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CRITICAL POINTS OF THE CLASSICAL EISENSTEIN
SERIES OF WEIGHT TWO

Zhijie Chen & Chang-Shou Lin

Abstract

In this paper, we completely determine the critical points of the
normalized Eisenstein series E2(τ) of weight 2. Although E2(τ) is
not a modular form, our result shows that E2(τ) has at most one
critical point in every fundamental domain of the form γ(F0) of
Γ0(2), where γ(F0) are translates of the basic fundamental domain
F0 via the Möbius transformation of γ ∈ Γ0(2). We also give a
criteria for such fundamental domain containing a critical point of
E2(τ). Furthermore, under the Möbius transformations of Γ0(2)
action, all critical points can be mapped into the basic fundamen-
tal domain F0 and their images in F0 give rise to a dense subset
of the union of three connected smooth curves in F0. A geometric
interpretation of these smooth curves is also given. It turns out
that these curves coincide with the degeneracy curves of trivial
critical points of a multiple Green function related to flat tori.

1. Introduction

The Jacobi theta functions, the Eisenstein series and the Weierstrass
functions arise in numerous theories and applications of both mathe-
matics and physics. Since their discovery in the early 19th century,
the mathematical foundation of elliptic functions was subsequently de-
veloped. It turns out that, besides their applications in science, these
special functions in the elliptic function theory are rather deep objects
by themselves.

The main goal of this paper is to completely locate all the criti-
cal points of the classical function η1(τ) or equivalently the normalized
Eisenstein series E2(τ) of weight 2. Throughout the paper, we use the
notations R+ = (0,+∞), ω1 = 1, ω2 = τ , ω3 = 1 + τ and Λτ = Z + Zτ ,
where τ ∈ H = {τ | Im τ > 0}. Let ℘(z) = ℘(z|τ) be the Weierstrass
℘-function with periods Λτ , defined by

℘(z|τ) :=
1

z2
+

∑
ω∈Λτ\{0}

(
1

(z − ω)2
− 1

ω2

)
.
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Let ζ(z) = ζ(z|τ) := −
∫ z
℘(ξ|τ)dξ be the Weierstrass zeta function,

which is odd and has two quasi-periods ηk(τ) := 2ζ(ωk2 |τ), k = 1, 2:

(1.1) η1(τ) = ζ(z + 1|τ)− ζ(z|τ), η2(τ) = ζ(z + τ |τ)− ζ(z|τ).

The well-known Legendre relation gives η2(τ) = τη1(τ) − 2πi. In the
literature, η1(τ) is known as the Weierstrass eta function (cf. [1]), which
is just a multiple of the normalized Eisenstein series E2(τ) of weight 2:

3

π2
η1(τ) = E2(τ) :=

3

π2

∞∑
m=−∞

∞∑′

n=−∞

1

(mτ + n)2
(1.2)

=1− 24
∞∑
n=1

bne
2nπiτ , bn =

∑
1≤d|n

d.

Conventionally,
∑′ means to sum over (n,m) ∈ Z2 \ {(0, 0)}. Besides,

η1(τ) is also connected with Dedekind eta function

η(τ) := e
πiτ
12

∞∏
n=1

(1− e2nπiτ )

through the following logarithmic differential formula (cf. [1, p. 696]):

1

η(τ)
η′(τ) =

i

4π
η1(τ).

Unlike the other Eisenstein series of weight 2k with k ≥ 2, E2(τ) is
not a modular form. Its transformation under the action of SL(2,Z)
satisfies

(1.3) E2

(
aτ + b

cτ + d

)
= (cτ+d)2E2(τ)−6ic

π
(cτ+d),

(
a b
c d

)
∈ SL(2,Z).

Thus it is surprising that its critical points possess the following prop-
erty.

Theorem 1.1. Let F = γ(F0) be a fundamental domain of Γ0(2).
Then E2(τ) has at most one critical point in F .

Here Γ0(2) is the congruence subgroup of SL(2,Z) defined by

Γ0(2) :=
{(

a b
c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 mod 2
}
,

and F0 is the basic fundamental domain of Γ0(2):

F0 := {τ ∈ H | 0 6 Re τ 6 1 and |τ − 1
2 | >

1
2}.

Then for any γ =
(
a b
c d

)
∈ Γ0(2)/{±I2} (i.e. consider γ and −γ to be

the same),

γ(F0) :=
{
γ · τ := aτ+b

cτ+d

∣∣∣ τ ∈ F0

}
= (−γ)(F0)

is another fundamental domain of Γ0(2).
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Recently, there are some works studying the zeros of E2(τ); see [9,
18] and references therein. As far as we know, there seems no results
concerning the critical points of E2(τ) in the literature.

In view of Theorem 1.1, a natural question is: What are those funda-
mental domains containing critical points? This is completely solved in
the following result. Note that γ(F0) = F0 + m for some m ∈ Z if and
only if c = 0.

Theorem 1.2. Let F = γ(F0) be a fundamental domain of Γ0(2)
with γ =

(
a b
c d

)
∈ Γ0(2)/{±I2}. Then F contains a critical point of

E2(τ) if and only if c 6= 0.

By Theorem 1.2, we can transform every critical point of E2(τ) via
the Möbius transformation of Γ0(2) action to locate it in F0. Denote
the collection of such corresponding points in F0 by D, which consists of
infinitely many points. A fundamental question is: What is the geometry
of the set D?

Surprisingly, it turns out that D locates on the union of three con-
nected smooth curves τ(C)’s in F0, which are parameterized by C ∈
R \ {0, 1} via the following identity

(1.4) C = τ − 2πi

η1(τ)±
√
g2(τ)/12

, τ ∈ F0.

Here g2(τ) = 60G4(τ) is the well-known invariant coming from

℘′(z|τ)2 = 4℘(z|τ)3 − g2(τ)℘(z|τ)− g3(τ),

and G4(τ) is the Eisenstein series of weight 4. We will prove in Section
2 that for each C ∈ R \ {0, 1}, there is a unique point τ(C) ∈ F0 such
that (1.4) holds.1 Consequently, the parametrization (1.4) will give
three connected smooth curves

C0 := {τ(C)|C ∈ (0, 1)},
C− := {τ(C)|C ∈ (−∞, 0)}, C+ := {τ(C)|C ∈ (1,+∞)}.

The relation between (1.4) and η′1(τ) comes from the classical formula
(see e.g. [1, p. 704], or from Ramanujan’s formula: E′2(τ) = πi

6 (E2
2 −

E4))

(1.5) η′1(τ) = i
2π

(
η1(τ)2 − 1

12g2(τ)
)
.

Theorem 1.3. Let τ(C) be defined by (1.4) for C ∈ R\{0, 1}. Then

(1.6) D =
{
τ(−dc )

∣∣ ( a b
c d

)
∈ Γ0(2)/{±I2} with c 6= 0

}
⊂ C− ∪ C0 ∪ C+.

Furthermore, the closure of D in F0 is precisely the union of the three
connected smooth curves:

(1.7) D ∩ F0 = D \ {0, 1} = C− ∪ C0 ∪ C+.

1Note that the right hand side (RHS) of (1.4) is actually a multi-valued function,
please see Theorem 3.1 for the precise definition of this unique τ(C).
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Remark 1.4. In fact, we will prove τ(C) ∈ F̊0, where F̊0 = F0\∂F0

denotes the set of interior points of F0. Given γ =
(
a b
c d

)
∈ Γ0(2)/{±I2}

with c 6= 0, we will prove in Theorem 4.1 that the unique critical point

of E2(τ) in γ(F0) is precisely
aτ(
−d
c )+b

cτ(
−d
c )+d

∈ γ(F̊0). Given γj =
( aj bj
cj dj

)
∈

Γ0(2)/{±I2} with cj 6= 0 such that γ1 6= ±γ2, we have γ1(F̊0)∩γ2(F̊0) =
∅ (note that γ1(∂F0) ∩ γ2(∂F0) 6= ∅ may happen) and so

a1τ(−d1c1 ) + b1

c1τ(−d1c1 ) + d1

6=
a2τ(−d2c2 ) + b2

c2τ(−d2c2 ) + d2

.

Therefore, the map from D to the set of critical points of E2(τ) is one-to-
one and onto. The above results completely locate all the critical points
of the Eisenstein series E2(τ) or equivalently η1(τ). To the best of our
knowledge, such fundamental results have not appeared in the literature
and are new. We believe that they will have important applications. For
example, we consider τ = 1

2 + ib with b > 0. Then η1(τ) ∈ R. In order
to study the behavior of the Green function on rhombus tori, Wang
and the second author [14] considered the monotone property of η1(τ)
and their numerical computation [14, Figure 2] suggests that η1 should
increase from 0 to some b0 and then decrease after b0, but they can not
prove this assertion in [14] because (1.2) implies

3

π2
η1(1

2 + ib) = 1− 24

∞∑
n=1

(−1)nbne
−2nπb, bn =

∑
1≤d|n

d > 0,

from which it seems difficult to obtain the monotone property shown in
[14, Figure 2]. Now this assertion is confirmed by the following corollary.

Corollary 1.5. There exists b0 ∈ ( 5
24 ,

1
2
√

3
) such that η1(1

2 + ib) is

strictly increasing for b ∈ (0, b0) and strictly decreasing for b ∈ (b0,+∞).

One of our motivations of studying critical points of η1(τ) comes from
the Green function on flat tori. Let Eτ := C/(Z + Zτ) be a flat torus
and G(z) = G(z; τ) be the Green function on the torus Eτ :

−∆G(z; τ) = δ0 −
1

|Eτ |
on Eτ ,

∫
Eτ

G(z; τ) = 0,

where δ0 is the Dirac measure at 0 and |Eτ | is the area of the torus
Eτ . See [14] for a detailed study of G(z; τ). In [2, 13, 15, 16], Chai,
Wang and the second author introduced a multiple Green function Gn,
n ∈ N. Geometrically, any critical point of Gn is closely related to
bubbling phenomena of nonlinear partial differential equations with ex-
ponential nonlinearities in two dimension; see [2, 13, 16] for typical
examples. Thus, understanding the critical points of Gn is important
for applications.
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For the case n = 2, the multiple Green function G2 is defined by

(1.8) G2(z1, z2; τ) := G(z1 − z2; τ)− 2G(z1; τ)− 2G(z2; τ),

where 0 6= z1 6= z2 6= 0. A critical point (a1, a2) of G2 satisfies

2∇G(a1; τ) = ∇G(a1 − a2; τ), 2∇G(a2; τ) = ∇G(a2 − a1; τ).

Clearly if (a1, a2) is a critical point then so does (a2, a1), and we consider
such two critical points to be the same one. A critical point (a1, a2) is
called a trivial critical point if

{a1, a2} = {−a1,−a2} in Eτ .

Recall ω1 = 1, ω2 = τ and ω3 = 1 + τ . It is known [16] that G2 has only
five trivial critical points {(1

2ωi,
1
2ωj)|i 6= j} and {(q±,−q±)|℘(q±|τ) =

±
√
g2(τ)/12}, and the Hessian at (q±,−q±) is given by

detD2G2(q±,−q±; τ)

=
3|g2(τ)|
4π4 Im τ

|℘(q±|τ) + η1(τ)|2 Im

(
τ − 2πi

η1(τ)±
√
g2(τ)/12

)
.(1.9)

From here and (1.4), we will prove in Section 5 that the three curves
coincide with the degeneracy curves of G2 (i.e. the curves consisting
of those τ ’s such that the Hessian at some trivial critical points of G2

vanishes) related to (q±,−q±). The Hessian at (1
2ωi,

1
2ωj) is related to

the critical points of the classical function ek(τ) := ℘(ωk2 |τ), {i, j, k} =
{1, 2, 3}. We will study the critical points of ek(τ) in another paper.

Our proof of the existence and uniqueness of τ(C) relies on a pre-

modular form Z
(2)
r,s (τ) of weight 3 introduced in [15, Example 5.8]. See

also [7]. For each pair (r, s) ∈ R2 \ 1
2Z

2, Z
(2)
r,s (τ) is defined by

Z(2)
r,s (τ) := Zr,s(τ)3 − 3℘(r + sτ |τ)Zr,s(τ)− ℘′(r + sτ |τ),

where Zr,s(τ) is introduced by Hecke [11]:

Zr,s(τ) := ζ(r + sτ |τ)− rη1(τ)− sη2(τ).(1.10)

Indeed, if (r, s) ∈ Q2, Zr,s(τ) is the well-known Eisenstein series of
weight 1 with characteristic (r, s); see [8, p. 139]. It is not difficult to
see that Zr,s(τ) is a modular form of weight 1 with respect to Γ(N) if

(r, s) is a N -torsion point, so Z
(2)
r,s (τ) is a modular form of weight 3.

See Section 2. The importance of Z
(2)
r,s (τ) lies on the fact that at any

zero τ0 of Z
(2)
r,s (·), the pair (r, s) contains all the monodromy data of the

classical Lamé equation

(1.11) y′′(z) = [n(n+ 1)℘(z|τ0) +B]y(z), n = 2

for some B ∈ C; see [15, Theorem 4.3]. Therefore, it is important to

study the zero of Z
(2)
r,s (·), which has not been settled yet. In this paper,
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we study the structure of the zeros of Z
(2)
r,s (·). Define four open triangles

(see Figure 1 in Section 2):

(1.12)

40 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2},
41 := {(r, s) | 1

2 < r < 1, 0 < s < 1
2 , r + s > 1},

42 := {(r, s) | 1
2 < r < 1, 0 < s < 1

2 , r + s < 1},
43 := {(r, s) | r > 0, s > 0, r + s < 1

2}.

Theorem 1.6. Let (r, s) ∈ [0, 1]× [0, 1
2 ]\1

2Z
2. Then Z

(2)
r,s (τ) = 0 has

a solution τ in F0 if and only if (r, s) ∈ 41 ∪ 42 ∪ 43. Furthermore,

for any (r, s) ∈ 41 ∪42 ∪43, Z
(2)
r,s (τ) has a unique zero τ in F0 which

satisfies τ ∈ F̊0.

Remark that Z
(2)
r,s (τ) is not well-defined for (r, s) = (0, 0) since Z0,0 ≡

∞ and so do ℘(0), ℘′(0). To prove Theorems 1.2–1.3, we will “blow up”

Z
(2)
r,s (τ) by considering lims→0

1
sZ

(2)
−Cs,s(τ), C ∈ R, and the existence

and uniqueness of τ(C) will follow from that of the zero of Z
(2)
−Cs,s(τ) as

s→ 0.
The rest of this paper is organized as follows. Theorem 1.6 will be

proved in Section 2. In Section 3, we apply Theorem 1.6 to prove the
existence and uniqueness of τ(C). See Theorem 3.1. In Section 4,
we give the detailed proofs of our main results Theorems 1.1–1.3 and
Corollary 1.5. Some precise characterizations of the three curves (see
Theorem 4.2) will also be given. In Section 5, we introduce the relation
between the three curves and the degeneracy curve of G2 and prove
the smoothness of the curves. Finally in Appendix A, we give another
application of Theorem 1.6.

Acknowledgments. The authors thank the referee for valuable com-
ments and Prof. Chin-Lung Wang for providing the file of Figure 3
to us. The research of the first author was supported by NSFC (No.
11701312).

2. Zeros of pre-modular forms

This section is devoted to the proof of Theorem 1.6. First we recall
the modularity of g2(τ) and ℘(z|τ). Given any

(
a b
c d

)
∈ SL(2,Z), it is

well known that

g2(aτ+b
cτ+d) = (cτ + d)4g2(τ),(2.1)

℘
(

z
cτ+d

∣∣∣ aτ+b
cτ+d

)
= (cτ + d)2 ℘(z|τ).

From here we can obtain

ζ
(

z
cτ+d

∣∣∣ aτ+b
cτ+d

)
= (cτ + d) ζ(z|τ),
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and so

(2.2)

(
η2(aτ+b

cτ+d)

η1(aτ+b
cτ+d)

)
= (cτ + d)

(
a b
c d

)(
η2(τ)
η1(τ)

)
.

In the rest of this paper, we will freely use the formulas (2.1)–(2.2).
As in [7, 15], for any (r, s) ∈ R2 \ Z2, we define pre-modular forms

Zr,s(τ) :=ζ(r + sτ |τ)− rη1(τ)− sη2(τ)

=ζ(r + sτ |τ)− (r + sτ)η1(τ) + 2πis,(2.3)

(2.4) Z(2)
r,s (τ) := Zr,s(τ)3 − 3℘(r + sτ |τ)Zr,s(τ)− ℘′(r + sτ |τ).

As mentioned before, Z
(2)
r,s (τ) is not well-defined for (r, s) ∈ Z2. If

(r, s) ∈ 1
2Z

2\Z2, where

1
2Z

2 := {(m2 ,
n
2 ) |m,n ∈ Z},

then (1.1) and the oddness of ζ(z|τ) imply Zr,s(τ) ≡ 0 and so Z
(2)
r,s (τ) ≡

0, where we used ℘′(ωk2 ) = 0. Therefore, we only consider (r, s) ∈
R2\1

2Z
2. Then both Zr,s(τ) and Z

(2)
r,s (τ) are holomorphic in H, and it is

easy to see that the following properties hold:

(i) Zr,s(τ) = ±Zm±r,n±s(τ) and hence Z
(2)
r,s (τ) = ±Z(2)

m±r,n±s(τ) for

any (m,n) ∈ Z2.

(ii) Zr′,s′(τ
′) = (cτ + d)Zr,s(τ) and hence Z

(2)
r′,s′(τ

′) = (cτ + d)3Z
(2)
r,s (τ)

for any γ =
(
a b
c d

)
∈ SL(2,Z), where τ ′ = γ · τ := aτ+b

cτ+d and

(s′, r′) = (s, r) · γ−1.

In particular, when (r, s) ∈ QN is a N -torsion point for some N ∈ N≥3,
where

(2.5) QN :=
{(

k1
N ,

k2
N

)∣∣∣ gcd(k1, k2, N) = 1, 0 ≤ k1, k2 ≤ N − 1
}
,

and γ ∈ Γ(N) := {γ ∈ SL(2,Z)|γ ≡ I2 modN}, then (r′, s′) ≡ (r, s)
mod Z2. In other words, if (r, s) ∈ QN , then

Zr,s

(
aτ+b
cτ+d

)
= (cτ + d)Zr,s(τ), Z(2)

r,s

(
aτ+b
cτ+d

)
= (cτ + d)3Z(2)

r,s (τ)

hold for any γ =
(
a b
c d

)
∈ Γ(N), namely Zr,s(τ) and Z

(2)
r,s (τ) are modular

forms of weight 1 and 3, respectively, with respect to the principal

congruence subgroup Γ(N). Due to this reason, Zr,s(τ) and Z
(2)
r,s (τ) are

called pre-modular forms in this paper as in [15].

We are interested in the structure of the zeros of Zr,s(τ) and Z
(2)
r,s (τ)

for (r, s) ∈ R2 \ 1
2Z

2. By property (ii), we can restrict τ in the funda-
mental domain F0 of Γ0(2):

F0 := {τ ∈ H | 0 6 Re τ 6 1 and |τ − 1
2 | >

1
2},
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0 1

3 2

0 0.5 1

0.5

r

s

Figure 1. The four open trianlges 4k.

and by (i), we only need to consider (r, s) ∈ [0, 1] × [0, 1
2 ]\1

2Z
2. Recall

the four open triangles defined in (1.12) (see Figure 1). Clearly [0, 1]×
[0, 1

2 ] = ∪3
k=04k. The following result was proved in [6].

Theorem A ([6]). Let (r, s) ∈ [0, 1] × [0, 1
2 ]\1

2Z
2. Then Zr,s(τ) = 0

has a solution τ in F0 if and only if (r, s) ∈ 40. Furthermore, for any

(r, s) ∈ 40, Zr,s(τ) has a unique zero τ in F0 which satisfies τ ∈ F̊0.

In this paper, we will prove an analogous result for Z
(2)
r,s (τ).

Theorem 2.1 (=Theorem 1.6). Let (r, s) ∈ [0, 1]× [0, 1
2 ]\1

2Z
2. Then

Z
(2)
r,s (τ) = 0 has a solution τ in F0 if and only if (r, s) ∈ 41 ∪42 ∪43.

Furthermore, for any (r, s) ∈ 41 ∪42 ∪43, Z
(2)
r,s (τ) has a unique zero

τ in F0 which satisfies τ ∈ F̊0.

Unlike Zr,s(τ), Theorem 2.1 shows an interesting phenomena for

Z
(2)
r,s (τ). For example, Z

(2)
r,s (τ) has zeros in F0 for (r, s) ∈ 41 ∪ 42,

but it has no zeros in F0 for (r, s) ∈ ∂41 ∩ ∂42.
The rest of this section is to prove Theorem 2.1. The reason why

we choose the fundamental domain F0 will be clear from the proof,
particularly Lemma 2.3. The basic strategy is similar to that of proving
Theorem A in [6]. However, the argument is more involved and new
techniques are needed. For example, for the same assertion of the pre-
modular forms having no zero in F0 for (r, s) ∈ ∪3

k=0∂4k, it is a trivial
consequence of the same assertion for (r, s) ∈ 41∪42∪43 in Theorem
A; but obviously, this is not the case in Theorem 2.1.

First we need the following important results from the viewpoint of
partial differential equations (PDE).

Theorem B ([15, 4]).

(1) [15, Theorem 0.4] The mean field equation

(2.6) ∆u+ eu = 16πδ0 on Eτ := C/(Z + Zτ)
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has solutions if and only if there exists (r, s) ∈ R2 \ 1
2Z

2 such that

τ is a zero of Z
(2)
r,s (·).

(2) [4, Theorems 1.1 and 3.1] If τ ∈ {eπi/3}∪ iR+, then equation (2.6)
has no solutions.

Remark 2.2. In [2, 15], Chai, Wang and the second author studied
the following singular Liouville equation

(2.7) ∆u+ eu = 8nπδ0 on Eτ ,

where n ∈ N. The solvability of (2.7) depends essentially on the moduli
τ of the flat torus Eτ and is intricate from the PDE point of view.
To settle this challenging problem, they studied it from the viewpoint
of algebraic geometry. They developed a theory to connect this PDE
problem with the Lamé equation (1.11) and pre-modular forms. In
particular, Wang and the second author [15] proved the existence of a

pre-modular form Z
(n)
r,s (·) of weight n(n+1)

2 such that (2.7) on Eτ has

solutions if and only if Z
(n)
r,s (τ) = 0 for some (r, s) ∈ R2 \ 1

2Z
2. Theorem

B-(1) is a special case of this statement for n = 2. Theorem B-(2) is a
purely PDE result. See also [10], where the non-existence of even and
symmetric solutions (i.e. u(z) = u(−z) = u(z̄)) of (2.7) for τ ∈ iR+ was
proved. We will see that Theorem B plays a crucial role in the proof of
Lemma 2.3 and hence Theorem 2.1. This is the only place where the
PDE results are used.

Lemma 2.3. Let (r, s) ∈ [0, 1] × [0, 1
2 ]\1

2Z
2. Then Z

(2)
r,s (τ) 6= 0 for

any τ ∈ {eπi/3} ∪ (∂F0 ∩H).

Proof. It does not seem that this assertion could be obtained directly

from the expression (2.4) of Z
(2)
r,s (τ). Indeed, this lemma is a consequence

of the result of nonlinear PDEs (i.e. Theorem B).

Given τ ∈ {eπi/3} ∪ (∂F0 ∩ H). If τ ∈ {eπi/3} ∪ iR+, then Theorem

B implies Z
(2)
r,s (τ) 6= 0 for any (r, s) ∈ R2\1

2Z
2. If τ ∈ iR+ + 1, then by

applying γ =
(

1 −1
0 1

)
in property (ii), we have that τ − 1 ∈ iR+ and

Z(2)
r,s (τ) = Z

(2)
r+s,s(τ − 1) 6= 0 for any (r, s) ∈ R2\1

2Z
2.

If |τ − 1
2 | = 1

2 , then again by applying γ =
(

1 0
−1 1

)
in property (ii) we

see that τ
1−τ ∈ iR

+ and

(1− τ)3Z(2)
r,s (τ) = Z

(2)
r,r+s(

τ
1−τ ) 6= 0 for any (r, s) ∈ R2\1

2Z
2.

This completes the proof. q.e.d.

Recalling QN in (2.5), we define

(2.8) MN (τ) :=
∏

(r,s)∈QN

Z(2)
r,s (τ).
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By properties (i)–(ii), it is easy to see thatMN (τ) is a modular form with
respect to SL(2,Z) of weight 3|QN | (i.e. for any γ ∈ SL(2,Z), when
(r, s) runs over all elements of QN , then so does (r′, s′) after modulo
Z2), where |QN | = #QN . To apply the theory of modular forms, we
recall the following classical formula. See e.g. [8, 17] for the proof.

Theorem C. Let f(τ) be a nonzero modular form with respect to
SL(2,Z) of weight k. Then

(2.9)
∑

τ∈H\{i,ρ}

ντ (f) + ν∞(f) +
1

2
νi(f) +

1

3
νρ(f) =

k

12
,

where ρ := eπi/3, ντ (f) denotes the zero order of f at τ and the sum-
mation over τ is performed modulo SL(2,Z) equivalence.

We note for each (r, s) ∈ QN , there exists a unique (r̃, s̃) ∈ QN

such that (r̃, s̃) ≡ (−r,−s) mod Z2. Then property (i) of Z
(2)
r,s (τ) gives

Z
(2)
r̃,s̃ (τ) = −Z(2)

r,s (τ), which implies that

(2.10) ντ (MN ) ∈ 2N ∪ {0} for any τ ∈ H.

To apply Theorem C, we need the asymptotics of Z
(2)
r,s (τ) as Im τ →

+∞.

Lemma 2.4. Let (r, s) ∈ [0, 1)×[0, 1)\1
2Z

2 and q = e2πiτ with τ ∈ F0.

Then the asymptotics of Z
(2)
r,s (τ) at the three cusps τ = 0, 1,∞ are as

follows:

(a) As F0 3 τ →∞,

Z(2)
r,s (τ) = 4π3is(1− s)(2s− 1) + o(1) if s ∈

(
0, 1

2

)
∪
(

1
2 , 1
)
,

Z(2)
r,s (τ) = −48π3 sin(2πr)q +O(q2) if s = 0,

Z(2)
r,s (τ) = −12π3 sin(2πr)q1/2 +O(q) if s = 1/2.

(b) As F0 3 τ → 0,

lim
τ→0

Z(2)
r,s (τ) =∞ if r ∈

(
0, 1

2

)
∪
(

1
2 , 1
)
.

(c) As F0 3 τ → 1,

lim
τ→1

Z(2)
r,s (τ) =∞ if (r + s) ∈

(
0, 1

2

)
∪
(

1
2 , 1
)
∪
(
1, 3

2

)
.

Proof. By using the q-expansions of ℘(z|τ) and Zr,s(τ) (see (3.12)–

(3.13) in Section 3), the asymptotics of Z
(2)
r,s (τ) as τ →∞ can be easily

calculated. Because the calculation is straightforward and is already
done in [7, 15], we omit the details for (a) here.
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The asymptotics of Z
(2)
r,s (τ) at the cusp 0 can be obtained by using

property (ii) and the assertion (a). Letting γ =
(

1 −1
1 0

)
leads to

Z
(2)
r+s,−r(

τ−1
τ ) = τ3Z(2)

r,s (τ).

When τ ∈ F0 and τ → 0, we have τ−1
τ ∈ F0 and τ−1

τ → ∞. Then
applying (a) we obtain that as F0 3 τ → 0,

Z(2)
r,s (τ) =

−1

τ3
Z

(2)
−(r+s),r(

τ−1
τ )

=
−1

τ3

[
4π3ir(1− r)(2r − 1) + o(1)

]
if r ∈ (0, 1

2) ∪ (1
2 , 1).(2.11)

This proves (b).
Similarly, when τ ∈ F0 and τ → 1, we have τ−1

τ ∈ F0 and τ−1
τ → 0.

Applying property (ii) and (2.11) we obtain that as F0 3 τ → 1,

Z(2)
r,s (τ) =

1

τ3
Z

(2)
r+s,−r(

τ−1
τ )

=
−1

(τ − 1)3

[
4π3i(r + s)(1− r − s)(2r + 2s− 1) + o(1)

]
for r+ s ∈ (0, 1

2)∪ (1
2 , 1). The remaining case r+ s ∈ (1, 3

2) follows from

Z
(2)
r,s (τ) = Z

(2)
r−1,s(τ). This proves (c). q.e.d.

Lemma 2.4-(a) implies

(2.12) the vanishing order of Z(2)
r,s (τ) at ∞ is


0 if s 6= 0, 1/2
1 if s = 0
1
2 if s = 1/2

.

Recall 4k, k = 0, 1, 2, 3, defined in (1.12).

Lemma 2.5. Fix k ∈ {0, 1, 2, 3}. Then the number of zeros of Z
(2)
r,s (τ)

in F0 is a constant for (r, s) ∈ 4k.

Proof. Since (r, s) ∈ 4k, we have r, s, r + s 6∈ {0, 1
2 , 1,

3
2}, so Lemma

2.4 (a)–(c) imply that

Z(2)
r,s (τ) 6→ 0 as F0 3 τ →∞, 0, 1

respectively. Together with Lemma 2.3 that Z
(2)
r,s (τ) 6= 0 on ∂F0 ∩H, it

is easy to apply the argument principle to conclude that the number of

zeros of Z
(2)
r,s (τ) in F0 is a constant for (r, s) ∈ 4k. q.e.d.

Lemma 2.6. Let (r, s) ∈ Q3. Then Z
(2)
r,s (τ) 6= 0 for any τ ∈ H.

Proof. Note that 3|Q3| = 24. Since s 6= 1
2 and (1

3 , 0), (2
3 , 0) ∈ Q3, we

see from Lemma 2.4-(a) (or (2.12)) that M3(τ) ∼ q2 as F0 3 τ → ∞,
i.e. ν∞(M3) = 2. Therefore, we deduce from (2.9) that M3(τ) has no
zeros in H. q.e.d.
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Figure 2. F0 = F ∪ γ1(F ) ∪ γ2(F ).

Let F be a fundamental domain of SL(2,Z) defined by2

(2.13) F := {τ ∈ H | 0 ≤ Re τ ≤ 1, |τ | ≥ 1, |τ − 1| > 1} ∪ {eπi/3}.
Define γ(F ) := {γ · τ |τ ∈ F} for any γ ∈ SL(2,Z), then γ(F ) is also a
fundamental domain of SL(2,Z). Let

(2.14) γ1 :=

(
0 1
−1 1

)
, γ2 :=

(
1 −1
1 0

)
,

then it is easy to prove that

(2.15) F0 = F ∪ γ1(F ) ∪ γ2(F ).

See Figure 2, which is copied from [6]. Now we are in the position to
prove Theorem 2.1.

Proof of Theorem 2.1. Recall Lemma 2.3 that Z
(2)
r,s (τ) 6= 0 for τ ∈ {ρ}∪

(∂F0 ∩H). We divide the proof of Theorem 2.1 into several steps.

Step 1. We claim that Z
(2)
r,s (τ) has no zeros in F0 for (r, s) ∈ 40.

Lemma 2.6 says that Z
(2)
1
3
, 1
3

(τ) has no zeros in F0. Since (1
3 ,

1
3) ∈ 40,

our claim follows directly from Lemma 2.5.

Step 2. We claim that Z
(2)
r,s (τ) has a unique zero in F0 for (r, s) ∈

41 ∪42 ∪43.

Since

(2.16) (5
6 ,

1
3) ∈ 41, (2

3 ,
1
6) ∈ 42, (1

6 ,
1
6) ∈ 43,

by Lemma 2.5 we only need to prove the claim for (r, s) ∈ {(1
6 ,

1
6), (2

3 ,
1
6),

(5
6 ,

1
3)}. Note that M6(τ) is a modular form of weight 3|Q6| = 72. For

2Of course, the standard definition of F should be F := {τ ∈ H | 0 ≤ Re τ <

1, |τ | ≥ 1, |τ−1| > 1}∪{eπi/3}, i.e. Re τ = 1 is not needed. In this paper, to guarantee
the validity of (2.15), it is more convenient for us to use the definition (2.13), which

does not effect our following argument because Lemma 2.3 says that Z
(2)
r,s (τ) 6= 0 if

τ ∈ {τ ∈ H|Re τ = 1} ∪ γ1({τ ∈ H|Re τ = 1}) ∪ γ2({τ ∈ H|Re τ = 1}) ⊂ ∂F0 ∩H.
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(r, s) ∈ Q6, Lemma 2.4-(a) shows that lim
τ→∞

Z
(2)
r,s (τ) = 0 if and only

if (r, s) ∈ {(1
6 , 0), (5

6 , 0), (1
6 ,

1
2), (2

6 ,
1
2), (4

6 ,
1
2), (5

6 ,
1
2)}. Thus we see from

(2.12) that

ν∞(M6) = 1× 2 + 1
2 × 4 = 4.

On the other hand, Lemma 2.3 says νi(M6) = νρ(M6) = 0. Therefore,
it follows from (2.9) that

(2.17)
∑

τ∈H\{i,ρ}

ντ (M6) = 2.

Recall that F defined in (2.13) is a fundamental domain of SL(2,Z).

Applying (2.10), there exists a unique τ0 ∈ (F ∩ F̊0) \ {ρ = eπi/3} such
that ντ0(M6) = 2, i.e. there exists a unique (r1, s1) ∈ Q′6 such that

(2.18) Z(2)
r1,s1(τ0) = 0,

where

Q′6 :=

{
(0, 1

6), (1
6 , 0), (1

6 ,
1
6), (1

6 ,
1
3), (1

6 ,
1
2), (1

3 ,
1
6),

(1
3 ,

1
2), (1

2 ,
1
6), (1

2 ,
1
3), (2

3 ,
1
6), (5

6 ,
1
6), (5

6 ,
1
3)

}
⊂ [0, 1)× [0, 1

2 ].

Remark that for any (r, s) ∈ Q6, either (r, s) ∈ Q′6 or there exists a
unique (r̃, s̃) ∈ Q′6 such that (r, s) ≡ (−r̃,−s̃) mod Z2.

Step 2-1. We prove that (r1, s1) ∈ {(1
6 ,

1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

Assume by contradiction that (r1, s1) 6∈ {(1
6 ,

1
6), (2

3 ,
1
6), (5

6 ,
1
3)}. Then

by (2.17)–(2.18), we have

(2.19) Z(2)
r,s (τ) 6= 0 in F for (r, s) ∈ {(1

6 ,
1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

Recall (2.14)–(2.15). Letting γ = γ1 =
(

0 1
−1 1

)
in property (ii) leads to

(2.20) Z
(2)
−s,r+s(γ1 · τ) = (1− τ)3Z(2)

r,s (τ).

Applying this to (r, s) ∈ {(1
6 ,

1
6), (2

3 ,
1
6), (5

6 ,
1
3)}, it follows from property

(i) that

Z
(2)
5
6
, 1
3

(γ1 · τ) = Z
(2)
−1
6
, 1
3

(γ1 · τ) = (1− τ)3Z
(2)
1
6
, 1
6

(τ),(2.21)

−Z(2)
1
6
, 1
6

(γ1 · τ) = Z
(2)
−1
6
, 5
6

(γ1 · τ) = (1− τ)3Z
(2)
2
3
, 1
6

(τ),(2.22)

Z
(2)
2
3
, 1
6

(γ1 · τ) = Z
(2)
−1
3
, 7
6

(γ1 · τ) = (1− τ)3Z
(2)
5
6
, 1
3

(τ).(2.23)

Together with (2.19), we obtain

(2.24) Z(2)
r,s (τ) 6= 0 in γ1(F ) for (r, s) ∈ {(1

6 ,
1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

Similarly, letting γ = γ2 =
(

1 −1
1 0

)
in property (ii) leads to

(2.25) Z
(2)
r+s,−r(γ2 · τ) = τ3Z(2)

r,s (τ)
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and so

−Z(2)
2
3
, 1
6

(γ2 · τ) = Z
(2)
1
3
,−1

6

(γ2 · τ) = τ3Z
(2)
1
6
, 1
6

(τ),(2.26)

Z
(2)
5
6
, 1
3

(γ2 · τ) = Z
(2)
5
6
,−2

3

(γ2 · τ) = τ3Z
(2)
2
3
, 1
6

(τ),(2.27)

Z
(2)
1
6
, 1
6

(γ2 · τ) = Z
(2)
7
6
,−5

6

(γ2 · τ) = τ3Z
(2)
5
6
, 1
3

(τ).(2.28)

Together with (2.19), we obtain

Z(2)
r,s (τ) 6= 0 in γ2(F ) for (r, s) ∈ {(1

6 ,
1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

Therefore, it follows from (2.15) (i.e. F0 = F ∪ γ1(F ) ∪ γ2(F )) that

Z
(2)
r,s (τ) 6= 0 in F0 for (r, s) ∈ {(1

6 ,
1
6), (2

3 ,
1
6), (5

6 ,
1
3)}. By (2.16), we

conclude from Lemma 2.5 and Step 1 that

(2.29) Z(2)
r,s (τ) 6= 0 in F0 for any (r, s) ∈ ∪3

k=04k.

From (2.29), (2.18) and (r1, s1) ∈ Q′6 ⊂ [0, 1)×[0, 1
2 ], we obtain (r1, s1) ∈

∪3
k=0∂4k. This, together with Z

(2)
r1,s1(τ0) = 0 and the argument princi-

ple, implies the existence of (r, s) ∈ ∪3
k=04k close to (r1, s1) such that

Z
(2)
r,s (τ) = 0 for some τ ∈ F0 close to τ0, a contradiction with (2.29).

Therefore, (r1, s1) ∈ {(1
6 ,

1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

Step 2-2. We prove that Z
(2)
r,s (τ) has a unique zero in F0 for each

(r, s) ∈ {(1
6 ,

1
6), (2

3 ,
1
6), (5

6 ,
1
3)}.

By Step 2-1, without loss of generality, we may assume (r1, s1) =
(1

6 ,
1
6) (the other two cases (r1, s1) = (2

3 ,
1
6), (5

6 ,
1
3) can be discussed in

the same way).

Then τ0 is the unique zero of Z
(2)
1
6
, 1
6

(τ) in F and (2.17) implies

(2.30) Z(2)
r,s (τ) 6= 0 in F for (r, s) ∈ {(2

3 ,
1
6), (5

6 ,
1
3)}.

This together with (2.22) and (2.28) implies

Z
(2)
1
6
, 1
6

(τ) 6= 0 in γ1(F ) ∪ γ2(F ).

Therefore, by (2.15) we conclude that Z
(2)
1
6
, 1
6

(τ) has a unique zero in F0.

For (r, s) =
(

5
6 ,

1
3

)
, by applying (2.21), we see that γ1 ·τ0 is the unique

zero of Z
(2)
5
6
, 1
3

(τ) in γ1(F ). Clearly (2.27) and (2.30) give

Z
(2)
5
6
, 1
3

(τ) 6= 0 in γ2(F ).

Together with (2.30) and (2.15), we conclude that Z
(2)
5
6
, 1
3

(τ) has a unique

zero in F0. By a similar discussion, Z
(2)
2
3
, 1
6

(τ) also has a unique zero in

F0.
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Now by (2.16) and Lemma 2.5, we conclude that Z
(2)
r,s (τ) has a unique

zero in F0 for (r, s) ∈ 41 ∪42 ∪43. This proves Step 2.

Step 3. We prove that Z
(2)
r,s (τ) 6= 0 in F0 for any (r, s) ∈ ∪3

k=0∂4k\
1
2Z

2.

Suppose that there exists (r0, s0) ∈ ∪3
k=0∂4k\1

2Z
2 such that

Z
(2)
r0,s0(τ) = 0 has a zero τ0 in F0. Lemma 2.3 implies τ0 ∈ F̊0 \
{ρ}. Clearly there exists a sequence of prime numbers N → ∞ and
(r̃N , s̃N ) ∈ Q2N , s̃N ≤ 1

2 , such that

(r̃N , s̃N ) ∈ ∪3
k=0∂4k\1

2Z
2 and (r̃N , s̃N )→ (r0, s0) as N →∞.

Again by the argument principle, it follows that

(2.31) Z
(2)
r̃N ,s̃N

(τ) has a zero τ̃N ∈ F̊0 \ {ρ} for N large.

By (2.15), (2.20) and (2.25), we may always assume τ̃N ∈ F by replacing
τ̃N with one of {γ−1

1 · τ̃N , γ−1
2 · τ̃N} if necessary.

Now fix such a large prime number N . Recalling (2.8) that M2N (τ) is
a modular form with respect to SL(2,Z) of weight 3|Q2N | = 9(N2− 1).
Since for any k ∈ {1, 3, · · ·, 2N − 1}\{N}, ( k

2N , 0) ∈ Q2N , and for any

k ∈ {1, 2, · · ·, 2N − 1}\{N}, ( k
2N ,

1
2) ∈ Q2N , it follows from Lemma

2.4-(a) that

ν∞(M2N ) = 1× (N − 1) + 1
2 × 2(N − 1) = 2(N − 1).

Together with Lemma 2.3 that νi(M2N ) = νρ(M2N ) = 0, we see from
(2.9) that

(2.32)
∑

τ∈H\{i,ρ}

ντ (M2N ) =
3(N2 − 1)

4
− 2(N − 1) =

3N2 − 8N + 5

4
,

where the summation over τ is performed modulo SL(2,Z) equivalence.
On the other hand, recall

43 = {(r, s) | r > 0, s > 0, r + s < 1
2}.

It is easy to compute that in Q2N , there are

1 + 2 + · · ·+ N − 3

2
=

(N − 1)(N − 3)

8

(r, s) = ( k12N ,
k2
2N )’s belonging to 43 such that k1 is odd and k2 is even

(resp. k1 is even and k2 is odd); and there are

1 + 2 + · · ·+ N − 1

2
=

(N + 1)(N − 1)

8
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(r, s) = ( k12N ,
k2
2N )’s belonging to 43 such that k1 and k2 are both odd.

Thus

|Q2N ∩43| =
(N − 1)(N − 3)

4
+

(N + 1)(N − 1)

8
(2.33)

=
3N2 − 8N + 5

8
.

Write

Q2N ∩43 =

{
(rk, sk)

∣∣∣∣1 ≤ k ≤ 3N2 − 8N + 5

8

}
.

Applying Step 2, we see that Zrk,sk(τ) has a unique zero τk ∈ F̊0 in F0.
If τk ∈ γ1(F ) ∪ γ2(F ), say τk ∈ γ1(F ) for example, for some k, then
by (2.20) and property (i) it is easy to see the existence of (r′k, s

′
k) ∈

42 ∩ Q2N such that γ−1
1 · τk ∈ F is the unique zero of Z

(2)
r′k,s

′
k
(τ) in F0.

Therefore, together with (2.31) and (2.33), we conclude that∑
τ∈H\{i,ρ}

ντ (M2N ) ≥ 2|Q2N ∩43|+ 2 =
3N2 − 8N + 5

4
+ 2,

which is a contradiction with (2.32). This proves Step 3 and hence the
proof of Theorem 2.1 is complete. q.e.d.

3. Existence and uniqueness of τ(C)

The purpose of this section is to prove the existence and uniqueness
of τ(C) for C ∈ R \ {0, 1} by applying Theorem 1.6. Given C ∈ R, we
define the holomorphic function fC(τ) on H by

(3.1) fC(τ) := 12(Cη1(τ)− η2(τ))2 − g2(τ)(C − τ)2.

By η2 = τη1 − 2πi, we see that fC(τ) = 0 if and only if (1.4) holds.
This fC(τ) appears in the expression of solutions of certain Painlevé
VI equation (cf. [3, 5]). The following result proves the existence and
uniqueness of τ(C) as zeros of fC(τ). Recall the fundamental domain
F0 of Γ0(2):

F0 = {τ ∈ H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥

1
2}.

Theorem 3.1 (Zero structure of fC(τ) in F0).

(1) For any C ∈ R\{0, 1}, fC(τ) has a unique zero τ(C) in F0. Fur-

thermore, τ(C) ∈ F̊0.
(2) For C ∈ {0, 1}, fC(τ) has no zeros in F0.

Recall the classical result (cf. [1, p. 704]) that

(3.2) η′1(τ) =
i

2π

(
η1(τ)2 − 1

12g2(τ)
)
.

To prove Theorem 3.1, first we need the following lemma.
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Lemma 3.2. If τ = ib with b > 0, then η′1(τ) 6= 0 and

g2(τ)− 12η1(τ)2 > 0,(3.3)

12η2(τ)2 − τ2g2(τ) > 0.(3.4)

Proof. Denote q = e2πiτ . Recall the q-expansion of η1(τ) (see (1.2)):

(3.5) η1(τ) =
π2

3
− 8π2

∞∑
k=1

bkq
k, where bk =

∑
1≤d|k

d.

Let τ = ib with b > 0. Then q = e−2πb and hence d
dbη1(ib) > 0 for b > 0.

So η′1(τ) 6= 0 and (3.3) follows from (3.2). To prove (3.4), we use the
following modular property (see (2.2)):

(3.6) η1(−1
τ ) = τη2(τ), g2(−1

τ ) = τ4g2(τ).

It follows that

12η2(τ)2 − τ2g2(τ) =
1

τ2

[
12η1(−1

τ )2 − g2(−1
τ )
]
> 0,

i.e. (3.4) holds. q.e.d.

Lemma 3.3. For any C ∈ R\{0, 1}, fC(τ) 6= 0 for τ ∈ ∂F0 ∩H.

Proof. Suppose fC(τ) = 0 for some τ ∈ ∂F0 ∩H.

Case 1. τ ∈ iR+.
Then it is known that g2(τ) > 0, η1(τ) ∈ R (see e.g. Lemma 3.2) and

η2(τ) = τη1(τ)− 2πi ∈ iR. It follows from fC(τ) = 0 and (3.1) that

2πi

τ − C
= η1(τ)±

√
g2(τ)/12 ∈ R,

a contradiction with our assumption C ∈ R \ {0}.
Case 2. |τ − 1

2 | =
1
2 .

Then τ ′ = τ
1−τ ∈ iR+. Define C ′ := C

1−C ∈ R \ {0}. By g2(τ ′) =

(1− τ)4g2(τ) and

(3.7) η2(τ ′) = (1− τ)η2(τ), η1(τ ′) = (1− τ)(η1(τ)− η2(τ)),

a straightforward computation leads to

fC′(τ
′) =

(1− τ)2

(1− C)2
fC(τ) = 0.

Then we obtain a contradiction as Case 1.

Case 3. τ ∈ 1 + iR+.
Then τ ′ = τ − 1 ∈ iR+. Define C ′ := C − 1 ∈ R \ {0}. By using

g2(τ ′) = g2(τ) and

(3.8) η1(τ ′) = η1(τ), η2(τ ′) = η2(τ)− η1(τ),

we easily obtain fC′(τ
′) = fC(τ) = 0, again a contradiction as Case 1.

The proof is complete. q.e.d.
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Recall the pre-modular form Z
(2)
r,s (τ) in Section 2. Now we study the

precise relation between Z
(2)
r,s (τ) and fC(τ). This is the key point of our

whole idea. Fix any C ∈ R, and for s ∈ (0, 1
4(1+|C|)2 ) we define

FC,s(τ) :=
4(τ − C)

s
Z

(2)
−Cs,s(τ).

Lemma 3.4. Letting s→ 0, FC,s(τ) converges to fC(τ) uniformly in
any compact subset of F0 = F̄0 ∩H.

Proof. Denote u = −Cs+sτ = s(τ−C) for convenience. Then u→ 0
as s→ 0. Let τ ∈ K where K is any compact subset of F0. Then g2(τ)
and g3(τ) are uniformly bounded for τ ∈ K. So it follows from the
Laurent series of ζ(·|τ) and ℘(·|τ) that

ζ(−Cs+ sτ |τ) =
1

u
− g2(τ)

60
u3 +O(|u|5),(3.9)

℘(−Cs+ sτ |τ) =
1

u2
+
g2(τ)

20
u2 +O(|u|4),

℘′(−Cs+ sτ |τ) =
−2

u3
+
g2(τ)

10
u+O(|u|3),

hold uniformly for τ ∈ K as s→ 0. From here and (2.3), we see that

(3.10) Z−Cs,s(τ) =
1

u
+ 2πis− η1u−

g2

60
u3 +O(|u|5)

and so

Z
(2)
−Cs,s(τ) = Z−Cs,s(τ)3 − 3℘(−Cs+ sτ |τ)Z−Cs,s(τ)− ℘′(−Cs+ sτ |τ)

=
−12π2s

τ − C
− 12πiη1s+ 3η2

1u−
g2

4
u+O(|u|2)(3.11)

uniformly for τ ∈ K as s → 0. Consequently, we derive from u =
s(τ − C) and η2 = τη1 − 2πi that

FC,s(τ) =
4(τ − C)

s
Z

(2)
−Cs,s(τ)

= −48π2 − 48πiη1(τ − C) + 12η2
1(τ − C)2 − g2(τ − C)2 +O(s)

= 12((τ − C)η1 − 2πi)2 − g2(τ − C)2 +O(s)

= 12(Cη1 − η2)2 − g2(τ − C)2 +O(s)→ fC(τ)

uniformly for τ ∈ K as s→ 0. The proof is complete. q.e.d.

Lemma 3.5. Let s > 0. Then as s → 0, any zero τ(s) ∈ {τ ∈
H|Re τ ∈ [−1, 1]} of Z

(2)
−Cs,s(τ) (if exist) is uniformly bounded.

Proof. Suppose by contradiction that up to a subsequence of s → 0,

Z
(2)
−Cs,s(τ) has a zero τ(s) ∈ {τ ∈ H|Re τ ∈ [−1, 1]} such that τ(s)→∞

as s → 0. Write τ = τ(s) = a(s) + ib(s), then a(s) ∈ [−1, 1] and
b(s)→ +∞.
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Denote q = e2πiτ as before. We recall the q-expansions (cf. [12, p.
46] for ℘ and [6, (5.3)] for Zr,s): for |q| < |e2πiz| < |q|−1,

(3.12)
℘(z|τ)

−4π2
=

1

12
+

e2πiz

(1− e2πiz)2
+

∞∑
m=1

∞∑
n=1

nqnm(e2πinz+e−2πinz−2),

℘′(z|τ)

−4π2
=

2πie2πiz

(1− e2πiz)2
+

4πie4πiz

(1− e2πiz)3

+ 2πi

∞∑
m=1

∞∑
n=1

n2qnm(e2πinz − e−2πinz),

Zr,s(τ) =2πis− πi1 + e2πiz

1− e2πiz

− 2πi
∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
,(3.13)

where z = r + sτ in (3.13). We will also use the q-expansion of g2(τ)
(cf. [12, p. 44]):

g2(τ) =
4

3
π4 + 320π4

∞∑
k=1

σ3(k)qk, where σ3(k) =
∑

1≤d|k

d3.(3.14)

Now we let z = −Cs+ sτ = s(a(s)−C + ib(s)) and denote x = e2πiz

for convenience. Then

e2πb(s) = |q|−1 > |x| = e−2πsb(s) > |q| = e−2πb(s),

so we can apply the above q-expansions. Notice that |x| ∈ (0, 1) and

|x−1q| = e−2π(1−s)b(s) → 0 as s→ 0. There are two cases.

Case 1. Up to a subsequence |x−1q| = o(s|1− x|2).
Then we derive from (3.12)–(3.13) that

℘(z|τ)

−4π2
=

1

12
+

x

(1− x)2
+ o(s|1− x|2),(3.15)

℘′(z|τ)

−4π2
=

2πix

(1− x)2
+

4πix2

(1− x)3
+ o(s|1− x|2),

Z−Cs,s(τ) = −πi1 + x

1− x
+ 2πis+ o(s|1− x|2).(3.16)

We note that if x→ 1, then sb(s)→ 0 and

1− x = 1− e2πis(a(s)−C+ib(s))

= −2πis(a(s)− C + ib(s)) + o(sb(s)).

Together with b(s)→ +∞ as s→ 0, we always have

(3.17)
s2

1− x
= o(s).
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Then by (3.15)–(3.16) and (3.17), a straightforward computation gives

0 = Z
(2)
−Cs,s(τ(s)) = Z−Cs,s(τ)3 − 3℘(z|τ)Z−Cs,s(τ)− ℘′(z|τ)

= −4π3is+ o(s),

which is a contradiction.

Case 2. Up to a subsequence |x−1q| ≥ ds|1− x|2 for some constant
d > 0.

Then we see from (3.17) that

e−2π(1−s)b(s) = |x−1q| ≥ ds|1− x|2 ≥ s3

and so b(s) ≤ ln 1
s for s > 0 small. Then u := s(τ − C) = s(a(s)− C +

ib(s))→ 0 and

s = o(|u|), u2 = o(s).

Recall q = e2πiτ . Since b(s)→ +∞, (3.5) and (3.14) show that

g2(τ) =
4

3
π4 +O(|q|), η1(τ) =

1

3
π2 +O(|q|)

are uniformly bounded, so (3.9)–(3.11) still hold, namely

0 = Z
(2)
−Cs,s(τ(s)) = −12πiη1s−

12π2s

τ − C
+ 3η2

1u−
g2

4
u+O(|u|2).

Since

3η2
1 −

g2

4
= O(|q|) = O(e−2πb(s)) = O

(
|τ − C|−2

)
,

we have
−12π2s

τ − C
+ 3η2

1u−
g2

4
u = O

(
s

|τ−C|

)
= o(s).

Therefore, we finally obtain

0 = −12πiη1s−
12π2s

τ − C
+ 3η2

1u−
g2

4
u+O(|u|2)

= −4π3is+ o(s),

which is a contradiction. The proof is complete. q.e.d.

Recall 4k, k = 0, 1, 2, 3, defined in (1.12). We define

4̃1 :={(r, s)|(r + 1, s) ∈ 41}
=
{

(r, s)|0 < s < 1
2 ,
−1
2 < r < 0, r + s > 0

}
,

4̃2 :={(r, s)|(r + 1, s) ∈ 42}
=
{

(r, s)|0 < s < 1
2 ,
−1
2 < r < 0, r + s < 0

}
.

Since property (i) in Section 2 gives Z
(2)
r,s (τ) = Z

(2)
r+1,s(τ), we see from

Theorem 1.6 that

(3.18) For (r, s) ∈ 4̃1 ∪ 4̃2 ∪43, Z(2)
r,s (τ) has a unique zero in F0.
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From now on, we fix C ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞). Then s ∈
(0, 1

4(1+|C|)2 ) implies (−Cs, s) ∈ 4̃1 ∪ 4̃2 ∪ 43, so (3.18) implies that

Z
(2)
−Cs,s(τ) has a unique zero τ(s) ∈ F0. By the definition of F0, we easily

see that
−1

τ(s)
,

τ(s)

1− τ(s)
∈ {τ ∈ H|Re τ ∈ [−1, 1]}.

Lemma 3.6. As s → 0, the unique zero τ(s) ∈ F0 of Z
(2)
−Cs,s(τ) can

not converge to any of {0, 1,∞}.

Proof. Lemma 3.5 shows that τ(s) 6→ ∞. To prove τ(s) 6→ {0, 1}, we

use the modular property (ii) of Z
(2)
r,s (τ) in Section 2:

Z
(2)
r′,s′(τ

′) = (cτ + d)3Z(2)
r,s (τ),

whenever

τ ′ =
aτ + b

cτ + d
and (s′, r′) = (s, r)

(
d −b
−c a

)
,

(
a b
c d

)
∈ SL(2,Z).

We also use property (i):

(3.19) Z
(2)
m±r,n±s(τ) = ±Z(2)

r,s (τ), ∀m,n ∈ Z.

Letting
(
a b
c d

)
=
(

0 −1
1 0

)
, we obtain

(3.20) Z
(2)
s,−r(

−1
τ ) = τ3Z(2)

r,s (τ).

Recall C ∈ (−∞, 0) ∪ (0, 1) ∪ (1,+∞) and s ∈ (0, 1
4(1+|C|)2 ).

Case 1. C ∈ (−∞, 0).
By defining

C̃ :=
−1

C
, s̃ := −Cs,

we have s̃ ∈ (0, 1
4(1+|C̃|)2 ) for s small and

τ3Z
(2)
−Cs,s(τ) = Z

(2)
s,Cs(

−1
τ ) = −Z(2)

−s,−Cs(
−1
τ ) = −Z(2)

−C̃s̃,s̃(
−1
τ ).

Therefore, Z
(2)

−C̃s̃,s̃(τ) has zero −1
τ(s) ∈ {τ ∈ H|Re τ ∈ [−1, 1]}. Since

s̃→ 0 as s→ 0, Lemma 3.5 implies −1
τ(s) 6→ ∞, i.e. τ(s) 6→ 0 as s→ 0.

Case 2. C ∈ (0, 1) ∪ (1,+∞).
By defining

C̃ :=
−1

C
, s̃ := Cs,

we have s̃ ∈ (0, 1
4(1+|C̃|)2 ) for s small and

τ3Z
(2)
−Cs,s(τ) = Z

(2)
s,Cs(

−1
τ ) = Z

(2)

−C̃s̃,s̃(
−1
τ ).

Again we obtain τ(s) 6→ 0 as s→ 0.
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Therefore, we have proved τ(s) 6→ 0 as s→ 0.
Finally, to prove τ(s) 6→ 1 as s→ 0, we let

(
a b
c d

)
=
(

1 0
−1 1

)
and obtain

(3.21) Z
(2)
r,r+s(

τ
1−τ ) = (1− τ)3Z(2)

r,s (τ).

Case 3. C ∈ (−∞, 0) ∪ (0, 1).
By defining

C̃ :=
C

1− C
, s̃ := (1− C)s,

we have s̃ ∈ (0, 1
4(1+|C̃|)2 ) for s small and

(1− τ)3Z
(2)
−Cs,s(τ) = Z

(2)
−Cs,(1−C)s(

τ
1−τ ) = Z

(2)

−C̃s̃,s̃(
τ

1−τ ).

So Z
(2)

−C̃s̃,s̃(τ) has zero τ(s)
1−τ(s) ∈ {τ ∈ H|Re τ ∈ [−1, 1]}, and Lemma 3.5

implies τ(s)
1−τ(s) 6→ ∞, i.e. τ(s) 6→ 1 as s→ 0.

Case 4. C ∈ (1,+∞).
By defining

C̃ :=
C

1− C
, s̃ := −(1− C)s,

we have s̃ ∈ (0, 1
4(1+|C̃|)2 ) for s small and

(1− τ)3Z
(2)
−Cs,s(τ) = Z

(2)
−Cs,(1−C)s(

τ
1−τ )

= −Z(2)
Cs,−(1−C)s(

τ
1−τ ) = −Z(2)

−C̃s̃,s̃(
τ

1−τ ).

Again we obtain τ(s) 6→ 1 as s→ 0.
The proof is complete. q.e.d.

Now we are in a position to prove Theorem 3.1-(1).

Proof of Theorem 3.1-(1). Fix C ∈ R\{0, 1} and let s ∈ (0, 1
4(1+|C|)2 ).

Recall that τ(s) is the unique zero of Z
(2)
−Cs,s(τ) in F0. By Lemma 3.6,

up to a subsequence of s→ 0, we have

(3.22) τ(C) := lim
s→0

τ(s) ∈ F̄0 ∩H =F0.

Recalling

FC,s(τ) =
4(τ − C)

s
Z

(2)
−Cs,s(τ),

we have FC,s(τ(s)) = 0. Then Lemma 3.4 implies fC(τ(C)) = 0, namely

fC(τ) has a zero τ(C) ∈ F0. Applying Lemma 3.3, we have τ(C) ∈ F̊0.

Suppose fC(τ) has another zero τ1 6= τ(C) in F̊0. Since FC,s(τ) and
fC(τ) are all holomorphic functions, it follows from Lemma 3.4 and
Rouché’s theorem that FC,s(τ) has a zero τ1(s) satisfying τ1(s)→ τ1 as

s → 0, namely Z
(2)
−Cs,s(τ) has two different zeros τ(s) and τ1(s) in F0

when s > 0 small, a contradiction with (3.18). Therefore, τ(C) is the
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unique zero of fC(τ) in F0. This also implies that (3.22) actually holds
for s→ 0 (i.e. not only for a subsequence). The proof is complete.

q.e.d.

The proof of Theorem 3.1-(2) will be postponed in the next section.
As in Theorem 3.1-(1), we always denote by τ(C) the unique zero of
fC(τ) in F0. Since we proved in [3, Theorem 1.1] that for fixed C,

(3.23) fC(τ) has at most simple zeros on H,

the implicit function theorem infers that τ(C) is a smooth function of
C ∈ R\{0, 1}. We conclude this section by proving some basic properties
of τ(C).

Lemma 3.7. The smooth function τ(C) satisfies

(3.24) τ

(
1

1− C

)
=

1

1− τ(C)
, ∀C ∈ R\{0, 1}.

Proof. Let τ ′ = 1
1−τ and C ′ = 1

1−C , then it easy to prove that

(3.25) τ ′ ∈ F0 ⇐⇒ τ ∈ F0 and C ′ ∈ R\{0, 1} ⇐⇒ C ∈ R\{0, 1}.

By using g2(τ ′) = (1− τ)4g2(τ) and

(3.26) η2(τ ′) = (1− τ)η1(τ), η1(τ ′) = (1− τ)(η1(τ)− η2(τ)),

a straightforward computation leads to

fC′(τ
′) =

(1− τ)2

(1− C)2
fC(τ).

So fC(τ(C)) = 0 gives fC′(
1

1−τ(C)) = 0. Applying Theorem 3.1-(1), we

obtain (3.24). This completes the proof. q.e.d.

Lemma 3.8. Write τ(C) = a(C)+ b(C)i with a(C), b(C) ∈ R. Then

b(C)→ +∞, a(C)→
{

1/4 if C → +∞,
3/4 if C → −∞,(3.27)

τ(C)→ 0 as C → 0 and τ(C)→ 1 as C → 1.(3.28)

Proof. Recalling (1.4), we define

(3.29) φ±(τ) := τ − 2πi

η1(τ)±
√
g2(τ)/12

, τ ∈ F0.

Write τ = a+ bi and q = e2πiτ as before. Recall from the q-expansions
(3.5) and (3.14) that

η1(τ) =
1

3
π2 − 8π2(q + 3q2) +O(|q|3),(3.30)

g2(τ) =
4

3
π4 + 320π4(q + 9q2) +O(|q|3).(3.31)



212 Z. CHEN & C.-S. LIN

For τ ∈ F0, we fix the branch of
√
g2(τ)/12 near b = +∞ such that√

g2(τ)/12 = 1
3π

2 +O(|q|) near b = +∞. Then we easily obtain

η1(τ)−
√
g2(τ)/12 = −48π2q

(
1− 42q +O(|q|2)

)
,

and so

φ−(τ) = τ +
i

24π
q−1 +

7i

4π
+O(|q|)

= a+
sin 2πa

24π
e2πb + i

(
b+

cos 2πa

24π
e2πb +

7

4π

)
+O(|q|).

Therefore, when C ∈ R and |C| → +∞, it is easy to prove the existence

of τ1(C) = a1(C) + ib1(C) ∈ F̊0 such that C = φ−(τ1(C)) and

b1(C)→ +∞, a1(C)→
{

1/4 if C → +∞,
3/4 if C → −∞,

i.e. τ1(C) → ∞ as C → ±∞. By η2 = τη1 − 2πi, (3.29) and (3.1), it
follows that C = φ−(τ1(C)) implies fC(τ1(C)) = 0. Since τ(C) is the
unique zero of fC in F0, we conclude τ(C) = τ1(C). This proves (3.27).
Finally, (3.28) follows from (3.27) and (3.24). q.e.d.

4. Critical points of η1(τ) or equivalently E2(τ)

4.1. Location of critical points of η1(τ). This section is devoted to

the proof of our main results. Note that eπi/3 = 1
1−eπi/3 . Then by

η1( 1
1−τ ) = (1− τ)(η1(τ)− η2(τ))

and the Legendre relation η2(τ) = τη1(τ)− 2πi, we easily obtain

(4.1) η1(eπi/3) = 2π/
√

3.

First we prove the following result, which implies Theorems 1.1–1.2 as
consequences.

Theorem 4.1. Let τ(C) be the unique zero of fC(τ) for C ∈ R\{0, 1}
in Theorem 3.1-(1). Then the followings hold:

(1) For any m ∈ Z, there holds η′1(τ) 6= 0 in F0 + m. Consequently,
η′1(τ) 6= 0 whenever Im τ ≥ 1

2 .

(2) Given γ =
(
a b
c d

)
∈ Γ0(2)/{±I2} with c 6= 0. Then aτ(−d/c)+b

cτ(−d/c)+d
is the unique zero of η′1(τ) in the fundamental domain γ(F0) of
Γ0(2). In particular,

(4.2) Θ :=

{
aτ(−dc ) + b

cτ(−dc ) + d

∣∣∣∣∣
(
a b
c d

)
∈ Γ0(2)/{±I2} with c 6= 0

}
gives rise to all the zeros of η′1(τ) in H.
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Proof. (1). First we claim that

(4.3) 12η1(τ)2 − g2(τ) 6= 0 for τ ∈ ∂F0 ∩H.

If τ ∈ iR+, 12η1(τ)2 − g2(τ) 6= 0 follows from Lemma 3.2. If τ ∈
iR+ + 1, then

12η1(τ)2 − g2(τ) = 12η1(τ − 1)2 − g2(τ − 1) 6= 0.

If |τ − 1
2 | =

1
2 , then τ ′ = τ

1−τ ∈ iR
+. By using (3.7), we see from (3.1)

with C = −1 that

f−1(τ ′) = 12(η1(τ ′) + η2(τ ′))2 − g2(τ ′)(1 + τ ′)2

= (1− τ)2[12η1(τ)2 − g2(τ)].

Since Lemma 3.3 shows f−1(τ ′) 6= 0, we obtain 12η1(τ)2 − g2(τ) 6= 0.
This proves (4.3).

Suppose by contradiction that 12η1(τ)2 − g2(τ) has a zero τ0 in F̊0.
Then

either η1(τ0)−
√
g2(τ0)/12 = 0 or η1(τ0) +

√
g2(τ0)/12 = 0.

Without loss of generality, we may assume η1(τ0) +
√
g2(τ0)/12 = 0.

Recall (4.1) and the fact that g2(τ) = 0 in F0 if and only if τ = eπi/3.

So τ0 6= eπi/3 and g2(τ0) 6= 0, i.e. η1(τ) +
√
g2(τ)/12 is holomorphic

at τ0 with τ0 being a zero. Recalling φ±(τ) in (3.29), it follows that
φ+(τ) is meromorphic at τ0 with τ0 being a pole and so maps a small

neighborhood U ⊂ F̊0 of τ0 onto a neighborhood of ∞. Then for C > 0
large enough, there exists τ1(C) ∈ U such that C = φ+(τ1(C)), which
implies fC(τ1(C)) = 0. Applying Theorem 3.1-(1) and Lemma 3.8,
we obtain τ1(C) = τ(C) → ∞ as C → +∞, which contradicts with
τ1(C) ∈ U .

Therefore, we have proved that

(4.4) 12η1(τ)2 − g2(τ) 6= 0 for any τ ∈ F0.

Since

η′1(τ) =
i

2π

(
η1(τ)2 − 1

12g2(τ)
)

and η1(τ + 1) = η1(τ), we conclude that η′1(τ) 6= 0 for any τ ∈ F0 + m
and m ∈ Z. This proves (1).

(2). Given γ =
(
a b
c d

)
∈ Γ0(2)/{±I2} with c 6= 0. Write τ ′ = γ · τ =

aτ+b
cτ+d with τ ∈ F0. By using

(4.5) η1(τ ′) = (cτ + d)(cη2(τ) + dη1(τ)), g2(τ ′) = (cτ + d)4g2(τ),

we have

12η1(τ ′)2 − g2(τ ′) = c2(cτ + d)2
[
12(dcη1 + η2)2 − g2(τ)(dc + τ)2

]
= c2(cτ + d)2f−d

c
(τ).
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Clearly −d
c ∈ Q\Z, so Theorem 3.1-(1) shows that τ(−dc ) ∈ F̊0 is the

unique zero of f−d
c

(τ) in F0. Consequently,

γ · τ(−dc ) =
aτ(−dc ) + b

cτ(−dc ) + d
∈ γ(F̊0)

is the unique zero of 12η2
1 − g2 in γ(F0). Since

H =
⋃

γ∈Γ0(2)/{±I2}

γ(F0),

we conclude that the set Θ defined in (4.2) gives all the zeros of 12η2
1−g2

and so η′1. This proves (2). The proof is complete. q.e.d.

Recall the curves defined in Section 1:

C− = {τ(C)|C ∈ (−∞, 0)}, C+ = {τ(C)|C ∈ (1,+∞)},
C0 = {τ(C)|C ∈ (0, 1)}.

Proof of Theorem 1.3. The smoothness of the three curves will be given
in Section 5. The assertion that under the Möbius transformation of
Γ0(2) action, the collection of all critical points of η1(τ) is precisely the
set D given by (1.6), is a direct consequence of the expression (4.2) of
the critical point set Θ. Recall that τ(C) is smooth as a function of
C ∈ R \ {0, 1}. To prove the denseness, i.e. the identity (1.7), it suffices
to prove that

Q0 := {−dc | d ∈ Z, c ∈ 2Z \ {0}, (c, d) = 1}
is dense in Q and hence dense in R. Take any m

n ∈ Q \ {0} such that
m,n ∈ Z and (m,n) = 1.

Case 1. n is even. Then m
n ∈ Q0.

Case 2. n is odd and m is odd. Then

Q0 3
m(2k + n)

2kn
→ m

n
as k → +∞.

Case 3. n is odd and m is even. Then

Q0 3
2km+ n

2kn
→ m

n
as k → +∞.

This proves Q0 = R and so completes the proof. q.e.d.

Proof of Corollary 1.5. Let γ =
(

1 −1
2 −1

)
∈ Γ0(2). Then it is easy to

prove that

γ(F0) =
{
τ ∈ H | |τ − 1

2 | ≤
1
2 , |τ −

1
4 | ≥

1
4 , |τ −

3
4 | ≥

1
4

}
,

and so {
τ ∈ H|Re τ = 1

2

}
⊂ F0 ∪ γ(F0).
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Applying Theorem 4.1-(2), we see that τ̃ := τ(1/2)−1
2τ(1/2)−1 is the unique

zero of η′1 in γ(F0). We will prove in Theorem 4.2 (iii) that τ(1/2) =
1
2 + ib̂ for some b̂ ∈ (

√
3

2 ,
6
5). Then τ̃ = 1

2 + i
4b̂
∈ {τ ∈ H|Re τ = 1

2},
namely τ̃ is the unique zero of η′1 on the line {τ ∈ H|Re τ = 1

2} with

b0 := Im τ̃ ∈ ( 5
24 ,

1
2
√

3
). Recall (3.5) and (4.1) that η1(1

2 + i
√

3
2 ) > π2

3 =

limb→+∞ η1(1
2 + ib). Moreover, it follows from (1.2) and (1.3) that for

τ = 1
2 + ib,

η1

(
1
2 + i

4b

)
= η1( τ−1

2τ−1) = −4b2η1(τ) + 8πb→ −∞ as b→ +∞.

Thus η1(1
2 +ib) is strictly increasing for b ∈ (0, b0) and strictly decreasing

for b ∈ (b0,+∞). The proof is complete. q.e.d.

Now we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1-(2). First we consider C = 0, i.e.

f0(τ) = 12η2(τ)2 − g2(τ)τ2.

Suppose f0(τ) = 0 for some τ ∈ F0. Then it is easy to see that τ ′ :=
τ−1
τ ∈ F0. By

η1(τ ′) = τη2(τ), g2(τ ′) = τ4g2(τ),

we obtain
12η1(τ ′)2 − g2(τ ′) = τ2f0(τ) = 0,

a contradiction with (4.4).
Now we consider C = 1, i.e.

f1(τ) := 12(η1(τ)− η2(τ))2 − g2(τ)(1− τ)2.

Suppose f1(τ) = 0 for some τ ∈ F0. Then it is easy to see that τ ′ :=
1

1−τ ∈ F0. By

η1(τ ′) = (1− τ)(η1(τ)− η2(τ)), g2(τ ′) = (1− τ)4g2(τ),

we obtain
12η1(τ ′)2 − g2(τ ′) = (1− τ)2f1(τ) = 0,

again a contradiction with (4.4). The proof is complete. q.e.d.
4.2. Geometry of curves C−, C0 and C+. In this section, we want
to describe some geometry about these three curves, including their
intersection with the line Re τ = 1

2 .

Theorem 4.2.

(i) The function C 7→ τ(C) is one-to-one whenever C is restricted in
one of (−∞, 0), (0, 1) and (1,+∞), i.e. any one of curves C−, C0,
C+ has no self-intersection. Furthermore,

∂C0 = {0, 1}, ∂C− = {0, 3
4 + i∞}, ∂C+ = {1, 1

4 + i∞}.

(ii) The curve C0 is symmetric with respect to the line Re τ = 1
2 ; C−

and C+ are symmetric with respect to the line Re τ = 1
2 .
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(iii) τ(1
2) is the unique intersection point of the curve C0 with the line

Re τ = 1
2 . Furthermore, Im τ(1

2) ∈ (
√

3
2 ,

6
5).

(iv) C− (resp. C+) has a unique intersection point τ− with the line

Re τ = 1
2 . Furthermore, Im τ− ∈ (1

2 ,
√

3
2 ).

(v) τ− is the unique intersection point of C− with C+.
(vi) 1

1−τ− (resp. τ−
τ−−1) is the unique intersection point of C0 with C−

(resp. C+).

First we prove that any one of these curves has no self-intersection.

Lemma 4.3. The function C 7→ τ(C) is one-to-one whenever C is
restricted in one of (−∞, 0), (0, 1) and (1,+∞).

Proof. We recall the following results (cf. [14, Section 6]): when
τ = 1

2 + ib with b > 0,

(4.6) η1(τ), g2(τ) ∈ R and g2(τ)


> 0 if b >

√
3

2 ,

= 0 if b =
√

3
2 ,

< 0 if b ∈ [1
2 ,
√

3
2 ).

As pointed out before, fC(τ(C)) = 0 is equivalent to

either C = φ+(τ(C)) = τ(C)− 2πi

η1(τ(C)) +
√
g2(τ(C))/12

(4.7)

or C = φ−(τ(C)) = τ(C)− 2πi

η1(τ(C))−
√
g2(τ(C))/12

.

If τ(C) = 1
2 + ib(C) with b(C) ≥

√
3

2 for some C ∈ R\{0, 1}, then

it follows from (4.6) and (4.4) that C = φ±(τ(C)) = Re τ(C) = 1
2 .

Therefore,

(4.8) C−, C+ ⊂ F0\
{
τ = 1

2 + ib | b ≥
√

3
2

}
.

Remark that g2(τ) = 0 for τ ∈ F0 if and only if τ = 1
2 +

√
3

2 i. We

restrict τ ∈ F0\{τ = 1
2 + ib|b ≥

√
3

2 } and fix a branch of
√
g2(τ)/12.

Then it follows from (4.4) that both φ+(τ) and φ−(τ) are single-valued

holomorphic functions in F0\{τ = 1
2 + ib | b ≥

√
3

2 }. Define

D1 := {C ∈ (−∞, 0)|C = φ−(τ(C))},
D2 := {C ∈ (−∞, 0)|C = φ+(τ(C))}.

Since τ(C) is continuous as a function of C, we see that D1, D2 are both
closed subsets of (−∞, 0), so

either D1 = (−∞, 0), D2 = ∅ or D1 = ∅, D2 = (−∞, 0).

Without loss of generality we may assume D1 = (−∞, 0). Then C =
φ−(τ(C)) for any C ∈ (−∞, 0). This proves that (−∞, 0) 3 C 7→
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τ(C) ∈ C− is one-to-one. Similarly, (1,+∞) 3 C 7→ τ(C) ∈ C+ is
one-to-one. Finally, since

C ∈ (0, 1)⇐⇒ 1

1− C
∈ (1,+∞),

it follows from (3.24) that (0, 1) 3 C 7→ τ(C) ∈ C0 is also one-to-one.
The proof is complete. q.e.d.

Lemma 4.4. Let τ = 1
2 +ib with b ≥

√
3

2 and recall (4.6) that g2(τ) ≥
0. Then

(4.9) η1(τ)−
√
g2(τ)/12 <

2π

b
.

Proof. Clearly q = e2πiτ = −e−2πb. It follows from the q-expansions
(3.5) and (3.14) that

η1(τ) =
π2

3
− 8π2

∞∑
k=1

(−1)kbke
−2kπb, bk =

∑
1≤d|k

d,(4.10)

g2(τ) =
4

3
π4 + 320π4

∞∑
k=1

(−1)kσ3(k)e−2kπb, σ3(k) =
∑

1≤d|k

d3.(4.11)

Since b ≥
√

3
2 , we have eπb > 15. It is easy to prove that

bk < 15
k
4 < e

kπb
4 , σ3(k) ≤ b3k < e

3kπb
4 , ∀k ≥ 1.

Consequently,
∞∑
k=3

bke
−2kπb ≤

∞∑
k=3

e−
7
4
kπb =

e−
21
4
πb

1− e−
7
4
πb
< e−4πb,

i.e.

−
∞∑
k=1

(−1)kbke
−2kπb = e−2πb − 3e−4πb −

∞∑
k=3

(−1)kbke
−2kπb ∈ (0, e−2πb).

From here and (4.10) we obtain

(4.12)
π2

3
< η1(τ) <

π2

3
+ 8π2e−2πb, ∀ b ≥

√
3

2
.

Together with Corollary 1.5 that d
dbη1(1

2 + ib) 6= 0 for b ≥ 1
2
√

3
, we

conclude that

(4.13)
d

db
η1(1

2 + ib) < 0 for b ≥ 1

2
√

3
,

so (4.1) gives

η1(1
2 + ib) ≤ η1(eiπ/3) =

2π√
3

for any b ≥
√

3

2
.

Since g(τ) ≥ 0 for b ≥
√

3
2 , we see that (4.9) holds for any b ∈ [

√
3

2 ,
√

3).
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Now we assume b ≥ 6
5 (indeed b ≥

√
3 is enough, here we assume

b ≥ 6
5 for later use). Then eπb > 40. Similarly we have

∞∑
k=2

σ3(k)e−2kπb ≤
∞∑
k=2

e−
5
4
kπb =

e−
5
2
πb

1− e−
5
4
πb
<

1

2
e−2πb,

i.e.
∞∑
k=1

(−1)kσ3(k)e−2kπb = −e−2πb +
∞∑
k=2

(−1)kσ3(k)e−2kπb > −3

2
e−2πb.

Thus (4.11) and eπb > 40 give

g2(τ) >
4

3
π4
(

1− 360e−2πb
)
>

4

3
π4(1− 210e−2πb)2,

i.e.

(4.14)
√
g2(τ)/12 >

π2

3
(1− 210e−2πb), ∀b ≥ 6

5
.

Together with (4.12), we obtain

η1(τ)−
√
g2(τ)/12 < 78π2e−2πb, ∀b ≥ 6

5
.

Since it is trivial to see that 78π2e−2πb < 2π
b for b ≥

√
3, we conclude

that (4.9) holds for any b ≥
√

3. This completes the proof. q.e.d.

Proof of Theorem 4.2. (i) is just Lemmas 3.8 and 4.3.

(ii). We will prove in Theorem A.1 below that η1(1 − τ̄) = η1(τ)

and η2(1− τ̄) = η1(τ)− η2(τ). By the q-expansion (3.14) we also have

g2(1− τ̄) = g2(τ). Since C ∈ R\{0, 1}, we easily obtain

f1−C(1− τ̄) =12 ((1− C)η1(1− τ̄)− η2(1− τ̄))2 − g2(1− τ̄)(C − τ̄)2

=12(Cη1(τ)− η2(τ))2 − g2(τ)(C − τ̄)2 = fC(τ).

Therefore, it follows from Theorem 3.1-(1) that

(4.15) τ(1− C) = 1− τ(C).

Since τ and 1− τ̄ is symmetric with respect to the line Re τ = 1
2 , we see

that assertion (ii) holds.
(iii). By (ii), C0 has intersections with the line Re τ = 1

2 . Let τ0 =
1
2 + ib be such an intersection point. Then τ0 = τ(C) for a unique
C ∈ (0, 1). Applying (4.15), we have τ(1− C) = τ0 = τ(C), so Lemma
4.3 gives 1−C = C, i.e. C = 1

2 . This proves that τ0 = τ(1
2) is the unique

intersection point of the curve C0 with the line Re τ = 1
2 . By (4.7),

1

2
= φ±(τ0) = τ0 −

2πi

η1(τ0)±
√
g2(τ0)/12

=
1

2
+ ib− 2πi

η1(τ0)±
√
g2(τ0)/12

,
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we see that η1(τ0) ±
√
g2(τ0)/12 = 2π

b is real, so g2(τ0) ≥ 0, i.e. b =

Im τ0 ≥
√

3
2 . Since (4.1) gives η1(eπi/3) = 2π√

3
6= 4π√

3
, we obtain b =

Im τ0 >
√

3
2 . Then Im τ(1/2)−1

2τ(1/2)−1 < 1
2
√

3
and so Lemma 4.4 applies. In

particular, (4.9) infers

(4.16) η1(τ0) +
√
g2(τ0)/12 =

2π

b
.

Suppose b = Im τ0 ≥ 6
5 . Then (4.12), (4.14) and (4.16) imply

2π2

3
− 70π2e−2πb <

2π

b
≤ 5π

3
,

which is equivalent to 210π
2π−5 > e2πb, clearly a contradiction with eπb ≥

e6π/5 > 40. Thus b = Im τ0 <
6
5 . This proves (iii).

(iv)–(v). Note from (4.8) that if C− (resp. C+) has a intersection

point τ with the line Re τ = 1
2 , then Im τ ∈ [1

2 ,
√

3
2 ). Assume τ = 1

2 + ib

with b ∈ [1
2 ,
√

3
2 ) is a intersection point of C− with the line Re τ = 1

2 .

Then (4.6) gives
√
g2(τ)/12 = ±i

√
|g2(τ)|/12. Clearly there exists C ∈

(−∞, 0) such that τ = τ(C), which implies C = φ±(τ), i.e.

C = τ − 2πi

η1(τ)± i
√
|g2(τ)|/12

=
1

2
+ bi−

2πi(η1(τ)∓ i
√
|g2(τ)|/12)

η1(τ)2 − g2(τ)
12

.

Thus

(4.17) b− 2πη1(τ)

η1(τ)2 − g2(τ)
12

= 0.

For τ = 1
2 + ib with b ∈ [1

2 ,
√

3
2 ], we define

θ(b) :=
bη1(1

2 + ib)

2π
and θ1(b) :=

η1(1
2 + ib)2

η1(1
2 + ib)2 − g2( 1

2
+ib)

12

.

Then (4.17) shows that if τ = 1
2 + ib with b ∈ [1

2 ,
√

3
2 ) is a intersection

point of C− with the line Re τ = 1
2 , then

(4.18) θ(b)− θ1(b) = 0.

Now we want to prove that (4.18) has a unique solution in [1
2 ,
√

3
2 ].

For this, first we note from (4.13) that

(4.19) η1(1
2 + bi) > π2/3 for b ≥ 1

2
√

3
.
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We also recall the following fundamental results (cf. [14]):

e1(1
2 + 1

2 i) = 0 and e1(1
2 + bi) > 0 for b > 1

2 ,(4.20)

g3(1
2 + bi) = 4e1(1

2 + bi)|e2(1
2 + bi)|2 > 0 for b ∈ (1

2 ,
√

3
2 ],(4.21)

g2(1
2 + bi)3 − 27g3(1

2 + bi)2 < 0 for b ≥ 1
2 .(4.22)

By using (see e.g. [1, p. 704] or [3, Appendix B])

d

db
η1(1

2 + bi) = iη′1(τ) =
−1

4π
(2η2

1 − 1
6g2),(4.23)

d

db
g2(1

2 + bi) = ig′2(τ) =
1

π
(3g3 − 2η1g2),

d

db
g3(1

2 + bi) = ig′3(τ) =
1

π
(−3g3η1 + 1

6g
2
2),(4.24)

we easily obtain

θ′(b) =
η1

2π
− b

8π2
(2η2

1 − 1
6g2) =

η1(1
2 + ib)

2πθ1(b)
(θ1(b)− θ(b)),(4.25)

θ′1(b) =
1

12

d

db

(
g2(1

2 + ib)

η1(1
2 + ib)2 − g2( 1

2
+ib)

12

)
(4.26)

=
η1

12π(η2
1 −

g2
12)2

(
3g3η1 − η2

1g2 − 1
12g

2
2

)
.

Step 1. We claim that θ′(1
2) < 0.

Indeed, by (3.6) and η2(τ) = τη1(τ)− 2πi we obtain

η1(i) = π and η2(i) = −πi,

which imply

η1(1
2 + 1

2 i) = η1( 1
1−i) = (1− i)(η1(i)− η2(i)) = 2π.

Recalling Lemma 3.2 that g2(i) > 12η1(i)2 = 12π2, we have

g2(1
2 + 1

2 i) = g2( 1
1−i) = (1− i)4g2(i) = −4g2(i) < −48π2,

so

0 < θ1(1
2) =

η1(1
2 + 1

2 i)
2

η1(1
2 + 1

2 i)
2 − g2(

1
2 +

1
2 i)

12

< 1
2 = θ(1

2).

This, together with (4.25), proves θ′(1
2) < 0.

Step 2. We claim that for any b ∈ (1
2 ,
√

3
2 ) satisfying θ′1(b) = 0, there

holds ψ′(b) > 0, where

ψ(b) := (3g3η1 − η2
1g2 − 1

12g
2
2)(1

2 + bi).
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Applying (4.23)–(4.24), a straightforward computation leads to

ψ′(b) =
1

π

(
3g2η

3
1 − 27

2 g3η
2
1 + 3

4g
2
2η1 − 3

8g2g3

)
.

By (4.19), (4.26) and θ′1(b) = 0, we have ψ(b) = 0, i.e.

η2
1g2 = 3g3η1 − 1

12g
2
2.

Inserting this into the term 3g2η
3
1 of ψ′(b), we easily obtain

ψ′(b) =
1

π

(
−9

2g3η
2
1 + 1

2g
2
2η1 − 3

8g2g3

)
,

and so

g2ψ
′(b) =

1

π

(
−9

2g3(3g3η1 − 1
12g

2
2) + 1

2g
3
2η1 − 3

8g
2
2g3

)
=
η1

2π
(g3

2 − 27g2
3).

Applying (4.6), (4.19) and (4.22) we conclude ψ′(b) > 0.

Step 3. As a direct consequence of Step 2 and (4.26), we have that

if θ′1(b0) ≥ 0 for some b0 ∈ (1
2 ,
√

3
2 ), then θ′1(b) > 0 for any b ∈ (b0,

√
3

2 ).

Step 4. We claim that there exists b1 ∈ (1
2 ,
√

3
2 ) such that θ′(b) < 0

for b ∈ [1
2 , b1), θ′(b1) = 0 and θ′(b) > 0 for b − b1 > 0 small. Conse-

quently,

(4.27) θ′1(b1) ≥ 0 and θ′1(b) > 0 for any b ∈ (b1,
√

3
2 ).

Since η1(1
2 +

√
3

2 i) = 2π√
3

gives θ(
√

3
2 ) = 1

2 = θ(1
2), Step 1 implies

that there exists b1 ∈ (1
2 ,
√

3
2 ) such that θ′(b) < 0 for b ∈ [1

2 , b1) and
θ′(b1) = 0. Suppose θ′(b) ≤ 0 for b−b1 > 0 sufficiently small, then (4.25)
says that θ1(b) − θ(b) has a local maximum 0 at b1, so θ′1(b1) = 0 and
then Step 3 gives θ′1(b) > 0 for b − b1 > 0 small. However, this implies
θ′1(b)− θ′(b) > 0 for b− b1 > 0 sufficiently small, which contradicts with
that θ1(b)− θ(b) has a local maximum 0 at b1. Therefore, θ′(b) > 0 for
b − b1 > 0 small. This also gives θ1(b) − θ(b) > 0 for b − b1 > 0 small.
Since θ1(b1) − θ(b1) = 0, we obtain θ′1(b1) = θ′1(b1) − θ′(b1) ≥ 0 and so
(4.27) holds.

Step 5. We claim that θ′(b) > 0 for b ∈ (b1,
√

3
2 ].

Since g2(1
2 +

√
3

2 i) = 0 gives θ1(
√

3
2 ) = 1 > θ(

√
3

2 ), we have θ′(
√

3
2 ) > 0.

Suppose there exists b2 ∈ (b1,
√

3
2 ) such that θ′(b2) = 0 and θ′(b) > 0

for b ∈ (b1, b2). Then (4.25) gives θ1(b) − θ(b) > 0 for b ∈ (b1, b2) and
θ1(b2)− θ(b2) = 0, i.e. θ′1(b2)− θ′(b2) ≤ 0. However, by (4.27) we have
θ′1(b2)− θ′(b2) = θ′1(b2) > 0, a contradiction.

Step 6. We finish the proof of assertions (iv)–(v).
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By Steps 4–5 and (4.25), θ1(b) − θ(b) = 0 has a unique solution b1

in [1
2 ,
√

3
2 ] and b1 ∈ (1

2 ,
√

3
2 ). Together with (4.18), we see that C− has

at most one intersection point 1
2 + ib1 with the line Re τ = 1

2 . Since

Lemma 3.8 implies that C− must intersect with the line Re τ = 1
2 , we

conclude that τ− := 1
2 + ib1 is the unique intersection point of C− with

the line Re τ = 1
2 . Finally, it follows from assertion (ii) that τ− is also

the unique intersection point of C+ with the line Re τ = 1
2 (resp. C−).

(vi). Clearly this follows readily from the assertion (v) and (3.24).
The proof is complete. q.e.d.

5. Geometric interpretation and smoothness of the curves

The purpose of this section is to give the geometric meaning of the
three curves from the multiple Green functionG2. As pointed out in Sec-
tion 1, {(q±,−q±)|℘(q±) = ±

√
g2/12} are trivial critical points of G2,

and it was calculated in [16, Example 4.2] that the Hessian is given by

(5.1) detD2G2(q±,−q±; τ) =
3|g2(τ)|
4π4 Im τ

|℘(q±|τ) + η1(τ)|2 Imφ±(τ),

where φ±(τ) is defined in (3.29). Define the following degeneracy curve
of G2 on F0 related to (q±,−q±):3

L+,− :=

{
τ ∈ F0 \ {eπi/3}

∣∣∣∣ detD2G2(q+,−q+; τ) = 0
or detD2G2(q−,−q−; τ) = 0

}
.

Theorem 5.1. The degeneracy curve L+,− = C− ∪ C0 ∪ C+. In par-
ticular, C−, C0, C+ are all smooth curves.

Proof. Remark that ℘(q±|τ)+η1(τ) = η1(τ)±
√
g2(τ)/12 = 0 implies

12η1(τ)2−g2(τ) = 0. So it follows from (4.4) that η1(τ)±
√
g2(τ)/12 6= 0

for any τ ∈ F0. Consequently, we deduce from (5.1) that

L+,− =
{
τ ∈ F0 \ {eπi/3} |Imφ+(τ) = 0 or Imφ−(τ) = 0

}
(5.2)

=

{
τ ∈ F0 \ {eπi/3}

∣∣∣∣ φ+(τ) = C or φ−(τ) = C
for some C ∈ R

}
=
{
τ ∈ F0 \ {eπi/3} |fC(τ) = 0 for some C ∈ R

}
= {τ(C)|C ∈ R \ {0, 1}} = C− ∪ C0 ∪ C+,

where we have used Theorem 3.1 and Theorem 4.2 (iii)–(iv), which show

that eπi/3 /∈ C− ∪ C0 ∪ C+.
Now we prove that the three curves are all smooth curves in F0. Re-

calling (4.8) in Lemma 4.3, we restrict τ ∈ F0\{τ = 1
2 + ib|b ≥

√
3

2 } and

3 g2(eπi/3) = 0 implies that the two trivial critical points (q±,−q±) degenerate to

one trivial critical point at τ = eπi/3, so we exclude the trivial case in the definition
of L+,−.
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fix a branch of
√
g2(τ)/12. Then both φ+(τ) and φ−(τ) are single-valued

in F0\{τ = 1
2 + ib|b ≥

√
3

2 } and it follows from [3, Theorem 3.1] that

(5.3) φ′+(τ) 6= 0, φ′−(τ) 6= 0, ∀τ ∈ F0\{τ = 1
2 + ib|b ≥

√
3

2 }.
By (5.2), the same argument as Lemma 4.3 implies that either

(5.4) C− ⊂ {τ ∈ F0\{τ = 1
2 + ib|b ≥

√
3

2 }| Imφ+(τ) = 0}
or

C− ⊂ {τ ∈ F0\{τ = 1
2 + ib|b ≥

√
3

2 }| Imφ−(τ) = 0}.
Say (5.4) holds for example. Write τ = a + bi with a, b ∈ R. By (5.4),
(5.3) and

∂ Imφ+

∂a
= Imφ′+,

∂ Imφ+

∂b
= Reφ′+,

we see that C− is smooth at any τ ∈ C−. Therefore, in both cases, we
can apply (5.3) to conclude that C− is a smooth curve. Then Theorem
4.2-(ii) shows that C+ is also a smooth curve. For C0, we note from

Theorem 4.2-(iii) that C0 ⊂ F0\{τ = 1
2 + ib|b ≤

√
3

2 }. Restrict τ ∈
F0\{τ = 1

2 + ib|b ≤
√

3
2 } and fix a branch of

√
g2(τ)/12. Again both

φ+(τ) and φ−(τ) are single-valued in F0\{τ = 1
2 + ib|b ≤

√
3

2 }, so the
same argument shows that C0 is a smooth curve. q.e.d.

The numerical simulation for the degeneracy curves of G2 and hence
the three smooth curves is shown in Figure 3, which is copied from C.
L. Wang [15]. The other six curves appearing in Figure 3 are those
degeneracy curves of G2 at other trivial critical points {(1

2ωi,
1
2ωj)|i 6=

j}. In another paper, we will prove that under the Γ0(2) action, all
critical points of ek(τ) = ℘(ωk2 |τ) will be mapped to locate on these
six smooth curves. Figure 3 indicates that critical points of E2(τ) and
ek(τ)’s could be approximately computed via mathematical softwares
such as Mathematica.

Appendix A. Application

In this appendix, we apply Theorem 1.6 back to the mean field equa-
tion (2.6). Define

L := {(r, s) ∈ 41 | 2r + s = 2}.

By Theorem 1.6, for any (r, s) ∈ L, Z
(2)
r,s (τ) has a unique zero, denoted

by τs, in F0.

Theorem A.1. For any (r, s) ∈ L, the unique zero τs of Z
(2)
r,s (τ) in

F0 satisfies τs = 1
2 +ibs for some bs >

1
2 . Furthermore, lims→ 1

2
bs = +∞

and

(A.1) b∗ := lim
s→0

bs exists and b∗ ∈ (
√

3/2, 6/5).
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Figure 3. The smooth curves.

In particular, for any τ = 1
2 +ib with b ∈ (b∗,+∞), there exists (r, s) ∈ L

such that this τ is the unique zero of Z
(2)
r,s in F0.

Proof. Given any (r, s) ∈ L. By the definition of ζ(z|τ) and ℘(z|τ),
it is easy to prove

ζ(z|τ) = ζ(z̄|1− τ̄), ℘(z|τ) = ℘(z̄|1− τ̄),

℘′(z|τ) = ℘′(z̄|1− τ̄).

Thus

η1(τ) = 2ζ(1/2|τ) = 2ζ(1/2|1− τ̄) = η1(1− τ̄),

η2(τ) = 2ζ(τ/2|τ) = 2ζ(τ̄ /2|1− τ̄)

= 2ζ(1/2|1− τ̄)− 2ζ((1− τ̄)/2|1− τ̄)

= η1(1− τ̄)− η2(1− τ̄),

i.e.

Zr,s(τ) = ζ(r + s− s(1− τ̄)|1− τ̄)− (r + s)η1(1− τ̄) + sη2(1− τ̄)

= Zr+s,−s(1− τ̄).

From here and

℘(r + sτ |τ) = ℘(r + s− s(1− τ̄)|1− τ̄),
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℘′(r + sτ |τ) = ℘′(r + s− s(1− τ̄)|1− τ̄),

we obtain

Z
(2)
r,s (τ) = Z

(2)
r+s,−s(1− τ̄) = −Z(2)

−(r+s),s(1− τ̄)

= −Z(2)
2−r−s,s(1− τ̄) = −Z(2)

r,s (1− τ̄).

Then 1−τs is also a zero of Z
(2)
r,s (τ) in F0, so 1−τs = τs, i.e. τs = 1

2 + ibs
for some bs ∈ (1

2 ,+∞). Suppose by contradiction that, up to a sequence,

lim
s→1/2

bs = b ∈ [1/2,+∞).

Then 1
2 + ib is a zero of Z

(2)
3
4
, 1
2

(τ) in F0, which is a contradiction with

Theorem 1.6 because (3
4 ,

1
2) ∈ ∂41. This proves lims→ 1

2
bs = +∞. Note

Z
(2)
r,s (τ) = Z

(2)

1− 1
2
s,s

(τ) = Z
(2)

− 1
2
s,s

(τ). To prove (A.1), we recall that the

proof of Theorem 3.1-(1) shows that lims→0 τs exists and

lim
s→0

τs = τ(1
2),

where τ(1
2) is the unique zero of f 1

2
(τ) in F0. Together with Theorem

4.2-(iii), we obtain lims→0 bs = Im τ(1
2) ∈ (

√
3

2 ,
6
5). This proves (A.1)

and hence completes the proof. q.e.d.

The following result, which was announced in [4], give new existence
results for the mean field equation (2.6) when Eτ is a rhombus torus.

Theorem A.2. Let τ = 1
2 + ib with b > b∗, where b∗ ∈ (

√
3

2 ,
6
5) is in

Theorem A.1. Then equation (2.6) on Eτ has a solution.

Proof. This theorem is an immediate consequence of Theorem A.1
and Theorem B-(1). q.e.d.

Remark that Theorem A.2 is almost optimal in the sense of Theorem

B-(2), which says that if τ = 1
2 +

√
3

2 i, then equation (2.6) on Eτ has no
solutions.
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