, j, r, s) ∈ S| at most one of the indexes i, j, r or s is
= 0}.

We assert that
∑

(S2) = 0. This assertion follows from the fact that
there exists a permutation φ : S2 → S2 with the following properties:

(i). φ(x) 6= x and φ(φ(x)) = x, ∀x ∈ S2.
(ii). If x = (i, j, r, s) ∈ S2 and φ(x) = (i ′, j ′, r ′, s ′) then

αi ∧ βj ∧ αr ∧ βs = −αi ′ ∧ βj ′ ∧ αr ′ ∧ βs ′ .

In fact, (i) and (ii) imply that φ induces a partition S2 = S3 ∪ S4,
φ(S3) = S4, φ(S4) = S3, such that

∑
(S3) = −

∑
(S4). Therefore,∑

(S2) =
∑

(S3) +
∑

(S4) = 0.
The permutation φ is constructed as follows: fix (i, j, r, s) ∈ S2. We

have three possibilities:

1. i, j, r, s ≥ 1. In this case we set φ(i, j, r, s) = (r, j, i, s).
2. i = 0 or r = 0. In this case we set φ(i, j, r, s) = (i, s, r, j).
3. j = 0 or s = 0. In this case we set φ(i, j, r, s) = (r, j, i, s).

We leave to the reader the verification that φ is well defined and satisfies
properties (i) and (ii).

Finally, we can write S1 = S5∪S6 where S5 = {(i, 0, 0, `− i) | 1 ≤ i ≤
`− 1} and S6 = {(0, `− i, i, 0) | 1 ≤ i ≤ `− 1}. Since

αi ∧ β0 ∧ α0 ∧ βj = α0 ∧ βj ∧ αi ∧ β0 = −α0 ∧ β0 ∧ αi ∧ βj ,
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we get∑
(S1) = −2α0 ∧ β0 ∧

`−1∑
i=1

αi ∧ β`−i
(8)

=⇒ α0 ∧ β0 ∧ µ = 0.

q.e.d.

End of the proof of theorem 1. Theorem 2 implies the existence of two
holomorphic families of 1-forms αs and βs such that ηs = αs ∧ βs, ∀s ∈
(C, 0). Consider on (Cn×C, (0, 0)) the pffafian system generated by the
forms αs, βs and ds. This system is integrable. Since cod(Cn,0)(Sing(α0∧
β0)) ≥ 3, by semi-continuity we have cod(Cn,0)(Sing(αs∧βs)) ≥ 3. Since
αs ∧ βs does not contain terms with ds we can conclude that

cod(Cn×C,0)(Sing(αs ∧ βs ∧ ds)) ≥ 3.

Therefore, by Malgrange’s theorem (see theorem 2.1) there exist F,G ∈
On+1 and U ∈ O∗n+1 such that

αs ∧ βs ∧ ds = U dF ∧ dG ∧ ds.
Hence, we can take the families fs, gs and us as

fτ := F |s=τ , gτ := G|s=τ anduτ := U |s=τ . q.e.d.

2.7. Codimension two foliations not contained in a codimen-
sion one foliation. In the construction of the examples we will use a
result due to X. Gomez-Mont and I. Luengo [26]:

Theorem 2.2. There exists a polynomial vector field on C3 with an
isolated singularity at 0 ∈ C3 and without germ of analytic invariant
curve through 0.

A consequence of theorem 2.2 is the following:

Proposition 3. Let Z be a germ at 0 ∈ C3 of vector field with an
isolated singularity at 0 and without germ of invariant curve through
0. Then Z cannot be tangent to a germ at 0 ∈ C3 of holomorphic
codimension one foliation.

Proof. Suppose by contradiction that Z is tangent to some a germ at
0 ∈ C3 of codimension one foliation F . Let ω be a germ of integrable 1-
form defining F and with cod(Sing(ω)) ≥ 2. We assert that Sing(ω) =
{0}.

Note first that the tangency condition is equivalent to iZω = 0, which
implies that Sing(ω) is Z-invariant. Therefore, Sing(ω) cannot contain
a germ of curve, for otherwise this curve would be Z-invariant. Hence,
Sing(ω) ⊂ {0} and we have two possibilities, either Sing(ω) = ∅, or
Sing(ω) = {0}. On the other hand, if Sing(ω) was empty then by
integrability there exists a local chart x = (x1, ..., xn) such that ω =
u dx1, where u(0) 6= 0. This implies that iZdx1 = Z(x1) = 0 and this
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contradicts the fact that 0 is an isolated singularity of Z. Therefore,
Sing(ω) = {0} as asserted.

Let η = iZ dx1 ∧ dx2 ∧ dx3 and observe that the relation iZω = 0
is equivalent to ω ∧ η = 0. Since cod(Sing(ω)) = 3 by De Rham’s
theorem [15] there exists a germ of 1-form θ such that η = ω ∧ θ.
However, a decomposable 2-form η = ω ∧ θ with a singularity at 0 ∈ C3

vanishes necessarily on a curve through 0. This contradicts the fact that
Sing(η) = Sing(Z) = {0}. q.e.d.

Corollary 1. For all n ≥ 3 there are germs at 0 ∈ Cn of holo-
morphic codimension two foliations which are “not contained” in any
holomorphic foliation of codimension one: if a germ like this is defined
by an integrable 2-form η then there is no integrable 1-form ω such that
ω ∧ η = 0.

Proof. If n = 3 the corollary is a direct consequence of proposition 3:
take η = iZ dx1 ∧ dx2 ∧ dx3, where Z is like in theorem 2.2. If n > 3
then let Π: Cn = C3 × Cn−3 → C3 be the projection Π(x, y) = x and

η = Π∗(iZ dx1 ∧ dx2 ∧ dx3).
Suppose by contradiction that there exists a germ of integrable 1-form

ω such that ω ∧ η = 0. Note that in the coordinates (x, y) ∈ C3×Cn−3,
y = (y1, ..., yn−3) the definition of η implies that i ∂

∂yj

η = 0, ∀ 1 ≤ j ≤
n− 3. Therefore,

0 = i ∂
∂yj

(ω ∧ η) = i ∂
∂yj

(ω). η =⇒ i ∂
∂yj

ω = 0 , ∀ j.

Hence, we can write ω =
∑3

j=1Aj(x, y) dxj . On the other hand, the
integrability condition ω ∧ dω = 0 implies that

(9) Ai.
∂Aj
∂yk
−Aj .

∂Ai
∂yk

= 0 , ∀ k = 1, ..., n− 3 , ∀ 1 ≤ i < j ≤ 3.

The relations in (9) imply that there exist u ∈ O∗n and B1, B2, B3 ∈ O3

such that

Aj(x, y) = u(x, y). Bj(x) , 1 ≤ j ≤ 3 =⇒ ω = u.Π∗(ω̃),

where ω̃ =
∑3

j=1Bj(x) dxj is integrable and ω̃∧(iZ dx1∧dx2∧dx3) = 0.
This contradicts proposition 3. q.e.d.

Remark 2.5. In fact, corollary 1 is a local version of the main result
of [32]. Indeed, theorem 1 of [32] says that on any projective manifold
of dimension at least three, a “very general” foliation by curves is not
contained in a foliation or web of dimension greater than one.

We would like to observe that corollary 1 also implies this result in
rational manifolds: since the vector field Z is polynomial, in any rational
manifold of dimension n ≥ 3 there are examples of codimension two
foliations that are not contained in a codimension one foliation.
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3. Homogeneous foliations

3.1. Homogeneous foliations. In this section, we fix a coordinate
system (x1, ..., xn) of Cn. A p-form Ω is said to be homogeneous of
degree m if its components are homogeneous polynomials of degree m.
The radial vector field of Cn will be denoted by R:

R =

n∑
j=1

xj
∂

∂xj
.

The p-form Ω is said to be dicritical if iR Ω = 0. Otherwise we say that
Ω is non-dicritical.

If Ω is a p-form of degree m we have

(10) LR Ω = iR dΩ + d (iRΩ) = (m+ p) Ω (Euler’s identity).

Next we state some useful results.

Proposition 4. Let η be a homogeneous 2-form of degree m. Assume
that η is closed and η2 = η ∧ η = 0. Then there exists a homogeneous
integrable dicritical 1-form ω such that η = dω. In particular, ω∧η = 0.

Remark 3.1. The relation ω∧η = 0 in the statement of proposition 4
means that the leaves of the codimension two foliation Fη are contained
in the leaves of the codimension one foliation Fω. In this case, we will
say that the foliation Fη is contained in the foliation Fω.

Proof of proposition 4. The proof can be found in [17], but it is also
an easy consequence of Euler’s identity: set ω̃ = iRη. Since dη = 0,
from (10) we get

dω̃ = d (iRη) = LRη = (m+ 2) η =⇒ η = dω , ω = (m+ 2)−1. ω̃.

Finally,

0 = iR(η ∧ η) = 2 iR(η) ∧ η =⇒ ω ∧ dω = (m+ 2)−1. iR(η) ∧ η = 0.

q.e.d.

Remark 3.2. We would like to note that if the 1-form ω is integrable,
but not closed, then the 2-form dω is integrable and the foliation Fdω
is contained in the foliation Fω. For instance, if

ω = f1..., fp
∑
j

λj
dfj
fj

, λj ∈ C∗ , λi 6= λj , ∀ i 6= j,

where fi is holomorphic ∀i, then

dω = d(f1...fp) ∧
∑
j

λj
dfj
fj
.

In this case, the leaves of Fdω are the connected components of the
intersection of the levels of f1...fp with the leaves of Fω.
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Let us mention that the foliation Fdω is contained in infinitely many
codimension one foliations: all members of the family of foliations Fωλ ,
where

ωλ = f1..., fp
∑
j

(λj + λ)
dfj
fj

, λ ∈ C.

An analogous result in the homogeneous non-closed and non-dicritical
case is the following:

Proposition 5. Let η be a homogeneous integrable and non-dicritical
2-form on Cn, n ≥ 3. Then the 1-form ω := iR η is integrable. More-
over, the foliation Fη is contained in the foliation Fω.

Proof. We want to prove that ω ∧ dω = 0. From η2 = 0 we get

0 = iR(η2) = 2 iRη ∧ η = 2ω ∧ η =⇒ ω ∧ η = 0.

If v is a constant vector field such that f := iv ω 6≡ 0 then

ω ∧ η = 0 =⇒ iv(ω ∧ η) = f. η − ω ∧ ivη = 0 =⇒ η = ω ∧ ω̃,
where ω̃ = f−1. ivη. Therefore,

ω = iR η = −iR ω̃. ω =⇒ iR ω̃ = −1.

On the other hand, the integrability of η implies that

ω∧ω̃∧dω= 0 =⇒ 0 = iR(ω∧ω̃∧dω)=−(iRω̃). ω∧dω+ω∧ω̃∧iR dω =⇒
ω ∧ dω = ω̃ ∧ ω ∧ iR dω.

Finally, if k = deg(ω) then (10) implies

(k + 1)ω = LR ω = iR dω =⇒ iR dω ∧ ω = 0 =⇒ ω ∧ dω = 0.

q.e.d.

Let us state a result that will be important in what follows. Let ω be
a homogeneous integrable 1-form on Cn, n ≥ 4. We assume that ω is
dicritical of degree k and cod(Sing(ω)) ≥ 2. Euler’s identity (10) implies
iR dω = (k + 1)ω. The form ω induces a codimension one foliation F
on the space Pn−1 whose singular set is the projectivisation of Sing(ω);
Sing(F) = Π(Sing(ω) \ {0}), where Π: Cn \ {0} → Pn−1 is the natural
projection.

A Kupka singularity of F is a point p ∈ Sing(F) for which there is a
local generator α of the germ Fp with dα(p) 6= 0. The Kupka set of F
is, by definition, K(F) = {p ∈ Sing(F) | p is a Kupka singularity of F}.
A Kupka component of F is an irreducible component K of Sing(F)
with K ⊂ K(F). It is known that a Kupka component of F is a smooth
sub-variety of codimension two along which the foliation is locally trivial

(see §2.5.1, [18] and [31]). If K̃ is an irreducible component of Sing(ω)

such that dω(p) 6= 0 for all p ∈ K̃ \ {0} then Π(K̃ \ {0}) is a Kupka
component of F . The next statement resumes some results proven in
[10], [2] and [4]:
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Theorem 3.1. Let F and ω be as above. If F has a Kupka component
K then K is a complete intersection of hypersurfaces, in homogeneous
coordinates (F = G = 0). Moreover, if degree(F )/degree(G) = p/q,
where p, q ∈ N and (p, q) = 1, then F is the algebraic pencil of hyper-
surfaces given by the rational function F q

Gp , or equivalently by the 1-form
q F dG− pGdF (in homogeneous coordinates).

Remark 3.3. In fact, theorem 3.1 says that we can choose F and G
in such a way that ω = q F dG−pGdF . We would like to note also that
the hypothesis n ≥ 4 is necessary; in dimension n = 3 the statement is
false.

Corollary 2. Let ω be an integrable homogeneous and dicritical 1-
form on Cn, n ≥ 4. Then 0 ∈ Cn cannot be an isolated singularity of
the 2-form dω.

Proof. Note first that 0 ∈ Cn is not an isolated singularity of ω. This
is a consequence of Malgrange’s theorem: if 0 was an isolated singularity
of ω then ω = df , by Malgrange’s theorem, where f is homogeneous.
However, by Euler’s identity we have

0 = iR ω = iR df = deg(f). f =⇒ f = 0 =⇒ ω = 0,

a contradiction.
Suppose by contradiction that Sing(dω) = {0}. In this case, all irre-

ducible components of Π(Sing(ω) \ {0}) are contained in the Kupka set
K(F). Therefore, by theorem 3.1 and remark 3.3 we can suppose that
ω = q F dG−pGdF , so that dω = (p+ q) dF ∧dG and dω is decompos-
able. However, this implies that dim(Sing(dω)) ≥ 1, a contradiction.

q.e.d.

3.2. Singularities of codimension two foliations. We would like to
pose the following problem:

Problem 1. Is there a germ of codimension two foliation with an
isolated singularity at the origin of C4?

First of all, in the case of dimension three there are such foliations.
In fact, the codimension two foliations with an isolated singularity at
the origin of C3 are generic.

Next, there are homogeneous codimension two distributions in C4

with an isolated singularity at the origin. An example, due to [19], is
given by the decomposable but non-integrable 2-form

θ = x23 dx2 ∧ dx3 − x21 dx3 ∧ dx1 + (x1 x2 + x3 x4) dx1 ∧ dx2+

+[x24 dx1 + x22 dx2 + (x1 x2 − x3 x4) dx3] ∧ dx4.
The form θ has an isolated singularity at 0 ∈ C4. It defines a distribution
of 2-planes on C4 \ {0} because θ ∧ θ = 0.
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In fact, we don’t know the answer of problem 1 in general, but the
next statement contrasts with the previous example.

Theorem 3. Let η be a homogeneous integrable 2-form on C4. Then
dim(Sing(η)) ≥ 1.

Proof. We denote by Z the rotational of η. We start by the case
where η is closed, which means Z ≡ 0.

1- η is closed. Let ω = iRη. By proposition 5, ω is integrable and by
Euler’s identity we have

dω = (m+ 2) η,

where m is the degree of η. Since dim(Sing(dω)) ≥ 1 by corollary 2,
we obtain the result in this case.

2- η is not closed, Z 6≡ 0. Let us consider first the case where iRη =
0. In this case, since 0 is an isolated singularity of R, by De Rham’s
division theorem there exists a homogeneous vector field Y such that
η = iR iY ν, ν = dx1 ∧ ... ∧ dx4. Since dim(Sing(R ∧ Y )) ≥ 1, we get
dim(Sing(η)) ≥ 1. In the same way, if cod(Sing(Z)) ≥ 3, since iZ η = 0
then De Rham’s division theorem implies that there exists a vector field
Y such that η = iZ iY ν and again dim(Sing(η)) ≥ 1.

Therefore, we can suppose that cod(Sing(Z)) ≤ 2 and ω := iR η 6≡ 0.
In this case, by proposition 5 the form ω is integrable and induces
a codimension one foliation on P3 of degree ≤ m, the degree of the
coefficients of η. From Euler’s identity (10) we get:

(11) dω = d iR η = LR η − iR dη = (m+ 2) η − iR iZ ν.
Since iZ η = 0 the above equality implies that iZ dω = 0. Hence,

LZω = iZ dω + d iZ ω = d (iZ iR η) = 0 =⇒
LZ dω = 0.(12)

Let us establish a technical variant of corollary 2.

Lemma 3.1. Let ω be a homogeneous dicritical and integrable 1-
form on Cn, n ≥ 4. Suppose that Sing(ω) contains a hypersurface
(h = 0), ω = h. ω̃, where h(0) = 0 and cod(Sing(ω̃)) ≥ 2. Then
dim(Sing(dω)) ≥ 1.

Proof. Suppose by contradiction that Sing(dω) = {0}. Since

dω = dh ∧ ω̃ + h dω̃,

we obtain that

ω̃(m) = 0 , m 6= 0 =⇒ dω(m) 6= 0 =⇒ dω̃(m) 6= 0.

In particular, the singularities of ω̃ in Cn \ {0} are of Kupka type and
by theorem 3.1 we have ω̃ = k F dG − `GdF , where F and G are
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homogeneous polynomials. Hence,

dω = dh ∧ (k F dG− `GdF ) + (k + `)h dF ∧ dG,

and so dω vanishes on the set (h = F = G = 0), which in dimension
n ≥ 4 has dimension ≥ 1. q.e.d.

Let us suppose now, by contradiction, that the 2-form η has an isolated
singularity at 0 ∈ C4. It follows from corollary 2 and lemma 3.1 that
the 2-form dω vanishes at least on some straight line L through 0 ∈ C4.
Moreover, from (12) the form dω is invariant by the local flow of Z.
In particular, if we denote by S the irreducible component of Sing(dω)
that contains L, then S is invariant by the local flows of Z and of the
radial vector field R. Hence, Z and R are tangent to S. By Euler’s
identity (11), if m ∈ S \ {0} then dω(m) = 0 and η(m) 6= 0, imply that
R(m) and Z(m) must be independent along S. Therefore, dim(S) ≥ 2.
Since Z 6= 0 along S \ {0} (S ∩ Sing(Z) = {0}) and we have supposed
that cod(Sing(Z)) ≤ 2, of course we must have

dim(S) = dim(Sing(Z)) = 2 =⇒
S \ {0} is smooth and connected =⇒

its projectivisation in P3, Γ = Π(S \ {0}), is a smooth curve. Let G be
the one dimensional foliation on P3 defined in homogeneous coordinates
by the form iR iZ ν. Since R ∧ Z 6= 0 along S \ {0} the curve Γ is an
algebraic leaf of G such that Sing(G) ∩ Γ = ∅. However, this is not
possible by [22]: any algebraic curve invariant by a one dimensional
foliation G of Pn, n ≥ 2, must contain at least one singularity of G (see
proposition 2.4 in [22]). q.e.d.

Remark 3.4. In general we don’t know the answer of problem 1.
However, a case in which dim(Sing(Fη)) ≥ 1 is when there exists a germ
of holomorphic vector field Z such that iZη = 0 and cod(Sing(Z)) ≥
3. Indeed, if this is true then by De Rham’s division theorem we can
write η = iY iZν. This implies that dim(Sing(Fη)) ≥ 1, as in the
argument of theorem 3. In particular, when cod(Sing(rot(η))) ≥ 3 then
dim(Sing(Fη)) ≥ 1.

3.3. Homogeneous integrable 2-forms of small degree. In this
section, η will be a homogeneous integrable 2-form on Cn, n ≥ 4. Here
we will describe with some detail the foliation Fη when 0 ≤ deg(η) ≤ 2.

3.3.1. The case deg(η) = 0. Here η has constant coefficients, and so it
is closed. Since η2 = 0, by Darboux’s theorem there exists a coordinate
system x = (x1, ..., xn) such that η = dx1 ∧ dx2. The leaves of Fη are
the level surfaces (x1 = c1, x2 = c2). The space of foliations given by
such forms is the projectivisation of the space of the antisymetric n×n
matrices of rank two.
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3.3.2. The case deg(η) = 1. We consider the 3-form with constant
coefficients dη. Either the form η is closed or, up to linear conjugacy,
dη = dx1 ∧ dx2 ∧ dx3. By using these facts Medeiros shows in [31]
that either η = dL ∧ dQ, L linear and Q quadratic, or η “depends only
on three variables”; meaning that η = σ∗(ηo), where σ : Cn → C3 is a
linear morphism of rank three and ηo is a linear 2-form in C3. As a
consequence we can describe the space of foliations defined by this type
of form:

Proposition 6. The space of codimension two foliations given by
homogeneous 2-forms of degree one in Cn, n ≥ 4, has two irreducible
components. Each of these components can be considered as a Zariski
open and dense subset of a compact rational variety.

3.3.3. The case deg(η) = 2. This case is more difficult. We again
distinguish the two cases, dη ≡ 0 and dη 6≡ 0. If dη ≡ 0 then by
proposition 4 there exists a dicritical homogeneous 1-form of degree
three ω such that η = dω. The form ω is the homogeneous expression
of some codimension one foliation on Pn−1 of degree two. According to
[9] the space of such foliations has six irreducible components:

1st: R(2, 2). Here the generic member has a rational first inte-
gral of the form P

Q , where P and Q are quadrics. In this case, ω =
1
2(P dQ−QdP ) and η = dP ∧ dQ. The foliation Fη has the first inte-

gral (P,Q) : Cn → C2.

2nd: R(1, 3). Here the generic member has a rational first integral
of the form C

L3 , where C is a cubic and L linear. In this case, ω =
1
4(LdC − 3C dL) and η = dL ∧ dC. The foliation Fη has the first

integral (L,C) : Cn → C2.

3rd: L(1, 1, 1, 1). Here the generic member can be expressed in ho-
mogeneous coordinates by a the 1-form

ω = L1. L2. L3. L4

(
λ1
dL1

L1
+ λ2

dL2

L2
+ λ3

dL3

L3
+ λ4

dL4

L4

)
,

where the Lj is linear, λj ∈ C∗, 1 ≤ j ≤ 4, and
∑

j λj = 0. In this case,
we have

1

L1. L2. L3. L4
η =

∑
i

dLi
Li
∧
∑
j

λj
dLj
Lj

,

and Fη is the intersection of the two foliations Fd(L1L2L3L4) and Fω.

4th: L(1, 1, 2). Here the generic member can be expressed as

ω = L1. L2. Q

(
λ1
dL1

L1
+ λ2

dL2

L2
+ λ

dQ

Q

)
,
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where L1 and L2 are linear, Q a quadric and λ1+λ2+2λ = 0. Again the
foliation Fη is the intersection of two others: the foliations Fd(L1L2Q)

and Fω.

5th: E(n− 1). Here the generic member has a first integral of the

form F = C2

Q3 where C is a cubic and Q a quadric. The form C.Q dF
F =

2QdC − 3C dQ has a linear factor. It is proved in [9] that in some
homogeneous coordinate system x = (x1, ..., x4, ..., xn) we can write

C = x3 x
2
4 − x1 x2 x4 +

x31
3

and Q = x2 x4 −
x21
2
,

and the linear factor is x4. In these coordinates we have ω = 1
x4

(2QdC−
3C dQ) and

η = d

(
C Q

x4

)
∧
(

2
dC

C
− 3

dQ

Q

)
=⇒

the foliation Fη is the intersection of Fd(CQ/x4) and Fω.

6th: S(2, n). Here the foliation induced by ω in Pn−1 is a linear pull-
back of a degree two foliation on P2. This means that there exist ho-
mogeneous coordinates x = (x1, x2, x3, ..., xn) on Cn and homogeneous
polynomials of degree three P , Q and R, depending only on x1, x2, x3,
such that x1 P + x2Q+ x3R ≡ 0 and

ω = P (x1, x2, x3) dx1 +Q(x1, x2, x3) dx2 +R(x1, x2, x3) dx3 =⇒

η = dP ∧ dx1 + dQ ∧ dx2 + dR ∧ dx3.
In other words, Fη is the pull-back by a projection x ∈ Cn 7→ (x1,
x2, x3) ∈ C3, of a homogeneous foliation of degree two and codimension
two in C3.

Let us mention that in the above case, all leaves of Fη are ruled: they
contain the fibers of the projection (x1, ..., xn) 7→ (x1, x2, x3). On the
other hand, in general a foliation of degree two on P2 has no algebraic
leaves. Therefore, in general the leaves of the foliations Fω and Fη are
Zariski dense. We obtain the following result:

Theorem 4. The space of foliations of codimension two in Cn, n ≥ 4,
defined by closed 2-forms homogeneous of degree two, has six irreducible
components corresponding to the six components of the space of folia-
tions of codimension one and degree two on Pn−1.

In the case dη 6≡ 0 we need some definitions. If F : Cn → C3 is
a polynomial map of degree two, and α is a polynomial 2-form, also
of degree two, in general the 2-form F ∗α is of degree five. However,
there are special configurations of pairing (F, α) with the property that
deg(F ∗α) < 5. The next four families of examples will be impor-
tant to us. The first three examples will be of the form F ∗j (α) where
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α = du ∧ [A(z1, z2) dz1 +B(z1, z2) dz2] + [a u + q(z1, z2)] dz1 ∧ dz2 and
Fj(z1, z2, ..., zn) = (z1, z2, uj(z)) = (z1, z2, u), 1 ≤ j ≤ 3. In the form
α the polynomials A and B are linear and q is quadratic. In the map
Fj the polynomial uj(z) is a quadratic form on Cn, 1 ≤ j ≤ 3. The
following possibilities will appear in our considerations:

(1). η1 := F ∗1 (α1), where u1(z) = z3 z4 and α1 = α.
(2). η2 := F ∗2 (α2), where u2(z) = z23 − 2 z1 z4 and α2 = α.
(3). η3 := F ∗3 (α3), where u3(z) = z2 z3 − z1 z4 and α3 = α.
(4). η4 := F ∗4 (α4), where α4 = λu dz1∧dz2+λ1 z1 dz2∧du+λ2 z2 dz1∧

du and F4(z) = (z1, z2, u4(z)) = (z1, z2, u), with u4(z) a quadratic form
on Cn.

In each case the 2-form ηi is integrable and homogeneous of degree
two. Another remark is that the foliations defined in C3 by the 2-forms
α and α4 are Liouville integrable (in other words, the forms α and α4

can be written as iZ dz1∧dz2∧du and the flow associated to the vector
fields Z can be explicitly integrated).

We will say that the configuration (Fj , αj) is nice of type (j), 1 ≤
j ≤ 4.

The next result describes all possibilities for the foliations defined by
non-closed 2-forms homogeneous of degree two:

Theorem 5. Let η be a non-closed homogeneous integrable 2-form
of degree two in Cn, n ≥ 4, and Fη be the codimension two foliation
associated to it. Then Fη is of one of the following types:

(a). Associated to a two dimensional lie algebra L of linear vector fields,
either abelian or affine.

(b). A linear pull-back of a one dimensional foliation on C3 defined by
a homogeneous vector field of degree two.

(c). Up to linear conjugacy, associated to a nice pair (Fj , αj), 1 ≤ j ≤
4.

In the proof of the theorem, normal forms will appear naturally.
These normal forms will be useful for the reader interested in a precise
description of the irreducible components of the space of such foliations,
in particular, to understand the possible degenerated cases.

Proof of theorem 5. The proof will be divided in several cases and
subcases. First of all we consider the case n = 4.

Case 1. n = 4 and cod(Sing(dη)) ≥ 3. This is equivalent to
cod(Sing(X)) ≥ 3, where X = rot(η). As we will see below this case
corresponds to case (a) of theorem 5.

Lemma 3.2. In case 1 we have

η = iY iXν , ν = dz1 ∧ dz2 ∧ dz3 ∧ dz4,
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where Y is a linear vector field satisfying [Y,X] = λX, λ = 1 − tr(Y ).
Moreover,

(a). If X is not nilpotent then λ = 0 and tr(Y ) = 1. In particular, X
and Y commute.

(b). If X is nilpotent and λ 6= 0 then after a linear change of variables
we have

X = z1
∂

∂z2
+ z2

∂

∂z3
+ z3

∂

∂z4
,

and

Y = ρz1
∂

∂z1
+ (ρ− λ)z2

∂

∂z2
+ (ρ− 2λ)z3

∂

∂z3
+ (ρ− 3λ)z4

∂

∂z4
,

where 4ρ− 5λ = 1.

Proof. Recall that dη = iXν, ν = dx1 ∧ ... ∧ dx4. Since η is homo-
geneous of degree two, X is a linear vector field with tr(X) = 0. Since
cod(sing(X)) ≥ 3, by the division theorem, there exists another linear
vector field Y such that

η = iY iX ν =⇒ LY η = iY dη = η =⇒ LY dη = dη.

The last relation implies

dη = iX ν = LY (iX ν) = i[Y,X] ν + iX LY ν = i[Y,X] ν + tr(Y ) iX ν =⇒

[Y,X] = (1− tr(Y ))X := λX , λ = 1− tr(Y ).

Consider X as a derivation X =
∑4

j=1Xj
∂
∂xj

on (C4)∗. Since X is

linear the kth power operator Xk, k ≥ 2, is also a derivation Xk =∑4
j=1X

k
j

∂
∂xj

. Moreover, if the eigenvalues of X are λ1, ..., λ4 then the

eigenvalues of Xk are λk1, ..., λ
k
4.

As a derivation, the relation [Y,X] = λX can be written as Y.X −
X.Y = λX. It implies that Y.Xk − Xk. Y = k λXk, for all k ≥ 1.
The proof is by induction on k ≥ 1. Let us assume, by induction, that
Y.Xk −Xk. Y = k λXk for some k ≥ 1. Then

Y.Xk−Xk. Y = k λXk

Y.X −X.Y = λX

}
=⇒ Y.Xk+1−Xk. Y.X = k λXk+1

Xk. Y.X −Xk+1. Y = λXk+1

}
=⇒

Y.Xk+1 −Xk+1. Y = (k + 1)λXk+1.

Therefore, Y.Xk−Xk. Y = k λXk for all k ≥ 1. If λ 6= 0 then tr(Xk) =
k−1. λ−1. tr(Y.Xk − Xk. Y ) = 0 for all k ≥ 1. However, this implies
that λ1 = ... = λ4 = 0 and that X is nilpotent. Therefore, if X is not
nilpotent then λ = 0, which proves (a).

Assume that X is nilpotent and λ 6= 0. After a linear change of
variables we can assume that X = z1

∂
∂z2

+z2
∂
∂z3

+z3
∂
∂z4

. As a derivation

we have [Y,X] = Y.X −X.Y = λX. If we apply both members in z1
then we get X(Y (z1)) = 0 which implies that Y (z1) is an eigenvector of
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X: Y (z1) = ρ z1, ρ ∈ C. When we apply in z2 then (Y.X −X.Y )(z2) =
Y (z1)−X(Y (z2)) = λ z1 =⇒

X(Y (z2)) = (ρ− λ) z1 =⇒ Y (z2) = (ρ− λ) z2 + a z1 , a ∈ C.

By a similar argument we obtain

Y (z3) = (ρ− 2λ)z3 + a z2 + b z1 and

Y (z4) = (ρ− 3λ)z4 + a z3 + b z2 + c z1 , b , c ∈ C.

In particular, the eigenvalues of Y are ρ, ρ−λ, ρ−2λ and ρ−3λ. Hence,
tr(Y ) = 4 ρ−6λ and since λ = 1−tr(Y ) we get the relation 4ρ−5λ = 1.
The eigenvalues of Y are two by two distinct and so it is diagonalizable.
Therefore, Y has an eigenvector w = z4 + α z3 + β z2 + γ z1, where
Y (w) = (ρ − 3λ)w. Set z := X(w) = z3 + α z2 + β z1, y := X(z) =
z2 + α z1 and x := X(y) = z1. Finally,

Y (X(w))−X(Y (w)) = λX(w) =⇒ Y (z) = (ρ− 2λ) z.

Similarly, Y (y) = (ρ − λ) y and Y (x) = ρ x. This finishes the proof.
q.e.d.

In case (a) of lemma 3.2, where [X,Y ] = 0, the vector fields X and
Y generate an action of C2 on C4. We will assume the generic case, in
which the X and Y are diagonalizable in the same basis of C4. This
means that after a linear change of variables we can assume that X =∑4

j=1 λj zj
∂
∂zj

and Y =
∑4

j=1 µj zj
∂
∂zj

, where
∑

j λj = 0 and
∑

j µj = 1.

We will assume also that λi µj −λj µi 6= 0 if i 6= j. In this case, we have

(13) η = iY iXν = z1 z2 z3 z4
∑
i<j

ρij
dzi ∧ dzj
zi zj

,

where ν = dz1 ∧ dz2 ∧ dz3 ∧ dz4, ρk` = ±(λkµ` − λ`µk) and {k, `} =
{1, 2, 3, 4} \ {i, j}. In particular, f := z1z2z3z4 is an integrating factor

of η: d
(
η
f

)
= 0.

As we will see next, in case (b) of lemma 3.2 the form η also has an
integrating factor. Indeed, in case (b) we can write Y = ρR−λS, where

R =
∑4

j=1 zj
∂
∂zj

is the radial vector field and S =
∑4

j=2(j − 1)zj
∂
∂zj

.

In particular, S,R,X generate a Lie algebra of linear vector fields with
the relations [S,R] = [R,X] = 0 and [S,X] = −X. Set α := iS iXν and
β := iR iXν, so that η = ρ. β − λ. α. Let f := g.h/z1, where

(14) g = z32 − 3 z1 z2 z3 + 3 z21 z4 and h = z22 − 2 z1 z3.

The reader can check directly that df ∧ α = f. dα and df ∧ β = f. dβ,

which is equivalent to d
(

1
f α
)

= 0 and d
(

1
f β
)

= 0 and this implies

d
(

1
f η
)

= 0. It follows also that 1
f α and 1

f β are logarithmic 2-forms
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with pole divisor z1. g. h; they belong to the vector space generated by
dg∧dh
gh , dh∧dz1

hz1
and dz1∧dg

z1g
. In fact, the reader can check directly that

z1α

gh
=

(
1

3

dg

g
− 1

2

dh

h

)
∧ dz1
z1

and
z1β

gh
=

1

6

dh ∧ dg
hg

+
z1α

gh
,

so that

(15)
z1η

gh
= A

dh ∧ dg
hg

+B
dg ∧ dz1
gz1

+ C
dz1 ∧ dh
z1h

,

where A = ρ/6, B = (ρ− λ)/3 and C = (ρ− λ)/2.

Remark 3.5. As we have seen in proposition 5 the form ω := iRη
is integrable; ω ∧ dω = 0. Since iRdω = 4ω, if ω 6≡ 0 then dω 6≡ 0. We
would like to observe that for every s ∈ C the form ηs := η + s dω is
integrable. Let us prove this fact.

First of all Euler’s identity implies that

(16) dω = d iRη = 4 η − iR dη = 4 η − iRiXν =⇒

dω ∧ η = −iRiXν ∧ iY iXν = 0 =⇒

η2s = (η + s dω)2 = 0,

because η2 = dω2 = 0. On the other hand, rot(ηs) = rot(η) = X and
from (16) we get iXηs = 0.

Case 2. n = 4 and cod(Sing(dη)) ≤ 2. This case will be divided in
two sub-cases: η is dicritical or non-dicritical.

Case 2.1. iRη = 0. We assert that in this case we have: η = 1
4 iR iX ν,

ν = dz1∧ ...∧dz4. In particular, Fη is defined by a commutative action.
In fact, iRη = 0 implies that η = iRµ, where µ is a 3-form homogeneous
of degree one. In particular, there exits a linear vector field Y such that
µ = iY ν, so that η = iRiY ν. On the other hand, Euler’s identity implies

iX ν = dη = d iRµ = LRµ− iR dµ = 4µ− iR dµ = 4 iY ν − iR dµ.

Since dµ is homogeneous of degree zero, then dµ = ρ ν, where ρ ∈ C.
Therefore, the above relation implies that

X = 4Y − ρR =⇒ η =
1

4
iR iX ν,

as asserted.

Case 2.2. iRη 6= 0. We will divide in two sub-cases: Sing(X) has
codimension one or two.

Case 2.2.1. cod(Sing(X)) = 1. We will see that this case corresponds
to case (b) in the statement of theorem 5.
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We can write X = H.Y , where H is linear and Y a constant vector
field. After a linear change of variables we can assume that Y = ∂

∂z4
,

and so

dη = H dz1 ∧ dz2 ∧ dz3 =⇒ ∂H

∂z4
= 0 =⇒ H = H(z1, z2, z3).

Since iXη = 0 we can write

η = A1 dz2 ∧ dz3 +A2 dz3 ∧ dz1 +A3 dz1 ∧ dz2 = iZ dz1 ∧ dz2 ∧ dz3,

where Z =
∑3

j=1Aj
∂
∂zj

. From dη = H dz1 ∧ dz2 ∧ dz3, we get
∂Aj
∂z4

= 0,

1 ≤ j ≤ 4, and
∑3

j=1
∂Aj
∂zj

= H. Therefore, Fη is a linear pull-back of a

degree two homogeneous one dimensional foliation on C3: the foliation
defined by Z on C3.

Remark 3.6. In general η has no rational integrating factor in this
case. Indeed, if it had a rational integrating factor, say f = f1/f2,

d 1
f η = 0, then df ∧ η = f. dη, which implies that ∂f

∂z4
= 0 and Z(fj) =

gj . fj , j = 1, 2. In other words, the foliation defined by Z has at least
one invariant homogeneous hypersurface. However, this is not true in
general. In fact, consider the 1-form

ω = iRiZ dz1 ∧ dz2 ∧ dz3.
The form ω can be considered as the homogeneous expression of a degree
two foliation on P2, say G. Also, ω has the same invariant homogeneous
hypersurfaces as η. A homogeneous invariant hypersurface for η gives
origin to an algebraic invariant curve for G. However, it is known that
a generic foliation of degree two on P2 has no invariant algebraic curve
(cf. [17] and [21]).

Case 2.2.2. cod(Sing(X)) = 2. Since X is linear and tr(X) = 0, it
corresponds to a rank two 4× 4 matrix with vanishing trace. There are
three possible Jordan canonical forms: z1

∂
∂z1
− z2 ∂

∂z2
, z1

∂
∂z2

+ z2
∂
∂z3

and z1
∂
∂z3

+ z2
∂
∂z4

.

Case 2.2.2.1. X = z1
∂
∂z1
− z2 ∂

∂z2
, or dη = d(z1 z2) ∧ dz3 ∧ dz4.

We will see that this case corresponds to the nice pair (F1, α1). In
fact, From iXη = 0 we get z1. i ∂

∂z1

η = z2. i ∂
∂z2

η =⇒ there exists

a 1-form β, homogeneous of degree one, such that i ∂
∂z1

η = z2. β and

i ∂
∂z2

η = z1. β. Note that i ∂
∂z1

β = i ∂
∂z2

β = 0 =⇒ β = Adz3 + B dz4,

where A and B are linear. If we set η =
∑

1≤i<j≤4 Pij dzi ∧ dzj then{
z2. (Adz3 +B dz4) = i ∂

∂z1

η =
∑

j>1 P1j dzj

z1. (Adz3 +B dz4) = i ∂
∂z2

η =
∑

j 6=2 P2j dzj
=⇒

P12 = 0 , P13 = z2. A , P14 = z2. B , P23 = z1. A andP24 = z1. B.
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It follows that

η = d(z1z2) ∧ (Adz3 +B dz4) + C dz3 ∧ dz4,

where C = P34 is quadratic and A, B are linear. Now, recall that
LXη = 0 and so

0 = LX [d(z1z2) ∧ (Adz3 +B dz4) + C dz3 ∧ dz4] =

= d(z1z2) ∧ (X(A) dz3 +X(B) dz4) +X(C) dz3 ∧ dz4 =⇒
X(A) = X(B) = X(C) = 0 =⇒

A = A(z3, z4), B = B(z3, z4) and C = C̃(z1.z2, z3, z4) = a. z1.z2 +
q(z3, z4), q quadratic. Therefore,

η = d(z1 z2)∧(A(z3, z4) dz3+B(z3, z4) dz4)+(a.z1.z2+q(z3, z4)) dz3∧dz4.

In particular, η is a pull-back of a 2-form on C3, η = Φ∗(η̃), where
Φ(z1, z2, z3, z4) = (z1.z2, z3, z4) = (u, z3, z4) and

η̃ = du ∧ (A(z3, z4) dz3 +B(z3, z4) dz4) + (a u+ q(z3, z4)) dz3 ∧ dz4.

Note also that Fη and Fη̃ are contained in Fβ, β = Adz3 + B dz4,
because η ∧ β = η̃ ∧ β = 0.

Case 2.2.2.2. X = z1
∂
∂z2

+ z2
∂
∂z3

, or dη = −z1 dz1 ∧ dz3 ∧ dz4 +
z2 dz1 ∧ dz2 ∧ dz4.

We will see that this case corresponds to the nice pair (F2, α2). In fact,
the integrability relation iXη = 0 implies that z1. i ∂

∂z2

η = −z2. i ∂
∂z3

η

=⇒ i ∂
∂z2

η = z2.β and i ∂
∂z3

η = −z1.β, where β = Adz1 +B dz4, A and

B linear. With an argument similar to the preceding case, we get

η = (z2 dz2 − z1 dz3) ∧ (Adz1 +B dz4) + C dz1 ∧ dz4,

where C is homogeneous of degree two. The reader can check that the
condition LXη = 0 is equivalent to X(A) = X(B) = 0 and X(C) +
z2B = 0. Since the first integrals of X are generated by z1, z4 and
z22 − 2z1 z3, we get

A = A(z1, z4) , B = B(z1, z4) and

C = −z3B(z1, z4) + a(z22 − 2z1 z3) + q(z1, z4),

where a ∈ C and q is homogeneous of degree two. In particular, we get
η = Φ∗(η̃), where

Φ(z1, z2, z3, z4) = (z1, z4, z
2
2 − 2z1 z3) = (z1, z4, u).

and

η̃ =
1

2
du ∧ [Adz1 +B dz4] + [a. u+ q] dz1 ∧ dz4.

Case 2.2.2.3. X = z1
∂
∂z3

+ z2
∂
∂z4

.
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We will see that this case corresponds to the nice pair (F3, α3). In
fact, with an argument similar to the preceding cases we get

η = (z2 dz3 − z1 dz4) ∧ (Adz1 +B dz2) + C dz1 ∧ dz2,

where A, B are linear and C homogeneous of degree two. From the
condition LXη = 0 we get

X(A) = X(B) = 0 and X(C) + z1A+ z2B = 0.

Since the first integrals of X are generated by z1, z2 and z2 z3 − z1 z4
we get A = A(z1, z2) B = B(z1, z2) and
C = −z3A(z1, z2) − z4B(z1, z2) + a(z2 z3 − z1 z4) + q(z1, z2), where

a ∈ C and q is homogeneous of degree two. Here we obtain η = Φ∗(η̃)
where Φ(z1, z2, z3, z4) = (z1, z2, z2 z3 − z1 z4) = (z1, z2, u) and

η̃ = du ∧ [A(z1, z2) dz1 +B(z1, z2) dz2] + [a u+ q(z1, z2)] dz1 ∧ dz2.

Next we will extend the result to n ≥ 5. Let us consider first the
case where η is dicritical: iRη = 0. From Euler’s identity we get: 4 η =
LRη = iR dη. The form dη is integrable and has degree one. Here we
use a result due to Medeiros [31]: we have two possibilities:

• either there exists a projection Π: Cn → C4 and a linear 3-form θ
on C4 such that dη = Π∗(θ),
• or dη = 4 dL1 ∧ dL2 ∧ dQ, where Q is quadratic and L1, L2 are

linear.

In the first possibility we can assume that Π(z1, ..., zn) = (z1, ..., z4)
and θ can be written as θ = 4 iZ dz1∧ ...∧dz4, where Z is a linear vector
field in C4. We have

η = iR4 iZ dz1 ∧ dz2 ∧ dz3 ∧ dz4 = ±iR4 iZ i ∂
∂z5

...i ∂
∂zn

dz1 ∧ ... ∧ dzn.

We are in case (a) of the statement of theorem 5.
In the second possibility we have

η =
1

4
iR dη = 2QdL1 ∧ dL2 + L1 dL2 ∧ dQ− L2 dL1 ∧ dQ.

This case corresponds to a nice pair (F4, α4).

Let us assume that ω = iRη 6= 0. We can write ω = h. ω1 where:

1. cod(Sing(ω)) = 2 and ω1 = ω. In this case ω defines a codimension
one foliation G of degree two on Pn−1.

2. deg(h) = 1 and ω1 defines a foliation G of degree one on Pn−1.
3. deg(h) = 2 and ω1 defines a foliation G of degree zero on Pn−1.

In the proof we will use the classification of the components of the space
of codimension one foliations of degree ≤ 3.

In some components of these spaces the form ω1 can be expressed
with k variables, where k ∈ {2, 3, 4}. In other words, ω1 can be written
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as

ω1 =
∑

1≤i<k
Ai(z1, ..., zk) dzi.

This happens in the following cases:

1.a. G ∈ L(1, 1, 1, 1)∪E(n− 1) ∪ S(2, n− 1), if the degree of G is two.
2.a. G ∈ L(1, 1, 1), if the degree of G is one.
3. If the degree of G is zero.

We will see that, in cases 1.a and 2.a the 2-form η can be written with
four variables. This reduces the study of these cases to the case n = 4.
In case 3 this is not the case, as we will see.

Claim 3.1. If ω1 =
∑k

i=1Bi(z1, ..., zk) dzi ∧ dzj then

η = ηo + α ∧ ω1,

where

• ηo =
∑

1≤i<j≤k Aij(z) dzi ∧ dzj, and

• α = 0 if ω = ω1 and α =
∑

j>k Cj(z) dzj if ω = h. ω1, deg(h) > 0.

Proof. If η =
∑

1≤i<j≤nAij(z) dzi ∧ dzj then set ηo =∑
1≤i<j≤k Aij(z) dzi ∧ dzj . Note that

2ω ∧ η = iR(η2) = 0 =⇒ ω1 ∧ η = 0.

If we assume Bk 6= 0 then

0 = dz1 ∧ ... ∧ dzk−1 ∧ ω1 ∧ η = Bk dz1 ∧ ... ∧ dzk ∧ η =⇒
dz1 ∧ ... ∧ dzk ∧ η = 0 =⇒

η = η0 +
∑
j>k

αj ∧ dzj , where αj =
k∑
i=1

Aij dzi.

From ω1 ∧ η = 0 we get

ω1 ∧ ηo +
∑
j>k

ω1 ∧ αj ∧ dzj = 0 =⇒ ω1 ∧ αj = 0 , ∀ j > k.

From the division theorem [15] we get αj = hj . ω1, where hj = 0 if
ω1 = ω and deg(hj) = 2 − deg(ω1) if deg(ω1) < 3. When deg(ω1) < 3
we get η = ηo + α ∧ ω1, where α = −

∑
j>k hj dzj . q.e.d.

Claim 3.2. Let η =
∑

1≤i<j≤k Aij(z1, ..., zn) dzi∧dzj be an integrable

homogeneous 2-form on Cn, where k ∈ {3, 4} and cod(Sing(η)) ≥ 2.
Then ∂

∂z`
Aij = 0 for all ` > k. In particular, η can be written with k

variables.

Proof. We first note that i ∂
∂zj

η = 0 for all j > k. In particular, the

singular distribution defined by ker(η) contains
〈

∂
∂zj
| j > k

〉
O

. In fact,
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in the case k = 3, we have

ker(η) =

〈
Y,

∂

∂z4
, ...,

∂

∂zn

〉
O

:= D,

where Y = A23
∂
∂z1
−A13 ∂

∂z2
+A12

∂
∂z3

. Note also that in the case k = 4

we have ker(η) ⊃ D, where

D =

〈
Y1, Y2, Y3, Y4,

∂

∂z5
, ...,

∂

∂zn

〉
O
,

and Yj is defined by

iYj i ∂
∂zj

dz1 ∧ ... ∧ dz4 =
∑

1≤r<s≤4
r,s 6=j

Ars(z) dzr ∧ dzs.

Since η is integrable, in both cases the distribution D is involutive and
we can use a result of [6]: the coefficients of Y , or of Y1, ...,Y4, do not
depend on the variables zk+1,..., zn. This proves the claim. q.e.d.

Let us return to the cases in which we can reduce the variables.

Case 1.a. When G ∈ L(1, 1, 1, 1) ∪ E(n − 1) then ω can be written
with four variables: after a linear change of variables we can write ω =
iR4iY iX dz1 ∧ ...∧ dz4, where R4 is the radial in C4, Y =

∑4
j=1 µj zj

∂
∂zj

and, either X =
∑4

j=1 λj zj
∂
∂zj

if G ∈ L(1, 1, 1, 1), or X = z1
∂
∂z2

+

z2
∂
∂z3

+ z3
∂
∂z4

if G ∈ E(n − 1) (see lemma 3.2). In this case, we can
apply directly claims 3.1 and 3.2.

In the case G ∈ S(2, n − 1), in which k = 3 in claim 3.1, we have
ω = iR3 iX dz1∧dz2∧dz3, R3 =

∑
1≤i≤3 zi

∂
∂zi

and X is a quadratic vector

field on C3. In this case, applying claim 3.2 we get η = i
X̃
dz1∧dz2∧dz3,

where X̃ = X + g.R3 and g is linear. Therefore, η is like in (b) of the
statement of theorem 5.

Case 2.a. In this case, ω1 = iR3iXdz1 ∧ dz2 ∧ dz3, where X is a
linear vector field on C3, and η = ηo + α ∧ ω1 where α is a 1-form with
constant coefficients. Hence, α = df , where f is linear. If df ∧ dz1 ∧
dz2 ∧ dz3 = 0 then η =

∑
1≤i<j≤3Aij(z1, z2, z3) dzi ∧ dzj by claim 3.2.

If df ∧ dz1 ∧ dz2 ∧ dz3 6= 0 then we can assume that df = dz4 and
η =

∑
1≤i<j≤4Aij(z1, z2, z3, z4) dzi ∧ dzj by claim 3.2.

Case 3. If the degree of G is zero then we can assume ω1 = z1 dz2 −
z2 dz1. By claim 3.1 we can write η = A(z) dz1∧dz2+α∧ω1, where A is
a homogeneous polynomial of degree two and α =

∑
`>2C`(z) dz`, with

C` linear, 3 ≤ ` ≤ n. Let us consider the blowing-up Π(t, z1, z3, ..., zn) =
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(z1, t z1, z3, ..., zn). Then

Π∗(η) = A(z1, t z1, z3, ..., zn) Π∗(dz1 ∧ dz2)

+
∑
j>2

Cj(z1, t z1, z3, ..., zn) dzj ∧Π∗(ω1)

= z1 Ã(t, z1, z3, ..., zn) dz1 ∧ dt

+ z21
∑
j>2

C̃j(t, z1, z3, ..., zn) dzj ∧ dt = z1. β ∧ dt,

where β = Ã(t, z1, z3, ..., zn) dz1 + z1
∑

j>2 C̃j(t, z1, z3, ..., zn) dzj . The

strict transform of Π∗(η) is η̃ = β ∧ dt. Since β does not depends on dt,
it can be considered as a 1-parameter family of 1-forms in Cn−1. Given
c ∈ C, set βc := β|t=c. The integrability condition for η̃ is dβ∧β∧dt = 0,
which implies βt ∧ dβt = 0, so that βt is integrable and homogeneous of
degree two for each fixed t ∈ C. We assert that z1 ht is an integrating
factor for βt, where ht(z1, z3, ..., zn) = h(z1, t z1, z3, ..., zn) (recall that
iRη = h. ω1).

In fact, let R̃ be the radial vector field on Cn−1; R̃ = z1
∂
∂z1

+∑
3≤j≤n zj

∂
∂zj

. In [14] it is proven that if ft := i
R̃
βt 6= 0 then it is

an integrating factor of βt: d
(

1
ft
βt

)
= 0. Since R̃ = Π∗(R), we get

z21 h(z1, t z1, z3, ..., zn) dt

= Π∗(h. ω1) = Π∗(iRη) = i
R̃

(z1 β ∧ dt) = z1 (i
R̃
β) dt =⇒

ft = i
R̃
β = z1 h(z1, t z1, z3, ..., zn) := z1.ht,

which proves the assertion.
We have two possibilities, either ht is irreducible for generic t, or

ht is reducible for all t. For simplicity, in the second possibility we will
assume that ht = ft. gt, where ft and gt are linear and dz1∧dft∧dgt 6= 0
for generic t. In both cases 1

z1 ht
βt is a logarithmic 1-form. According

to [14] we can write:

3.a. If ht is irreducible then

1

z1 ht
βt = a(t)

dz1
z1

+ b(t)
dht
ht

, where a(t), b(t) ∈ C.

3.b. If ht = ft. gt, where ft and gt are linear and dz1 ∧ dft ∧ dgt 6= for
generic t then

1

z1 ht
βt =

1

z1 ft gt
βt

= a(t)
dz1
z1

+ b(t)
dft
ft

+ c(t)
dgt
gt

, where a(t), b(t), c(t) ∈ C.
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Now, from Π∗(η) = z1 β ∧ dt we get

1

z1 ht
βt∧dt =

z1 βt ∧ dt
z21 ht

= Π∗
(

η

z21 h

)
=⇒ η = z21 hΠ∗

(
1

z1 ht
βt ∧ dt

)
.

Therefore, in case 3.a we get

η = z21 hΠ∗

([
a(t)

dz1
z1

+ b(t)
dht
ht

]
∧ dt

)
= a(z2/z1)h dz1 ∧ dz2 + b(z2/z1) dh ∧ ω1.

Since η is homogeneous of degree two, we obtain that a and b are con-
stant. This case corresponds to the nice pair (F4, α4).

In case 3.b, by the same type of computation we get

η = a f g dz1 ∧ dz2 + (b g df + c f dg) ∧ ω1,

where a, b, c ∈ C∗ and h = f. g, with f and g linear. This case corre-
sponds to (a) in theorem 5

In case 2, where ω = ω1 and cod(Sing(ω)) = 2 there are three cases
more: G ∈ R(1, 3), G ∈ R(2, 2) and G ∈ L(2, 1, 1).

Let us consider the case G ∈ L(2, 1, 1). In this case we have

ω = f1 f2 f3

(
λ1
df1
f1

+ λ2
df2
f2

+ λ3
df3
f3

)
,

where λ1, λ2, λ3 ∈ C, f3 is quadratic and fj linear, j = 1, 2. We will
assume that λj ∈ C∗, ∀j, that cod(Sing(df3)) ≥ 5 and df1∧df2 6= 0. We
assert that in this case we have

(17) η = f1 f2 f3

(
µ1

df2
f2
∧ df3
f3

+ µ2
df3
f3
∧ df1
f1

+ µ3
df1
f1
∧ df2
f2

)
,

where µ, µ1, µ2 ∈ C. Since df1 ∧ df2 6= 0 we can assume that f1 = z1
and f2 = z2.

From ω ∧ η = 0 we obtain ω ∧ dη = 0 =⇒ λ3 z1 z2 df3 ∧ dη = f3 α,
where α = −(λ1 z2 dz1 + λ2 z1 dz2) ∧ dη. This implies that f3 divides
df3 ∧ dη, because f3 does not divide z1. z2. In particular, we can write
df3 ∧ dη = f3 α̃, where α̃ is a 4-form with constant coefficients. This
implies that df3 ∧ α̃ = 0. Since cod(Sing(df3)) ≥ 5 the division theorem
[15] and [34] and the fact that α̃ has constant coefficients imply that
α̃ = 0. Hence, df3 ∧ dη = 0 and again by the division theorem dη =
df3 ∧ β, where β is a 2-form with constant coefficients. Therefore,

0 = ω∧dη = ω∧df3∧β = f3 (λ1 z2 dz1+λ2 z1 dz2)∧β =⇒ α1∧β = 0

where α1 = λ1 z2 dz1 + λ2 z1 dz2. However, since β has constant coeffi-
cients, ω1∧β = 0 implies that β = ρ dz1∧dz2 and dη = ρ df3∧dz1∧dz2,
where we can assume ρ ∈ C∗. Now, from Euler’s identity we have
4 η = dω + iR dη and the reader can check directly that dω, iR dη ∈
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〈f3 dz1 ∧ dz2, z1 dz2 ∧ df3, z2 dz1 ∧ df3〉C which implies (17). This case
corresponds to the nice pair (F4, α4).

Let us assume now that G ∈ R(p, q), where (p, q) ∈ {(1, 3), (2, 2)}. In
this case,

ω = f. g.

(
p
dg

g
− q df

f

)
= p f dg − q g df.

We will assume that cod(Sing(df)), cod(Sing(dg)) ≥ 5, which is the
generic case. We assert that η is closed and we are in the situation of
theorem 4.

Let us consider the case q = 3; deg(g) = 3. By an argument similar
to the case of L(2, 1, 1), we have dg ∧ dη = 0. Since deg(dη) = 1 and
deg(dg) = 2, the division theorem implies in this case that dη = 0. In
the case, p = q = 2 we get similarly that df ∧ dη = dg ∧ dη = 0. Hence,
dη = df ∧α1 = dg ∧α2, by the division theorem, and this implies again
that dη = 0. q.e.d.

Remark 3.7. In the proof of theorem 5 we have assumed in some of
the sub-cases a generic situation for the foliation G induced by ω = iRη.
For instance, when we consider the case G ∈ X, where X = L(2, 1, 1)
or X = L(1, 1, 1, 1), we have supposed that ω has a reduced integrating
factor. In the complement X \ X there are foliations of codimension
one and degree two that are represented in Cn by a form ω with non-
reduced integrating factors. In the case of G ∈ L(2, 1, 1) \ L(2, 1, 1)
we have non-reduced integrating factors of the form L2

1. L
2
2 and L2

1. Q,
where L1, L2 are linear and Q quadratic, whereas in the case of G ∈
L(1, 1, 1, 1) \L(1, 1, 1, 1) we have non-reduced integrating factors of the
form L2

1. L2. L3, L
2
1. L

2
2 and L3

1 L2, where L1, L2 and L3 are linear. We
would like to mention that all these cases can be treated as in the
previous proof. At the end we find degenerations of the cases we have
found, but the assertions of statement of the theorem are still valid in
all these cases.
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Kupka components”; Astérisque 222 (1994) pg. 93–132.

[11] D. Cerveau & A. Lins Neto: “A structural theorem for codimension-one folia-
tions on Pn, n ≥ 3, with an application to degree three foliations”; Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 1, 1–41.

[12] D. Cerveau, A. Lins Neto, J. O. Calvo Andrade, L. Giraldo: “Irreducible com-
ponents of the space of foliations associated to the affine Lie algebra”; Ergodic
Theory and Dynamical System.

[13] D. Cerveau, A. Lins Neto, F. Loray, J. V. Pereira, F. Touzet: “Complex codi-
mension one foliations and Godbillon–Vey sequences”; Mosc. Math. J. 7 (2007),
no. 1, 21–54, 166.

[14] D. Cerveau, J.-F. Mattei: “Formes intégrables holomorphes Singulières”;
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Comm. Math. Helvetici, 28 (1954), pp. 346–352.

[16] Griffiths-Harris: “Principles of Algebraic Geometry”; John-Wiley and Sons,
1994.
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