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CONVEX RP2 STRUCTURES AND CUBIC
DIFFERENTIALS UNDER NECK SEPARATION

John Loftin

Abstract

Let S be a closed oriented surface of genus at least two. Labourie
and the author have independently used the theory of hyperbolic
affine spheres to find a natural correspondence between convex
RP2 structures on S and pairs (Σ, U) consisting of a conformal
structure Σ on S and a holomorphic cubic differential U over Σ.
We consider geometric limits of convex RP2 structures on S in
which the RP2 structure degenerates only along a set of simple,
non-intersecting, nontrivial, non-homotopic loops c. We classify
the resulting RP2 structures on S−c and call them regular convex
RP2 structures. Under a natural topology on the moduli space of
all regular convex RP2 structures on S, this space is homeomor-
phic to the total space of the vector bundle overMg each of whose
fibers over a noded Riemann surface is the space of regular cubic
differentials. The proof relies on previous techniques of the author,
Benoist–Hulin, and Dumas–Wolf, as well as some details due to
Wolpert of the geometry of hyperbolic metrics on conformal sur-
faces in Mg.

1. Introduction

A convex RP2 surface is given as a quotient Γ\Ω, where Ω is a con-
vex domain in R2 ⊂ RP2 and Γ is a discrete subgroup of PGL(3,R)
acting discretely and properly discontinuously on Ω. For all convex
RP2 surfaces of negative Euler characteristic, we may also assume that
Ω ⊂ R2 is bounded (and the surface is properly convex ). We assume
our convex RP2 surfaces are oriented, and it is natural in this case to
lift the action of PGL(3,R) to an action of SL(3,R) acting on the
convex cone over Ω in R3. We will not be careful in distinguishing be-
tween the groups PGL(3,R) and SL(3,R). Labourie and the author
independently showed that a marked convex RP2 structure on a closed
oriented surface S of genus g at least two is equivalent to a pair (Σ, U),
where Σ is a marked conformal structure on S and U is a holomorphic
cubic differential [37, 38, 46]. This result relies on the geometry of hy-
perbolic affine spheres, in particular, on results of C.P. Wang [71] and
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deep geometric and analytic results of Cheng–Yau [12, 13]. This pro-
vides a complex structure on the deformation space GS of marked convex
RP2 structures on S. Moreover, we can mod out by the mapping class
group to find that the moduli space RS of unmarked oriented convex
RP2 structures is given by the total space of the bundle of holomor-
phic cubic differentials over the moduli space Mg. One may naturally
extend the bundle of holomorphic cubic differentials to a (V-manifold)
holomorphic vector bundle whose fiber is the space of regular cubic dif-
ferentials over each noded Riemann surface Σ in the boundary divisor
in the Deligne–Mumford compactification Mg.

Recall that a (compact) noded Riemann surface Σ consists of an open
Riemann surface Σreg, together with a finite number of nodes. Each
node has a neighborhood of the form {(z, w) ∈ C2 : zw = 0, |z|, |w| < 1}.
Such a neighborhood consists of two holomorphic disks glued together
at their centers, with the gluing point as the node. A regular cubic
differential U on Σ is a holomorphic cubic differential on Σreg with a
special pole structure allowed at each node: Given a standard neighbor-
hood of the node with coordinates z, w, the cubic differential is allowed
to have poles of up to order three at z = 0 and w = 0. Moreover,
there is a complex constant R, the residue of U at the node, so that
U = Rz−3 dz3 +O(z−2) and U = −Rw−3 dw3 +O(w−2) near z = 0 and
w = 0, respectively.

It is natural to ask why we focus, in particular, on regular cubic dif-
ferentials with their third-order poles, and not on more general singular
situations such as those in [58]. First of all, regular cubic differentials
are natural from the point of view of the algebraic geometry of Mg.
Over a point in the Teichmüller space of a closed surface of genus g ≥ 2,
consider the associated marked Riemann surface Σ. Over a noded Rie-
mann surface Σ, the analog of the canonical bundle is the dualizing
sheaf, whose local sections are regular differentials, which are allowed
poles of order 1 at the cusps with residues which match up as in the case
of cubic differentials above. Then the third tensor power of the dual-
izing sheaf is the sheaf of regular cubic differentials. The regular cubic
differentials naturally extend cubic differentials over the boundary of
Mg, in the strong sense that the space of all regular cubic differentials

forms a vector bundle (up to finite group actions) over Mg.
Second, to each cubic differential and related affine sphere structure,

there is a natural corresponding Higgs bundle [38, 3] for which the cubic
differential is a component of the Higgs field. Over a punctured Riemann
surface, cubic differentials of pole order at most 3 then correspond to
regular singularities of parabolic Higgs bundles as studied by Simpson
[65].

A third reason to study regular cubic differentials follows a posteriori
from our proof. In Theorem 2.6.1, we characterize those degenerations
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of convex RP2 surfaces which separate along a neck given by a simple
closed curve, and call these degenerations regular convex RP2 structures.
The regular convex RP2 structures correspond exactly to regular cubic
differentials over noded Riemann surfaces by [51, 6, 58] and Subsection
5.1 below. Thus, the regular cubic differentials naturally correspond to
degenerations of convex RP2 surfaces along necks.

In [50], for each pair (Σ, U) of noded Riemann surface Σ and regular
cubic differential U over Σ, we construct a corresponding RP2 structure
on the nonsingular locus Σreg, and specify the geometry near each node
by the residue of the cubic differential there. In this way, we may define
a regular convex RP2 structure on Σ. There is a standard topology on
the total space of the bundle of regular cubic differentials, and we define
a topology on the space of regular convex RP2 structures under which
geometric limits are continuous and which is similar in spirit to Har-
vey’s use of the Chabauty topology to describe the Deligne–Mumford
compactification [31]. Our main result is then

Theorem 1.0.1. Let S be a closed oriented surface of genus g ≥ 2.
There is a natural homeomorphism Φ from the total space Vg of the bun-
dle of regular cubic differentials over the Deligne–Mumford compactifi-
cation Mg to the moduli space Raug

S of regular convex RP2 structures
on S.

We define Vg and its topology in Subsection 2.9 below, while Raug
S

and its topology are defined in Subsections 2.6, 2.7 and 2.8 below.
In [50], we constructed regular convex RP2 structures corresponding

to regular cubic differentials over a noded Riemann surface, and gave
some local analysis of the families of regular convex RP2 structures in
the limit. In particular, we introduced the map Φ and showed it is in-
jective. In passing from regular convex RP2 structures to regular cubic
differentials, Benoist–Hulin show that finite-volume convex RP2 struc-
tures correspond to regular cubic differentials of residue zero [6]. Quite
recently, as this paper was being finalized, Xin Nie has classified all con-
vex RP2 structures corresponding to meromorphic cubic differentials on
a Riemann surface [58], which shows Φ is a one-to-one correspondence.
In the present work, we only consider cubic differentials of pole order at
most three (as these are the only ones which appear under neck separa-
tion), and the RP2 geometry of each end is determined by the residue

R, where U = Rdz3

z3 + · · · . It should be interesting to determine how

Nie’s higher-order poles relate to degenerating RP2 structures.
For poles of order 3, there are three cases to consider, as determined

by the residue R. If R = 0, then the ends are parabolic, which is
locally the same structure as a parabolic element of a Fuchsian group.
If ReR 6= 0, then the holonomy of the end is hyperbolic, while if R 6= 0
but ReR = 0, the holonomy is quasi-hyperbolic. These two cases are not
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present in the theory of Fuchsian groups. In particular, the associated
Blaschke metric is complete, asymptotically flat, and of finite diameter
at these ends. The geometry of RP2 surfaces, thus, contains both flat
and hyperbolic geometry as limits.

The proof of the main theorem involves several analytic and geomet-
ric prior results. First of all, the principal new estimates in the proof
are to find sub- and super-solutions to an equation of C.P. Wang [71]
which are uniform for convergent families (Σj , Uj) of noded Riemann
surfaces and regular cubic differentials. These will allow us to take lim-
its along the families. A uniqueness result of Dumas–Wolf [22] then
shows that the limits we find are the ones predicted in [50]. To an-
alyze limits of regular RP2 structures, we use a powerful technique of
Benoist–Hulin, which shows that natural projectively-invariant tensors
on convex domains converge in C∞loc when the domains converge in the
Hausdorff topology [6]. We also use many details about the structure
of the Deligne–Mumford compactification Mg, and, in particular, the
analytic framework due to Masur and refined by Wolpert to relate the
hyperbolic metric and with the plumbing construction near the noded
Riemann surfaces in ∂Mg.

There are two major compactifications for spaces of hyperbolic (or
conformal) structures on a closed oriented surface S of genus g ≥ 2. For
marked hyperbolic structures on a surface, the deformation space is Te-
ichmüller space Tg, and the most prominent compactification is due to
Thurston. For unmarked hyperbolic structures, the moduli space Mg

is the quotient of Tg by the action of the mapping class group. The

primary compactification Mg is due to Deligne and Mumford, and all
limits in ∂Mg can be described by a single type of “neck pinch” de-
generation, in which the hyperbolic structure degenerates as the length
of a geodesic loop goes to zero while the transverse hyperbolic distance
goes to infinity. The present work classifies all neck-separating degen-
erations of unmarked convex RP2 structures on such an S and supplies
a natural bordification of the moduli space RS , and gives an analog of
the well-known theorem that one can describe Mg either in terms of
its complex structure or the hyperbolic geometry induced by Fenchel–
Nielsen coordinates. See, e.g., [73].

1.1. RP2 structures and higher Teichmüller theory. It follows
from work of Weil [72] and Chuckrow [20] that the Teichmüller space
of conformal structures on a closed oriented marked surface S of genus
at least 2 is homeomorphic to a connected component of the space of
representations π1S → PSL(2,R) modulo conjugation in PSL(2,R).
The study of representations of π1S to higher-order Lie groups is then
known as higher Teichmüller theory. Choi–Goldman [18] show that the
deformation space GS of convex RP2 structures on S is homeomorphic
to the Hitchin component of representations π1S → PSL(3,R) [32].
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Goldman provided in [27] the analog of Fenchel–Nielsen coordinates on
GS . Fenchel–Nielsen coordinates play an important role in analyzingMg

going back to Bers [9] and Abikoff [1]. In particular, Wolf–Wolpert [73]
determine the real-analytic relationship between the between complex-
analytic coordinates on Mg as given by Masur [54] and the Fenchel–
Nielsen coordinates. In our present work, we have related the complex-
analytic data of regular cubic differentials to the projective geometry
of the convex RP2 structures, but we have not addressed Goldman’s
Fenchel–Nielsen coordinates. It should be possible to do so, as Marquis
has already extended Goldman’s coordinates to pairs of pants with non-
hyperbolic holonomy [52].

There have also been many other works on limits of convex RP2

structures. Anne Parreau has analyzed limits of group representations
into Lie groups in terms of group actions on R-buildings [61, 62]. Par-
reau, thus, provides an analog of Thurston’s boundary of Teichmüller
space. In influential lectures several years ago, Daryl Cooper and Kelly
Delp analyzed limits of convex RP2 structures using the hyperreals to
produce singular hex structures on the surface. Inkang Kim [35] ap-
plies Parreau’s theory to construct a compactification of the deforma-
tion space of convex RP2 structure GS . Alessandrini [2] also constructs
a compactification of GS by using Maslov dequantization techniques.
Limits of cubic differentials were related to Parreau’s picture in [47]
and recently in [57]. Dumas–Wolf have recently studied polynomial cu-
bic differentials on C [22], and they show that the space of polynomial
cubic differentials up to holomorphic equivalence is isomorphic via the
affine sphere construction to the space of bounded convex polygons in
R2 ⊂ RP2 up to projective equivalence. Their construction has been
used by Nie [58] to analyze the RP2 geometry related to higher-order
poles of cubic differentials, and should be useful in other contexts as well.
Benoist–Hulin have also studied cubic differentials on the Poincaré disk,
and have shown that the Hilbert metric on a convex domain is Gromov-
hyperbolic if and only if it arises from a cubic differential on the Poincaré
disk with bounded norm with respect to the Poincaré metric [7].

Tengren Zhang has considered degenerating families of convex RP2

structures with natural constraints on Goldman’s parameters [79]. Lu-
dovic Marquis has studied convex RP2 structures and their ends from
a different point of view from this paper [52, 53]. Recently Choi has
analyzed ends of RPn orbifolds in any dimension [17, 16].

Fix a conformal structure Σ on a closed oriented surface of S of genus
at least two. Let G be a split real simple Lie group with trivial cen-
ter and rank r. Hitchin uses Higgs bundles to parametrize the Hitchin
component of the representation space from π1S to G by the set of r
holomorphic differentials, which always includes a quadratic differential
[32]. For PSL(3,R), Hitchin specifies a quadratic and a cubic differ-
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ential. If the quadratic differential vanishes in this case, then Labourie
has shown that we can parametrize the Hitchin component by the affine
sphere construction (Σ, U) for U Hitchin’s cubic differential (up to a
constant factor) [38]. Labourie has also recently shown that Hitchin
representations for other split real Lie groups of rank 2 (PSp(4,R) and
split real G2) can be parametrized by pairs (Σ, V ), where Σ varies in
Teichmüller space and V is a holomorphic differential of an appropriate
order [40]. It would be interesting to analyze these Hitchin represen-
tations similarly as Σ approaches a noded Riemann surface and V is
a regular differential. The relationship between the Higgs bundles and
the relevant geometric structures is not as well developed in this case.
See [30, 3].

One can also follow [38] to view the present work in terms of lim-
its of Higgs bundles. Many of these works involve various limits of
Higgs bundles over a fixed Riemann surface (see, for example, Mazzeo–
Swoboda–Weiss–Witt [55] and Mochizuki [56]). These papers may be
seen as analogs not of the present work but of [47]. The present paper
involves different sorts of degenerations. The Riemann surface is not
fixed, but there are families degenerating to noded Riemann surfaces,
each paired with a Higgs bundle which degenerates also in a prescribed
way (to a parabolic bundle on the noded Riemann surface). Swoboda
studies a similar problem of degenerating pairs of Riemann surfaces and
SL(2,C) Higgs bundles [67]. See also [66] for a comparison of these two
sorts of limits.

1.2. Outline. Sections 2 and 3 include largely definitions and back-
ground material, with a few new results. The remaining Sections 4 and
5 are devoted to the bulk of the proof, which is to show that a natural
one-to-one correspondence Φ: Vg → Raug

S is a homeomorphism. Section
4 shows Φ is continuous by a direct proof involving uniform estimates
and the theory of ordinary differential equations with parameters, while
Section 5 contains a more indirect and involved proof of the continuity
of Φ−1 using among other things the compactness of Mg.

Section 2 begins by defining the topological space of regular convex
RP2 structures. First of all, we recount Goldman’s theory of building
convex RP2 surfaces by gluing together simpler surfaces along principal
geodesic boundary components. Then we use a few lemmas from general
topology to show that the topology of regular convex RP2 structures is
first countable. Thus, the topology can be described in terms of conver-
gent sequences, which is a natural approach given our underlying tools
in differential equations. Then we define regular separated necks and
show in Theorem 2.6.1 that these regular separated necks encompass
all geometric limits of convex RP2 structures on S which degenerate to
convex RP2 structures on S− `, for ` a simple non-peripheral loop in S.
Next, we define the augmented Goldman space of marked regular convex



CONVEX RP2 STRUCTURES UNDER NECK SEPARATION 321

RP2 structures on S, which, similarly to augmented Teichmüller space,
is a non-locally-compact bordification of the Goldman space (the defor-
mation space of marked convex RP2 structures). The definition is based
on pairs (Ω,Γ) and encodes both the Hausdorff limits of convex domains
of Ωj and also the convergence of representations Γj of subgroups of the
fundamental group, all modulo a natural action of SL(3,R). Then we
take a quotient by the mapping class group to define the augmented
moduli space of convex RP2 structures Raug

S .
In the final part of Section 2, we recall the plumbing construction for

neighborhoods of noded Riemann surfaces in the boundary of moduli
space, largely following Wolpert, and its relation to the complete hy-
perbolic metric on the regular part of each surface. We then use these
constructions to construct the standard topology on the total space of
the bundle of regular cubic differentials over Mg. Roughly, we define
a metric m on each noded Riemann surface Σ which is equal to the
hyperbolic metric on the thick part of Σ and a flat cylindrical metric
on the collar and cusp neighborhoods making up the thin part of Σreg.
Then convergence of a sequence (Σj , Uj) is defined as convergence of Σi

in Mg, together with L∞mj ,loc convergence of the cubic differentials Uj .

Then in Section 3, we discuss the basics of hyperbolic affine spheres
[12, 13]. Let H be a hyperbolic affine sphere, which is a surface in R3

asymptotic to a cone over a bounded convex domain Ω. H is diffeo-
morphic to Ω under projection to RP2, and any projective action on Ω
lift to a special linear action on H. Two basic invariant tensors, the
Blaschke metric and the cubic tensor, thus, descend to Ω. The Blaschke
metric induces an invariant conformal structure on Ω, and, thus, on the
quotient Γ\Ω. The cubic tensor is equivalent to a holomorphic cubic
differential U .

Starting from a pair (Σ, U), we can recover the picture of (Ω,Γ)
by introducing a background metric g and solving Wang’s integrability
condition (21) for a conformal factor eu [71]. Then eug is the Blaschke
metric, and if it is complete, we recover the global hyperbolic affine
sphere H and (Ω,Γ).

The hyperbolic affine sphere over Ω can be defined as the radial graph
of − 1

v for v a convex solution to the Monge–Ampère equation

det vij =

(
−1

v

)4

,

with zero Dirichlet boundary condition at ∂Ω. We recall and give a proof
of Benoist–Hulin’s result that the Blaschke metrics and cubic tensors
converge in C∞loc on bounded convex domains converging in the Hausdorff
sense [6]. We also prove a new result, Proposition 3.3.2, concerning
sequences of pairs of points xj , yj ∈ Ωj , and show that if the Blaschke
distance between xj and yj diverges to infinity, then any Hausdorff
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limits of the pointed spaces ρj(Ωj , xj) and σj(Ωj , yj) for any sequences
ρj , σj ∈ SL(3,R), must be disjoint (in a sense made precise below).

Finally, we begin the proof of Theorem 1.0.1 in Section 4. In this sec-
tion, we show that a convergent regular sequence (Σj , Uj)→ (Σ∞, U∞)
of pairs of noded Riemann surfaces and regular cubic differentials pro-
duces regular convex RP2 structures which converge in the limit to the
convex RP2 structure corresponding to (Σ∞, U∞). The proof follows by
the method of sub- and super-solutions. We produced a locally bounded
family of sub- and super-solutions to (21) uniform over Creg

g , which is

the universal curve Cg over the Deligne–Mumford compactificationMg

minus the set of nodes. This allows us to solve the equation (21) and
to take the limit in C∞loc of the Blaschke metrics on Σreg

j as j →∞. We

then use a uniqueness theorem of Dumas–Wolf [22] to show that this
limit is the complete Blaschke metric on (Σreg

∞ , U∞). We use techniques
of ordinary differential equations to show the holonomy and developing
maps converge, and, thus, that the map Φ is continuous.

Some of the arguments in Section 5 are indirect in order to address an
essential difficulty—that there is not yet, for our purposes, a workable
analog of the thick-thin decomposition for convex RP2 structures. In
particular, we would like to have a geometric way of determining when
a family of convex RP2 structures on a surface is separating across a
simple loop (a neck, in our parlance). There is a good theory developed
by Lee–Zhang [41] for determining when the Hilbert metric (or equiv-
alently the Blaschke metric) becomes pinched in such a family, but we
must consider as well other types of degenerations in which the Hilbert
circumference of the neck remains bounded away from 0. We circum-
vent this difficulty via an indirect argument to prove Φ−1 is continuous.
In fact, the conformal structures induced by the Blaschke metrics do
become pinched, as follows from Theorem 5.2.2 below.

We prove Theorem 5.2.2 by showing that we can pass from conver-
gent sequences of regular convex RP2 structures to convergent sequences
of regular cubic differentials over noded Riemann surfaces. The proof
depends on the thick-thin decomposition of hyperbolic surfaces. In par-
ticular, we use Proposition 3.3.2 and lower bounds on the Blaschke
metric in terms of the hyperbolic metric, to rule out Benzécri sequences
of pointed convex domains (Ωj , xj) modulo SL(3,R) in which the point

approaches a node in the universal curve Cg. Conversely, if we have
points converging in the same component of the thick part of moduli,
we use the uniform bounds on the diameter and the ODE theory from
Section 4 to show the limit of the domains must be the same up to an
SL(3,R) action.

For the structures on surfaces we study, there are two complementary
points of view: 1) to require a basepoint to define the structure or 2)
to define the structure on a connected component of surface. From the
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point of view of the Blaschke metric and cubic differential, the holonomy
and developing map of the corresponding RP2 structure are constructed
via parallel transport of a flat connection on a vector bundle. As such,
a basepoint is essential. On the other hand, our definition of marked
convex RP2 structure depends on the basepoint only weakly, in terms of
the fundamental group, and we note the standard fact in Lemma 2.5.1
that the structure depends only on the connected component. Under
the neck separations we study, the number of connected components
increases. Mindful of this, we primarily relate the two points of view
in terms of the thick-thin decomposition of hyperbolic (and conformal)
structures. In particular, if a given neck is thin, we consider it naturally
as part of a family in which the neck pinches hyperbolically, and if where
we have a sequence of basepoints, we must ensure that they converge
to the thick part of the surface, and, indeed, to the correct component
of the thick part.

We give a brief rundown of the various geometric constructions in
this paper in terms of the basepoint and component points of view.
The basic definitions of convex RP2 structures, including the augmented
moduli space Raug

S are defined in terms of basepoints only weakly via
the fundamental groups, and, thus, are largely based on the connected
components of the surface, as is the thick/thin decomposition of hyper-
bolic and conformal structures in Subsection 2.9. The affine differential
geometry in Section 3 and the ODE theory developed in Section 4 use
basepoints heavily. Finally, in Section 5, we use another basepoint con-
struction, Benzécri’s theory of convergence of bounded convex pointed
domains, and then carefully integrate the two points of view, which is
complicated by the difficulties in relating the neck separation of the RP2

structures to the neck pinching of the induced hyperbolic structures. See
the outline of proof for Theorem 5.2.2 below.
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2. Definitions and topology

2.1. A note on terminology. We consider an oriented surface S of
negative Euler characteristic and finite topological type. S will, depend-
ing on the context, carry a convex real projective structure, a hyperbolic
metric, or a conformal structure. To each free homotopy class c of sim-
ple nontrivial non-peripheral loops in S, we consider the neck across
c to be an associated equivalence class of annular domains homotopic
to c. If S has a hyperbolic or convex RP2 structure, there is a unique
geodesic representative ` of c. Annular neighborhoods of ` in this case
are known as collars.

We study degenerations in which a surface S is separated along c,
and consider the limiting convex RP2 structure on S − c. Each convex
RP2 structure on S (and S−c) carries a canonical complete Riemannian
metric, the Blaschke metric, which in turn induces a canonical confor-
mal structure and, by the Uniformization Theorem, a hyperbolic metric
on S. The degenerations of convex RP2 structures we consider all induce
a “neck pinch” degeneration of the induced conformal and hyperbolic
structures, in which the hyperbolic circumference along c limits to zero.
At such a limit of conformal or hyperbolic structures, each of the two
ends of S − c induced by removing c has a cusp neighborhood, which
is conformal to a punctured disc, or is isometric to the Poincaré met-
ric on the punctured disk, respectively. In the conformal case, these
two cusps neighborhoods naturally form the two sheets of the regular
part of a neighborhood of a node {(z, w) ∈ C2 : zw = 0, |z|, |w| < 1}.
The relationship between the conformal and hyperbolic pictures is well-
developed, as a neck is conformally pinched if and only if it is hyperbol-
ically pinched. We recall the relationship between the conformal and
hyperbolic theories below in Subsection 2.9.

For most of the degenerations of convex RP2 structures on S along
c, however, the circumference along c with respect to the projectively-
invariant Blaschke (or Hilbert) metric does not go to zero. For this
reason, we decline to call the ends of S − c formed by removing c cusp
neighborhoods, and we also decline to say the neck across c is being
pinched. Instead, we refer to the two ends together as a separated neck,
and below in Subsection 2.6 we will introduce a more technical defini-
tion of regular separated neck to specify the details of the convex RP2

structure on S − c at these ends. With respect to the induced confor-
mal structure, each pair of ends forming a separated neck can be joined
together by adding a single node. With respect to the hyperbolic or
convex real projective geometries then, each node can be considered as
an identification of the appropriate pair of ends of S − c.

We assume in this paper that for an open oriented surface of finite
type, we orient each simple peripheral loop by the boundary orientation
of a hypothetical S1 boundary compactifying the end. In other words,
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on a punctured Poincaré disk, the orientation of a loop around the
puncture is clockwise.

2.2. An outline of the topology of the space of regular convex
RP2 structures. In this subsection, we quickly give the definition of the
augmented moduli space Raug

S and its topology, with full explanations
and related results appearing below in Subsections 2.5–2.8.

First of all, given a connected surface S, we define the Goldman
(deformation) space GS of convex RP2 structures on S as the space
(Ω,Γ)/ ∼, where Ω is a convex domain in RP2, Γ is a representation of
π1S into SL(3,R) acting on Ω to induce a convex RP2 structure on S,
and ∼ is the equivalence relation induced by the action of SL(3,R) by ρ :
(Ω,Γ) 7→ (ρΩ, ρΓρ−1). The topology is given by the Hausdorff topology
on domains Ω ⊂ RP2 measured with the Fubini–Study metric on RP2,
together with convergence of a fixed set of generators of Γ in SL(3,R),
and then taking the quotient topology under the equivalence relation
∼. For a disconnected surface S with components S1, . . . , Sn, define GS
to be the Cartesian product of the GSi with the product topology.

The augmented Goldman space Gaug
S is a stratified space with one

stratum GcS for each multi-curve c on S. (In other words, c is a collection
of free homotopy classes of simple nonoriented loops on S which are
nonperipheral, nonintersecting and nontrivial.) If S − c has connected
components S1, . . . , Sn, the pulling map PullS,c from GS to GcS is induced

by the map (Ω,Γ) 7→ ⊕ni=1(Ω,Γ|Si). Consider a convex RP2 structure X
on S− c which is in the closure of the image of PullS,c. On X each loop
` ∈ c is a separated neck, and is called a trivial if there is some d ⊂ c− `
so that X ∈ PullS−d,c−dGS−d. All other loops in c are called regular

separated necks, which represent nontrivial limits of the RP2 structure
along the necks. Then GcS is the set of all convex RP2 structures on S−c
for which all loops in c are regular separated necks.

Each neighborhood in Gaug
S of X ∈ GcS intersects GdS for all d ⊂ c. Let

O be an open subset of the subspace of GS−c for which every loop in c
is a separated neck. Then O is stratified by the regular separated necks
in c. Let Otriv,d ⊂ O be the set of RP2 structures with trivial separated
necks along d. Then the sets

Õ =
⊔
d⊂c
Otriv,d,

for all O, form a basis for the topology on Gaug
S .

Finally, the augmented moduli space Raug
S is given by the quotient of

Gaug
S by the natural action of the mapping class group, and is equipped

with the quotient topology.

2.3. Goldman’s attaching across a principal geodesic. We re-
count some of the basic facts about RPn manifolds. An RPn man-
ifold has by definition a maximal atlas of coordinate charts in RPn
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with gluing maps in PGL(n+ 1,R); in other words, there is an (X,G)
structure in the sense of Thurston and Ehresmann for X = RPn and
G = PGL(n+ 1,R). A geodesic in an RPn manifold is a path which is
a straight line segment in each RPn coordinate chart.

See, e.g., Goldman [27] for details. An RPn structure on an n-
manifold M can also be described in terms of the development-holonomy
pair. Choose a basepoint p ∈ M . The developing map is a local dif-
feomorphism from dev : M̃ → RPn, while the holonomy hol : π1M →
PGL(n + 1,R). Dev and hol are related by the following equivariance
condition: if γ ∈ π1M , then

dev ◦ γ = hol(γ) ◦ dev.

The developing map is defined in terms of a choice of RPn coordinate
chart around p ∈ M . First lift this chart to a neighborhood in M̃ , and
then analytically continue to define dev on all of M̃ . For any other choice
of coordinate chart and/or basepoint, there is a map g ∈ PGL(n+1,R)
so that

dev′ = dev ◦ g, hol′(γ) = g−1 ◦ hol(γ) ◦ g.
For oriented convex RPn manifolds, we may naturally lift the holonomy
hol : π1M → PGL(n+ 1,R) to lie in SL(n+ 1,R). We will consider the
holonomy to lie in SL(n+ 1,R) for the remainder of this paper.

An RPn manifold X is called convex if the image of the developing
map is a convex domain Ω in an inhomogeneous Rn ⊂ RPn, and X
is a quotient hol(π1X)\Ω. X is properly convex if Ω is, in addition,
bounded in an inhomogeneous Rn ⊂ RPn. All the manifolds we study
in this paper are properly convex, and we often simply call them convex.

On any closed oriented convex RP2 surface of genus at least 2, the RP2

holonomy (in SL(3,R)) around any nontrivial simple loop is hyperbolic,
in that it is conjugate to a diagonal matrix D(λ, µ, ν), where λ > µ >
ν > 0 and λµν = 1. Choose coordinates in RP2 so that this holonomy
action is given by H = D(λ, µ, ν). The three fixed points of this action
are the attracting fixed point [1, 0, 0], the repelling fixed point [0, 0, 1],
and the saddle fixed point [0, 1, 0]. Define the principal triangle T as the

projection onto RP2 of the first octant in R3. The principal geodesic ˜̀

associated to this holonomy matrix is the straight line in the boundary
of T from the repelling to the attracting fixed point. Let T̄ denote the
triangle given by the reflection of T across the principal geodesic given
by the matrix J = D(1,−1, 1). The vertices of the principal triangle
are the fixed points of the holonomy matrix. The quotient T/〈H〉 is

called the principal half-annulus, while the quotient of (T t ˜̀t T̄ )/〈H〉
is called the π-annulus.

We recall Goldman’s theory of attaching RP2 surfaces across a prin-
cipal geodesic. On a properly convex RP2 surface Sa with principal
geodesic boundary, an annular neighborhood of a principal geodesic
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boundary component ` is called a principal collar neighborhood. We
may choose coordinates so that a lift ˜̀ of ` is the standard principal ge-
odesic mentioned above. Assume the image Ωa of the developing map is
then a subset of the principal triangle T̄ . The principal collar neighbor-
hood then develops to be a neighborhood N of ˜̀ in T̄ which is invariant
under the action of the holonomy matrix H = D(λ, µ, ν). Then the
quotient N a = 〈H〉\N is the principal collar neighborhood.

Now consider a second convex RP2 surface Sb with principal geo-
desic boundary, together with a principal geodesic boundary compo-
nent. Choose local RP2 coordinates so that the lift of this geodesic
boundary loop is −˜̀ (the minus sign denoting the opposite orientation),
and the image Ωb of the developing map of Sb is contained in T . If the
holonomy around −˜̀ is H−1, then H acts on Ωa t ˜̀t Ωb. (In order to
glue the surfaces along `, we need to glue across all the lifts of `, which
we may describe as hol(β)◦ ˜̀ for β in the coset space π1(Sa)/〈γ〉, where
γ is the element in π1 determined by the loop `.)

We say an RP2 surface has principal geodesic boundary if its boundary
is compact and each component of the boundary is a principal geodesic
loop around which the holonomy is hyperbolic, as above. We also say
a disconnected RP2 surface is properly convex if each of its connected
components is. We are now ready to state Goldman’s gluing theorem
in the form we will need.

Theorem 2.3.1 (Goldman). Let M be a properly convex RP2 sur-
face with principal geodesic boundary. M is not assumed to be either
connected or compact. Let B1, B2 be two boundary components, and as-
sume that they have principal collar neighborhoods N1, N2, respectively,
which are projectively isomorphic under an orientation-reversing projec-
tive map J across the boundary. This induces a projective structure on
a full neighborhood of the geodesic formed from gluing B1 and B2. The
resulting RP2 surface M̄ is also convex. We say the resulting surface M̄
is formed from M by gluing along B1, B2 via the orientation-reversing
map J . M̄ is properly convex except in the case of gluing two principal
half-annuli together to make a π-annulus.

Remark. Goldman states this theorem (Theorem 3.7 in [27]) a bit
differently, in that the hypothesis is that M is compact as an RP2 surface
with boundary. However, proper convexity, rather than compactness,
is the criterion used in Goldman’s proof. The image of the developing
map of a properly convex M with a hyperbolic holonomy along the
principal boundary geodesic must be properly contained in a principal
triangle. Proper convexity is essential for us, as the π-annulus, which
has principal boundary geodesics and is convex but not properly convex,
cannot be glued to another RP2 surface while maintaining convexity.
In fact, Choi [14, 15] has cut non-convex closed RP2 surfaces along
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geodesics into a disjoint union of properly convex pieces and π-annuli.
Choi–Goldman use this construction to classify all closed RP2 surfaces
[19].

Remark. In this work, we stay in the category of properly convex
RP2 surfaces, as we never glue two principal half-annuli together. But
we will below often consider convex RP2 surfaces formed by gluing a
principal half-annulus to a properly convex RP2 surface with principal
geodesic boundary and of negative Euler characteristic (this is the case
we call “bulge ∞” below).

Corollary 2.3.2. Let M be a properly convex RP2 surface with prin-
cipal geodesic boundary. Assume the hyperbolic holonomies along two
boundary components B1, B2 are, up to conjugation, inverses of each
other. Then we may glue B1 to B2 as above to make the RP2 surface
M̄ properly convex.

Proof. Choose local RP2 coordinates near B1, B2 so that there is a lift
of each to the standard principal geodesic ˜̀, so that the neighborhoods
of B1, B2 are respectively on opposite sides of the ˜̀, and so that the
holonomies around B1, B2 are diagonal. Since they are both in canoni-
cal form, they must actually be inverses of each other, say H and H−1.
Now for a point p in T close enough to the interior of ˜̀, we may form a
neighborhood of ` by moving p by the one-parameter group Ht corre-
sponding to the holonomy. The region between {Htp} and ` is then a
principal collar neighborhood N a. But now we can do the same thing
on the other side of ` to find a principal collar neighborhood N b. Since
their holonomies are inverses of each other, we see that, after possi-
bly shrinking the collar neighborhoods, N a = JN b with the holonomy
equivariant under the action of J . This means that J descends to the
quotient, and the hypotheses in Theorem 2.3.1 are satisfied. Note J
commutes with the holonomy matrix. q.e.d.

Goldman’s construction in Theorem 2.3.1 involves a choice of a orien-
tation-reversing projective map J to glue the collar neighborhoods across
the principal geodesic boundary components. If standard coordinates
are chosen on R3 as above, then we may choose J = D(1,−1, 1).
Note J commutes with the holonomy H. But there are other possible
choices determined by generalized twist parameters σ, τ . For Mσ,τ =
D(e−τ−σ, e2σ, eτ−σ), consider the projective involution Jσ,τ = Mσ,τJ ,
which still commutes with H. τ is called the twist parameter, as it cor-
responds to the usual twist parameter on a hyperbolic surface. We call
σ the bulge parameter. (In [50], these are called the horizontal and ver-
tical twist parameters, respectively.) Our choice of J is not canonical,
as it depends on a choice of coordinates; the twist and bulge parameters
then are relative to this choice of J . Below we define limiting cases of
bulge ±∞ independently of the choice of J .
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On a neck with hyperbolic holonomy, with coordinates on R3 so that
the holonomy is given by the diagonal matrix H = D(λ, µ, ν) with
λ > µ > ν > 0 and λµν = 1. A Dehn twist is a generalized twist which
corresponds exactly to the holonomy along the geodesic loop. The Dehn
twist is transverse to the family of bulge parameters, but is not typically
strictly a twist parameter as defined above.

Finally, we define the geometry of hyperbolic ends with bulge ±∞.
An end of a convex RP2 surface with hyperbolic holonomy has bulge
+∞ if the image of the developing map contains a principal triangle
T . Similarly, an end of a convex RP2 surface with hyperbolic holonomy
has bulge −∞ if the image Ω of the developing map has the principal
geodesic ˜̀in its boundary. In this case, we choose T and Ω to be disjoint,
and the RP2 surface has natural principal geodesic boundary at the end.
If we then attach a principal half-annulus across this geodesic, it changes
the RP2 structure at the end from bulge −∞ to bulge +∞.

2.4. General topology of orbit spaces. We will need a few lemmas
about first countability and spaces of orbits of homeomorphisms. The
proofs follow closely from the definitions.

Lemma 2.4.1. Let X be a first countable topological space, and let
Φ be a set of homeomorphisms acting on X. Then the quotient space
Φ\X is first countable with respect to the quotient topology.

Lemma 2.4.2. Let X be a first countable topological space, let Φ be
a set of homeomorphisms acting on X, and let f be the projection to the
quotient space. Then yi → y in Φ\X if and only if there is a sequence
xi → x in X with yi = f(xi) and y = f(x).

2.5. Markings on convex RP2 surfaces. In this subsection, we con-
sider a connected oriented surface S of negative Euler characteristic. A
marked convex RP2 structure on S is given by the quotient {(Ω,Γ)}/ ∼,
where Ω is a properly convex domain in RP2 and, for a basepoint x0 ∈ S,

Γ : π1(S, x0)→ SL(3,R)

is a discrete embedding which acts on Ω so that Γ\Ω is diffeomorphic
to S. The equivalence relation ∼ is given by (Ω,Γ) ∼ (AΩ, AΓA−1) for
A ∈ SL(3,R). Note that Ω is the image of a developing map for this RP2

structure on S, and Γ is the corresponding holonomy representation.
We have the following standard lemma which allows us to ignore the

basepoint for connected S.

Lemma 2.5.1. On a connected surface S, all choices of basepoint
for the fundamental group give rise to the same element in the quotient
space {(Ω,Γ)}/ ∼.

Proof. If x is another basepoint, choose a path from x0 to x and
develop the RP2 structure along the path. In this case Ω remains fixed.
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For two non-homotopic paths p1, p2 from x0 to x, the resulting pairs
(Ω,Γ)pi , i = 1, 2 can be seen to differ by the action of an element in
SL(3,R). q.e.d.

Remark. It is perhaps more usual to address the deformation space
of convex RP2 structures directly without using a basepoint for the
fundamental group, as in, e.g., Goldman [26]. We still find specifying
the basepoint useful, however, as it is natural from the point of view
of developing the convex RP2 structure by parallel transport on a flat
vector bundle, as in Subsection 3.4 below.

Define the Goldman space of S by GS = {(Ω,Γ)}/ ∼, where as
above, Ω is a bounded convex domain, Γ is a faithful representation
of π1(S, s0) → SL(3,R) which acts discretely and properly discontinu-
ously on Ω so that S is diffeomorphic to Γ\Ω. The equivalence relation∼
is given by the action of SL(3,R) described above. We provide GS with
the following quotient topology. First of all, for convex domains in RP2,
consider the Hausdorff topology with respect to the Fubini–Study met-
ric in RP2. For the space of representations Γ, use the product topology
of one copy of SL(3,R) for each element of Γ(γ) for γ ∈ π1(S, x0) (note
we consider only surfaces of finite type, for which π1(S, x0) is finitely
generated). Since Γ is countable, this topology is first countable. Now
the equivalence relation ∼ represents the orbits of a group action of
SL(3,R), which acts by homeomorphisms on the space of all (Ω,Γ),
equipped with the product of the two topologies described above. Then
Lemma 2.4.1 shows this quotient topology on GS is also first countable.

In the case that S is a closed surface of genus g ≥ 2, we may define
Goldman space Gg = GS . This deformation space is the analog of Te-

ichmüller space for convex RP2 structures on S. Goldman [27] proved
that Gg is homeomorphic to R16g−16. For augmented Goldman space,
which we define below, we will need the more general theory described
above, which also applies to noncompact S.

It will be useful for us to allow the case in which S = tni=1Si has
finitely many connected components. In this case, define GS as the
Cartesian product GS1 × · · · × GSn with the product topology.

Remark. The topology we consider is related to the Chabauty topol-
ogy consider by Harvey [31]. See also Wolpert [76]. Harvey’s work is
concerned with limits of Fuchsian groups under the Chabauty topology.
In particular, the image of the developing map for a Fuchsian group is
always the hyperbolic plane, while our analogous domains Ωj can and

do vary. Moreover, for noncompact convex RP2 surfaces which natu-
rally appear as limits in our case (regular convex RP2 surfaces), the
holonomy representations Γj do not determine the geometry. Distinct

pairs of convex RP2 surfaces with isomorphic holonomy naturally arise:
consider a surface with a simple end, put hyperbolic holonomy on the
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end, and vary allow the bulge parameter to be either −∞ or +∞. (For
compact convex RP2 surfaces, a rigidity theorem for the holonomy spec-
trum holds [21, 34, 36].) Our definition is in a sense a little less general
than Harvey’s, as we specify the loops along which the degeneration
occurs.

Our topology is also analogous to the geometric topology on hyper-
bolic manifolds (see, e.g., [5]), in which sequences of pairs of points
whose hyperbolic distance diverges to infinity cannot reside in the same
geometric limit space. Although our definitions are phrased differently,
we do see below in Proposition 3.3.2 that a similar property holds with
respect to the projectively-invariant Blaschke metric on Ω.

2.6. Separated necks and the pulling map. Let S be a connected
oriented surface of finite hyperbolic type. Define C(S) to be the set
whose elements consist of sets of nontrivial free homotopy classes of
simple loops on S so that each loop is nonperipheral and no two loops
intersect (C(S) may be identified with the set of simplices of the complex
of curves on S). Let c ∈ C(S). Denote the connected components of
S − c by S1, . . . , Sn. Note that each surface Si admits a finite-area
hyperbolic metric. (In the notation below, we will not be careful to
distinguish between c ∈ C(S) as a collection of nonintersecting loops in
S as opposed to a collection of homotopy classes.)

If c ∈ C(S), we define the pulling map

PullS,c : GS → GS−c
as follows. Let S − c = tni=1Si. Then for X ∈ GS , take a representative
(Ω,Γ) in the equivalence relation for X. Represent PullS,c(X) by the

ordered n-tuple with ith element represented by (Ω,Γi), where Γi = Γ|Si
is a sub-representation of Γ corresponding to π1(Si, xi) for a basepoint
xi. (Recall Lemma 2.5.1 shows the marked convex RP2 structure is
unchanged if the choice of basepoint changes.) To be precise, for the
subsurface Si ⊂ S, the fundamental group of Si is naturally a conjugacy
class of subgroups of π1(S, xi). We choose Γi to be the composition of
the injection π1(Si, xi) → π1(S, x0) with Γ. The element of GS is inde-
pendent of the conjugacy class though: Let η = Γ(γ) for γ ∈ π1(S, xi),
and consider (Ω,Γi) ∼ η(Ω,Γi) = (Ω, ηΓiη−1). Thus, choosing a par-
ticular sub-representation in the conjugacy class to identify as Γi is
harmless.

Note for each RP2 surface Xi = Γi\Ω, the developing map still has
image equal to all of Ω, while the group of deck transformations Γi(π1Si)
is smaller than Γ(π1S). In terms of Goldman’s attaching map, the
domain attached across the principal geodesic still remains attached
under the pulling map. This map is called pulling in part because it not
simply cutting along the principal geodesic. Instead, one can imagine a
viscous liquid being pulled apart, and the material on either side of the
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principal geodesic remains attached to the other side after the neck is
pulled.

For S an oriented connected surface of negative Euler characteristic,
let ` be a non-peripheral non-trivial simple loop. Let X̃ be a (possibly
disconnected) convex RP2 structure on S − `. Then we say the pair of
ends formed by removing ` from S form a trivial separated neck if there
is a convex RP2 structure X on S so that X̃ = PullS,`(X).

A pair of ends of a (possibly disconnected) convex RP2 surface forms
a regular separated neck in these three cases:

• The holonomy around each end is parabolic.
• The holonomy around each end is quasi-hyperbolic, and the ori-

ented holonomies around each end are, up to conjugation in
SL(3,R), inverses of each other.
• The holonomy around each end is hyperbolic; the oriented holo-

nomies around each end are, up to conjugation, inverses of each
other; and the RP2 structure about one of the two ends has bulge
+∞, while the other end has bulge −∞.

A simple end of a convex RP2 surface is regular if it forms half of a
regular separated neck.

Theorem 2.6.1. Let S be a surface each of whose components has
negative Euler characteristic, and let c ∈ C(S). Then under the topology
defined above, the closure in GS−c of the image PullS,c(GS) consists of

convex RP2 structures on S− c for which the neck across each loop in c
is either a regular or a trivial separated neck.

Proof. Marquis showed that since each component of S has negative
Euler characteristic, the holonomy around each loop ` ∈ c is hyperbolic
[52].

Recall that a hyperbolic element in SL(3,R) has three distinct pos-
itive eigenvalues. Any nonhyperbolic limit A of such holonomies must
still have all positive eigenvalues. Moreover, it must have maximal Jor-
dan blocks (the other cases are ruled out by Choi [15] and the author
[51]; see also [58]). These nonhyperbolic limits are exactly the quasi-
hyperbolic and parabolic cases, which are regular. Note also that in
the nonhyperbolic cases, there is no ambiguity about the developing
image of the end, as there is in the hyperbolic case. For the quasi-
hyperbolic case, the inverse property follows from the fact that the ho-
lonomy around the two ends of a neck are inverses of each other (since
these loops are freely homotopic in S with opposite orientations).

Now we consider the cases of hyperbolic limits, and show that any
limits which are not trivial must have bulge ±∞. In order to do this,
consider a sequence Xi ∈ GS .

There are two cases to consider. First of all, assume that S−` = S1t
S2 is disconnected. Then the hypothesis shows that there are sequences
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(Ωk,Γk) and ρk, σk ∈ SL(3,R) so that ρk(Ωk,Γk|S1) → (O, H) and
σk(Ωk,Γk|S2)→ (U , G). The quotient H\O gives the RP2 structure on
S1, while G\U gives the structure on S2. Now pick a based loop `0
in S which is freely homotopic to `, and let γk be the corresponding
element Γk(`0). Recall we assume ` is oriented in the same direction as
the boundary of S1. This implies ` is oriented in the opposite direction
to the boundary of S2. Let γO and γU be the limits of ρkγkρ

−1
k and

σkγkσ
−1
k , respectively. We may choose coordinates (and modify ρk and

σk) so that the limiting hyperbolic holonomies around ` satisfy

γO = D(λ, µ, ν), γU = γ−1
O , λ > µ > ν > 0,

where D represents the diagonal matrix. In other words, for γO, the
principal geodesic is the line segment from [1, 0, 0] to [0, 0, 1] with non-

negative entries. Denote this principal geodesic by ˜̀.
We also can make a further normalization to assume that

(1) σkγkσ
−1
k = ρkγkρ

−1
k = D(λk, µk, νk).

Here is how to justify this normalization: The eigenvalues λk, µk, νk of
σkγkσ

−1
k approach λ, µ, ν. For k large enough, λk, µk, νk are uniformly

bounded, positive and separated from each other. We may choose a
matrix φk of eigenvectors of σkγkσ

−1
k which approaches the identity

matrix as k → ∞ (for example, we may choose eigenvectors of unit
length; note the identity matrix is a matrix of unit eigenvectors of the
limit γO of σkγkσ

−1
k ). Then (σkΩk, σkΓkσ

−1
k ) → (O, H) if and only if

φ−1
k (σkΩk, σkΓkσ

−1
k )→ (O, H). Note our construction implies

φ−1
k σkγkσ

−1
k φk = D(λk, µk, νk).

Thus, we may replace σk by φ−1
k σk, and we may assume (1).

Now Equation (1) implies the diagonal matrix D(λk, µk, νk) com-
mutes with σkρ

−1
k , and so σkρ

−1
k is diagonal as well. Define αk = σkρ

−1
k .

Thus, we write αk = D(λtkk , µ
tk
k , ν

tk
k ) ·D(e−sk , e2sk , e−sk) as a product of

holonomy and bulge matrices. Now if αk = σkρ
−1
k has a subsequential

finite limit α modulo Dehn twists, we have O = limj→∞ αkjρkj (Ωkj ) =
αU . Moreover, if we let α̂k be the matrix given by the product of αk by
an integral power of a Dehn twist so that

α̂k = D(λt̂kk , µ
t̂k
k , ν

t̂k
k ) ·D(e−sk , e2sk , e−sk),

for t̂k ∈ [0, 1), then σkjΓkjσ
−1
kj

= α̂kjρkΓkjρ
−1
k α̂−1

kj
converges to a limit

L. Apply Goldman’s Theorem 2.3.1 above to show the neck is trivial.
Thus, we may assume the sk converge to ±∞.

(Here is how to apply Theorem 2.3.1 to the present situation. Con-

sider Ŝ1 as the convex RP2 surface homeomorphic to S1 formed by cut-
ting along the principal geodesic at the end `. This can be constructed
by letting Ô be the convex domain formed by cutting along h˜̀ for all
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h ∈ H(π1S1). Then Ŝ1 is the quotient H\Ô. We can similarly form

Ŝ2 with image Û of the developing map. Then since α−1U = αO, the
domains Ô and α−1Û are disjoint subsets of O with common boundary
segment ˜̀. Since the group actions also match up on all of O, there are
principal collar neighborhoods in Ô and α−1Û which are invariant under
holonomy along ˜̀ and are projectively equivalent via the principal re-
flection across ˜̀. Thus, Theorem 2.3.1 applies, and we may glue Ŝ1 and
Ŝ2 together via this identification to form a convex RP2 surface. This
surface must be identical to the quotient L\O by analytic continuation,
and, therefore, uniqueness, of the developing map.)

Assume without loss of generality that sk → +∞. To show the
bulge must be infinite in the limit, we recall the principal triangles with
principal geodesic ˜̀. Let T be the open triangle in RP2 given by the
projection of the first octant in R3, and let T̄ be the reflection of T
across the principal geodesic. Since the surface S is separated along
this principal geodesic, we may assume that the universal covers O and
U of S1 and S2 respectively are in part on opposite sides of ˜̀. Without
loss of generality, assume that O ∩ T̄ 6= ∅ and U ∩ T 6= ∅. From the
point of view of the end on S1, recall we say the bulge is +∞ if the
principal triangle T ⊂ O, and the bulge is −∞ if the principal geodesic
˜̀⊂ ∂O.

Let q ∈ U ∩ T . Then for large k, q ∈ ρkΩk and so αkq ∈ σkΩk. This
shows that the limit of αkq is in the closure of O. But since we know
αk has bulge parameter sk going to +∞, αkq → [0, 1, 0] from within T .

Since the principal geodesic ˜̀ ⊂ Ō, we see by convexity that T ⊂ O,
and, thus, that the bulge of this end of S1 is +∞.

On the other hand, the same argument shows that if there is a p ∈
U ∩ T̄ , then T̄ ⊂ O. This is impossible, as then O ⊃ T̄ ∪ ˜̀∪ T , which
contains the coordinate line with infinite point [0, 1, 0]. This contradicts
the proper convexity of O. Thus, U ∩ T̄ = ∅, which means that the
principal geodesic ˜̀ ⊂ U , and, thus, the bulge of this end of S2 is
−∞. The limit then satisfies the condition for a separated neck with
hyperbolic holonomy to be regular.

For the second case, assume S− ` = S1 is connected. In this case, we
have a sequence of marked RP2 structures (Ωk,Γk) and distinguished
hyperbolic elements γk, δk ∈ Γk(π1S), together with attaching maps
Tk ∈ Aut Ωk so that TkγkT

−1
k = δ−1

k (see, for example, Harvey [31]).
The hyperbolic elements γk and δk both represent the holonomy (with
opposite orientations) of the neck to be separated. We assume that
(Ωk,Γk|S1)→ (O, H). (In this case, since there is a single limit domain,
we absorb the ρk ∈ SL(3,R) into the definitions of Ωk and Γk. In the
present case, Tk will diverge instead of ρk.) See Figure 1.

If γ = lim γk is parabolic or quasi-hyperbolic, then the holonomy is
regular, and the holonomy type of δk is the inverse of that of γk.
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Figure 1

If, on the other hand, γ is hyperbolic, we proceed as above. Choose
coordinates so that γ = D(λ, µ, ν). By the same arguments as above,
we may slightly modify the Ωk for k large so that γk = D(λk, µk, νk) as
well. Let δ = lim δk and fix A ∈ SL(3,R) so that AγA−1 = δ−1. Since
δk → δ, we find

A−1Tk ·D(λk, µk, νk) · T−1
k A→ D(λ, µ, ν).

As above, there is a matrix φk of eigenvectors of A−1Tk ·D(λk, µk, νk) ·
T−1
k A so that φk → I and

φ−1
k A−1Tk ·D(λk, µk, νk) · T−1

k Aφk = D(λk, µk, νk).

Thus, T−1
k Aφk is diagonal, and may be written as the product of Dehn

twist and bulge matrices D(λtkk , µ
tk
k , ν

tk
k ) ·D(e−sk , e2sk , e−sk). If sk has a

finite limit, then we can show, as in the case above in which S− ` is not
connected, that the separated neck is trivial. (Theorem 2.3.1 applies in
a similar way.) The remaining cases to analyze are sk → ±∞. Assume
without loss of generality that sk → +∞. Recall the definitions of the
principal geodesic ˜̀ and principal triangles T, T̄ as above. Let ˜̀ be the
line segment from [1, 0, 0] to [0, 0, 1] with nonnegative coordinate entries,
and let T be the open triangle with vertices [1, 0, 0], [0, 1, 0], and [0, 0, 1]
all of whose coordinates are nonnegative. Finally, let T̄ be the reflection
of T across ˜̀. By the limiting attaching map A, we may assume that
O ∩ T̄ and O ∩AT are not empty. For q ∈ O ∩ T̄ , we see that for large
k, q ∈ Ωk ∩ T̄ . Then φkA

−1Tkq → [0, 1, 0] from within T̄ , which shows

Tkq → A[0, 1, 0] from within AT̄ . Since Ō ⊃ A˜̀, we see by convexity
that O ⊃ AT̄ , and so the bulge of this end is +∞.
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On the other hand, if there is a p ∈ O ∩ T , then the same argument
shows O ⊃ AT as well. This contradicts the proper convexity of O, and
so we see that O ∩ T = ∅, and, thus, the bulge of this end is −∞. This
picture satisfies the definition of a regular separated neck. q.e.d.

2.7. Augmented Goldman space. In order to introduce the aug-
mented Goldman space, we first form, as a warmup, a bordification of
GS by attaching singular RP2 structures which degenerate only along
a single simple, nonperipheral, homotopically nontrivial loop `. Define
G`S as the set of all properly convex RP2 structures on S − ` which
form regular separated necks across `. We produce a topology on the
bordification

GS t G`S .
First of all, if X ∈ GS , then we declare all open neighborhoods in GS to
form a neighborhood basis in the bordification.

Now let X ∈ G`S . First of all, consider open sets among RP2 structures
on S − ` which form separated necks across `. Each such open set
O ⊂ GS−` contains both regular and trivial necks across `. Now we

construct from O a subset Õ of GS t G`S . Let Oreg consist of the RP2

structures with regular necks across `, and let Otriv = O −Oreg consist

of the RP2 structures with trivial necks across `. Then define

Õ = Oreg t Pull−1
S,`Otriv.

In other words, for each RP2 structure with a trivial neck in a neigh-
borhood of X, we attach the neck by taking the inverse image of the
pulling map. All such Õ form a neighborhood basis for the topology of
augmented Goldman space near X. Note that this topology on GS tG`S
is not locally compact, since the pulling map is unchanged under each
Dehn twist around `. But, by Subsection 2.4, we may choose a countable
collection of such neighborhoods, and so the topology is first countable.

If c ∈ C(S), define GcS to be the set of all properly convex RP2

structures on S − c with regular necks across each loop in c. (If c = ∅,
G∅S = GS .) As a set, augmented Goldman space

Gaug
S =

⊔
c∈C(S)

GcS .

If X ∈ Gaug
S , then there is a unique c ∈ C(S) so that X ∈ GcS , and, thus,

X has a regular separated neck across each loop in c. As we deform X,
some of these necks may remain separated, while others may be glued
together. As above, let O be a neighborhood of X in the subset of GS−c
consisting of those RP2 structures which have separated necks across
each loop in c. Each Y ∈ O has either trivial or regular separated necks
across each loop in c. Then

O =
⊔
d⊂c
Otriv,d,
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where Y ∈ Otriv,d if and only d is the set of loops across which the
separated neck is trivial in Y (thus, the necks across the loops in c− d
are the regular separated necks). Now define

Õ =
⊔
d⊂c

Pull−1
S,dOtriv,d,

where PullS,∅ is the identity map. The set of such Õ forms a neighbor-
hood basis for the topology of Gaug

S around X.

Remark. It is instructive to compare the construction of Gaug
S to

the construction of augmented Teichmüller space; see, e.g., [1]. Given
a free simple loop c in a surface closed S of genus at least two, we
may take the hyperbolic length parameter around c to be zero. Then
no neighborhood of this point in the augmented Teichmüller space has
compact closure, as the associated twist parameters around c take all
real values in the neighborhood.

As we must keep track of the developing map of a surface pulled across
a loop c, each point in GS−c a priori has a neighborhood in Gaug

S which
contains all integral powers of Dehn twists along c. This shows Gaug

S is
not locally compact. We can say more, however. For the regular cases,
which are of primary interest, one may check that each neighborhood of
an RP2 structure all of whose separated necks are regular includes RP2

structures on the glued necks twisted by the one-parameter group of all
real powers of the holonomy.

We have defined augmented Goldman space essentially in terms of
the dev-hol pair (Ω,Γ) of convex RP2 structures, as opposed to the
Fenchel–Nielsen parameters commonly used in study of augmented Te-
ichmüller space. It should be interesting to try to use Goldman’s analog
of Fenchel–Nielsen parameters on convex RP2 structures [27] to put co-
ordinates on augmented Goldman space. Goldman’s parameters have
been extended by Marquis to the cases of parabolic and quasi-hyperbolic
holonomy [52].

2.8. Augmented moduli space. Our main space of interest is in the
quotient of augmented Goldman space by the mapping class group,
which we call the augmented moduli space of convex RP2 structures. Re-
call the mapping class group is the group of orientation-preserving home-
omorphism modulo diffeomorphisms isotopic to the identity MCG(S) =
Diff+(S)/Diff0(S).

Consider a diffeomorphism φ of S. If x0 ∈ S is a basepoint, then
φ induces a map φ∗ : π1(S, x0) → π1(S, φ(x0)). We fix a holonomy
representation Γ : π1(S, x0)→ SL(3,R). We assume that for the image
of the developing map Ω, that the quotient Γ\Ω is diffeomorphic to S.

Proposition 2.8.1. MCG(S) acts on GS by homeomorphisms.
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This is quite standard, at least in the case S is closed. For example,
Labourie showed that the action of MCG(S) on GS is proper and also
that the quotient is Hausdorff [39].

Proof. Let [(Ω,Γ)] ∈ GS , where [·] denotes the equivalence class under
the SL(3,R) action. In order to consider the action of the diffeomor-
phism φ on Γ, each homotopy class of paths in S from x0 to φ(x0) de-
termines an isomorphism from π1(S, x0) to π1(S, φ(x0)). As in Lemma
2.5.1 above, different choices of paths lead to representations equivalent
under the SL(3,R) action. This shows that the action of φ on (Ω,Γ)
produces an equivalence class in GS . Moreover, the actions of the dif-
feomorphism group and SL(3,R) commute with each other, and so the
diffeomorphism group acts on GS .

All that remains is to show the diffeomorphisms isotopic to the iden-
tity act trivially. The argument in the previous paragraph shows that we
may assume such a diffeomorphism preserves the basepoint x0. In this
case, an isotopy of diffeomorphisms induces a homotopy of loops based
at x0, and so the elements of π1(S, x0) are fixed by diffeomorphisms
isotopic to the identity.

It is clear from the definition of the topology on GS that this action
is by homeomorphisms. q.e.d.

We denote the quotient MCG(S)\GS by RS .
To extend this proposition to Gaug

S , we must extend our marking to the
case of separated necks. Each c ∈ C(S) represents a set of separated
necks, and S − c has a number of connected components S1, . . . , Sn.
First of all, consider the case that S1 = S − c is connected. Then the
action of Γ(π1(S, x0)) is restricted on S1 to include only those homotopy
classes of loops in π1(S1, x0) which have representative loops which do
not intersect c. In other words,

Γ|S1(π1(S1, x0)) ⊂ Γ(π1(S, x0)) ⊂ SL(3,R)

in this case.
In the case S−c = tni=1Si is not connected, then we consider π1(Si, xi)

for basepoints xi ∈ Si. First of all, we may relate π1(S, x0) to π1(S, xi)
for each i by choosing a path from x0 to xi. As above in Lemma 2.5.1,
different choices of a homotopy class of each such path lead to holonomy
representations conjugate by elements of SL(3,R). But our definition of
GcS allows for conjugating by one element of SL(3,R) for each connected
component Si of S−c, and so our argument works independently of the
choice of paths. Now we restrict only to those elements in π1(S, xi)
which do not intersect c: these are exactly the elements of π1(Si, xi).

Now the following proposition follows without much difficulty from
the definitions laid out above. The assertion about Raug

S being first
countable follows from Lemma 2.4.1.
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Proposition 2.8.2. For every c ∈ C(S), a diffeomorphism φ of S
induces a homeomorphism of Gaug

S which sends each stratum GcS home-

omorphically onto Gφ(c)
S . The mapping class group acts by homeomor-

phisms on Gaug
S , and the quotient topology on Raug

S ≡MCG(S)\Gaug
S is

first countable.

2.9. Plumbing coordinates and the topology of regular cubic
differentials. In this subsection, we consider the relevant holomorphic
theory, as opposed to the real projective theory above, in order to de-
fine the topology on the total space of the bundle of cubic differentials
over Mg. Below in Subsection 3.4, we will see how the RP2 struc-
ture on a closed surface S is determined by a pair (Σ, U) of conformal
structure and cubic differential. Also, we recall some basic facts about
the thick/thin decomposition of complete hyperbolic surfaces and its
relationship to the holomorphic theory on Mg. The hyperbolic and
conformal structures we consider will not be primarily considered with
respect to basepoints. Instead, later in Sections 4 and 5, we will see how
to choose basepoints in the thick part of moduli.

To define the topology of the total space of the bundle Vg of regular

cubic differentials overMg, we start with a heuristic picture of the main
construction. Recall that on the regular part Σreg of a compact stable
noded Riemann surface Σ, there is a unique complete conformal finite-
area hyperbolic metric k. Each hyperbolic surface can then naturally
be decomposed into the thick part and the thin part, as Margulis’s
Lemma shows that there is a universal positive constant c̃ so that the
set of points with injectivity radius less than c̃ is a disjoint union of
annular cusp and collar neighborhoods. The noded Riemann surface
is smooth (in other words, there are no nodes) if and only if there are
no cusp neighborhoods. Each cusp neighborhood is isometric to every
other, and a single parameter, the length l of the core geodesic, is the
only hyperbolic invariant for collar neighborhoods centered around the
geodesic. Each cusp or collar neighborhood is metrically rotationally
invariant. Allowing l → 0 changes a collar neighborhood to a pair of
cusp neighborhoods, and heuristically provides a path to the boundary
of the moduli space of Riemann surfaces. In this setting, we would
like to define a related conformal metric m on each Riemann surface
given by replacing the hyperbolic metric on the thin part by conformal
flat cylindrical metrics of circumference 2c̃ so that the resulting metric,
hyperbolic on the thick part and flat on the thin part, is continuous.
See Figure 2. Then, inspired by Wolpert [78], we may define regular
cubic differentials as holomorphic cubic differentials on Σreg which are
bounded in the L∞m norm and whose residues match up appropriately.
Convergence of families of regular cubic differentials over a sequence of
noded Riemann surface Σi which converge to Σ∞ inMg is then defined
to be convergence in L∞loc with respect to the mi metric.
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Figure 2

This heuristic picture is imprecise, and using l as a parameter in
moduli is not well-suited to the geometry of holomorphic objects such
as regular cubic differentials. Instead, we consider Wolpert’s hyperbolic
metric plumbing coordinates, which describe the holomorphic moduli of
noded Riemann surfaces, but also are constructed to be closely related
to the hyperbolic metrics.

Consider local V-manifold cover coordinates on Mg near a nodal
curve. These are due to Masur [54] and refined by Wolpert. See Wolpert
[77] for an overview and references. Consider a stable noded Riemann
surface Σ with n nodes. We think of Σ as representing a point in the
boundary of the Deligne–Mumford compactification of the moduli space
of closed Riemann surfaces of genus g. For the ith node there is a small
cusp neighborhood Ni so that:

• The closures of the Ni are disjoint in Σ.
• There are coordinates zi, wi on each part of Ni∩Σreg and a uniform

constant c < 1 so that

N reg
i ≡ Ni ∩ Σreg = {|zi| ∈ (0, c)} t {|wi| ∈ (0, c)},

and the complete hyperbolic metric on Σreg restricts to N reg
i as

(2)
|dx|2

(|x| log |x|)2
, x = wi, zi.

The coordinates zi, wi are called hyperbolic cusp coordinates.

Moreover, Wolpert [75] has constructed a real-analytic family of Bel-
trami differentials ν(s) on Σreg for s in a neighborhood of the origin in
C3g−3−n so that

• ν(0) = 0.
• The support of each ν(s) is disjoint from the closure of each cusp

neighborhood Ni.
• Each ν(s) is C∞.
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• There is an induced quasiconformal diffeomorphism of Riemann
surfaces χs : Σreg → Σs,reg satisfying ∂̄χs = ν(s)∂χs.
• On each Ni, the restriction of χs : Ni → Ni is a rotation (and,

thus, a hyperbolic isometry).

Each node contributes an additional complex parameter via the plumb-
ing construction. First of all, each cusp neighborhood Ni is biholomor-
phic as a complex-analytic set to {ziwi = 0, |zi| < c, |wi| < c} ⊂ C2. To
open the node, let |ti| < c2 and consider the annulus

N ti
i = {ziwi = ti, |zi|, |wi| ∈ ( |ti|c , c)} ⊂ C2.

If we choose t = (t1, . . . , tn) as above, we may replaceNi withN ti
i (by us-

ing the same zi, wi coordinates) in order to form Σt. Since the Beltrami
differentials are constructed so that the hyperbolic cusp coordinates are
essentially preserved, we have

• (s, t) near (0, 0) form local V-manifold coordinates, the hyperbolic
metric plumbing coordinates, for Mg.

Given these hyperbolic metric plumbing coordinates, we recall
Wolpert’s grafting metric gs,t. Let ks,t be the complete hyperbolic met-
ric on Σs,t,reg ≡ Σs,t − {nodes}. We will not use the construction of the
grafting metric, but only the following properties [74]:

• gs,t is a complete conformal metric on Σs,t,reg.
• If ti = 0, then gs,t = ks,t on Ni ∩ Σs,t,reg.
• For ti 6= 0, then gs,t is equal to

(3)

(
π

|zi| log |ti|
csc

(
π

log |zi|
log |ti|

))2

|dzi|2

on N ti
i .

• Away from zi = wi = 0, the metrics gs,t on N ti
i vary real-analytic-

ally in 1
log |ti| for all |ti| < c2.

• There is a uniform constant C so that

(4)

∣∣∣∣gs,tks,t
− 1

∣∣∣∣ ≤ C
∣∣∣∣∣
n∑
i=1

(log |ti|)−2

∣∣∣∣∣ .
• There is a uniform constant C ′ so that the curvature κgs,t satisfies

(5) ‖κgs,t + 1‖C0 ≤ C ′(log |ti|)−2.

Recall a regular cubic differential over a noded Riemann surface Σ is
given by a holomorphic cubic differential U on Σreg with the following
behavior at the nodes: Let each node be given by ziwi = 0 in local
coordinates. In terms of the zi and wi coordinates, we first of all require
U to have a pole of order at most 3 at the origin. For x = zi, wi, the
residue of U is defined to be the dx3/x3 coefficient of U . The residue
does not depend on the choice of local conformal coordinate. The second
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condition is that the residues of the zi and wi coordinates for each node
sum to zero.

It will be useful for us to describe the convergence of cubic differentials
in terms of a family of metrics constructed by modifying the grafting
metrics gs,t. Our construction is to replace the (locally) hyperbolic
grafting metrics on the thin part of each surface by a flat conformal
cylindrical metric of uniformly constant diameter. For ti = 0, we will
replace each hyperbolic cusp end by a complete flat cylinder, while for
ti 6= 0 small, we replace the hyperbolic collar by a flat collar. The details
are presented below.

Since the boundary of Mg is compact, it can be covered by a finite
number of hyperbolic metric plumbing coordinate neighborhoods V α,
α = 1, . . . ,M centered at nodal curves on the boundary. Define the set
V 0 to be an open set containing Mg \ ∪αV α whose closure does not
intersect ∂Mg. V

0 lies in the thick part of the moduli space for some
ε > 0, as it excludes a neighborhood of the boundary. Consider the
universal curve π : Cg →Mg. For each noded Riemann surface Σs,t in
π−1V α, α = 0, . . . ,M , define the metric mα,s,t as follows

• Let m0 be the hyperbolic metric on the (necessarily nonsingular
and closed) Riemann surface Σ.
• For a noded Riemann surface Σ = Σs,t in V α, define mα,s,t to be

equal to gs,t on Σ \ ∪iN ti
i .

• On N ti
i , consider the quasi-coordinate ` = log x for x = zi, wi.

Then for ti 6= 0,

gs,t =

(
π

log |ti|
csc

(
π

Re `

log |ti|

))2

|d`|2,

for log |ti| − log c ≤ Re ` ≤ log c. For ti = 0, gs,t = (Re `)−2 |d`|2
for Re ` ≤ log c.
• For the ti = 0 case, consider the half-cylinder {x : Re ` ≤ 2 log c}

with flat metric f = (2 log c)−2 |d`|2.
• For 0 < |ti| < c2π, let

K =
log |ti|
π

arcsin

(
π

log |ti|
· 2 log c

)
,

consider the annulus {Re ` ∈ [log |ti|−K,K]} with flat metric f =
(2 log c)−2 |d`|2. Note this metric is equal to gs,t on the boundary
of the annulus.
• Now on each surface we interpolate between the two metrics. Let
η be a smooth nonnegative function of Re ` which is equal to 1 for
Re ` ≤ 2 log c and equal to 0 for Re ` ≥ log c. On each connected
component of N reg

i for ti = 0, define the metric

(6) mα,s,t = (gs,t)1−η(Re `) · fη(Re `).
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• We make a similar definition for ti 6= 0, shifting the interpolating
factor and adjusting for the fact that N ti

i is connected. Let

φ(Re `) = η(Re `−K + 2 log c) · η(2 log c+ log |ti| −K − Re `).

Then the metric mα,s,t restricted to N ti
i ⊂ Σ = Σs,t is defined to

be

(7) mα,s,t = (gs,t)1−φ(Re `) · fφ(Re `).

• For |ti| ≥ c2π, let mα,s,t = gs,t. This definition means that mα,s,t

does not smoothly vary at |ti| = c2π. Nonetheless, the metrics
mα,s,t and their derivatives remain uniformly bounded in terms of
each other there. This will be sufficient to derive the estimates we
will need below.
• Note that mα,s,t is always a complete conformal metric on Σreg. It

is always equal to gs,t outside cusp and collar neighborhoods, and
well inside these small neighborhoods, the metric is flat cylindrical
of uniform circumference. These two regions are glued together
along annual regions using a uniform partition of unity, and so
the metric mα,s,t on these annular regions is smooth and has uni-
form geometry. In particular, the mα,s,t metrics have uniformly
bounded Gauss curvature.
• Moreover, there is a uniform positive constant C > 0 so that for

on every Riemann surface Σ = Σs,t represented in V α,

(8)
mα,s,t

gs,t
≥ C.

By our construction, mα,s,t/gs,t ≥ 1 in the region where mα,s,t is
flat. The existence of such a bound C on the region of the inter-
polation follows from compactness considerations, while outside
these two regions, the two metrics are equal.

We will also use a basic description of the thick-thin decomposition of
hyperbolic surfaces and of the universal curve. See, e.g., [77]. For posi-
tive ε small enough, the locus of points Thinε on a complete hyperbolic
surface with injectivity radius less that ε is called the thin part of the
moduli space, while the complement is the thick part Thickε. The thin
part is a disjoint union of punctured disks (cusps) and annuli (collars).
Margulis’s Lemma shows there is a fixed ε0 > 0 so that this is true for
all 0 < ε < ε0, while Mumford’s Compactness Theorem shows Thickε is
compact. We will need to relate this to the hyperbolic metric plumbing
coordinates. In particular, in each V α neighborhood, (4) shows that
for any sequence of points in Cg, the injectivity radius of the hyperbolic
metric goes to zero if and only if the plumbing coordinates zj , wj for
the appropriate collar go to zero.
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Lemma 2.9.1. For any convergent sequence in Cg, either it converges
to a node (where some zj , wj coordinates are 0) or there is an ε > 0 so
that all but a finite number of elements of the sequence lie in Thickε.

For the remainder of this subsection, we recall the topology of the
bundle of regular cubic differentials and formulate it in a way that will
be useful below.

For c ∈ C(S), define T aug,c
S as the Teichmüller space augmented only

by pinching loops in c. Let Λ(c) be the group of Dehn twists along loops
in c. Let Q = QcS = T aug,c

S /Λ(c). This quotient space is has a natural
complex structure constructed by Hubbard–Koch [33]. Let X = X cS be
the proper flat family of noded Riemann surfaces over QcS . Then the

relative bundle K3,reg
X/Q of regular cubic differentials is a complex vector

bundle of rank 5g − 5 over Q.
Note that each V α chart discussed above is naturally a manifold co-

ordinate chart on Q: For V α centered around a noded Riemann surface
with a number of nodes, the coordinates naturally lie in Qc for c the
collection of loops on S pinched to form these nodes.

To see why K3,reg
X/Q is a complex vector bundle, and to describe its

topology, we follow [33], where the analogous case of quadratic differ-
entials is investigated. First define the plumbing locus

P = {(z, w, t) ∈ C3 : zw = t, |z| < 4, |w| < 4, |t| < 1},
and ρ : P → D given by ρ : (z, w, t) 7→ t. There is a surjective complex-
analytic map p : X → Q so that for every a ∈ X , there are neighbor-
hoods U of a in X and V of p(a) in Q, together with maps ψ : V → D
and ψ̃ : U → ψ∗P so that the following diagram commutes:

U ψ∗P P

V D

ψ̃

p
ρ

ψ

On the smooth part X ∗ of X , define a sheaf F to be the cube of the
sheaf of relative differentials on the fiber of X → Q. Near each plumbing
fixture, F is generated by multiples of ψ̃∗(dxx −

dy
y )3 by local holomorphic

functions on X . Then as in [33], F is a coherent analytic sheaf over X .
Moreover, a cohomology calculation allows us to use Grauert’s theorem
[29] to show the push-forward sheaf K3,reg

X/Q ≡ p∗F is the sheaf of local

sections of a vector bundle of rank 5g − 5 over Q.
The topology on the total space of K3,reg

X/Q, when considered as a vector

bundle overQ, is given by local analytic frames. In the next proposition,
we will formulate a condition for convergence of sequences (Σj , Uj),
for Σj ∈ Q and Uj a regular cubic differential on Σj . First of all, if
(Σj , Uj)→ (Σ, U), then we may choose a coordinate neighborhood V α,



CONVEX RP2 STRUCTURES UNDER NECK SEPARATION 345

and the associated cusp/collar neighborhoods Ni, coordinates x = zi, wi
and metric m on noded Riemann surfaces in V α, so that for all j large
Σj ∈ V α.

Conversely, given Σj → Σ ∈ V α we say that regular cubic differentials

Ui on Σj converge in L∞,loc
m if [(χsj )−1]∗Uj → [(χs)−1]∗U in L∞ with

respect to the mα,Σj metrics with the additional caveat that on the N
ti,j
i

regions, the convergence in the hyperbolic metric plumbing coordinates

is normal convergence on the domains {|x| ∈ (
|ti,j |
c , c)}, which vary in

size as ti,j varies.

Proposition 2.9.2. (Σj , Uj)→ (Σ, U) in the total space of the vector

bundle K3,reg
X/Q if and only if Σj → Σ in Q and Uj → U in the sense of

L∞,loc
m .

Proof. First assume (Σj , Uj)→ (Σ, U) in the total space of the vector

bundle K3,reg
X/Q. Then clearly Σj → Σ in Q. On a neighborhood of

Σ in Q, there is a holomorphic frame {ξa}5g−5
a=1 of K3,reg

X/Q. The first

thing to show is that the sections ξa|Σj converge to ξa|Σ in the sense of

L∞,loc
m .
As investigated by Wolpert [78], the convergence in the plumbing

locus (inside the regions N
ti,j
i ) is given by normal convergence of the

holomorphic functions given by the ratio ξa|Σj/(x−3dx3) in the coordi-

nate x as above. The mα,Σj metrics are constructed to be uniformly

constant in the ` = log x quasi-coordinates near the center of the N
ti,j
i

neighborhoods, and are uniformly bounded away from zero on the re-

maining part of N
ti,j
i . Thus, the normal convergence of the ξa|Σj to ξa|Σ

is in the sense of L∞,loc
m in the N

ti,j
i regions.

In other regions, Σj \ ∪iN
ti,j
i , the deformation of the complex struc-

ture there is given by the Beltrami coefficients ν(sj), and, thus, by the
pullback of the induced quasiconformal map χsj . Since the m metrics on

Σj \ ∪iN
ti,j
i are uniformly equivalent to the hyperbolic metrics and are

uniformly bounded in terms of each other in the neighborhood V α, we
see that [(χsj )−1]∗ξa|Σj → [(χs)−1]∗ξa|Σ converges in L∞ with respect

to the mα,Σj metrics.
There is a small discrepancy in the overlap between these two regions,

in that for the [(χsj )−1]∗ξa|Σj , the coordinates in the plumbing locus
are the standard ones we use above, up to a rotation θ = θ(sj). This
discrepancy need not concern us, as θ varies continuously in s, as follows
from [78].

Thus, we have shown that the sections ξa|Σj converge to ξa|Σ in the

sense of L∞,loc
m . Now consider our original problem, in which (Σj , Uj)→

(Σ, U) in the total space of the vector bundle. In terms of the frame
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{ξa}, write U = uaξ
a and Uj = ua,jξ

a. Convergence in the total space
then is equivalent to Σj → Σ and ua,j → ua for all a. Since the frame

{ξa} converges in L∞,loc
m , we see Uj → U in the sense of L∞,loc

m as
well.

To prove the converse, assume Σj → Σ and Uj → U in the L∞,loc
m

sense. Write Uj = ua,j ξ
a|Σj as above, and let uj = (uj,a)

5g−5
a=1 ∈ C5g−5.

It suffices to show that uj → u in C5g−5. Consider two cases: First of all,
assume uj converges to some v ∈ C5g−5, then (Σi, Ui) → (Σi, va ξ

a|Σ)
in the total space, and by the paragraphs above, we see v = u. In
the second case, assume there is a sequence of real numbers λj → 0 so
that λjuj → v 6= 0 ∈ C5g−5. In other words, (Σj , λjUj) → (Σ, V ) in
the total space of the vector bundle, for V = va ξ

a|Σ 6= 0. But since
(Σj , Uj) → (Σ, U), we also have (Σj , λjUj) → (Σ, 0) in the total space
of the bundle. This contradiction rules out the second case. Since ev-
ery subsequence of {uj} is guaranteed to have a subsequence satisfying
either the first or the second case, this proves the converse, and the
proposition. q.e.d.

3. Hyperbolic affine spheres

3.1. Relationship to convex RP2 structures. For Ω ⊂ Rn ⊂ RPn a
properly convex domain, consider the cone C in Rn+1 given by {t(x, 1) :
t ∈ R+, x ∈ Ω}. Ω is the image of C under the projection π : Rn+1\{0} →
RPn. The proper convexity of Ω is equivalent to C being properly convex,
in that it is convex and contains no lines. There is a unique (properly
normalized) hyperbolic affine sphere H asymptotic to the boundary of
C which is invariant under special linear automorphisms of C [12, 13].
Then π restricts to a diffeomorphism from H to Ω, and projective au-
tomorphisms of Ω lift to special linear automorphisms of C, which act
on H.

In order to define the hyperbolic affine sphere, we introduced the
affine normal. To any strictly convex smooth hypersurface H in Rn+1,
the affine normal ξ is a smooth transverse vector field which is invariant
under unimodular affine transformations of Rn+1. The hyperbolic affine
sphere (which we take to be normalized so the center is at the origin and
the affine mean curvature is −1) can be defined as a convex hypersurface
H so that at all points, the affine normal is equal to the position vector.
See, e.g., [10, 11, 13, 44, 50, 59]. A hyperbolic affine sphere is always
equivalent to one normalized as above by an affine motion in Rn+1. For
the rest of this work, we will always assume all hyperbolic affine spheres
are so normalized.

The first natural structure equation on H is the following formula of
Gauss type:

(9) DXY = ∇XY + h(X,Y )f,
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where D is the flat connection on Rn+1, X and Y are tangent vector
fields on H, f is the position vector of points on H (which is trans-
verse to the tangent space). Then DXY is split into ∇XY , the part
in the tangent space, and h(X,Y )f , the part in the span of f . ∇
is a projectively-flat torsion-free connection on H, while h(X,Y ) is a
positive-definite symmetric tensor called the Blaschke metric or the
affine metric. Another important local invariant is the cubic tensor,
or Pick form, which is the difference of the Levi-Civita connection of h
and the connection ∇. The cubic tensor measures how far a hypersur-
face is from a hyperquadric, as a general theorem of Maschke, Pick, and
Berwald implies

Theorem 3.1.1. H is a hyperboloid if and only if its cubic tensor
vanishes identically.

(This is a special case of the more general theorem that any nonde-
generate smooth hypersurface is a hyperquadric if and only if its cubic
tensor, when defined with respect to the affine normal ξ, vanishes iden-
tically.)

For a hyperbolic affine sphere H, the completeness of the Blaschke
metric is equivalent to H being properly embedded. In fact, we have
the following theorem of Cheng–Yau [12, 13] and Calabi–Nirenberg
(unpublished), with clarifications by Gigena [24], Sasaki [63], and A.M.
Li [42, 43].

Theorem 3.1.2. For Ω a properly convex domain in RPn, consider
the cone C ⊂ Rn+1 over Ω. Then there is a unique properly embedded
hyperbolic affine sphere H ⊂ C which is centered at the origin, has affine
mean curvature −1, and which is asymptotic to ∂C. H is invariant under
volume-preserving linear automorphisms of C, and H is diffeomorphic
to Ω under projection. The Blaschke metric on H is complete.

Conversely, let H be an immersed hyperbolic affine sphere normalized
to have center 0 and affine mean curvature −1. If the Blaschke metric
on H is complete, then H is properly embedded in a proper convex cone
C centered at the origin and is asymptotic to the boundary ∂C.

If M = Γ\Ω is a properly convex RPn manifold, then we may lift the
representation Γ to PGL(n+ 1,R) to volume-preserving linear actions

Γ̃ on the cone C over Ω. By the invariance of H, we find Γ̃ acts on H,
and M is naturally diffeomorphic to Γ̃\H. The invariant tensors on H
(the Blaschke metric and the cubic form) descend to M .

Given a properly convex cone C ⊂ Rn+1, the dual cone C∗ is the
cone in the dual vector space Rn+1 to Rn+1 given by all ` ∈ Rn+1 so
that `(x) > 0 for all x ∈ C. Upon projecting to projective space, if
Ω = π(C) ⊂ RPn, the we also have a dual convex projective domain
Ω∗ ⊂ RPn. From this formulation, we remark
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Lemma 3.1.3. If Ω1 ⊂ Ω2 are properly convex domains in RPn, then
Ω∗1 ⊃ Ω∗2.

There is a related duality result on hyperbolic affine spheres due to
Calabi (see [23], and [48] for an exposition). For H a hyperbolic affine
sphere, consider the conormal map H → Rn+1 given by

x 7→ `, where `(x) = 1 and `(TxH) = 0.

Theorem 3.1.4. Given a properly convex cone C ⊂ Rn+1 with corre-
sponding hyperbolic affine sphere H ⊂ C, then the conormal map maps
H diffeomorphically onto the unique hyperbolic affine sphere H∗ corre-
sponding to the dual cone C∗ ⊂ Rn+1. The conormal map is an isometry
with respect to the Blaschke metrics on H and H∗ and takes the cubic
form C 7→ −C.

We will also use the relationship between the conormal map and the
Legendre transform. If v : Ω → R is a smooth convex function on a
convex domain Ω ⊂ Rn with coordinates xi, the we define the Legendre
transform function p by

p+ v = xi
∂v

∂xi
.

The domain of the function p is considered primarily to be the image
of the gradient (dv)(Ω), and so p is a function of the variables ∂v

∂xi
. The

Legendre transform is an involution on the space of convex functions. If
H is a hypersurface given by a radial graph of − 1

v for a convex function
v,

H =

{
− 1

v(x)
(x1, . . . , xn, 1) : x ∈ Ω

}
.

Then the image of the conormal map of H is given by

(10)

{(
− ∂v

∂x1
, · · · ,− ∂v

∂xn
, p

)}
.

Therefore, the conormal map essentially (up to a few minus signs) inter-
changes the radial graph of − 1

v with the Cartesian graph of the Legendre
transform p.

We also mention here the relationship between hyperbolic affine
spheres and a real Monge–Ampère equation, which is due to Calabi
[11]. The formulation here also depends on results in Gigena [24].

Theorem 3.1.5. Given a properly convex domain Ω ⊂ Rn ⊂ RPn,
the hyperbolic affine sphere asymptotic to the boundary of the cone over
Ω is given by the radial graph of − 1

v{
− 1

v(x)
(x, 1) : x ∈ Ω

}
,

for v the unique convex solution of the Dirichlet problem v continuous
on Ω̄, v = 0 on ∂Ω, and



CONVEX RP2 STRUCTURES UNDER NECK SEPARATION 349

(11) det (vij) =

(
−1

v

)n+2

on Ω, for vij the Hessian matrix of v. The Blaschke metric is
− 1
vvij dx

i dxj.

Loewner–Nirenberg first solved this equation for convex domains with
regular boundary in dimension two [45]. Cheng–Yau solved this equa-
tion in the general case [12].

3.2. Benoist–Hulin’s convergence of invariant tensors. For the
reader’s convenience we provide a detailed proof of Benoist–Hulin’s the-
orem.

Theorem 3.2.1. [6] Let Ωj ,Ω∞ be bounded convex domains in Rn ⊂
RPn. Assume Ωj → Ω∞ converges in the Hausdorff topology with re-
spect to the Fubini–Study metric on RPn. Then the solutions vj to the
Dirichlet problem (11) on Ωj converge in C∞loc to the solutions v∞ on
Ω∞.

Since the projectively-invariant tensors the Blaschke metric and cubic
tensor are formed from v and its derivatives, we have the following result
of Benoist–Hulin:

Theorem 3.2.2. Under the hypotheses of the theorem, the Blaschke
metrics and cubic tensors converge in C∞loc.

Proof of Theorem 3.2.1. The proof here of Benoist–Hulin’s theorem
provides more details than in [6]. For C0

loc estimates, we use the max-
imum principle. Pick an inhomogeneous affine coordinate chart R2 ⊂
RP2 so that 0 ∈ Ω∞ and Ω∞ is bounded in R2. This implies there are
εj → 0 so that

(1 + εj)Ωj ⊃ Ω∞ ⊃ (1− εj)Ωj .

For vj the solutions to the Dirichlet problem for (11) on Ωj , the corre-

sponding solution on tΩj is t
n
n+1 vj(t

−1x), and the maximum principle
implies that if O ⊂ U , then vO ≥ vU . In particular, this shows

(1 + εj)
n
n+1 vj(x/(1 + εj)) ≤ v∞(x) ≤ (1− εj)

n
n+1 vj(x/(1− εj)),

which in turns shows vj → v∞ in C0
loc on Ω∞. Define

v+
j (x) = (1 + εj)

n
n+1 vj(x/(1 + εj)), v−j (x) = (1− εj)

n
n+1 vj(x/(1− εj)).

Then v−j → v∞ in C0
loc, v

+
j → v∞ in C0

loc, and v+
j (x) ≥ vj(x) ≥ v−j (x).

The C1
loc estimates depend only on convexity. Let T be a large triangle

in R2 which contains Ω∞ and all the Ωk for k large. Then the solution
vT to the Monge–Ampère equation on T has a minimum value −M , and
the maximum principle shows that the solutions vΩ and vΩk also must
satisfy v ≥ −M . Now for such a v, let g = v(y + tw), where t ∈ R, y
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is a boundary point, and w is a unit vector pointing into the domain.
Then g is continuous on an interval [0, R], g(0) = g(R) = 0, and g is
smooth and strictly convex on (0, R). In particular, g′ is increasing on
(0, R). For t ∈ (0, R),

g′(t) ≥ g(t)− g(0)

t− 0
=
g(t)

t
≥ −M

t
.

Together with the estimate along the same ray traversed in the opposite
direction, this shows |g′| is uniformly bounded on any compact set, with
the bound depending on the diameter of the domain and the distance
to the boundary.

For the interior C2 estimates, we have the following standard result
following Pogorelov. The following theorem we quote is a direct appli-
cation of Theorem 17.19 in [25]. We note that we must restrict to a

sub-level domain {v < −ε}, as estimates on the function v 7→
(
− 1
v

)n+2

and its first two derivatives are needed to apply Theorem 17.19.

Theorem 3.2.3. Consider the solution v to the Dirichlet problem
(11) on a bounded convex domain Ω ⊂ Rn. Let ε > 0, and let O = {v <
−ε}. Then there is a constant C depending on n, ε, ‖v‖C1(O) and the

diameter of O so that if O′ ⊂⊂ O, then

sup
O′
|D2v| ≤ C

dist(O′, ∂O)
.

By the arguments above, we have v+
k → v, v−k → v, and v+

k ≥ v ≥ v
−
k .

On each compact set, convexity shows that the convergence is uniform
(this follows from the C1 estimates above and Ascoli–Arzela). Since
v+
k ≥ vk ≥ v−k , we have that vk → v uniformly on compact subsets of

Ω∞. Now let K be a compact subset of Ω∞. For large k, K ⊂ Ωk as
well. By continuity, maxK v = −3ε for some ε > 0. The set {v ≤ −2ε}
is also compact, and by uniform convergence, we can see that for large
enough k, we have

{vk < −ε} ⊃ {v < −2ε} ⊃ {v ≤ −3ε} ⊃ K.
So if we define Ok = {vk < −ε},

dist(K, ∂Ok) > dist(K, {v = −2ε}) > 0.

Moreover, the diameter of Ok is bounded by that of Ωk, which is uni-
formly bounded. Thus, we have estimates for Theorem 3.2.3 which are
independent of k, and on K, we have uniform C2 estimates on vk.

Finally, we use the Evans–Krylov estimates to find interior C2,α esti-
mates. See Theorem 17.14 in [25]. In particular, on any compact subset
K of Ω, there is an α ∈ (0, 1) so that the C2,α estimates on a slightly
smaller compact subset K ′ depends only on the distance dist(K ′, ∂K),
the C2 estimates of v on K, and bounds on the eigenvalues of the Hes-
sian matrix of v. These estimates are similar to but easier to apply
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than the Pogorelov estimates above. The main new ingredient is to
bound the eigenvalues of the Hessian matrix of vk. The largest eigen-
value is bounded by Pogorelov’s bounds on the second derivatives, while
the smallest eigenvalue is bounded away from 0 by using the Monge–
Ampère equation det(vk,ij) = (−vk)−n−2 and the bounds away from 0
for vk.

We have shown so far that on every compact K ⊂ Ω∞, there are uni-
form C2,α bounds on v and vk for k large, and also vk → v uniformly.
This means that the Ascoli–Arzela Theorem applies to show that (sub-
sequentially at least), vk → v in C2 on K. But every subsequence of
{vk} then has a subsequence converging to v in C2, and so we see vk → v
in C2 on K.

Higher-order interior estimates and convergence are standard once
C2,α estimates are in place, and so vk → v in C∞loc on Ω∞. q.e.d.

Benoist–Hulin’s C∞loc convergence of affine invariants is quite strong.
However, the conformal structure at the end of a surface is not local in
this sense, and so we will need to expend more effort to compute the
conformal structures at the ends.

3.3. An estimate on Blaschke metrics. We begin this subsection
with a quantitative version of the following theorem of Cheng–Yau [13]
(as clarified by Li [42]): A hyperbolic affine sphere H with complete
Blaschke metric is properly embedded in Rn+1 and is asymptotic to
the boundary of the convex cone given by the convex hull of H and its
center. We consider a quantitative version involving geodesic balls of
large radius.

Proposition 3.3.1. Let H be a hyperbolic affine sphere given by the
radial graph of − 1

v , where v solves the Dirichlet problem (11) over a
convex domain Ω. Let v be normalized so that v(0) = −1 and dv(0) = 0.
Assume there are positive constants γ, δ, ε, and consider the Euclidean
ball {x : |x| < ε} in Ω. Assume the Blaschke arc-length `(0, x) of radial
paths {tx : t ∈ [0, 1]} satisfies

(12) `(0, x) > δ for |x| = ε.

Also assume

(13) v(x) > −1 + γ,
1

ε
xi
∂v

∂xi
(x) > γ for |x| = ε.

Then there are positive constants C = C(n) and A = A(C, γ, δ) so that
if Bh

0 (Q) is the geodesic ball centered at x = 0 of radius Q, then

{x : v(x) < −e(A−Q)/C} ⊂ Bh
0 (Q).

Proof. Consider a hyperbolic affine sphere H normalized with its
center at that origin, affine mean curvature −1. Moreover, assume
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(0, . . . , 0, 1) ∈ H and that the tangent plane at that point is horizon-
tal. Consider the dual affine sphere H∗ can be written as the graph
{(y, p(y))}. K = {(−y, p(y))}, as the image of H∗ under a volume-
preserving linear map, is also a hyperbolic affine sphere.

We follow a suggestion in [44], Remark 2.7.2.6(ii). The height func-
tion p on K is a positive eigenfunction of the Laplacian with respect to
the Blaschke metric h, which is complete and has Ricci curvature uni-
formly bounded below. A gradient estimate of Yau [64, Theorem I.3.2]
then applies to show that there is a uniform constant C depending only
on the dimension so that

(14) ‖d(log p)‖h ≤ C.

Consider v the Legendre transform of p. Theorem 3.1.4 and (10) show
that H = {− 1

v(x)(−x, 1) : x ∈ Ω} is essentially the radial graph of − 1
v .

Recall the Legendre transform is given by

(15) p+ v = xiyi, yi =
∂v

∂xi
, xi =

∂p

∂yi
.

We primarily consider p = p(y) and v = v(x). Choose coordinates on
Rn+1 so that v(0) = −1 and dv(0) = 0. Since v is convex, it has its
minimum at x = 0. Differentiating (15) shows that

(16)
∂p

∂xi
= xj

∂2v

∂xi∂xj
.

We follow the proof of Theorem 2.7.1.9 in [44]. Use the expression
for the Blaschke metric in Theorem 3.1.5 above to compute for x̄ ∈ Ω
the Blaschke length ` of the path P = {tx̄ : 0 ≤ t ≤ 1} to be

`(0, x̄) =

∫ 1

0

(
−1

v

∂2v

∂xi∂xj
x̄ix̄j

) 1
2

dt.

Assume (12) and (13) and use (14), (15) and (16). Let vij denote the

inverse matrix of ∂2v
∂xi∂xj

. Compute

`(0, x̄) ≤ δ +

∫ 1

ε/|x̄|

(
−1

v

∂2v

∂xi∂xj
x̄ix̄j

) 1
2

dt

= δ +

∫ 1

ε/|x̄|

(
− 1

vt2
∂2v

∂xi∂xj
(tx̄i)(tx̄j)

) 1
2

dt

= δ +

∫ 1

ε/|x̄|

(
− 1

vt2
vij

∂p

∂xi
∂p

∂xj

) 1
2

dt

= δ +

∫ 1

ε/|x̄|
− 1

vt
‖dp‖h dt
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≤ δ +

∫ 1

ε/|x̄|
−C
vt
p dt

= δ +

∫ 1

ε/|x̄|
−C
vt

(
tx̄j

∂v

∂xj
− v
)
dt

= δ − C
∫ 1

ε/|x̄|

d

dt
log |v(P(t))| dt+

∫ 1

ε/|x̄|

C

t
dt

= δ + C

[
− log |v(x̄)|+ log

∣∣∣∣v( εx̄|x̄|
)∣∣∣∣− log

∣∣∣∣ ε|x̄|
∣∣∣∣]

≤ δ − C log |v(x̄)|+ C log(1− γ)− C log ε+ C log |x̄|.

Now we claim that |x̄| < ε
γ . To prove this claim, we consider the con-

vex function g(t) = v(tx̄) and an appropriate linear secant-line function
f to g. By (13) and Ω = {v < 0}, g satisfies g(0) = −1, g(ε|x̄|−1) >
−1 + γ, and g(T ) = 0 for some T > 1. Now consider the linear func-
tion f(t) so that f(0) = −1 and f(ε|x̄|−1) = g(ε|x̄|−1) > −1 + γ. The
convexity of g implies that f(t) ≤ g(t) for t ≥ ε|x̄|−1. In particular,
f(τ) = 0 for τ = ε|x̄|−1/[g(ε|x̄|−1) + 1], and f(t) ≤ g(t) implies

ε|x̄|−1

γ
>

ε|x̄|−1

g(ε|x̄|−1) + 1
= τ ≥ T > 1.

This proves the claim.
Therefore, there is a constant A = A(C, γ, δ) so that

dh(0, x̄) ≤ `(0, x̄) ≤ A− C log |v(x̄)|,

for dh the Blaschke distance. q.e.d.

Now we use Proposition 3.3.1 to show that sequences of points in
convex domains must be separated from each other if their Blaschke
distance approaches ∞. In fact, the set of sequences of points xj in Ωj

which converge in the Benzécri sense, in that there exist ρj ∈ SL(3,R)
so that ρj(Ωj , xj) → (O, x) in the Hausdorff sense, may be partitioned
into equivalence classes according to whether their Blaschke distances
remain bounded.

Proposition 3.3.2. Let Ωj → O be a convergent sequence of properly
convex domains in RPn with respect to the Hausdorff topology. Assume
ρjΩj → U for ρj ∈ SL(n+1,R). Assume qj → q for qj ∈ Ωj and q ∈ O,
and rj → r for rj ∈ ρjΩj and r ∈ U . Assume that the Blaschke distance

dΩj (qj , ρ
−1
j rj) → ∞. Then there does not exist a sequence zj ∈ Ωj so

that zj → z ∈ O and ρjzj → w ∈ U .

Proof. Choose coordinates on O so that q = 0 and so that the hyper-
bolic affine sphere HO is given by the radial graph of − 1

v . Also assume
v(0) = −1 and dv(0) = 0. In these coordinates, Theorem 3.2.1 shows
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that the corresponding functions vj on Ωj converge to v in C∞loc. In par-
ticular, we can change coordinates on Ωj to assume qj = 0, vj(0) = −1,
and dvj(0) = 0, while still maintaining Ωj → O. The C∞loc conver-
gence of vj → v implies that there are positive constants γ, δ, ε inde-
pendent of j so that the hypotheses of Proposition 3.3.1 are satisfied.
If dΩj (qj , ρ

−1
j rj) ≥ Qj , then vj(ρ

−1
j rj) ≥ −eA−Qj . Thus, vj(ρ

−1rj)→ 0

and ρ−1
j rj has no limit in O.

We prove the result by contradiction. Assume there does exist such
a sequence zj . Note that z and q are of finite Blaschke distance from
each other in O, as are r and w in U . Thus, Theorem 3.2.2 implies
there is a constant C so that for all j large enough, the Blaschke dis-
tances dΩj (zj , qj) ≤ C and dΩj (zj , ρ

−1
j rj) = dρjΩj (ρjzj , rj) ≤ C. Then

the triangle inequality implies that 0 = dΩj (zj , zj) ≥ dΩj (qj , ρ
−1
j rj) −

dΩj (zj , qj)− dΩj (ρ
−1
j rj , zj)→∞, which provides a contradiction. q.e.d.

Corollary 3.3.3. Proposition 3.3.2 holds with the Hilbert metric in
place of the Blaschke metric.

Proof. Benoist–Hulin [6, proof of Prop. 2.6] show that for each
dimension n, there is a positive constant Cn so that for all convex
bounded domains Ω ⊂ Rn and all x, y ∈ Ω, C−1

n dHΩ (x, y) ≤ dΩ(x, y) ≤
Cnd

H
Ω (x, y), where dHΩ is the Hilbert distance. q.e.d.

3.4. Wang’s developing map. For a two-dimensional hyperbolic
affine sphere H, one may consider the conformal structure with respect
to the Blaschke metric to give H the structure of a simply-connected
open Riemann surface. As the geometry is derived from the elliptic
Monge–Ampère equation (11), it should not be surprising that holo-
morphic data on the Riemann surface comes into play. In particular,
with respect to a local conformal coordinate z, the cubic form, upon
lowering an index with the metric, is of the form C = U dz3 + Ūdz̄3, for
U dz3 a holomorphic cubic differential.

C.P. Wang worked out the developing map for hyperbolic affine
spheres in R3 [71]. (Much earlier, Ţiţeica analyzed a slightly different
case of non-convex proper affine spheres [68, 69].) Below, we present a
synopsis of Wang’s theory, as presented in [50].

Let D be a simply-connected domain in C, and let f : D → R3

represent an immersed surface so that f is conformal with respect to the
Blaschke metric. Let z be a conformal coordinate on D. Let H = f(D)
be the immersed surface. Then fz, fz̄ span the complexified tangent
space TfH ⊗R C, and, thus, {f, fz, fz̄} is a frame of R3 ⊗R C at each
point of H.

Consider f, fz, fz̄ as column vectors, and form the frame matrix

F = (f, fz, fz̄).



CONVEX RP2 STRUCTURES UNDER NECK SEPARATION 355

Let eψ|dz|2 and U be a conformal metric and cubic differential respec-
tively on D. Then the structure equation (9) is equivalent to the fol-
lowing first-order system

(17) Fz = F

 0 0 1
2e
ψ

1 ψz 0
0 Ue−ψ 0

 , Fz̄ = F

 0 1
2e
ψ 0

0 0 Ūe−ψ

1 0 ψz̄

 .

This system of equations is integrable if and only if the following two
conditions hold:

ψzz̄ + |U |2e−2ψ − 1
2e
ψ = 0,(18)

Uz̄ = 0.(19)

In this case, if at a point z0 ∈ D initial conditions

(20) f(z0) ∈ R3, fz̄(z0) = fz(z0), detF (z0) = 1
2 ie

ψ(z0)

are satisfied, then the frame F can be uniquely defined on all of D and
f is an immersion of a hyperbolic affine sphere in R3 with Blaschke
metric eψ and cubic form (with index lowered by the metric) U dz3 +
Ūdz̄3. Note the integrability conditions can be thought of as the flatness
condition for the connection D in (9). In particular, we consider D as
a connection on the vector bundle E = 1 ⊕ TD, where 1 represents
the trivial line bundle and TD is the tangent bundle, with Christoffel
symbols with respect to the frame F given by (17). The holonomy of
the corresponding RP2 structure around a loop on a quotient surface
is given by the inverse of the parallel transport of D around the same
loop. See, e.g., [49].

The map f : D → R3 is the developing map for the affine sphere,
and [f ] is a developing map for the corresponding RP2 structure. We
will use more details of this developing map below: Given appropriate
initial conditions as above, the equations (17) become a linear system
of ODEs along any path from z0 in D (this is again related to parallel
transport of the flat connection D on E; see, e.g., [49]). The flatness
of the connection D shows that the solution to the ODE initial value
problem is independent of paths in a given homotopy class.

The initial value problem is particularly useful in the case the Blaschke
metric eψ|dz|2 is complete, as then Theorem 3.1.2 above shows the devel-
oped image f(D) is a hyperbolic affine sphere asymptotic to the bound-
ary of a convex cone C ⊂ R3 and diffeomorphic to a properly convex
domain Ω ⊂ RP2.

We also consider a Riemann surface Σ with universal cover D. As-
sume Σ is a Riemann surface equipped with a holomorphic cubic dif-
ferential U and background conformal metric g. Then if eψ|dz|2 = eug,
the elliptic equation (18) becomes

(21) ∆u+ 1
2e
−2u‖U‖2 − 2eu − 2κ = 0,



356 J. LOFTIN

where ∆ is the Laplacian, ‖·‖ is the induced norm on cubic differentials,
and κ is the Gauss curvature, all with respect to g.

Remark. Equation (21) differs by a normalization factor from the
corresponding equations in [46, 50]. The discrepancy comes from the
fact that for the metric |dz|2, the norm-squared of dz is 2, not 1, as was
incorrectly assumed earlier. This change does not affect the results in
[46, 50], as the change in normalization simply amounts to scaling the
cubic differential in solving (21). I would like to thank Ian McIntosh for
pointing this out to me.

The following theorem is the basic correspondence between convex
RP2 structures on a surface and solutions u to (21) on a Riemann surface
Σ equipped with a cubic differential U . As the Blaschke metric and cubic
form on the affine sphere H are invariant under the action of SL(3,R),
so too are the function u and cubic differential U .

Theorem 3.4.1. Let Σ be a Riemann surface equipped with a holo-
morphic cubic differential U and a conformal background metric g. Let
u be a solution to (21) so that eug is complete. For a basepoint z0 ∈ Σ̃
and an initial frame F (z0) satisfying (20), we have a complete hyper-

bolic affine sphere f(Σ̃) asymptotic to the boundary of a properly convex

cone in R3. Different choices of z0 and F (z0) lead to moving f(Σ̃) by a
motion of an element of SL(3,R) acting on R3.

Upon projection to RP2, the universal cover Σ̃ is identified with a
convex domain Ω. Holomorphic deck transformations of Σ̃ correspond
to orientation-preserving projective automorphisms of Ω. In this way,
the triple (Σ, U, eug) corresponds to a convex RP2 structure on Σ.

Remark. In the case of Σ closed, this theorem is due independently
to Labourie and the author [37, 38, 46]. See also [71]. In this case,
existence of solutions to (21) is also proved and uniqueness is a straight-
forward application of the maximum principle, and, thus, a properly
convex RP2 structure on a closed surface S of genus at least two is
equivalent to a pair (Σ, U) of a conformal structure and holomorphic
cubic differential.

3.5. Ţiţeica’s example. Consider the first octant in R3 as a convex
cone. The hyperbolic affine sphere associated to this cone was discovered
by Ţiţeica [69] (and generalized to any dimension by Calabi [11]). As we
will use this example below, we summarize the basics of its construction.
See, e.g., [50] or [22] for justification.

The hyperbolic affine sphere H is equal to the set {(x1, x2, x3) : xi >

0, x1x2x3 = 3−
3
2 }. With respect to the induced Blaschke metric, H is

conformally equivalent to C. If z is a complex coordinate on C, the
Blaschke metric is given by h = 2 |dz|2 and the cubic differential is
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U = 2 dz3. If z = σ + iτ , an embedding f of H is given by

f(z) = 1√
3

(
e2σ, e−σ+

√
3τ , e−σ−

√
3τ
)
.

4. Regular cubic differentials to regular convex RP2

structures

4.1. The regular limits. We recall our earlier work in [50]. For ev-
ery pair (Σ, U) for Σ a noded Riemann surface and U a regular cubic
differential, a regular convex RP2 structure is constructed on Σreg. In
particular, if we view Σreg as a punctured Riemann surface, then at each
puncture, the residue of the cubic differential determines the local RP2

geometry of the end. In particular, we have the following

Theorem 4.1.1. Let Σ = Σ̄ − {p1, . . . , pn} be a Riemann surface
of finite hyperbolic type, and let U be a cubic differential on Σ with
poles of order at most 3 and residue Ri at each puncture pi. Then there
is a background metric g on Σ and a solution u to (21) so that eug
is complete. Then for the corresponding convex RP2 structure on Σ
provided by Theorem 3.4.1, the RP2 holonomy and developing map of
each end is determined in the following way:

For a residue R ∈ C, consider the roots λ1, λ2, λ3 of the cubic equation

λ3 − 3(2−
2
3 )|R|

2
3λ− ImR = 0.

Then the eigenvalues of the holonomy of the RP2 structure along an
oriented loop around pi are given by αi = exp(2πλi). When there are
repeated eigenvalues, the Jordan blocks are all maximal. In the cases
where the eigenvalues are distinct (hyperbolic holonomy), the bulge is
±∞, with the sign coinciding with the sign of ReR.

More specifically, there are four cases. First of all if R = 0, then all
αi = 1 and the RP2 holonomy is parabolic, conjugate to 1 1 0

0 1 1
0 0 1

 .

If ReR = 0 but R 6= 0, then there are two positive repeated eigenvalues
α1 = α2, and the holonomy is quasi-hyperbolic, conjugate to α1 1 0

0 α1 0
0 0 α3

 , α2
1α3 = 1.

If ReR 6= 0, then the eigenvalues α1, α2, α3 are positive and distinct, and
so the holonomy is hyperbolic. The holonomy matrix is conjugate to α1 0 0

0 α2 0
0 0 α3

 , α1α2α3 = 1.

The bulge is ±∞, with the same sign as ReR.
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Remark. In [50], the bulge parameter is called the vertical twist
parameter.

Remark. This geometric correspondence can also be approached by
Simpson’s theory of Higgs bundles with regular singularities near punc-
tures [65]. In particular, Labourie [38] proves that a cubic differential
and corresponding Blaschke metric on a Riemann surface can be used to
construct a Higgs bundle of a type considered by Hitchin [32]. See also
Baraglia [3]. In the case of cubic differentials of poles of order 3, these
Higgs bundles are regular near the pole locus in the sense of Simpson.

Remark. On a noded Riemann surface equipped with a regular cu-
bic differential, the RP2 structures of the ends pair up to form regular
separated necks. Consider each node as two punctures glued together.
Then a regular cubic differential near the node has residues around the
punctures which sum to zero. Then we may apply the dictionary in The-
orem 4.1.1 to show the RP2 structures near each puncture satisfy the
conditions for a regular separated neck as in Subsection 2.6 above. In
particular, if the residue changes R 7→ −R, then the eigenvalues of the
holonomy change by {αi} 7→ {α−1

i }. In the cases above, if R = 0 at one
puncture, the other puncture also has residue 0, and both holonomies
are parabolic. If ReR = 0 but R 6= 0, then both holonomies are quasi-
hyperbolic with inverse holonomy type. And, finally, if ReR 6= 0, then
the holonomies are hyperbolic and inverses of each other, and the bulge
±∞ 7→ ∓∞ under R 7→ −R.

In the context of the present work, we may summarize the main
results of [50] in

Theorem 4.1.2. Let (Σ, U) be a pair of a compact noded Riemann
surface Σ and a cubic differential U . Then there is a corresponding
regular RP2 structure on Σreg the type of whose regular separated necks
is determined by the residue of U at each node. This defines an injective
map Φ: Vg → Raug

S which takes (Σ, U) to the corresponding regular RP2

structure. Moreover, the local invariants of the regular separated necks
(the holonomy and bulge parameters of ±∞) depend continuously on
(Σ, U) with the topology described above, as long as the residues of U
are not 0.

Remark. In the case one of the residues of U is 0, we also prove in
[50] that the local invariants of the regular separated necks converge
along many paths in the total space Vg of all (Σ, U).

Our present work improves this result in many ways: A natural topol-
ogy is described on the space of regular convex RP2 structures, for which
Φ is shown to be a homeomorphism. In the case of residue 0, this is
due to Benoist–Hulin [6], and recently the surjectivity of Φ is due to
Nie [58]. We also construct Φ−1 to prove Φ is onto. Under the topology
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on the space of convex RP2 structures, the local invariants addressed in
[50] also vary continuously, and so we have a better understanding of
the geometry of the regular convex RP2 structures. We can also remove
the technical hypothesis on paths needed in [50]. The continuity of Φ
and Φ−1 is new.

4.2. Uniform estimates. One of the main steps to construct the RP2

structures in [50] is to find sub- and super-solutions to (21) which are
quite precise near the punctures. These sub- and super-solutions work
well in most degenerating families of (Σ, U), except for those in which
the residue at a node is 0. In this paper, we take a different tack: We find
sub- and super-solutions which are not particularly precise but which
have the virtue of being uniformly bounded in the universal curve away
from singularities. This allows us to take limits of families of solutions
without the restrictions above. Then we use a uniqueness theorem of
Dumas–Wolf [22] to show that the limiting Blaschke metric is the one
constructed in [50]. We record Dumas–Wolf’s result here:

Theorem 4.2.1. Let Σ be a Riemann surface which may or may not
be compact, and let U be a holomorphic cubic differential on Σ. Let
g be a conformal background metric on Σ. Then there is at most one
solution u to (21) so that eug is complete.

We remark the proof of this theorem closely follows Wan [70], who
studies similar equations for quadratic differentials. The theorems in
[22, 70] are phrased in terms of differential equations on domains in C.
The theorem as we state it here follows from passing to the universal
cover of Σ.

Recall the finite cover of Mg by {V α} from Subsection 2.9 above,

and consider the universal curve π : Cg →Mg. Let Kα = π−1V α, and
let Kα,reg denote Kα with the nodes removed. Recall each V α consists
of an (s, t) neighborhood of a noded Riemann surface Σ, where the s
parameters represent Beltrami differentials ν(s) which are supported
away from the nodes and which preserve hyperbolic cusp coordinates,
and the t parameters open the nodes by taking {zw = 0} to {zw = t}.

Theorem 4.2.2. Let (Σj , Uj)→ (Σ∞, U∞) in the total space of reg-
ular cubic differentials. Then the corresponding Blaschke metrics hj
converge in C∞ in the following sense: We may assume the elements
of the sequence all lie in one V α ⊂Mg. Then the Blaschke metrics hj
converge in the same manner that the cubic differentials Ui do:

In particular, there is a fixed noded Σ so that Σj = Σsj ,tj , for j ∈
{1, 2, . . . ,∞}, with respect to the hyperbolic-metric plumbing coordinates.
On the thick part of each Riemann surface, the Blaschke metrics con-
verge upon being pulled back by the quasi-conformal diffeomorphisms in-
duced by the Beltrami coefficients so that [(χsj )−1]∗hi → [(χs∞)−1]∗h∞
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in C∞. On the cusp and collar neighborhoods, the Blaschke metrics
converge in C∞loc with respect to the cusp coordinates z and w.

Proof. We use the method of sub- and super-solutions. Consider the
hyperbolic metric kj on Σj as a background. In this case, the equation
for the conformal factor (21) becomes

(22) Lj(u) ≡ ∆ju+ 1
2e
−2u‖Uj‖2j − 2eu + 2 = 0.

Note that Lj(0) ≥ 0 always, and we use the hyperbolic metric as a sub-
solution for our equations. In order to find a family of super-solutions
Sj , we need to ensure

Sj ≥ 0, Lj(Sj) ≤ 0.

Then we will always be able to find a solution uj satisfying 0 ≤ uj ≤ Sj
everywhere. Note the method of sub- and super-solutions works on
non-compact Riemann surfaces (see, e.g., [70]), and it is not necessary
to have an L∞ bound on the difference Sj − 0 of the super- and sub-
solutions.

To construct a family of super-solutions, recall that with respect to
the metrics mj defined by (6) and (7) on Σreg

j , the convergence of

(Σj , Uj) implies there is a uniform constant C so that ‖Uj‖mj ≤ C.

Write mj = eφjkj . Then for a constant B,

Lj(φj +B) = eφj (1
2‖Uj‖

2
mje

−2B − 2eB − 2κmj ).

Moreover, (4) implies the grafting metric gj and the hyperbolic metric
kj are uniformly comparable. By the construction of mj above in (6)
and (7), φj is uniformly bounded on the region of interpolation,

mj
gj
≥ 1

where mj is flat, and κmj is uniformly bounded. In particular, φj has
a uniform lower bound, and so for B large enough, Lj(φj +B) < 0 and
φj +B ≥ 0. Therefore, Sj = φj +B is a super-solution.
Sj is a smooth function on each Σreg

j . Note that the Sj can be chosen

to vary continuously as Σj changes for tj small (within our coordinate

neighborhood V α ⊂Mg), but within each N ti neighborhood, Sj varies
discontinuously for values of |tj | large enough. However, there are still
uniform bounds. This follows since for |tj | bounded away from zero, the
gj metrics on the hyperbolic collars are uniformly equivalent (depending
on the bound on |tj |) to the flat metrics we glue in to form mj . In other
words, for |tj | > P > 0, there is a uniform positive constant C = C(P )
so that Cgj ≤ mj ≤ C−1gj .

With the sub-solution 0 and super-solution Sj in place, there is a solu-
tion uj to (22) satisfying 0 ≤ uj ≤ Sj . This implies the Blaschke metric
hj = eujkj is complete, since the hyperbolic metric kj is complete.

Now consider the sequence of Blaschke metrics hj = eujkj on Σreg
j .

It is a theorem of Bers that the hyperbolic metrics kj vary smoothly on
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compact subsets of Creg
g ⊃ Kα,reg [9] (this also follows from, e.g., Wolf–

Wolpert [73, p. 1090]). The uniform local bounds on Sj on Kα,reg,
together with interior elliptic estimates, imply that the uj have locally

uniform C2,β estimates on each Σreg
j ⊂ Kα,reg. (See, e.g., [50] for the

elliptic regularity argument.) This implies by Ascoli–Arzela that there
is a limit (up to a subsequence) in C2

loc: ujk → w on Σreg
∞ . Since each

ujk ≥ 0, w ≥ 0 as well, and ewk∞ is complete. Since the convergence is
C2

loc, w satisfies (22) and so ewk∞ is a complete Blaschke metric on Σ∞.
But Dumas–Wolf’s uniqueness Theorem 4.2.1 above then shows that
w = u∞. Moreover, the same argument shows that every subsequence
of uj has a subsequence which converges to u∞ in C2

loc. This shows
uj → u∞ in C2

loc (and in C∞loc by elliptic regularity). q.e.d.

Since 0 is a sub-solution to (22), we have the following

Proposition 4.2.3. Let Σ be a Riemann surface equipped with a
complete conformal hyperbolic metric k. Let U be a cubic differential
over Σ, and let h = euk be a complete Blaschke metric for which u
satisfies (22). Then h ≥ k on Σ.

Proof. This follows from the proof of Theorem 4.2.2 for the pairs
(Σ, U) we consider in this paper, in which Σ can be conformally com-
pactified by adding a finite number of points at which U has poles of
order at most 3. More generally, we can modify the proof of Theorem 6
in Wan [70], and use a global pointwise bound on the norm of U with
respect to the Blaschke metric due to Calabi [11]. Since we do not need
the general result presently, we leave the details to the reader. q.e.d.

4.3. Convergence of the holonomy. In the this subsection and the
next we prove

Theorem 4.3.1. The map Φ : Vg → Raug
S defined in Theorem 4.1.2

is continuous.

Proof. This theorem follows from Theorems 4.3.2 and 4.4.1 below.
q.e.d.

On a pair of noded Riemann surface and regular cubic differential
(Σj , Uj), the holonomy is determined by a tuple of representations holj,k :
π1(Σj,k, pj,k) → SL(3,R), where the Σj,k are the connected compo-
nents of Σreg

j . We consider in the next theorem the case of limits

(Σj , Uj) → (Σ∞, U∞). In the case in which one or more nodes form
as Σj → Σ∞, we will need to consider as many sequence of basepoints
pj,k → p∞,k, as there are connected component of Σreg

∞ . This may be
strictly larger than the number of connected components of Σreg

j , and is
in accordance with the topology on augmented Goldman space defined
in Subsection 2.7 above.
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Theorem 4.3.2. Let (Σj , Uj) be a sequence of pairs of (possibly)
noded Riemann surfaces and regular cubic differentials which is conver-
gent to (Σ∞, U∞) with respect to the topology on Vg defined in Subsection
2.9. Consider a family of parametrized smooth loops Lj based at points
pj in Σreg

j which converge uniformly to (L∞, p∞) on Σreg
∞ . Given a choice

of a continuous family of initial frames at the basepoints, consider the
RP2 holonomy holj ∈ SL(3,R). Then holj → hol∞.

Proof. The idea of the proof is that since all the loops avoid the
nodes, there is an ε > 0 so that we remain in the thick part Thickε
of the universal curve Cg, where we have uniform estimates and, thus,
convergence of the cubic differentials Uj , the conformal factors uj and
the hyperbolic metrics. The convergence of the holonomy will follow
from the theory of linear ODEs with parameters.

We may assume all Σj for j large enough are represented in a single

neighborhood V α ⊂ Mg. Then for each Beltrami differential ν in the
definition of the hyperbolic metric plumbing coordinates, consider the
diffeomorphism χ̃ν of D which fixes three points (such as 1, i,−1) on
the boundary ∂D and is a lift of the quasi-conformal diffeomorphism χν

of the connected component of Σreg
j containing pj , as in Subsection 2.9

above. In this way, we can choose lifts p̃j ∈ D of pj so that p̃j → p̃∞.

Also consider lifts L̃j based at p̃j of the loop Lj . Let ιj denote the

deck transformation corresponding to Lj . Then L̃j has endpoints p̃j
and ιj p̃j .

Let L̂j : [0, 1] → D be the hyperbolic-geodesic constant-speed path

from p̃j to ιj p̃j . L̂j and L̃j are homotopic, but L̂j enjoys better con-

vergence properties: L̂j → L̂∞ in C∞, while L̃j → L̃∞ only uniformly.

Upon projecting to Σreg
j , the image of L̂j is a hyperbolic geodesic typ-

ically with a corner at the basepoint pj .
On a Riemann surface Σ with local coordinate z, consider any smooth

path z(t). Then (17) becomes a linear system of ODEs via dF
dt =

Fz
dz
dt + Fz̄

dz̄
dt for the frame F = F z = (f, fz, fz̄). Moreover, (17) gives

the Christoffel symbols for a connection on the rank-3 vector bundle
E = (1 ⊕ TΣ) ⊗ C with frame F . Around each loop, the inverse of
the parallel transport map of this connection is the RP2 holonomy. See
[28, 49] for details.

To compute the RP2 holonomy along Lj , first lift to the loop L̃j as

above and consider instead the hyperbolic geodesic path L̂j . We first

solve an initial-value problem for (17) along L̂j , to find the frame F z

evolves to be F zMj along the path. In other words, Mj is the solution

to an initial value problem for the linear system of ODEs along L̂j . But
upon projecting D → Σj , the pullback of the frame at pj ∈ Σ to ιj(p̃j)

is then (f, fw, fw̄) for w = ιj(z). Then this computes the RP2 holonomy
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to be

D(1,
dιj
dz
,
dῑj
dz̄

)|p̃j ·Mj .

Since each loop Lj avoids the nodes in Σj shows that there is an
ε > 0 so that Lj lies in Thickε inside the noded Riemann surface
Σj . Since (Σj , Uj) → (Σ∞, U∞), we have Uj → U∞ uniformly on

the paths L̂j → L̂∞. Theorem 4.2.2 then shows the conformal fac-
tors uj for each Blaschke metric, and their first derivatives, also con-

verge uniformly as L̂j → L̂∞. Recall the Blaschke metric hj = eujkj
for kj the hyperbolic metric. On D, the union of the L̂j for j =
1, 2, . . . ,∞ is compact, and so there is a δ > 0 so that they all lie
in {z : |z| < 1 − δ} ⊂ D. This shows the hyperbolic metric and

|dz|2 are uniformly bounded in terms of each other on the L̂j , and

so for hj = eψj |dz|2, ψj and its first derivatives converge uniformly as
j → ∞. As these cover all the terms in the coefficients in (17), the
theory of linear systems of ODEs with parameters shows that the so-
lutions Mj to the appropriate initial-value problems converge as j →
∞.

So it remains to analyze how D(1,
dιj
dz ,

dῑj
dz̄ )|p̃j varies as j →∞. Each

ιj is a deck transformation in the Fuchsian group whose quotient is Σreg
j .

These Fuchsian groups, when normalized at ∂D as above, vary continu-
ously on compact subsets of D as the hyperbolic plumbing coordinates

(s, t) vary, and so the change-of-frame factor D(1,
dιj
dz ,

dῑj
dz̄ )|p̃j converges

as j →∞. q.e.d.

4.4. Convergence of the developing map. The convergence of the
developing map as (Σj , Uj) → (Σ∞, U∞) is a little trickier, as it is
necessary to consider paths that go to the boundary of the universal
cover, and, thus, the standard theory of linear systems of ODE’s with
parameters does not directly apply. Our proof is similar to Dumas–Wolf
([22], the proof of Theorem 8.1).

Theorem 4.4.1. Let (Σj , Uj)→ (Σ∞, U∞) be a convergent family of
pairs of (possibly) noded Riemann surfaces and regular cubic differen-
tials. Let pj ∈ Σreg

j and let pj → p∞ ∈ Σreg
∞ . Consider the connected

component of Σreg
j containing pj, and take a universal cover of this com-

ponent to be the unit disk D, with a lift of pj placed at 0. Let Ωj ⊂ RP2 be
the convex domain determined by projecting the complete affine sphere
determined by the initial value problem (17) with a fixed initial frame
from R3 to RP2. Then Ωj → Ω∞ in the Hausdorff sense.

Proof. The idea of the proof is to use the theory of linear ODE sys-
tems with parameters as in Theorem 4.3.2 above. But there is an im-
portant difference in that our paths do not necessarily remain in Thickε
for any ε > 0, and so using the hyperbolic metric as a background is
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inadequate. Instead, we graft in flat annuli into the thin parts of Σj ,
similarly to Figure 2 in Subsection 2.9 above. Assume Σ∞ and Σj for j

large are all represented in a coordinate chart V α ofMg. We will define
continuous conformal metrics nj on Σreg

j which are related to the met-

rics mα,s,t introduced above. In particular, for Σj represented by the
coordinates (s, t) on V α, define nj to be the hyperbolic metric induced

by the Beltrami coefficient ν(s) on Σj \ ∪iN ti,j
i . On each cusp/collar

neighborhood N ti,j
i ∩ Σreg

j , define nj to be the flat cylindrical metric
continuously extending the hyperbolic metric. The nj metrics are uni-
formly equivalent to the mj = mα,s,t metrics by the constructions in
Subsection 2.9 above. From the point of view of the hyperbolic geome-
try on the thick parts of Σj , the singular locus of the nj is represented
by images of horocycles projected from the Poincaré disk. The nj met-
rics are convenient in that every path between two endpoints in Σreg

j is
homotopic to a unique nj-geodesic path between the endpoints. More-
over, (nj , p∞) → (n∞, p∞) in the sense of geometric limits of pointed
Riemannian manifolds; in other words, the metrics nj converge to n∞
in any geodesic ball centered at p∞.

We need to prove that for each ε > 0, there is a J so that for all
j ≥ J , Ωn ⊂ Nε(Ω∞) and Ω∞ ⊂ Nε(Ωj), where Nε is an ε-neighborhood

with the respect to the Fubini–Study metric on RP2.
For simplicity, assume that p∞ ∈ Σreg

∞ is in the thick part of Σ∞,
in the interior of the region where n∞ is hyperbolic. Then for j large,
the same is true for the nj , and neighborhoods of lifts p̃∞ and p̃j may
be naturally identified with neighborhoods in the Poincaré disk D by
the quasi-conformal diffeomorphisms χsj . In particular, we assume that
0 ∈ D represents the lift p̃∞.

Let Fj(z) denote the frame for z ∈ D corresponding to (Σj , Uj) as
above. Then the component fj(z) is the parametrization of the hyper-

bolic affine sphere in R3, and [fj(z)] is the projection to RP2. For R > 0,

consider the closed nj-geodesic disk Bj(R) in the universal cover of the
connected component of Σreg

j centered at the origin. Since n∞ is com-

plete, we may choose R large enough so that Ω ⊂ Nε/2([f∞](B∞(R))).

Now for z ∈ Bj(R), Fj(z) can be determined by a linear system of
ODE’s given by integrating the frame along an nj-geodesic from 0 to z.
The nj-exponential maps expnj centered at the origin identify all the

Bj(R) with B(R), the closed disk of radius R in the tangent space T0D.
As above in the proof of Theorem 4.3.2, the coefficients of these ODE
systems on the compact set B(R) converge uniformly as j →∞. Also,

nj → n∞ in B(R). Therefore, the theory of linear ODE systems with

parameters shows Fj ◦expnj → F∞ ◦expn∞ uniformly on B(R). Denote

f̃j = [fj ◦ expnj ]. So there is a J so that for j ≥ J ,
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f̃j(B(R)) ⊂ Nε/2(f̃∞(B(R))) ⊂ Nε/2(f̃∞(T0D)) = Nε/2(Ωj),

and, thus, Ω∞ ⊂ Nε(Ωj).
To prove the opposite inclusion, we consider the dual hyperbolic affine

sphere, which has the same metric eujkj on Σj and the opposite cubic
differential −Uj , by Theorem 3.1.4 above. Now we can lift the data to
T0D as above, and consider an appropriate initial frame to form the
dual hyperbolic affine sphere and projective dual convex domain. Then
the previous case implies there is a J so that if j ≥ J , then

Ω∗ ⊂ Nε(Ω
∗
j ).

But then Lemma 3.1.3 implies that

Ω ⊃ (Nε(Ω
∗
j ))
∗ ⊃ Nε′(Ωj),

where ε′ → 0 if and only if ε→ 0. This follows from the continuity under
the Hausdorff distance of the projective duality of uniformly bounded
convex domains which contain a fixed ball. This in turn implies (for
convex domains) that there is an ε′′ which approaches 0 if and only if ε
does so that

Ωj ⊂ Nε′′(Ω∞),

for j ≥ J . This is enough to prove the theorem. q.e.d.

Remark. As should be clear from the proofs, Theorems 4.3.2 and
4.4.1 also apply to the case of the vector bundle of regular cubic dif-
ferentials over Qc, where c is the set of loops in S pinched to nodes in
Σ∞.

5. Regular convex RP2 structures to regular cubic
differentials

5.1. The singular limit cases. In this subsection, we show the regu-
lar convex RP2 structures each correspond to a pair (Σ, U) of a noded
Riemann surface Σ and regular cubic differential U on Σ. It suffices
to consider each connected component of Σreg separately. Consider a
connected oriented properly convex RP2 surface each of whose ends is
regular. Then use the hyperbolic affine sphere to construct a Riemann
surface of finite type and regular cubic differential so that the RP2 ge-
ometry of each end corresponds to the residue of the cubic differential as
in Theorem 4.1.1 above. The results in this subsection are also recently
due to Nie [58], using similar techniques. We include our version, as
we find the material both short and instructive. We summarize these
results in

Theorem 5.1.1. Let S be a closed oriented surface of genus g ≥ 2.
Then the map Φ: Vg → Raug

S defined in Theorem 4.1.2 is surjective.

This theorem follows from Theorem 5.1.6 below and the definition of
a regular separated neck in Subsection 2.6 above.
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Consider a single end E of X. We proceed by considering the four
cases of regular ends separately.

Theorem 5.1.2. [6] Let E be an end of parabolic type. Then with
respect to the Blaschke metric, E can be conformally compactified by
adding a single point. The cubic differential U has at worst a pole of
order 2 at this point, and so the residue is 0.

This case is settled by Benoist–Hulin [6], who prove that the confor-
mal structure at the end can be compactified by adding a single point,
and that the corresponding cubic differential U has a pole of order at
most 2. In our language, this corresponds to the residue’s being 0. To
be more specific, Benoist–Hulin consider convex RP2 surfaces with fi-
nite area with respect to the Hilbert metric, which Marquis [53] has
proved are equivalent to having a finite number of ends each with par-
abolic holonomy. Thus, [6] is concerned with convex RP2 surface all
of whose ends are parabolic. But the techniques used to analyze each
end are essentially local, and apply to each end separately, and, indeed,
they prove that each such end has finite conformal type and has cubic
differential with residue 0.

Proposition 5.1.3. Let E be a regular end of quasi-hyperbolic type,
or of hyperbolic type with bulge ±∞. Then there is a family of loops Ls
around E which depend on a parameter s→ 0+ so that

• Ls uniformly approaches the end as s→ 0+. More precisely, rep-
resent E as homeomorphic to a closed half-cylinder [0,∞) × S1.
Then for every compact K ⊂ E, there is an ε > 0 so that if s < ε,
Ls ∩K = ∅.
• There is a family of elements Ms ∈ SL(3,R) so that Ms Ω → T

in the Hausdorff topology as s→ 0+ and Ms Ls lies in a compact
subset of T for s small enough. Here T is a triangle in RP2.

Proof. The proof is broken into 3 cases.
First, we consider the case in which E is of hyperbolic type with bulge

−∞. Choose a based loop L in X freely homotopic to a loop around E ,
and coordinates on RP2 so that the SL(3,R) holonomy along a lift L̃ of
L is represented by H = D(λ, µ, ν) so that λ > µ > ν > 0 and λµν = 1.
Let T denote the principal triangle given by the projection of the first
octant in R3 to RP2. Note the vertices of T are the fixed points of H.
Since the bulge is −∞, Ω, the image of the developing map of X, is
contained in T and the boundary of Ω contains the principal geodesic
˜̀ = {[t, 0, 1 − t] : 0 ≤ t ≤ 1}. For p = [1, s, 1] as s → 0+, consider the

lift of a loop Ls = {Ht p : t ∈ [0, 1)}. Let Ms = D(s
1
3 , s−

2
3 , s

1
3 ) so that

Ms acts on the hyperbolic affine sphere H by sending p to [1, 1, 1]. For
t ∈ [0, 1), we have MsH

t p = Ht [1, 1, 1]. Thus, the limit of Ms Ls lies
in a bounded neighborhood of [1, 1, 1] in T .
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Figure 3

Since ∂Ω contains the principal geodesic ˜̀, Ω ⊂ T , and Ω is convex,
Ms Ω → T in the Hausdorff topology as s → 0. One can see this by
noting ˜̀ is fixed by Ms, and all other points in Ω̄ approach [0, 1, 0] as

s → 0+. The interior of the convex hull of ˜̀ and [0, 1, 0] is T . In fact,
Ms Ω increases to T as s→ 0+. See Figure 3.

The second case is of hyperbolic holonomy H with bulge +∞. In this
case, we choose coordinates so that the convex domain Ω contains T , ˜̀,
and a proper nontrivial subset of T̄ . Consider the point p = [s, 1, s] ∈ T
as s → 0+. Consider the map Ms = D(s−

1
3 , s

2
3 , s−

1
3 ), which sends p

to [1, 1, 1]. As s→ 0, the action of Ms is essentially a bulge parameter
approaching −∞. Since Ω ∩ T̄ is bounded away from [0, 1, 0], we see
that Ms Ω→ T as s→ 0.

Moreover, as s → 0, p → [0, 1, 0] ∈ ∂Ω, and the points in the lift of
the loop Ls = {Ht p : t ∈ [0, 1)} approach Ht [0, 1, 0] = [0, 1, 0]. Thus,
the family of loops do approach the end as s → 0. Also, MsH

tp →
Ht [1, 1, 1]. Since t ∈ [0, 1), lims→0+ Ms Ls lies in a compact subset T .
See Figure 4.

Figure 4
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The remaining case is that of quasi-hyperbolic holonomy. It is a bit
different, in that the dynamics do not involve a principal triangle. Nev-
ertheless, we analyze this case in terms of T as well. We may assume the

holonomy matrix H =

 λ 1 0
0 λ 0
0 0 µ

, with λ, µ positive and λ2µ = 1.

Assume without loss of generality that λ > µ (otherwise, we could ana-
lyze H−1 similarly). Then the fixed points of H are the attracting fixed
point [1, 0, 0] and the repelling fixed point [0, 0, 1]. Consider the geodesic
˜̀ = {[t, 0, 1 − t] : t ∈ [0, 1]}. The proper convexity of Ω and a simple
analysis of the dynamics of H imply that we can choose coordinates so
that ∂Ω ∩ {[x, y, z] : y = 0} = ˜̀ and Ω ⊂ {[x, y, z] : y, z > 0}.

As above, we consider p = [1, s, 1] ∈ Ω as s→ 0+, and note lims→0 p =

[1, 0, 1] ∈ ∂Ω. Then the map Ms = D(s
1
3 , s−

2
3 , s

1
3 ) takes p to [1, 1, 1].

Moreover, as s → 0+, Ms Ω → T in the Hausdorff sense. This can
be seen because ˜̀ is fixed under the action of Ms, and for every q =
[x, y, z] ∈ RP2 with y 6= 0, the orbit Ms q is a straight line approaching
[0, 1, 0] as s→ 0. This implies that any point q ∈ Ω which is ε-close to
˜̀ remains ε-close to T under the action of Ms as s→ 0+. On the other
hand, there is a σ > 0 so that if 0 < s < σ, and r ∈ Ω is not ε-close to
˜̀, then Ms r is ε-close to [0, 1, 0]. Thus, all points of Ms Ω are within ε
of T for s small enough.

Consider a family of loops Ls = {Ht p : t ∈ [0, 1)} which uniformly
approaches ∂Ω as s→ 0+. Compute

MsH
t p = [λt + stλt−1, λt, µt]→ [λt, λt, µt]

as s → 0. This shows that the closure of lims→0Ms Ls is compactly
contained in T . See Figure 5.

Figure 5 q.e.d.

Proposition 5.1.4. Let X be a convex RP2 surface. Let E be a
regular end of X of quasi-hyperbolic type, or of hyperbolic type with
bulge ±∞. For the cubic differential U and Blaschke metric h, the
norm squared ‖U‖2h approaches the constant 4 uniformly at the end E.
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Moreover, the metric |U |
2
3 is a flat Riemannian metric which is complete

and has bounded circumference on E. The induced conformal structure
of the end can be compactified by adding a single point.

Proof. Under the previous proposition, we know that Ms Ω → T
in the Hausdorff topology. Then Theorem 3.2.2 applies to show the
Blaschke metric and cubic tensor on Ms Ω converge to those on T in
C∞loc. We know by Subsection 3.5 above that the norm squared ‖U‖2h = 4
on T , and so on each compact subset of T , the same quantities on Ms Ω
satisfy lims→0 ‖U‖2h = 4. By our construction of Ms, such a compact
set K ⊂ T pulls back to M−1

s K, which approaches a lift of the end E
in Ω. This shows ‖U‖2h → 4 uniformly approaching the end E on X.

This implies that there are no zeros of U in a neighborhood of E .
Also, the Blaschke metric h is complete by Theorem 3.1.2. Then ‖U‖2h =

8|U |2h−3 → 4, which shows that |U |
2
3 is complete at E . Away from the

zeros of U , |U |
2
3 is a flat metric, and, thus, |U |

2
3 is a flat metric on E

which is complete at the end.
Since the loops Ls from the previous proposition converge to the end

and the Ms Ls lie in a compact subset of T for s near 0, the length

with respect to the flat metric |U |
2
3 (or the Blaschke metric h) of Ls

remains bounded as s → 0. This shows the |U |
2
3 -circumference of the

E is bounded. Since the metric is flat and complete, the circumference
must be constant. In fact, by considering the Euclidean developing map

of (E , |U |
2
3 ), we find it must be a flat half-cylinder. This flat half-cylinder

can be conformally compactified by adding one point, as one can choose
a conformal coordinate z so that

(23) |U |
2
3 = C |z|−2 |dz|2,

for a constant C and 0 < |z| ≤ 1. q.e.d.

Proposition 5.1.5. Let E be a quasi-hyperbolic end, or hyperbolic
end with bulge ±∞ on a convex RP2 surface. At the puncture on the
Riemann surface induced by the Blaschke metric h, the cubic differential
U has a pole of order exactly three.

Proof. Dumas–Wolf show that the completeness of |U |
2
3 implies U

cannot have an essential singularity at z = 0 [22, Lemma 7.6] (see also

Osserman [60]). Moreover, the completeness of |U |
2
3 implies U has a

pole of order at least 3. The finite circumference of a loop around the

end with respect to |U |
2
3 then shows that the pole order of U is at most

3, by the choice of coordinates in (23) above. q.e.d.

Theorem 5.1.6. Let X be a connected oriented properly convex RP2

surface of genus g and n ends, so that 2g + n > 2. Assume the RP2

structure of each end is regular. Then the conformal structure Σ induced



370 J. LOFTIN

by the Blascke metric on X is of finite type, and the induced cubic
differential U has poles of order at most 3 at each puncture of Σ. The
residue of U at each puncture corresponds to the RP2 structure of the
end as in Theorem 4.1.1 above.

Proof. The case of parabolic holonomy was settled by Benoist–Hulin’s
Theorem 5.1.2 above.

Denote the conformal structure by Σ. For the other cases, we have
shown that they each lead to a regular cubic differential U of pole order
3. We proved in [50] that given such a pair (Σ, U), we can construct

from a background metric the complete Blaschke metric h̃, and also
integrate the equations to determine an RP2 structure X̃ of the surface.
On X̃, the residue of the corresponding cubic differential determines
the holonomy and bulge parameters of the end as in Theorem 4.1.1.
Theorem 4.2.1 shows h̃ = h and, as the RP2 structure is determined by
(Σ, U, h), the ends of the RP2 structure X conform to Theorem 4.1.1.

q.e.d.

5.2. Convergence in families. We introduce some terminology of
convergence of pointed convex domains and Benzécri’s Theorem. A pair
(Ω, x) with Ω a properly convex domain in RPn and x ∈ Ω is called a
pointed convex domain. A sequence (Ωj , xj) of pointed convex domains
converges in the Hausdorff sense to a pointed convex domain (Ω, x) if
Ωj → Ω with respect to the Hausdorff topology and xj → x. More
generally (Ωj , xj) → (Ω, x) in the Benzécri sense if there is a sequence
ρj ∈ SL(n + 1,R) so that ρj(Ωj , xj) → (Ω, x) in the Hausdorff sense.
Benzécri proved

Theorem 5.2.1. [8] The space of pointed convex domains in RPn,
modulo the action of SL(n+ 1,R), is compact and Hausdorff.

The theorem we prove for the remainder of this subsection is

Theorem 5.2.2. The map Φ−1 : Raug
S → Vg is continuous.

Outline of proof. In order to show convergence of (Σj , Uj) given the

convergence of the corresponding regular convex RP2 structures, we
first show that the sequence {(Σj , Uj)} is precompact in Vg by using

the compactness of Mg and proving in Proposition 5.2.3 that the Uj
are uniformly bounded in the space of regular cubic differentials over
Σj . Thus, we have a convergent subsequence (Σjk , Ujk) → (Σ∞, U∞)
in Vg. Then we prove that there is a unique limit of the corresponding

regular convex RP2 structure and, thus, Theorem 4.3.1 above shows
Φ(Σ∞, U∞) must be the original limit of the sequence of regular convex
RP2 structures.

Many of the technical details below concern proving the uniqueness
of the limit in Proposition 5.2.6. In particular, for simplicity consider
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on a surface S the case of convex RP2 structures (Ωi,Γi)→ (O1, G1)⊕
(O2, G2) in Gaug

S along a path in which a single loop ` is separated and
S − ` = S1 t S2. There are ρi, σi ∈ SL(3,R) so that ρiΩi → O1,
σiΩi → O2, ρi(Γi|S1)ρ−1

i → G1, and σi(Γi|S2)σ−1
i → G2. We first treat

the convergence of the domains by considering sequences of pointed
domains (Ωi, x

1
i ) → (O1, x

1
∞) and (Ωi, x

2
i ) → (O2, x

2
∞) converging in

the Benzécri sense. For k = 1, 2, consider the sequence [xkj ] in the

Riemann surface induced by the Blaschke metric on Γi\Ωi.
Then we show that there is an ε > 0 so that each [xkj ] for large finite j

lies in the same connected component Ckj of Thickε ⊂ Σj as corresponds
to Ok. Assume otherwise, and prove this statement by contradiction.
First note that Proposition 4.2.3 shows that the Blaschke distance from
Ckj to [xkj ] must diverge to infinity. Then we use Proposition 3.3.2 and

an analysis of the possible actions of Γj on Ωj following Goldman [27]
to show that the limit Gk of Γj |Sk cannot act on the limiting domain
Ok. This contradicts the definition of (O1, G1)⊕ (O2, G2) representing
a point in Gaug

S .

Inside the component Ckj of Thickε, we have uniform bounds on the

cubic differential Uj and uniform C1 bounds on the conformal factors
uj . Thus, the ODE techniques of Theorem 4.4.1 apply to show that Ok
must be projectively equivalent to a corresponding component of the
projective domains in Φ(Σ∞, U∞).

Finally, to show that the groups Gk also come from Φ(Σ∞, U∞), we
use the fact that an element of SL(3,R) is determined by its action
on 4 points in general position. We may take these 4 points to be in
a neighborhood of an image x̃k∞ of xk∞ by an element of Gk and use
the uniform bounds and the Implicit Function Theorem to derive the
convergence of (Ωj ,Γj |Sk) → (Ok, Gk) up to the action of SL(3,R).

q.e.d.

Now we introduce the details of the proof of Theorem 5.2.2. Gaug
S

is a stratified space with strata GcS for c ∈ C(S). The closure of each
stratum

GcS =
⊔
d⊃c
GdS .

The lowest strata GcS , in which c splits S− c into a disjoint collection of
pairs of pants, are closed. Thus, by considering subsequences, we may
assume the limit either remains within one stratum or the limit point is
on a smaller stratum (by separating one or more necks). This means that
in considering limits of sequences in Gaug

S , we may consider, by taking
subsequences if necessary, only the case of elements of GcS approaching

a limit in Gd∪cS for d and c fixed disjoint sets of free homotopy classes
of simple loops satisfying d ∪ c ∈ C(S). In particular, we may focus
precisely on separating the necks in d.
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For the case of families, consider a sequence of regular convex RP2

structures converging in Raug
S . The associated unmarked conformal

structures must converge (subsequentially) in Mg, as it is compact.
Our first task is to show that this subsequential convergence can be
extended to the regular cubic differentials as well. For a convergent
sequence in Raug

S , we consider by Lemma 2.4.2 convergent sequences of
the form

⊕k(Ωj ,Γj |Sk).

The induced conformal structures given by the Blaschke metric asso-
ciates to each pair (Ωj ,Γj |Sk) a conformal structure of finite type. We
then pairwise attach the ends of the Riemann surface by adding a node
for each pair. Thus, we have a sequence Σj of noded Riemann surfaces.

SinceMS is compact, there is a convergent subsequence Σj` . Note that
this gluing to form noded Riemann surfaces is purely complex-analytic,
and so generalized twist parameters are not necessary.

For the cubic differentials, we have by Theorem 3.2.2 that the norm-
squared of the cubic tensor with respect to the Blaschke metric converges
in C∞loc. We can also prove the following universal bound

Proposition 5.2.3. Let S be an oriented surface of genus g ≥ 2.
Consider a convergent sequence in Raug

S . Assume, by possibly taking a
subsequence, that the associated conformal structures Σj converge to a

limit Σ∞ in Mg. Assume Σ∞ is an element of the chart V α as above
in Subsection 2.9. In terms of the metrics mα

j , there is a constant C

so that the cubic differentials Uj satisfy ‖Uj‖mαj ≤ C pointwise for all j

large.

Proof. First of all, the convergence in Raug
S implies by Lemma 2.4.2

that we may lift to a convergent sequence in Gaug
S . Let n be the number

of connected components of the regular limit RP2 surface. Assume, by
taking subsequences, that all the surfaces in the sequence lie in the same
stratum of Gaug

S . In particular, assume that the surface S is the disjoint
union of a set of loops c ∈ C(S) and open subsurfaces S1, . . . , Sn. Along
each loop in c, there is a regular separated neck, and for k = 1, . . . , n,
there are pairs (Ωk

j ,Γ
k
j ) of properly convex domains and discrete sub-

groups of SL(3,R) acting on the domains so that the quotient Γkj \Ωk
j is

diffeomorphic to Sk. Moreover, the induced projective structure at each
end of an Sk is regular and is paired appropriately with another end of
an Sk̃ to form a regular separated neck.

In the limit as j → ∞, we may have more necks being separated.
Consider a set of homotopy classes of loops d so that d and c are disjoint
and d ∪ c ∈ C(S). We will separate the necks across d. For simplicity,
we only consider the case of a single loop in d which separates S1 into
two pieces S̃0 and S̃1. In this case, we have ρj , σj ∈ SL(3,R) so that
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ρj(Ω
1
j ,Γ

1
j |S̃0

) → (O, G) and σj(Ω
1
j ,Γ

1
j |S̃1

) → (U , H), so that S̃0 and S̃1

are diffeomorphic to G\O and H\U , respectively.
In particular, ρjΩ

1
j → O in the Hausdorff topology. Theorem 5.1.6

implies that (O, G) is topologically conjugate to a non-elementary
finitely-generated Fuchsian group of the first kind. In particular, for
D the Poincaré disk, there is a diffeomorphism φ : O → D, conformal
with respect to the Blaschke metric onO, so that φ◦G◦φ−1 is a Fuchsian
group, and the Riemann surface (φ ◦ G ◦ φ−1)\D has finite hyperbolic
area. Consider the Dirichlet domain, which a convex ideal polygonal
fundamental region P for φ ◦ G ◦ φ−1 with finitely many sides and for
which each ideal vertex corresponds to an end of the quotient surface
S̃0; see, e.g., [4]. Let K ⊂ O be a compact set large enough so that
all of P outside neighborhoods of the ideal vertices is in the interior of
φ(K). Theorem 3.2.2 implies the Blaschke metrics and cubic tensors of
ρjΩ

1
j converge on K in C∞ to those on O.

Upon passing to the quotient surface S̃0, the convergence on K de-
scends to the quotient surface to show C∞loc convergence of the Blaschke

metrics and cubic tensors on S̃0 outside the ends (which are topological

annuli). The same sort of convergence is true on S̃1 and all the other
connected components of S − (d∪ c). On all of S, then, there exist dis-
joint annular neighborhoods Ak, one for each homotopy class of loops
in d∪ c, so that the Blaschke metrics and cubic tensors converge in C∞

on S − ∪kAk.
By our assumption, the necks in d are precisely those which are con-

formally pinched as Σj → Σ∞. So we may assume each Ak contains the
thin part of each collar neighborhood in Σj . In other words, there is an
ε > 0 so that Σj−∪kAk ⊂ Thickε. The Blaschke metric, the hyperbolic
metric, and the modified metrics mα are, thus, all uniformly equivalent
(depending on ε) on Σj − ∪kAk. Therefore, the uniform convergence
of the cubic tensors and Blaschke metrics on Σj − ∪kAk implies the
uniform convergence of ‖Uj‖mα,j on Σ∞−∪kAk. So for large enough j,
there is a uniform bound on ‖Uj‖mα,j when restricted to Σj − ∪kAk.

The next lemma shows this uniform bound can be extended to a
uniform bound of ‖Uj‖mα,j on all of Σreg

j . q.e.d.

Lemma 5.2.4. Let Σ be a noded Riemann surface represented by a
point in V α ⊂Mg with metric mα. Let U be a regular cubic differential
on Σ. Let Ak be a collection of disjoint sets of the following forms:
either 1) an annular subset of Σ or 2) a neighborhood of a node which
is homeomorphic to {zw = 0 : |z|, |w| < 1} with respect to the plumbing
coordinates. Assume Ak contains a component of the locus where the
mα metric is flat. Then there is a constant C depending only on the
genus so that for all x ∈ Σreg,

‖U(x)‖mα ≤ C sup{‖U(z)‖mα : z ∈ Σreg − ∪kAk}.
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Proof. See, e.g., [77, 78]. For simplicity, we consider the case of a
single domain A.

We consider two cases. First of all, let A be an annulus. If A is
equal to F ≡ {` : mα = (2 log c)−2|d`|2}, then the mα metric is flat on
A. For the quasi-coordinate ` = log z, we have mα = 2(log c)−2|d`|2.

Thus, ‖U‖mα is, up to a constant, the same as |Ũ |, for U represented

locally as Ũ d`3. Thus, the maximum modulus principle implies that
sup{‖U(x)‖mα : x ∈ A} ≤ sup{‖U(x)‖mα : x ∈ ∂A}.

On the other hand, if the annulus A is not contained in F , then out-
side this set, the metric mα is uniformly equivalent to the hyperbolic
metric. Thus, if we attempt to extend the flat metric (2 log c)−2|d`|2
to all of A, the hyperbolic metric differs from the flat metric by a
conformal discrepancy whose size is bounded by a function only of
the hyperbolic distance to the flat part, as the metric is given by (3)
above. The universal bound on the hyperbolic diameter on the thick
part (see, e.g., p. 9 in Wolpert [77]) then provides the constant C as
needed.

The remaining case is in which A is a neighborhood of a node, the
regular part of which is two punctured disks. If A is exactly the locus
F in which mα = 2(log c)−2|d`|2, the maximum of ‖U‖mα must occur
at the boundary. Moreover, the asymptotic value ‖U‖mα at the node
when z = w = t = 0 is equal to |R| · | log c|3, where R is the residue of U
and c is a uniform constant. But R is determined by a Cauchy integral
formula for Ũ integrated along the boundary of the disk. Thus, in this
case, we have the same sort of bounds as above. The analysis involving
the hyperbolic distance is also valid by (2) above, and we may produce
the uniform constant C needed. q.e.d.

Now as the cubic differentials remain uniformly bounded in the mα,j

metrics, they subsequentially converge to a regular limit (Σj , Uj) →
(Σ∞, U∞) (ignoring the subsequence in the notation). Then Theorems
4.3.2 and 4.4.1 above imply that (Ωj ,Γj |Sk)→ (Ok, Gk) for k = 1, . . . , n,

where n is the number of components of Σreg
∞ . Let {Σk

∞} denote the
corresponding components of Σreg

∞ .
We investigate these regular limits of convex RP2 structures. Assume

again that the regular convex RP2 structures lie in a single stratum, in
which the surface S is already separated into pieces as S−c for c ∈ C(S).
Then additional necks may be separated by choosing d disjoint from c
and d∪c ⊂ C(S). We consider a single connected component S1 of S−c,
and let S̃k be a connected component of S1 − d. In this case, we have
(Ωj ,Γj) so that Γj\Ωj is diffeomorphic to S1 and (Ωj ,Γj |S̃k)→ (O, G)
with G acting properly discontinuously and discretely on O so that
the quotient is diffeomorphic to S̃k. We will prove any other limit is
equivalent up to the action of SL(3,R) and the mapping class group.
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First of all, recall that, given a basepoint in S̃k, the fundamental
group of the open subsurface S̃k of S1 can be represented as a conjugacy
class of subgroups of π1S1. We have shown above that we may pick one
element of this conjugacy class to represent Γj |S̃k as a sub-representation

of Γj . We further characterize the boundary of S̃k ⊂ S1 to be given by
a collection of principal geodesics (and so for this discussion S1 is cut

along geodesics into pieces S̃k, rather than being pulled). Choose the
image of the developing map Ωk

j as a subset of Ωj on which Γj |S̃k acts so

that the quotient Γj |S̃k\Ω
k
j is diffeomorphic to S̃k with principal geodesic

boundary. Goldman’s Theorem 2.3.1 then shows that the surface S1 is
reconstructed from gluing the subsurfaces S̃k together in a standard
combinatorial way, which we detail in the next four paragraphs. In the
four paragraphs which follow, we suppress the dependence on the index
j in our sequence of domains.

We can represent S1 as the disjoint union of open subsurfaces S̃k,
k = 1, . . . ,m and free homotopy class of loops `i ∈ c. Combinatorially,
we may represent S1 as a connected graph with nodes S̃k and connected
by edges `i. Now consider an image of the developing map Ωk for each
S̃k. Then we follow Goldman [27] to reconstruct the image Ω of the
developing map of S1 from many copies of the Ωk. Begin by analyzing
a single loop `1 which connects S̃1 to S̃2. Fix Ω1 and pick a lift b ⊂ ∂Ω1

of `1. Then choose γ ∈ SL(3,R) which acts on Ω1 by a hyperbolic
action on the principal segment b. Similarly, there is a ρ ∈ SL(3,R) so

that the closures Ω1 ∩ ρΩ2 = b̄ and Ω1 ∪ ρΩ2 is convex. We may repeat
this attaching process along all copies of `1 in order to glue S̃1 and S̃2

along `1. Then this process can be repeated for all the other copies of
the same principal segment, which can be enumerated by δb for δ in
the coset space Γ(π1S1)/〈γ〉. (We have assumed in our notation that

S̃1 6= S̃2. The case in which S̃1 = S̃2, and, thus, S̃1 is attached to itself
across `1, is essentially the same.)

We emphasize that as a part of this gluing process, the endpoints
of the geodesic segment b remain in the boundary of the glued domain.
This can be seen purely from the point of view of the representations. As
an interior loop in the convex RP2 surface S1, `1 must have hyperbolic
holonomy Γ(`1) [52]. So there are a unique attracting and a unique
repelling fixed point, the endpoints of b. The dynamics of any point
in Ω1 under Γ(`1) then show these endpoints must be in the boundary

∂Ω1. As we glue S̃2 to S̃1 across `1, the induced representation from
π1(S̃1 ∪`1 S̃2) still includes the element Γ(`1) [27]. Thus, the endpoints
of b remain in the boundary of the larger domain, and, indeed, in the
boundary of Ω. This shows that the geodesic segment b partitions Ω
into two open convex pieces.
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We repeat this process with other loops in d, and then describe Ω
as a disjoint union of copies of Ω1, . . . ,Ωm and lifts of loops in d. The
combinatorial structure of this union can be described by an infinite-
valence tree, with each vertex corresponding to a copy of an Ωk and
each edge corresponding to a lift of a principal geodesic segment across
which the two domains represented by the vertices are attached. The
fact that this graph is a tree is a consequence of the injectivity of the
developing map [27]. For Ω1 as in the previous paragraph, there is
one adjacent edge for each δ ∈ Γ(π1S1)/〈γ〉, which corresponds to the
principal geodesic segment δb. The other vertex of this edge corresponds
to the domain δρΩ2. (If there are other loops in c which border S̃1,
then there will be corresponding edges from Ω1 as well.) Denote the
domains represented by vertices in the graph by Oi. Each Oi = σΩk for
σ ∈ SL(3,R) and 1 ≤ k ≤ m. Note that a simple induction argument
shows that all the geodesic segments along which we have glued are
disjoint.

Now we consider the action of Γ1 on Ω. Γ1 acts on the sub-domain
Ω1. For I the identity matrix, we have

Lemma 5.2.5. • γ ∈ Γ1(π1S1) − {I} acts on the boundary seg-
ment b of Ω1 if and only if γ is a hyperbolic action on the principal
geodesic segment b.
• γ ∈ Γ1(π1S1) − {I} acts on Oi if and only if Oi is adjacent to

Ω1 and γ is a hyperbolic action on the principal geodesic segment
separating Ω1 and Oi.

With this combinatorial picture set up, we assume (Ωj ,Γj |Sk) →
(O, G) so that G\O is diffeomorphic to Sk.

Recall Benzécri’s compactness Theorem 5.2.1 above: For every se-
quence (Ωj , xj) for Ωj properly convex and xj ∈ Ωj , upon passing to
a subsequence, there are ρj ∈ SL(3,R) so that ρj(Ωj , xj) → (O, x) in
the Hausdorff topology. We analyze our limits of (Ωj ,Γj |Sk) in terms
of these Benzécri limits of pointed convex domains. Recall that the
surface S1 has genus g̃ and n punctures, where g̃ + 2n ≤ g the genus
of S. Consider the conformal structure induced by the Blaschke metric
on Γj\Ωj as an element of the compact space Mg̃,n, and then consider
sequences of points in the corresponding universal curve.

Consider a convergent sequence in Benzécri’s sense (Ωj , xj)→ (O, x).
By taking a subsequence if necessary, assume xj converges in the uni-

versal curve C g̃,n. Denote by Rj the noded Riemann surface contain-
ing xj .

Proposition 5.2.6. Up to the actions of SL(3,R) and the mapping
class group, there is exactly one limit of the sequence of pairs (Ωj ,Γj |Sk)
for each k.
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Proof. Consider a convergent Benzécri sequence (Ωj , xj) → (U , x).
By choosing a subsequence if necessary, we consider two cases, as in
Lemma 2.9.1 above.

First of all, consider the case in which [xj ] converges to a node or a

puncture in C g̃,n, where [xj ] denotes the image of xj in the Riemann
surface conformal to the quotient Γj\Ωj equipped with the Blaschke
metric. In this case, for all ε > 0 the hyperbolic distance from [xi]
to Thickε diverges to infinity as j → ∞. Since the Blaschke metric is
bounded from below by the hyperbolic metric (Proposition 4.2.3), the
Blaschke distance from [xj ] to any point in the thick part Thickε of Rj
has an infinite limit as j →∞ while ε > 0 is fixed. Then Lemma 5.2.5
implies that, for every δj ∈ Γj |Sk(π1Sk) − 〈γj〉, the Blaschke distance
from xj to δjxj diverges to infinity, where γj is the projective holonomy
around the neck determined by the conformal cusp/collar neighborhood
of [xj ]. Proposition 3.3.2 implies that Γj |Sk cannot converge to act on
the limiting domain U . This rules out this case.

Second, consider the case in which [xj ] converges to a limit in C g̃,n
which is not a node or puncture, then for all large j, the [xj ] lie uniformly
in the thick part of the Riemann surfaces Rj . Now if the [xj ] lie in a
different connected component of the thick part of Rj from Sk, then
the same considerations as in the previous paragraph apply to rule this
out.

Therefore, we may assume that [xj ] converges to a limit in C g̃,n so
that [xj ] is in a component of the thick part Thickε of the Rj which
overlaps with Sk for some ε > 0. Recall that we have already taken a
subsequence to show (Σj , Uj) → (Σ∞, U∞) and that this convergence
by Theorems 4.3.2 and 4.4.1 implies the convergence of (Ωj ,Γj |Sk) →
(O, G). The proofs of Theorems 4.3.2 and 4.4.1 show that we may fix
diffeomorphisms φj : Ωj → D so that D ⊂ C is the unit disk, φj is

conformal with respect to the Blaschke metric, φ−1
j (0) lies in each Ωj ,

and φ−1
∞ (0) ∈ O. We may rephrase our assumption to state that [xj ]

lies in the same component of the thick part as [φ−1
j (0)].

But there are uniform bounds on the hyperbolic diameter of con-
nected components of the thick part of Riemann surfaces. See, e.g.,
[77], page 9. In particular, the hyperbolic distance from [xj ] to [φ−1

j (0)]
is uniformly bounded by a constant C. Therefore, we may consider a lift
x̃j of [xj ] so that the hyperbolic distance from 0 to φj(x̃j) is bounded
by C. Passing from xj to x̃j corresponds to the action of an element
ρj ∈ Γj |Sk . See Subsection 2.6 above. Lemma 5.2.4 above shows the
cubic differentials Uj on Rj are uniformly bounded with respect to the
mα,j metric. Moreover, on the thick part Thickε, the hyperbolic metric
and the mα,j metrics are uniformly equivalent, and the conformal fac-
tors uj of the Blaschke metrics are uniformly bounded in the C1 norm,
with all the uniform constants depending on ε.
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Choosing an appropriate initial frame, we may integrate the structure
equations for the affine sphere as in Theorem 4.4.1 to show that the
limit x̃∞ ∈ O and, as the previous paragraph shows the coefficients of
the relevant ODE system are uniformly bounded, x̃j → x̃∞ (up to a
subsequence). Now we already have assumed that (Ωj , xj) converges to

(U , x) in the space of pointed convex domains in RP2 modulo the action
of SL(3,R). We have just shown that a subsequence (Ωji , xji) converges
to (O, x̃∞). Benzécri’s Theorem 5.2.1 above shows the space of pointed
properly convex domains in RP2 modulo SL(3,R) is Hausdorff; thus,
there is a ρ ∈ SL(3,R) so that (U , x) = ρ(O, x̃∞). Moreover, every
subsequence of (Ωj , xj) itself has a subsequence converging to (U , x) in
the Benzécri sense, and so we find (Ωj , xj)→ (O, x̃∞) up to the action
of SL(3,R).

To address the convergence of the representations Γj |Sk , recall that
an element of SL(3,R) is determined by its action on 4 points in gen-
eral position in RP2. Luckily, the estimates we have proved are strong
enough to control the geometry of a uniformly large neighborhood of
x̃∞, and points in this neighborhood will serve as our 4 points in gen-
eral position. In particular, as j → ∞, we have a neighborhood N of
φ−1
∞ (x̃∞) in the unit disk D, and uniform estimates on N of the cubic

differentials Uj , the conformal factors uj , and their derivatives. (This
is because there is a uniform ε so that [xj ] ∈ Thickε for j = 1, 2, . . . ,∞.
This shows there is a uniformly large neighborhood N around x̃j for j
large so that the projection of N to Σreg

j is contained in Thickε/2. See,

e.g., Lemma 1.1 in [77] for a justification. On the thick part, we have
uniform bounds on Uj , uj and duj .)

Upon choosing a suitable initial frame, the diffeomorphism φ−1
j : D →

Ωj is constructed by solving the ODE system (17), choosing the com-

ponent f of the frame F , and, finally, projecting from R3 → RP2. The
uniform estimates on N imply that there are open sets A and B so that
φ−1
∞ (x̃∞) ∈ A ⊂ N , x̃∞ ∈ B ⊂ φ∞(N ), and for all j large, x̃j ∈ B,

φj(x̃j) ∈ A, φj and its derivatives are bounded on A, and φ−1
j and its

derivatives are bounded on B. (This is just a quantitative version of the
Inverse Function Theorem.)

We assume ρj(Ωj ,Γj |Sk)→ (O, G), and we have shown that there is
a sequence xj ∈ Ωj so that ρj(xj)→ x ∈ O (this x is referred to as x̃∞
above), and xj is in the same connected component of the thick part
of Γj\Ωj as Sk is (this follows from the uniform estimates on A and
B in the previous paragraph). Absorb the ρj into the notation for Ωj

and Γj |Sk , so that (Ωj ,Γj |Sk)→ (O, G) and xj → x. Let γ1, . . . , γm be
generators of G.

Let xa = x, xb, xc, xd be in general position in O, and assume that
they are in a small neighborhood of x. In particular, for p ∈ {a, b, c, d},
let Kp be the convex hull of {xa, xb, xc, xd} − {xp}. Assume for a
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choice of an affine coordinate patch in RP2 that there are six open
disks Da, Db, Dc, Dd, D2, D3 so that

• The closure D̄p is contained in the interior of Kp,
• D̄2 ⊂ O and each xp ∈ D2, and
• Ō ⊂ D3.

Then for j large, all these points xa, xb, xc, xd will be in the same con-
nected component as xj of the thick part of Γj\Ωj (this is a consequence
of the Inverse Function Theorem argument above). As Γj |Sk → G, let
γij ∈ Γj |Sk converge to γi for i = 1, . . . ,m as j → ∞. For large j, the

γ1
j , . . . , γ

m
j still generate Γj |Sk . Then the set {γijxp : i = 1, . . . ,m; p =

a, b, c, d} determines the generators of Γj |Sk and, thus, also the group
Γj |Sk itself.

Now we prove the uniqueness of G (up to a possible SL(3,R) action).
Recall we assume that (Ωj ,Γj |Sk)→ (O, G). We have established there
is an xj so that ρj(Ωj , xj) → (O, x). Now consider another sequence

σj(Ωj ,Γj |Sk) → (O, H). Consider the points xa, xb, xc, xd in general

position in O ⊂ RP2. Then, as above (recalling that xa, xb, xc, xd and
their convex hull are uniformly contained in the thick part of Γj\Ωj ,
for large j), {σjxp} remains in general position, and there are still uni-
formly large ellipses Da, Db, Dc, Dd, D2, D3 as above (this follows from
a transversality argument based on the Inverse Function Theorem anal-
ysis above). The existence of these bounding ellipses shows that the
σj(x

p) remain uniformly in general position in RP2, and that the family
σj lies in a compact subset of SL(3,R). Thus, there is a limit σj → σ
(upon taking a subsequence).

For i = 1, . . . ,m, let ηi = σγiσ−1. These ηi generate H. Similarly,
define ηij = σjγ

i
jσ
−1
j ∈ σj(Γj |Sk)σ−1

j . Then for large j, ηij generate

σj(Γj |Sk)σ−1
j and limj→∞ η

i
j = ηi. This implies H = σGσ−1. Moreover,

since O has already been fixed, σ ∈ SL(3,R) is a projective automor-
phism of O. Therefore, the two limits (O, G) and (O, H) are equivalent
up to the action of SL(3,R). More precisely, for all subsequences of
(Ωj ,Γj |Sk), there is a further subsequence and an element σ ∈ SL(3,R)
so that (O, G) = σ(O, H). But then these two objects are the same
modulo the action of SL(3,R). q.e.d.

Now we complete the proof of Theorem 5.2.2. Consider a conver-
gent sequence of regular convex RP2 structures limk→∞⊕j(Ωj,k,Γj,k) =
⊕m(Om, Gm) in Raug

S , and their corresponding sequence (Σk, Uk) =
Φ−1[⊕j(Ωj,k,Γj,k)] of noded Riemann surfaces and regular cubic differ-
entials. Then there is a convergent subsequence (Σj` , Uj`)→ (Σ∞, U∞).
Moreover, limk→∞⊕k(Ωj`,k,Γj`,k) = ⊕m(Om, Gm) in Raug

S , and the reg-

ular convex RP2 structure corresponding to (Σ∞, U∞) is Φ(Σ∞, U∞) =
⊕m(Om, Gm). But then Proposition 5.2.6 shows that every subsequence
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of (Σj , Uj) has a subsequence which converges to the same limit. Re-
call Raug

S is first countable. This is enough to show that (Σj , Uj) →
(Σ∞, U∞). Therefore, Φ−1 is continuous, and Theorem 5.2.2 is proved.

The Main Theorem 1.0.1 follows from Theorems 4.1.2, 4.3.1, 5.1.1
and 5.2.2.
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