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MAXIMIZING STEKLOV EIGENVALUES ON
SURFACES

ROMAIN PETRIDES

Abstract

We study the Steklov eigenvalue functionals oy, (X, g) Ly (0%)
on smooth surfaces with non-empty boundary. We prove that,
under some natural gap assumptions, these functionals do admit
maximal metrics which come with an associated minimal surface
with free boundary from ¥ into some Euclidean ball, generalizing
previous results by Fraser and Schoen in [10].

Let X be a smooth compact connected surface with a smooth bound-
ary 0% # (). We denote by ~ its genus and by m the number of connected
components of its boundary, which, together with orientability, charac-
terize topologically the surface. Given a Riemannian metric g on X, the
Dirichlet-to-Neumann operator, L : C* (9%) — C (9%), is defined as
follows: for any u € C* (9%), consider the harmonic extension @ of u in
32, which is unique, then Lu = J,4 where v is the outward unit conormal
along 03. This operator is self-adjoint and has a discrete spectrum

0=o00 < Ul(zag) < 0'2(2,9) < SUk;(E,Q) < ov = 400

of so-called Steklov eigenvalues counted with multiplicity. These are the
o’s for which there exists a non-trivial solution u € C*° (X), smooth up
to the boundary, of
Aju=0 in %,
{ Oyu =ocu on 0%,
where Ay, = —divy (V) is the Laplace-Beltrami operator. These eigen-
values are also characterized by the following variational problem:

Vo|? dv
o (2,9) = inf sup 7f2 | (@g g,
Bt ¢€EL11\{0} faz ¢ dO'g

where the infimum is taken over the vector space of smooth functions
Ej 41 of dimension k + 1.

These eigenvalues may be seen as functionals depending on the met-
ric g. For obvious scaling reasons, it is more interesting to consider
the functionals oy (3, g) Ly (0X). There has been a recent interest in
studying these Steklov eigenvalue functionals because of the connection
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between critical metrics for these functionals and minimal immersions
of ¥ with free boundary into some Euclidean ball. A smooth immersion
® : ¥+ B"*! is a minimal surface with free boundary if ® (X) is a min-
imal surface with ® (9%¥) C S™ which hits the boundary orthogonally
(that is, 0, ® is parallel to ® on 0X). These free boundary minimal sur-
faces arise as critical points of the area when the surface is constrained
to lie in the ball but is free to vary on the boundary of the ball. This
link between this purely geometric problem and the Steklov eigenvalues
was first discovered by Fraser—Schoen [8]. In particular, it is proved
in Fraser—Schoen [9], proposition 2.4, that a metric gy on ¥ such that
ok (X, 90) Lg, (0X) is maximal among smooth metrics on 3 comes with
a conformal minimal immersion with free boundary ® : ¥ +— B"t! for
some n such that ® is an isometry on 0%, up to scaling. Note that,
conversely, see again Fraser—Schoen [9], the coordinates of any confor-
mal minimal immersion with free boundary are Steklov eigenfunctions
corresponding to some o. This link has led Fraser and Schoen to start
an intensive study of the first Steklov eigenvalue (see [8], [10], [9]).

Thus, it is geometrically interesting to look for maximal metrics for
Steklov eigenvalues in order to get conformal minimal immersions with
free boundary. That’s a good reason to introduce the topological invari-
ant

ok (v,m) = sup oy (X, g) Ly (9%) ,
g

where ¥ is an oriented surface of genus v with m boundary components.
Girouard and Polterovich [13] proved that

or(y,m) < 27k (v +m),

generalizing for k > 2 an estimate due to Fraser and Schoen [8] in the
case k = 1. Very few exact values of o (7, m) are known. Weinstock
[26] proved in 1954 that

(0.1) or(0,1) = 27k,

and that for k£ = 1, the case of equality holds for the Euclidean disk. The
exact value of 01(0,2) was found by Fraser-Schoen [10] and the maxi-
mizing metric was characterized as coming from the critical catenoid. In
this same paper, an asymptotic of o1 (0,m) as m — 400 was obtained.

It can also be shown by standard gluing procedures (even if a bit tech-
nical, see [7]) that the following inequalities between these topological
invariants hold:

S
0.2)  ox(y,m)= LA > 0, (g mg).-
Vg,iq>1 q=1
Tt s <y

Mt Hystmitetms<yt+m
y1<7vy or y1+mi1<vy+m if s=1

We prove the following existence result:
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Theorem 1. Let ¥ be a compact orientable surface of genus -y, with
a smooth boundary with m > 1 connected components. Let k > 1. If
the inequality (0.2) is strict, then there exists a smooth metric g on
Y such that ok (y,m) = ok (X,9) Ly (0X). Moreover, up to scaling,
this mazimizing metric is the pull-back of the Euclidean metric by some
conformal minimal immersion with free boundary in the unit Euclidean
ball B"*! for some n.

This theorem was proved for the first eigenvalue £k = 1, with v = 0
and any m in Fraser—Schoen [10]. In this case, the condition that (0.2)
is strict reads as o1 (0,m) > o1 (0,m — 1). They also proved that this
condition holds true for any m so that o1 (0, m) is achieved by a smooth
maximal metric for all m > 1. Their proof easily extends to higher
genus, still for k = 1, except that we do not know if the gap condition
holds for v > 1.

Note that our theorem gives suitable conditions for the existence of
conformal minimal immersion with free boundary with specified genus
and number of boundary components given by k-th Steklov eigenfunc-
tions for any k > 1. Note also that the gap assumption, i.e., the fact
that (0.2) is strict, is necessary to get an existence result. Indeed, it was
proved by Girouard—Polterovich [12] that 02(0,1) is not achieved by a
maximizing metric. Note that, in this case, we have 02(0,1) = 201(0,1)
by (0.1) so that (0.2) is not strict.

Even in the case kK = 1, our proof differs a little bit from that of
Fraser—Schoen [10]. And for higher eigenvalues, compared to the first,
we have to deal with possible bubbling phenomena and, thus, to analyze
them precisely in order to rule them out thanks to the gap assumption.
The starting point of our proof is the following simple remark: it is
somewhat more convenient (even if not easy) to maximize the Steklov
eigenvalue among metrics in a given conformal class since everything de-
pends then from a single function. Then we pick up a special maximizing
sequence for oy (7, m) consisting in maximizers in their own conformal
class. These maximizers come, as we shall see, with a corresponding
harmonic map with free boundary from ¥ into some Euclidean ball and
the proof of Theorem 1 relies on a careful asymptotic analysis of these
harmonic maps when the conformal class degenerates. Quantification
results for such sequences of harmonic maps with free boundary were
recently obtained in Laurain—Petrides [19].

In order to carry out this program, we introduce the conformal in-
variant

ok (2, [g]) = sup oy (9) Lg (0%),
gelg)
for any smooth compact Riemannian surface (X, g) with a non-empty
boundary. Here [g] denotes the conformal class of g, that is all the
metrics on Y which are a multiple of g by a smooth positive function.
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Then, if 3 is orientable of genus v and with m boundary components,
we have of course that

o (v, m) =supoy (3, [g]) .
9]

Once again, one can prove by standard gluing techniques (see [7]) that

1<j<k
11++Zs:]

03)  ow(%,[g]) = max <0k—j(27[g})+Z%(M[S]))-
m=1

Note that thanks to (0.1), this inequality reads completely as

b)) > _i(X 21y
k(3 [gl) = max (o (3, [9]) +27j),
7/1++Zs:]
but, for a reason which will become clear in the proofs, we prefer to state
it in the form of (0.3). Then we have the following existence result:

Theorem 2. Let (X, g) be a compact Riemannian surface with a non-
empty smooth boundary. Let k > 1. Then, if (0.3) is strict, there exists
a smooth mazimal metric § € [g], such that o (%, [g]) = ok(E,§)Li(X).

Note that by (0.1) and (0.3), the gap condition of our theorem would
be a consequence of

ok(2,[9]) > ox-1(2, [g]) + 27

If a maximal metric g for oy, (X, [g]) exists, the conformal factor related
to g of a maximal metric g, is ®.0,® on 0%, where ® is some harmonic
map from ¥ into B"*! with free boundary whose coordinates are eigen-
functions for the k-th Steklov eigenvalue. Such a map takes values in
the Euclidean ball, is harmonic inside ¥, satisfies that |®| =1 and 9, ®
is orthogonal to TeS™ on the boundary of ¥. These harmonic maps
with free boundary have been studied in particular in Da Lio [5], Da
Lio—Riviere [6], Laurain—Petrides [19] and Scheven [23].

The strategy of proof of Theorem 2 is the following. We do not
prove either that any maximizing sequence does converge, up to a sub-
sequence, to a maximizer nor that maximizers in a possible “weaker
sense” are regular. Instead, as was initiated by Fraser—Schoen [10],
we carefully select a maximizing sequence by a regularization process
which does converge to a smooth maximizer. This special maximiz-
ing sequence is the solution of an approached variational problem and
comes with a sequence of “almost” harmonic maps with free boundary
in some Euclidean ball. The core of the proof is to carefully analyze
the asymptotic behavior of these maps to prove that they do converge
to a real smooth harmonic map with free boundary, leading to a max-
imal metric for the Steklov eigenvalue under consideration. The main
difficulty is that, contrary to the case k = 1, one cannot a priori avoid
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phenomenon of concentration, with multiple bubbles appearing. We,
thus, have to perform a bubble tree decomposition for this sequence,
to understand precisely the behavior of these maps at a concentration
point, to prove a no-neck energy result, in order to get a quantification
result, and enough test-functions to use the variational characterization
of the k-th Steklov eigenvalue in order to violate the gap assumption of
the theorem.

The proof of Theorem 1 starts from the existence of maximal metrics
in their own conformal class: this gives once again a special maximizing
sequence. We then understand the behavior of this sequence if the con-
formal class degenerates in order to prove that it cannot happen under
the gap assumption of the theorem. Then we rely on a compactness
result by Laurain—Petrides [19] to finally prove that our maximizing
sequence does converge to a smooth maximizer once degeneracy of the
conformal class has been ruled out.

Analogous questions can be considered concerning the maximization
of Laplace eigenvalues on closed surfaces. Inequalities (0.2) and (0.3)
were proved in this situation by Colbois—El Soufi [4]. Maximizing met-
rics for Laplace eigenvalues come with minimal immersion of the surface
into some sphere. If one adds the conformal class constraint, they come
with smooth harmonic maps into the sphere. The analog of Theorem
1 for Laplace eigenvalues was proved in Petrides [22]. The analog of
Theorem 2 was recently announced with a very brief sketch of proof
in Nadirashvili-Sire [20] and proved in Petrides [22]. The proofs in
the Steklov case are somewhat more difficult since one has to deal with
“almost” harmonic maps with free boundary in some Euclidean ball
instead of “almost” harmonic maps in some sphere. The analysis of
such maps is more tricky: regularity and quantification results are, for
instance, more recent (see Scheven [23], Da Lio-Riviere [6], Da Lio [5],
Laurain—Petrides [19] compared to Hélein [14], Parker [21]) and the de-
scription of the bubbling phenomenon in the case of the present paper
was explicitly asked for by Fraser—Schoen [9].

The paper is organized as follows:

In Section 1, we introduce some notations and recall some more or less
classical tools that we shall use during the proof. Section 2 is devoted
to the set up of the proof of Theorem 2, proof carried out in Sections 3
to 5. We refer to the end of Section 2 for a detailed sketch of the proof
of Theorem 2.

We prove Theorem 1 in Section 6, dealing with a maximizing sequence
of metrics for o (v, m) whose k-th eigenvalue is maximal in its confor-
mal class. We then study the asymptotics of the harmonic maps on X
with free boundary into some B"*! they define, and thanks to the gap
assumption of the theorem, we remove all the problems of convergence
which could occur for this maximizing sequence.
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1. Preliminaries

1.1. Notations. Let (M, g) be a smooth Riemannian surface with a
boundary of length L,(0M) = 1. Let z € M and r > 0. We denote
by Bg(x,r) the open ball of radius r centered at z. If x € OM, we
let Iy(z,r) = OM N By(z,7). In the Euclidean upper half-plane R% =
{(s,t) € R*%t > 0}, we let for z € R x {0}, D} (z) = D,(z) NR2 and
I.(z) = (—r,r) x {0}.

We denote by M(9M) the set of positive Radon measures equipped
with the weak* topology on OM and by M1 (0M) the subset of proba-
bility measures.

As already said, we denote by or(M,g) the k-th eigenvalue of the
Dirichlet-to-Neumann operator on M. It satisfies the classical min-max
variational characterization:

2

(1.1) op(M,g) = inf  sup M,

Eitt peBp\(0}  Jonr Aoy
where the infimum is taken over the spaces of smooth functions Fjy1q
of dimension k + 1.
_ For an open set {2 C M such that 92 = I'UT where I' = 9QNAOM and
I' = 99\ OM are non-empty piecewise smooth curves, and a smooth
density e* on I" we denote by o, (2, g,T', ") the first eigenvalue for the
following problem

Ayp=0 in Q,
oo =o0.(,9, T e")e"¢ onl,
»=0 on I,

that is )
fQ Vol dvg
«(Q,9,T,e") = inf I —
7 (9,1, ¢") = Inf, [ Penda,

where

H={pecW"?(Q),6=0o0nT},
the value of ¢ on 02 being understood taken in the sense of the Sobolev
trace.
For all the paper, we fix § > 0, a constant Cy > 1 and a family
(21);—_p, of points in OM and smooth functions v; : M +— R such that

e for any | € {1,...,L}, g¢ = e g is a flat metric in =
By, (z1,26), and I'} = I, (2,26) is a geodesic line for g; so that

the exponential map expg, ., defines an isometry between ]D;’(;(O)
and (Bgz (l’l, 25) ,gl).
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L
e OM = U'yl where vy, = Iy, (21,0).
=1
e Forany 1 <[ <L, 00_2§€2UZ SC&.
e For any v € wyand 0 < r < 6, Bg($,061r) C By, (z,7) C
By(x,Cor).
For 1 <1 < L and a point z € DJ;(0), we let

201(2) = 2Py 2 (2)) anq 5 = expy, 1, (2),

and for x € ; and a set Q C (,

~1l _ 4 —
= expgl}ml (z) and ' = expgl}ml(ﬂ).
For a smooth density ¢* on M we let

eal(z) — eﬁl(z)eu(engl,xl (z)) ,

/e“dog:/~ et ds.
r T

For other functions ¢ € L'(M) or measures v € M(OM), we let

so that for I' C I'y,

¢'(2) = dlexpy, 4, (2)) and &' = expy ., (v).
Let pe(z,y) be the heat kernel of OM at time e¢ > 0 for the induced
measure dogy. Then, for y,z € I';, we let

Be(z,y) = " Ppe(expy, 4,(2), XDy, 2, (9))

so that for a density e*®) = [.p(z,y)dv(y) for I' C I and some
measure v, we have

) = [ e dnty)
I
and for ¢ € LY(OM),

[ 3 (5, 0)7L((5,0), §)ds = / O(2)pe(,y)dory ().
Tl T

When the context is clear, we drop the exponent [ in all the notations.
Now, for parameters a € R x {0} and a > 0, we define the following
rescaled objects

621l(z) _ a262ﬂ(az+a)’ gg(z) — g;)(O[Z + a)7
0= Hyo(7),pe(2,y) = api(az + a,ay + a),
where H, o(z) = az + a, so that if e*®) = [, p.(z,y)dv(y), we have

i) — /F Dol y)di(y),
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and
/ 6((5,0))pe((5,0), §)ds = / o(2)pe(, y)dory(1).
T r

We also denote for z € R2,
Z = expy, , (az +a),

so that £ = z and

9

Q) = expy, ;, (a2 +a).

1.2. Estimates on the heat kernel. The heat kernel p.(z,y) of a
the union of circles OM at time € > 0 with respect to the measure doy
satisfies the following uniform estimates as e — 0
(1.2)
_ dg(aw)?
e 4de 2 2
Pe(,Y) =50 = (ao(z,y) + ear(z,y) + € az(z,y) + o(€?)) ,
with ag,a1,a2 € C°(OM x OM) are Riemannian invariants such that
ap(z,z) = 1 as proved, for instance, in [2]. We have also a uniform
bound: there exists Ap > 0 such that for any ¢ > 0,
1 _dg(zy)? Ay _dgzw)?

1.3 Ve, y € OM, ———e™ = 2 < pe(x,y) < e Ie
(1.3) Y Aogviame pe(.y) VAdme

We deduce the same uniform properties for the rescaled heat kernel
Pe(x,y) by some parameters a. € R x {0} and a, > 0 such that a. —
a € R x {0} and o — 0 as e — 0. We have for any R > 0,

o (140(1))
(14)  pe(z,y) = T(l + 0(1)) uniformly on D x Dp,
TUe

where 6, = and we have the following bound for any fixed

0<pxl1

€
e2vl(a)ag

ly—z|> ly—z|?
— 15— (1+p) e—%(l—p)
470,

- NZYD
for all € > 0 small enough.
Let’s prove (1.4). We fix R > 0 and we have uniformly for (z,y) €
Ir xIpase—0

(1.5) (1+p),

e’ @) dgp?

De (X, = e~ 2 (ap(Z,y)+o(1
(@) _dg@ip?

= (14+o0(1))e Ic

vVdame

by (1.2). It remains to notice that
dy(#,9) = €@ |z — y| ae(1 + o(1))




MAXIMAL METRICS FOR STEKLOV EIGENVALUES 103

uniformly for (z,y) € DE X ]D)E and we get the desired approximation
(1.4).

For a sequence of measures v, € M(JM), we also have uniform
bounds for R>r >0and . - 0ase— 0

_(R-n)?

e 80¢
1.6 sup / aepe(T,y)dve(y) =0 | ————
( ) z€lIR_, 8M\fR ( ) ( ) \/96

We prove it thanks to (1.3) and (1.5). Let x € Ig_,.

e / Cpe(@y)dvely) = e Pel, 2)die(2)
OM\Ig

Ich\IR

+/ . aspe(ia y)dVe(y)
OM\Igz g

_\ac—z|2

e 80¢ R
< C'o/ ————dv(2)
Iea g\ 0,

acAg _dg(,y)?
—l—/ e i dv(y)
8M\Ig(&e,aecogR) Vame

C

2
eJRS‘)e) Apoe _e2r-r)?
< O + e EE
\0. dme

where I, C Iy(ae, cCor) C I4(ac, 2cCoR). This proves (1.6). We also
have

_(BR—n)?

e 80¢

(1.7) sup [pe(x,y)dg W) =0 —7—
z€dM\Ig  Ir 7 Oe

Let © € M \ Ir. We assume that z € Iczg \ Ir- Then,

/frpe(x,y)dag(y) = /ITﬁe(z,:“c)dz

_\x—z\Q
80c (z

1
—— [ e
V7l /Ir
2r  _®-n?
e 80¢
\Vml,
Now, if € is small enough and if x € OM \ jch C OM \ I4(ae, aeRCy),

we have

[pe(xawdﬂg(y) < / Pe(w,y)dog(y)
I Ig4(@e,0eCor)
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A _dg(fcvy)2
< ,—0 e 1 dog(y)
47T6 Ig(fle,oéec'o?”)
_ ag(R—r)?
(& 4de
< O

NCA

We proved (1.7). Now let’s prove that

/ Pe(z,x)dz — 1‘ =0.

Ir

1.8 lim i
(18) Rt 5 Sup

We fix 0 < p < % and R > 0. Then, for € small enough, we have by
(1.5) that

_lz—z2(1-p)

R e c 14+p
pgz,xdzg/ ————(1+p)dz =
/IR (> 2) Rx{0} 4mfe ( ) L—=p

for any = € I, and

_lz—z2(1+p)
e 40¢
/ Pe(z,x)dz > / ——— (1 —p)dz
In In 470,
_lz=2[2(4p) 7\252\2
e 3 (& €
> —_—— 1—p)dz—/ dz
/]RX{O} 47, ( Rx{0)\Ix V€

S
= Vits
uniformly on I.. Letting ¢ — 0, then R — +o00 and then p — 0 gives
(1.8).
1.3. Capacity and Poincaré inequalities. We first notice the follow-

ing consequence of the classical computation of the capacity of annuli
in R?.

+o(l)ase—0

Claim 1. Let (M, g) be a compact Riemannian surface. Then, there
1s C' > 0 and rg > 0 such that for all x € M and all 0 < 79 < 11 < 10,
there exists a smooth function g gry ro : M — R with

* 0 < Ng,2,r1,r2 < 1;

® Ng,x,ri,r0 = 1 on Bg(l'aTZ):
Ng,a,r1,re € 030(239(7577“1))}0
Jor Vg1 oy dvg < ()

T2

We now recall two theorems giving Poincaré inequalities on surfaces.

Theorem 3 ([1], Lemma 8.3.1). Let (M, g) be a Riemannian man-
ifold. Then, there exists a constant B > 0 such that for any L €
W=L2(M) with L(1) = 1, we have the following Poincaré inéquality

Vf e Wh2(M), /M(f — L(f))%dvy < BILI3y-120m) /M [V £12 du,.
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We denote by
C12(K) = inf {/R2 ¢*dvy + /R2 |v¢y§dug; ¢ € CP(R?),6>1 on K} ,
the capacity of a compact set K C R? and

Caps(K,Q) = inf {/ ]V¢|§ dvg; ¢ € C°(Q),¢ > 1 on K} ,
Q
the relative capacity of K CC €.

Theorem 4 ([1], Corollary 8.2.2). Let Q C R? be a bounded extension
domain. Then, there exists a constant Cq such that for any compact
K C Q with Ci12(K) > 0 and for any function f € C>(Q) such that
f=0o0n K,

1720 < e 1971
L2(Q) = C12(K) L2(Q)

Q) is a bounded extension domain means that the extension by 0 on
R? of every function in WOI’Q(Q) is W12 in R?. This is true for the
family of sets we consider during the proof:

Q= DI \ U Dy (),

Poi=1
where p > 0, x; € D1 such that if ¢ # j, then x; # z; and
P
. . o w = ay
10p < min <mimd(xz,8ﬂ)lép),rin¢1§12 .

We now set

for some fixed number 1 < K < 10 chosen independent of the problem
we consider. We obtain the corollary:

Corollary. Let v > 0 fized. Then, we have a constant C, > 0 such
that for every f € C*(Q) which vanishes on a smooth piecewise curve
I' CC Qg which connects two points of distance r > 0,

12y < Cr IVl 2 -
Indeed, it is proved in ([15], pages 95-97) that
Ko
ln(%)’

Capo(T', Q) >

and that
Cl,g(r) Z chapg(I‘, Q)
for constants Ky > 0 and K7 > 0 which only depend on 2 and K.
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2. Selection of a maximizing sequence

We fix k > 1. In this section, we build a specific maximizing sequence
for o1, (M, [g]) thanks to the heat equation on M. Let € > 0. We denote
by K. the heat operator on OM so that for a positive Radon measure
ve M(M), Kcv]do, is the solution at time e > 0 of the heat equation
on the curves (OM,doy) which converges to v as € — 0 in M(OM).
Given x,y € M(OM), we denote by pe(z,y) the heat kernel of (OM, g)
so that for v € M(OM),

K V)(z) = /8 pde i),

For f € LY(OM), we set K.[f] := K [fdog] so that

K [f]dv = fK[v]doy.
oM oM
For € > 0, we set
(2.1) oe= sup ox(M,g,0M,K.v]).
vEM(DM)

By continuity of v € M(OM) — or(M,g,0M, K.[v]), a maximizing
sequence for the variational problem (2.1) converges in M;(9M), up to
the extraction of a subsequence, to a measure v, € M7(9M) such that

(2.2) oe = 0(M, g,0M, Kc[ve]).

We set

(2.3) e’ = Kelve,

a sequence of smooth positive densities satisfying

(2.4) e = o,(M,g,0M,e") — or(M,[g]) as e = 0.

Indeed, o¢ < o(M,[g]) for all € > 0 and for n > 0, there exists some
density e* such that [}, e*doy, = 1 and oy (M, g, OM, e") > oy(M, [g]) —
2. By uniform estimates on the heat operator, K[e"] — " as € — 0 in
C%(O®M). Then, there exists ¢y > 0 such that

0c 2 01(M, 9. 0M, Kcle")) 2 0(M.g,0M, ") — I = or(M,[g]) =1

for € < eg. We get (2.4). Now, thanks to the choice of the maximizing
sequence (2.3) the variational problem (2.1) gives

Proposition 1. Fix ¢ > 0. Then, there exists a family . =

(92, ,¢?(E)) of smooth independent functions in L*(OM, e“<dog) such
that

(i) Fori€{0,---,n(e)}, ¢t € Ex(M,g,0M,ev), that is to say
Agdl =0 i M,
B,6L = et in OM,
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(i) K[|®c|*] > 1 on OM,
(iil) K[|®]*] =1 on supp(ve).

Proof. Since € is fixed, we omit the indices € for o, v, and e up to
the end of the proof of the claim.

Let p € M(OM) and t > 0. We set oy = oi(M, g,0M, K [v + tu]).
Note that o = 0;—¢ and by continuity, o; — o as t — 0. We first prove
that

_ 2d
25 lm %= inf ( Jous Kl T )
t—o+ 1 EER(M,g,0M,ev) f o PPetdoy
Let ¢o, ¢1,- - , $x be an orthonormal family of functions in L?(OM, edo )

such that ¢; € E;(M,g,0M,e"). We set E = Vect{dg, - ,¢dr}. Then,
by the min-max variational characterization (1.1),

or < sup fM |V¢|§ g
t <
se\{0} \ Jons P Kelv + tuldayg

— s fM V|- dvg
$eENSFk faM ¢2KE[V]ng +1 faM K [¢?|dp ’

where S* = {Zfzo Bii, B € Sk} and

sup (2/820'1 <1 —t/ K d,u+0( )>>
=1, Bipi€Sk

a<1 faM <[] d”+o(t)),

Jonr Pietdoy

uniformly as t — 0, where o; = 0;(M,g,0M,e"). Indeed, by the
gap or(M,[g]) > or—1(M,[g]) + 27, we have 0 = o (M,g,0M,e*) >
ok—1(M,g,0M,e") and since we have (2.4). Then, minimizing among
the ¢ € Ex(M, g,0M,e"), we get that

(2.6) lim sup ot — 0O < uf ( faM d’ M)
t—0+ t PR (M,9,0M e*) faM‘ZS etdoyg

Now, we let ¢y € Ey(M, g,0M, Kc[v+tp]) with |6l 2901 k. jp)do,) = 1-
We have that

@7 Agdy =0 in M,
’ 8u¢t = O'tKE[V + t,u]@ = O't(eu -+ tKe[ﬂ])¢t in OM.

IN

gt

IN

lle* |l oo
< - 0L=E
For t < MK, = Ve have that

1
56” < K v+ tu] < 2e%,
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and that for any ¢ € C*(0M),

1
3| < | SKRprmz [ g
oM oM oM

so that L?(K [v+tuldo,) and L (K [v]do,) = L?(e“do,) define the same
sets with equivalent norms and constants in the equivalence independent
of t. Then, {¢} is bounded in L?(e“do,). By elliptic regularity theory
for the Dirichlet-to-Neumann operator with equation (2.7), (see [25],
Chapter 7.11, page 37), there exists ¢ € Ey(M,g,0M,e") such that
up to the extraction of a subsequence, ¢; — ¢ in C™(M) as t — 0T
and ||¢|‘L2(8M,e“d0'g) = 1. We denote by II the orthogonal projection on

Ey(M, g,0M,e*) with respect to the L*(0M, e“do,)-norm. Then, we
write (2.7) as

(2.8)
Ay (2) — 0 in M,
0y (‘z’t ltwt) — oe® (¢t;13¢t> = AP + aitatKe[,u]qSt in OM,
with
(2.9) ar = [[¢r — Uy poo +1+ (0 — 0v).

Up to the extraction of a subsequence, we have that

t —
to = lim — and dg = lim i
t—0t O t—0t Oy
Notice that dp > 0. By elliptic theory on the Dirichlet-to-Neumann
operator (see [25], Chapter 7.11, page 37), since @;75% is uniformly

bounded as t — 0T, we get up to the extraction of a subsequence that
¢r — oy
o

where Ry € Ep(M,g,0M,e")*. Passing to the limit in equation (2.8),
we get

— Ry ast— 07 in C™(M),

(2.10) AgRy =0 in M,

’ Oy Ry — 0e“ Ry = —dpe"p + too K [u]d  in OM,
and by (2.9)
(2.11) HR()HOO—Fto—i-&) = 1.

Testing (2.10) against ¢, and using the fact that Ry € Ey (M, g, 0M, e*)*,
we have that

0o = (50/ e“¢2dag = tgo KE[M]¢2d0'9.
oM oM

If to = 0, then 6y = 0 and then Ry = 0 thanks to (2.10) and the fact
that Ry € Ex(M,g,0M,e*)*. This is absurd with (2.11). Thus, tq # 0
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and
i 00 _ =00 _ _Jon Kel@®ldp
t—0t  t to faMd) etdoy
This and (2.6) gives (2.5).

Since (14t [;,, dp)os < o for all t > 0, we deduce from (2.5) that
for any p € OM, there exists ¢ € Ei(M, g,0M,e") such that

(2.12) $2e"do, = 1 and / (1= K.[6%)du < 0.
oM oM

We define the following subsets of CY(OM)

= :nK€2_ COM; ,oo , On € By, dv = s
{w D Kot 1€ 0D on e k/aMwu 0}

where Ey = E(M, g,0M,e") and
F={fecoM),f >0}

F' is closed and convex. The set K is convex since it is a translation of
the convex hull of

C= {K€[¢2],(}5 € Ek(MagvaMa eu)7 H¢||L2(M7Q7BM7eu) = ]'}

Since Ex (M, g,0M,e") is finite dimensional, the vector space spanned
by C' is finite dimensional and C' is compact. Caratheodory’s theorem
gives that K is compact.

If FN K = (), Hahn—Banach theorem gives the existence of some
€ M(OM) such that

(2.13) Vf e F/ fdu >0,
oM

and

(2.14) Y € K,/ Wwdu < 0.
oM

Then, p is a non-zero, by (2.13), positive, by (2.14), measure and
p contradicts (2.12) by (2.14). Thus, F N K # () and there exists
- " € Ep(M,g,0M,et) with

(2.15) / @ etdo, = 1 and K[|9[2] > 1
oM

where ® = (¢°,---,¢"). By Gaussian decomposition of some non-
negative quadratic form, we can assume that (¢°, - - -, ¢") is a family of
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independent eigenfunctions in L?(OM, e*do,) and satisfies (2.15). This
gives (i) and (ii). We can write that

1:/ yq>|2eUdag:/ KE[\cI)yQ]duz/ dv =1.
oM oM oM

Therefore, K[|®|*] = 1 v-a.e and since K[|®|?] is continuous, K [|®|*] =
1 on supp(v). This gives (iii) and ends the proof of the claim.  q.e.d.

By a result of Fraser—Schoen [9] and Karpukhin-Kokarev—Polterovich
[18], there exists a bound for the multiplicity of k-th Steklov eigenvalues
on surfaces which only depends on k£ and the topology of the surface.
Therefore, up to the extraction of a subsequence, we assume in the
following that n(e) = n is fixed.

We organize the proof of Theorem 2 as follows:

In Section 3, we give regularity estimates on the densities e"c and
on the associated Steklov eigenfunctions defined by Proposition 1 (see
Claim 4). These estimates permit to pass to the limit on the eigenvalue
equation (Proposition 1 (i)) as € — 0 (see Claim 5). However, we
cannot pass to the limit on the whole surface. We have to avoid some
singularities for the maximizing sequence which could occur. We cannot
remove a priori some concentration points of {e?“cdv,} even with the
assumption that (0.3) is strict. Other harmless singularities are also
carefully avoided (see Claim 3).

From Sections 4 to 6, we assume the existence of concentration points
for the maximizing sequence and we aim at deducing the case of equality
in (0.3). In Section 4, we detect all the concentration scales thanks to
the construction of a bubble tree. This leads to the proof of Proposition
2, page 132.

We then give in Section 5 regularity estimates on the eigenfunctions
at each scale of concentration and pass to the limit in the equation they
satisfy. Notice that this work is divided into two subsections, depending
on the speed of convergence to zero of the concentration scale «. as
e — 0.

Finally, in Section 6.1, capitalizing on the energy estimates for the
limiting measures and equations given in Section 3.2 on M (see (3.28)),
at the end of Section 5.1 (see (5.35)) and Section 5.2 (see (5.40)) on some
disks D, we both prove the regularity of the limiting measures at all the
scales of concentration, and that no energy is lost in the necks in the
bubbling process. This is given by Proposition 3, page 168. Thanks to
this proposition, we prove in Section 6.2 that the presence of concentra-
tion points implies the case of equality in (0.3) by a suitable choice of test
functions for the variational characterization of o. = oy (M, g, OM, e"c).

Therefore, since the specific maximizing sequence {e“<doy} does not
concentrate with the assumption that (0.3) is strict, the end of the proof
of Theorem 2 just uses the second part of Proposition 3 in Section 6.1.
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3. Regularity estimates in the surface

3.1. Regularity estimates far from singularities. In this subsec-
tion, we aim at getting finer and finer regularity estimates on the eigen-
functions which appear in Proposition 1 and pass to the limit on the
equation they satisfy. We denote by v the weak* limit of v.. Notice that
v is also the weak* limit of {e%do,}. Indeed, if ¢ € CO(OM),

/ (K.[d] - O)dve
oM
< suplK.ld — ¢,

M

which goes to 0 as € — 0 by uniform continuity of (.

Hypothesis (iii) in Proposition 1 gives uniform estimates on the eigen-
functions {#’} on sets of points which lie at a distance to supp(v)
asymptotically smaller than /e.

- (e"doy — dve)

Claim 2. For any R > 0 there exists a constant Cr > 0 such that
for any sequence (x¢) of points in OM, with dg(ze, supp(ve)) < Ry/€, we
have

’Qﬁ(fﬂe)‘ < Cpg for all e > 0.

Proof. We refer the reader to Section 1.1 for the notations used during
this proof. We can assume that z. € w; for 1 <[ < L fixed and we set

A —~I
De(z) = e (Ver + i‘le)
for x € D&f% N Ri. Then,
{ Agdl =0 in D
sem

)

Nl

n ) MY €

Dyl = —oeJeetVertia gl ip I

for 0 < i < n. By estimate (1.3) of Section 1.2, {\/ep.} is uniformly
bounded so that {y/ee®(Ver+#)} is uniformly bounded. Now, we let
Ye € supp(ve) be such that dy(z.,ye) < Ry/e. Thanks to Proposition 1,

we have that K [|®|*(yc) = 1. Let us write then with (1.3), Section
1.2 that for p > 0,

1=K, [ycbe\z] (ve) > iKe [WJZ] (e)
1=0

1,

_ - i 2 o
= iz;/aMpe (,ye) (¢4(y))” dog(y)

n

v

1 _ 203 i 2
;Agﬁe p I(cbe(y)) dog(y)

1 _ 202 ~ 2
> e /WE) (5i2)) " d=,

1=0

v
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where I = I (ye,2pCo+/€) in the third line and we set 2z, = \%(gi )
so that, up to the extraction of a subsequence 2. — z9 € OM as € — 0
and we deduce from the previous inequality that, for any p > 0, (52
is bounded in L?(I,(29)). Thus, by elliptic regularity of the Dirichlet-
to-Neumann operator (see Taylor [25], Chapter 7.11, page 37), we get
that {¢’} is uniformly bounded in I, by some constant D,. Setting
CRr = Dacy R gives the claim. q.e.d.

Now, we will restrict the estimates on the eigenfunctions ¢! far from
some singularities which could appear.

A, .. We say that a point x € OM satisfies A, for some » > 0 and
some € > 0 if

Uk(M7 [9])
—

B, .: We say that a point € M satisfies B, for » > 0 and € > 0 if
there exists f € Ex(M,g,0M,{e"}) such that f(z) = 0 and the Nodal
set of f which contains « does not intersect 0Bgy(x,r) \ OM.

Note that if r1 < r9, A, c = A,y e and B, = B,, .. We say that a
point x € M satisfies P, for r > 0 and € > 0 if z € M and =z satisfies
A, . or if x satisfies B, .. For a surface (M, g), a sequence of densities
{e"<} on OM and r > 0, we define the singular set

X (M,g,0M,{e"}) ={z € Q,3e > 0 such that z satisfies P, }.

Note that if r; < r9, then X,, (M, g,0M,{e"}) C Xy, (M, g,0M,{e"}).
The following claim holds true

o (Bg(z,7),9,I4(x,7),€") <

Claim 3. There exists a sequence {e*m} with €, — 0 as m — +00
and there exist some points p1,--- ,ps € OM with 0 < s < k such that

e Vp>0,3r>0,X,(M,g,0M,{e"m}) C Ui, By(pi,p),
e For any subsequence {e" ™0 }j50 of {e"m >0,
(3.1)
Vp>0,Vr>0,V1 <i<s, X, (M,g,0M,{e"m®}) N By(pi, p) # 0.

Proof. Assume by contradiction that for any sequence €,, — 0, as
m — —+00, for any series of s points p1, -+ ,ps € OM with 0 < s < k,
there is p > 0 such that

S
(32) V> 0,X(M,g.0M {e"» )\ | By(pirp) # 0.
i=1
Thanks to this hypothesis, we will deduce by induction the following
property Hg for 1 < s <k +1
H,: There exist sequences €,, — 0, 7, \( 0 as m — 400, some points
pt, -+ ,plt € M and s pairwise distinct points p1,---,ps € OM such
that for 1 <¢ <'s, pi" — p; as m — +oo and p}" satisfies P

Tm,€m *
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Let’s first prove H;. By (3.2) applied for s = 0 and a sequence {277},
we have the existence of p|* € Xo-m (M, g,0M, {€"277 }j>¢) for any fixed
m > 0. For m > 0, we choose ¢, = 2-3(m) such that p* satisfies
Py-m .. It is clear that €, — 0 as m — +oo. Up to the extraction of
a subsequence, there exists p; € M such that p* — p; as m — +o0.
Now, it is clear that p; € M. Indeed, if p; € M \ OM, then we choose
mo € N such that for m > mg, By(p[",7m) C M\OM. Then p}* satisfies
B.,. ¢, and the Nodal set of some function f,, € Ex(M,g,0M,{e"n})
which contains p{* does not intersect M since it does not intersect
O0By(pl*,Tm). Since fy, is harmonic, it vanishes on an open set of M
by the maximum principle so that f,, vanishes on M. This contradicts
the fact that f,, is a k-th eigenfunction for the Dirichlet-to-Neumann
operator. Then p; € OM and we get Hj.

We assume now that Hy is true for some 1 < s < k. We consider the
sequences {€p}, {rm}, {p!"} and p1,--- ,ps € OM given by H. Let us
prove Hy11. By (3.2), there is p > 0 such that for all r > 0,

S
X, (M, g,0M, {e"n 1)\ | By(pi. p) # 0.
i=1
Let p'; € X;,, (M, g,0M,{e" };>0). For m € N fixed, we let a(m) be
such that p7? | satisfies PTWEQ(m). Since r,, — 0 as m — +0o0, it is clear
that a(m) — 400 as m — 4o0o. We set (m) = min(m,a(m)). By
H,, for1 <i <s, p?(m) satisfies P

p?(m) satisfies Pm(m),ea(m)- Moreover, pf | satisfies Prm@a(m) and since
rm is decreasing py'; satisfies Prﬂ(m),ea(m)' Up to the extraction of
a subsequence, we can assume that rgi,) 0 as m — +oo and we
let ps11 € M such that p; — psi1 as m — +oo. Since pJi; €
M\ Uy By(pi, p), pss1 & {01, ps}. By the same arguments as in
the proof of Hy, we also have that ps11 € OM. This proves Hgyq.

The proof of Hyy1 is complete. Now, we prove that Hyiq leads
to a contradiction. We define k + 1 test functions for the variational
characterization of o, = o,(M,g,0M,e%mn), ™ for m € N and 1 <
7 < k-+1 as follows

o If pI" satisfies A, .., n/" is the extension by 0 in M\ By(p}"*, rp,) of
an eigenfunction for o, (By(p",mm), g, 1(DS, 7m), {e*m }). In this
case,

To(m)séa(m) A0 since rm is decreasing,

2
I IV g dvs _ or(M, [g])

5 < .
faM ()" dog 2
o If p" does not satisfy A, ., it satisfies B,,, (,, and 7" is some
eigenfunction for o,(D]", g,I'", e%m ) extended by 0 in M \ D"
where D" is a nodal domain of some Steklov eigenfunction as-
sociated to o.,, which is included in By (p}*,7m). Such a domain

(3.3)
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exists by assumption B
this case,

2
J a1V g dvg
faM (77;”)2 dog
For m large enough, we have

and satisfies I'7" = OM N DM # (). In

Tm,€m

(3.4) =0, (D", g, T, e'm) =0,

1
dg(Pgnap?l) - 3rm 2 o

min  d,(p;,pir) >0,
2 1<i<i' <k+1 o(Pi> pit)

min
1<i<i’' <k+1
so that the functions n{",--- 7%, have pairwise disjoint supports.
Thanks to (3.3) and (3.4), the min-max characterization of o., =
o(M,g,0M,e"m) (1.1) gives that

2
fM \an-”\g dug <

0. < max <
TSR [ ) do

m €m
since for m large enough, o, — or(M,[g]) > M. Then, all
the inequalities are equalities and by the case of equality in the min-
max characterization of the k-th eigenvalue, one of the functions 7"
is an eigenfunction on the surface for o.,, = ox(M,g,0M,e"). Since
supp(ni™) C Bg(pf*,rm) and " # 0, we contradict the harmonicity of
U

Therefore, we have proved that there exists a subsequence {e"m } and
p1, - ,ps € OM for some 0 < s < k such that

S
Vp > 0,3r > 0,X,(M,g,0M,{e"n}) C () By(pi, p),
i=1

which is exactly the first part of the claim.

Let’s prove now the second part of the claim. If there exists a subse-
quence m(j) — +oo as j — +oo such that there exists p > 0 and r > 0
and 1 < ig < s with

X (M, g,0M,{e"m®}) N By(piy, p) =0,

then, taking the subsequence m(j), we can remove the index ig €
{1,---, s} so that

X, (M, g,0M,{e"m0i}) C U Biip).
Ze{lv 78}\{i0}
We go on with this process until we cannot find a subsequence such that

(3.1) does not hold. This ends the proof of the claim. q.e.d.

Up to the extraction of a subsequence, we assume in the following
that {e"} satisfies the conclusion of Claim 3. For p > 0, we let

M(p) = M\ | By(pi, p),
=1
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and
S
I(p) = M\ | J Iy(ps, p)
i=1
We are now able to get regularity estimates on the functions e"< in I(p)
and @, in M (p).

Claim 4. We assume that mo(p) = lime_ f[(p) e“dvg > 0 for any
p > 0 small enough. Then we have the following

o FEstimates on P,

(3.5) Vp > 0,3C1(p) > 0,¥e > 0, |Rc|lypr2(ar(p)) < C1(p),
(36) Vp >0, 302(:0) > 0,Ve > 0, ||q)€||CU(M(p)) < 02(p)7

o Quantitative non-concentration estimates on e%c and |V<I>6|§
(3.7)

Vp > 0,3D1(p) > 0,¥r > 0,limsup sup / e dvg <
=0 z€l(p) JIg(z,r)

(3.8)
D

Vp > 0,3Dy(p) > 0,Vr > 0,limsup sup / |V‘I)€|S27dvg = i '

0 zel(p) JBy(z,r) In()

Proof. We first prove (3.5) by using Claim 3 and the assumption
mo(p) > 0.
For that purpose, let’s prove that { To

= =

6“6 da dog} is bounded in

W=12(M(p)). Let p > 0 and let 7 > 0 be such that
S
X, (M, g,0M,{e"}) C | By(pi, p).
i=1

Then, for all x € I(p) and all € > 0, 0.(By(z,7),g,l4(x,7),€e%) >

M. By the compactness of I(p), we can find yi, -,y € I(p)
such that
t
C U Ig(yi; ’l”)
i=1
Let 41,--- ,19: be a partition of unity associated to this covering,

such that >>'_ 4 = 1 on I(p) and supp(¢y;) C By(yi,r). Let L :
WH2(M(p)) — WH2(M) be a continuous extension operator. Then, if
W € WE2(M(p)), its trace on the boundary satisfies

t
Yedog

‘dag /
. = L
/z(p S €'<dog S 1By J1(p) €*dog
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t e'“do 3
< >(/ (i)’ ug)
;< I(p)NBy (yi,r) Jip) €edog
1
t ele 2
= / (wz ( CiUg
i—1 \/OMNBy(yi,r) fI etedo,
;
< - <fBg ym) V(WL W), d”9)2
a 1
- (ff(p Edag)
A
< - 0(;) L)z
(P52) mofo):
<

A1(p) 1¥llwrz(ar(py)

for some constants Ag(p) and Aj(p) which do not depend on € > 0

(Where 0; = Ox (Bg(yhr)vgajg(yiar)? eueg))'
By Theorem 3 in Section 1.3, we now get the following Poincaré
inequality: there exists some constant As(p) such that for any f €

C>(M(p))

2
Ue ]
M(p) 1) Jr(p) € dog M(p)

We deduce from this inequality that
i) fletedo
/ Frdv, < 2A2(p)/ IV £12 dug + 2V (M) 27
M(p) M(p) f](p) etedoyg

Applying this inequality to the ¢!’s and summing for i = 0---n, we get
that

2 2 faM|(I)6|2 e'edoy
[ < 240000 [ [0 do,+ 20,00 _
M(p) oM f[(p) etedoy

using the fact that

/ V5|2 dvy < / V5|2 dvg = o / e (¢L)*doy,
M(p) M OM

by (iii) of Proposition 1,

/ e“€\®e|2dag:/ |<I>€|2K5[u€]dag:/ K [|®*)dve = 1.
oM oM oM

Then, we get that

2V, (M
/ D% dv, < 245(p)oe + Vo(M)
M(p)

J 1(p) € dog '
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Thanks to the assumption of the claim, namely that | () e doy —
mo(p) > 0, we get the existence of some A3(p) such that

|10 dn, < A,
M (p)

Now, with what we just said, we also know that

/ ]V@G\?J dvg < o,
M(p)

and (3.5) follows.
In order to get (3.6), we first prove that

(3.9) Vp > 0,3Co(p), Ve > 0, [[Pellcos(p)) < Colp)-

Let p > 0, 0 < i < n and up to change ¢! into — ‘ZE', let (z¢) be a
sequence of points of I(p) such that ¢¢(ze) = supy, |pL]. We set

de = dg(ze, supp(ve)).
We divide the rest of the proof of (3.9) into three cases.

CASE 1 — We assume that ;1 = O(1). Then, {e%} is uniformly
bounded in I (me,min %,g ) by (1.4). By (3.5), {(bl} is bounded in
L2(I(%)). Then, {¢}} is bounded in W'2(I(z., min{%, £})) by elliptic
theory for the Dirichlet-to-Neumann operator (see [25], chapter 7.11,
page 37), and {¢.(x)} is bounded by Sobolev embeddings.

CASE 2 — We assume that §. = O(y/€). Then, {¢!(x)} is bounded
by Claim 2.

CASE 3 — We assume that . — 0 and ‘[ —0ase— 0. We let
Ve = ¢e(0ex + &) for x € D;&_l and e¥e = §et 0 tre) for o Iss5-1,
so that

Ahe =0 Dt .,
(3.10) { v D5

Ope = —oe¥h.  on Igs1.

Let ye € supp(ve) be such that dy(ze,y.) = 0c and set z. = gea e 50

that ze — zp as € — 0 up to the extraction of a subsequence. We set
= |z9|. Thanks to Claim 2, we know that ¥.(z.) = ¢'(y.) = O(1).

Thanks to estimates (1.6) on the heat kernel, there exists D; > 0 such

that

e < Dy on IR.

We first assume that 1. does not vanish in ID) . Then, we can apply
Harnack’s inequality and get some constant D2 > 0 such that

Ye > Dote(0) on D,
4
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for all € > 0. Since 1. is positive on D\tel(zﬁ) C ]D);rR, by equation (3.10),
it is weakly superharmonic and we can write that

Pe(z) > —

m |zel Jonr: (z)

Pedo.

Taking only the part of the integral which lies in ]D> &> We get the exis-

tence of some constant D3 > 0 such that

¢E(ZE) > D3¢e(0)a

and this concludes the proof of (3.6) in this case since ¢t (x¢) = 1(0) =
o(1).

We now assume that v, vanishes on D;R. Since  — 0 as ¢ — 0, and
ze € I(p), by Claim 3, 1) vanishes on a piecewise smooth curve in ]D)IR
which connects two points of distance greater than R. By the corollary
of Theorem 4 of Section 1.3 on 2 = ]D);R, we get some constant Cr > 0

such that
/ ¢2<CR/ Ve da,

5R

which proves that {¢,} is bounded in W1?(D; ) by conformal invari-
ance of the L?-norm of the gradient in dimension 2. By trace Sobolev
properties, {1} is bounded in L?(I4z) and by elliptic regularity theory
for the Dirichlet-to-Neumann operator (see [25]', Chapter 7.11, page 37),
¥, is bounded in L*°(Dr) which gives that {¢!(z.)} is bounded.
4

The study of these three cases completes the proof of (3.9). ‘

We now prove (3.6). Let p > 0 and 0 < ¢ < n. Then, since ¢} is
harmonic in M (g), by elliptic regularity theory, there exists a constant
Ko(p) > 0 such that

[ ooy < K00) (162 arceyy + 16 lengocay) -

2

so that (3.6) holds with C(p) = Ko(p) (C1 (5) + Co (5))-
Thanks to Claim 3, we have the existence of some ri(p) > 0 such
that for any 0 < r < r1(p),

1 < 2
Ox (Bg({lf, r),g, [g({L‘, 7’), eueg) n Uk(Ma [g]) ‘

By isocapacity estimates,

[ oty < ComBalan)Bylan)
: e
(

Ve > 0,Vz € I(p),

g(,m) ox(B 1), 9, Lg(w,7), €%)
Cap2 DCL7 DC{)T1)
2 0

= (M, [g))
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47

ETES)

and we get (3.7).
Finally, let’s prove (3.8). We set for x € I such that z € M(p),
where T = exp,, ,, (z) as defined in Section 1.1 and for 0 <r <§

)= /Dﬂ )

We suppose in the following that § < 1, without loss of generality. We
just aim at proving that

2
¢ dz.

Dy(p)
1
In (7)
We know that @, satisfies the equations

Ad, =0 in DY,
0, P, = —oed,  on Iy,

Fe(r) <

and we deduce that

_ 2 - -
F.(r)= O‘E/ el dzx +/ ®..0,Pcdoe.
I(z) Dy (x)

Using (3.6) and (3.7), there exist some constants Ki(p) and Ka(p) in-
dependent of €,  and x with = € I(p), such that

.

2
F.(r)* < lfz(lp)z + Ka(p) (/mw( ) Vo, 96)
1(p) 2
= wy e /fmr(x) e
Ki1(p) /
< lnzi’;Q + K (p) F(r)
for any 0 < r < §. We can write that
1 !/
(Fe(r) In <r)> (s) = Hln \/7
F.(s)? ln( ) Ky (
wsKa(p) 7sK2(p) In (5)%
Y
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Setting
K
e )
we have for s € (0,9) \ Je
e (VY (oo ()
(3.11) (FE() 1 <T>> (s) > Sln(%)%

for K3(p) = Kil) [t e (0,9),

K2 (p)
se = inf{s € [r,§),s € J}.

7TK2 7TK2
\l \/ln 1/1n
and if s > r, then, integrating (3.11) from r to s, leads to

Fu(r) ln<1> < Fi(s) ln<1>+ TSEK?’(”)ds

sln (%)%

If sc = r, then

If sc < 9, we deduce from this inequality and the definition of s. that

F rEo(p +2K3<>
;) Yol
>m<m+\2/f%

where we used conformal invariance of the L?-norm of the gradient to
get F(9) < o.

Gathering all the cases, we get (3.8) and this ends the proof of the
claim. q.e.d.

and if s = 4,

In the following claim, we aim at passing to the limit in equation (i)
and the condition (ii) given by Proposition 1. The limiting functions
would then satisfy (3.15) and (3.16).

Claim 5. We assume that mo(p) = lime_ f](p) eQuédvg > 0 for any
p > 0 small enough. Then, the following assertions hold
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e For any p > 0, there exists B — 0 as € — 0 such that
(3.12) vz e I(p),|®)* (z) > 1 - B..

o For p > 0 and xz € I(p), we set ¥ (z) = ;Eg;‘. Then for any

p >0, {U.} is uniformly equicontinuous on C°(I(p),S").
e For any p > 0, up to the extraction of a subsequence of {®},
there exist functions ® € W12(M (p), R*™) N L>®(I(p), R"*1) and

U e W%vZ(I(p),S") NC°(I(p),S™) such that

(3.13) O, — & in WHH(M(p),R™™) as e — 0,
and
(3.14) T, — U in CO(I(p),S™) as e — 0,
with
9 P
(3.15) |P|° >ge 1 and ¥ = ] on I(p).

Moreover, for 0 <i<mn,

(3.16) { 06" = o1 (M, lg)widv o I(p),

mn a weak sense.

Proof. STEP 1 — Let 1 < ¢ < s. We prove that at the neighborhood
of the singular points defined in Claim 3,

2

S“P/ 1D (y)|? pe(, y)dog(y) = Oe™5).
z€l(p) J14(pi, {5)

Let x € I(p). Then, by estimate (1.3) of Section 1.2

2 2
_3lp U,
Age™ 200e ffg(pi,%) |(I>€’ € 6do’g

3 U
4me lang(pi,%) elie

2

e 8e / ]¢€(y)]2pe($;y)d‘79(y)
Ig(pir{5)

IN

2
_31p
Age™ 100e

< ; ;
vV 4re lnflg(pi,%)

since by (iii) of Proposition 1,

/ ’(I)e‘QeuedO—gzl.
oM

We assume by contradiction that

_ 312
€~ 400¢

inf e% <

Io(pi, 55) Ve



122 R. PETRIDES

Let y € I4(ps, f5) be such that ete) = inflg(pm%) e"e. Then, by (1.3) of
Section 1.2,

ue(y) / (y, z)dve(z) > ()
e* = € ,)aVe\ T ) = ———F——
on Aovame J1,(0i,8)

We deduce from this and the previous inequality that
2
/ dve < Ao\/4ﬂ6_%.
]9 (Ph%)

dve.

Let z € I4(pi, 45), and let us write thanks again to (1.3) of Section 1.2
that

2

P 1
T de 202
Iy @ete ™= g3 amp Ay

e 1600e ,

eue(z) <A
=0 4me € VAare

Then, |le% |]co(1g(pi7%)) — 0 as € = 0. This implies that

p

(3.17) 0 (By(pis 35):9: Ly pis 35). €' ) = +30 as € = 0.

It is clear that A Lo defined before Claim 3 cannot be true for p; and
e small enough. By (3.1) in Claim 3, B%7E holds true for p;. Then,
there is an eigenfunction f associated to o. = oy (M, g,0M,e") such
that f.(p;) = 0 and the nodal set which contains p; does not intersect

OBy (pi, 45) \ OM. We obtain a nodal domain D. C By(p;, f5) for fe
such that p; € D.NIM. By 3.17,

7 = 0u(Des g, DN M, ™) 2 04 (By(pis 35,0, Ly b 5), € ) = oo
as € = 0. Since o, < o;(M, [g]), we get a contradiction. This completes
the proof of Step 1.

STEP 2 — There exists 8. — 0 as ¢ — 0 such that

B18)  Veyell)  dyfny) < L0+ 000 - 00| < B

€

1
We set 7, = ||\ﬁeue||zoo(1(p))‘ We have 7. — 0 as € — 0. Indeed, for
r >0, and 2 € I(p) such that 42 = \/ee®(®),

A
VAT J1y(x,r)
2 Tyfa, 1) + ol1)
= v(Il,(z,r 0
Var 7
AoDi(p)
< ———— +o(1).
T W4rmln (%) L
By estimate (1.3), since ve —, v as € — 0 and by (3.7) of Claim 4.
Letting € — 0 and then r — 0, we get 7. — 0 as € — 0. We also have

dve + o(1)
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1
that % — +00 as € — 0, since 7, > m02(p) 2t (indeed, mo(p) + o(1) =

|]e“€HL1(I(p)) < [le" | oo (1(p)))- Let now ze,ye € I(p) with dy(ze,ye) <
G

ot Up to the extraction of a subsequence, x. € ~; for some [ fixed and

we set

b (z) = (3! + L),

e’fl,g(ﬁ?) — ﬁ ue(je"!‘}yﬁx)

Ye
which satisfy
- .
(3.19) Agfbe =0 . in Dy
0P = —0oce" P on I3c,

Let a be the mean value of ®, in ID);CO. Then
ég—QGH < D()H‘i>6—oz6
L2 (I2¢4(0))

Hl(IQCQ)

IN

D Ha@e

+ D Hti)e — Qe
p)

L2(Iscy )

Do || @l Cove + D' | Ve

12D, (0))

IN

12(Df, (0))

D'\/Da(p)

.
4

tn (5c7)

The first inequality comes from Sobolev embeddings, the second comes
from the regularity theory for the Dirichlet-to-Neumann operator (see
[25], Chapter 7.11, page 37) looking at (3.19). The third inequality
comes from the classical Poincaré inequality on ]D);CO, and, finally, we
use (3.6) and (3.8) in Claim 4. Setting

< Do Cy(p)Cove +

Be = 2Day,(M, [g])Ca(p)Corve + 2D'y/Dalp)

we have that 8. — 0 as € — 0 and that
|De(we) — Pe(ye)| < Be.
Up to increasing S, so that % < % we proved Step 2.
STEP 3 — For any p > 0, there exists S, — 0 as € — 0 such that
(3.20) Va € 1(p), |2 (@) - Kcl|@)(2)] < Be.
and

(3'21) Vo € I(p) N supp(l/e), ‘Kqu)eH(:E) - 1| < Be-
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Note that (3.20) implies (3.12) by Proposition 1. Let’s prove (3.20).
For z € I(p),

o —Kfel|w) < [ [ede -
ACS -

pe(,y)doy(y)

+2C% / pe(x,y)do
30 oy P98

+Z / 9o (0)pee,y)dory (0).

p Pulo

Notice that we can assume here that ¥ — 0 up to increasing (5. and

that we used (3.6). We can estimate the first RHS term thanks to Step
2 and (3.6), the second RHS term thanks to estimates (1.3) and the
third RHS term thanks to Step 1 and we get

2

@7~ K [0 (2) < 205(0)8, + O ) 4 O,

Up to increase f3¢, we get (3.20) and then (3.12).
Thanks to Point (iii) in Proposition (1), we deduce that

(3.22) V€ supp(ve) N 1(p), ||@c(x)] = 1] < B,

and for x € I(p), we have

@] = Kc[[@c[]] (2) < / M@ () = 19] ()] pe(2, y)doy(y)

Ig(:r,ﬁ—

+2C5 / pe(z,y)do
(10> OM\I, (2, L5) (7)o

1

2

+; </fg(pi7fo) 2 (y)pe(x’y)d%(y)) ;

and the same arguments, together with (3.22) lead to (3.21), up to
increase again f..

STEP 4 — Let ¥, = g; on I(p). Then, for p > 0, there exists C3(p)
such that

(o) = (o) i (200 ) < ato

for all x,y € I(p), where §(OM) is the diameter of M. In particular,
U, is uniformly equicontinuous on I(p).
We first prove that there exists D3(p) > 0 such that

1 2 Ds(p)
3.23 sup  sup / P..v) dy, <
(3.23) wvel(p) vewLrgn Volg(Bg(z,7)) Bg(:c,r)( )\ dvg /tn (1)
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for all 7 small enough. Indeed, for € I(p) and v € ¥ (2)+ NS?, ®..v
vanishes at x. By Claim 3, x does not satisfy B,... Thus, the nodal set
which contains x intersects 0Bgy(x, 7). By the corollary of Theorem 4 on
a disk and a dilatation on this disk, we get some constant Dy(p) such
that

1 / 2 2
_ D..v)" dvg < Dy(p / V (®..0)|% dv
VOlg(Bg(J:, T)) Bg(z,r) ( ) I ( ) By(z,2r) | ( )|g 7

for all r small enough. With (3.8) in Claim 4, we deduce that

1 2 o, < 22(P)Da(p)
Voly(By(z,1)) /Bg(m,r) (Sev)”dvg < In (L)

for all 7 small enough. Thus, (3.23) is proved.

Assume now by contradiction that the conclusion of Step 4 is false:
there exist €, — 0 as m — +00, z,, and y,, some points in I(p) such
that

1
(3.24) Te,, (2m) = e, (Ym) | 4 [ 1In <T> ,— +00 as m — +00
m

where 1y, = dg(Zm,ym) — 0 as m — 4o0. Since for a fixed m, ¥, is
not constant at the neighborhood of y,,, one can assume that for any
m, Ve, (Ym) # —Ye,, (zm) without changing (3.24). Thanks to (3.12),
up to the extraction of a subsequence, there exists a fixed vector v € S™
of the canonical basis of R"*! such that

1

1
T &, ) doy > —— +o(1).
LQ(Ig(xm>Tm)) /]'g(.rm,rm) ( ) g n+1 ( )

Since, by Sobolev trace inequalities, there exists K > 0 independent of
m such that

1/ 9 K )
- (@, v)"doy < / (®,,.v)" dv
L Ig(zm,rm) ! VOlg(Bg(.%', T)) By(z,r) g

+K IV (®e,,.v) |2 dvg,

Bg(:vm,rm)

where L = Ly(Ig(xm,Tm)). We get thanks to (3.8) of Claim 4 that

I S WP do L
Volg(Bgy(x,7)) /Bg(x,r) (Gen 0V vy 2 (n+DE | (L) o
I +o(1).

K(n+1)
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Thanks to the assumption (3.24), we now prove that there exist X,,, €
U, (zm)" and Yy, € ¥, (y,,)" such that

1
(3.25) v =Xm+ Yy and |Xp)? + [Vi|* =0 < In ) :
m
We denote a,, = ¥, (r,) € S¥1 b, = U (ym) € S¥7! and II,,
the vector space generated by a,, and b,,. Notice that II,, is a plane
since by, & {am, —a,,} by assumption. Let ¢, € II,, N S¥~! such that
{am, cm} is an orthonormal basis of II,,,. We get 6,,, € R such that

by = €08 0,0, + Sin O, ¢,

and sin#,, # 0. We let v = py, + ¢ with p,, € 1l,;, and ¢, € H#L.
Notice that |py,| <1 and |gm| < 1. Let a;, € R be such that

Pm = [Pl (€08 atman, + sin amen).

We then set
Xm - tmcm + gm € a#“
Yin = $m(—sinbp,ap, + cosOpcn) € bi,
with
COS iy,
Sm = ‘pm’ : )
sin 6,,

. COS Qyy, COS O
tm = |pm| <Sln04m + H) ,

so that v = X,,, + Y;,. Then,
|Xm|2 + |Ym|2 = |(]m|2 + t?n + Sgn <1+ fo,,(am),
where for o and 0 € R,

sin 6,

COS2 «

fola) = ,2+<sina+

sin“ @

cos o cos 0\ 2
sin 6

1 + cos2 0 cos 2 + cos 0 sin 0 sin 2a

sin? 6

We easily prove that fy(a) < fo(4) = —2—. Then,

1 1 1
Xp? + Y’ <O0(—— ) =0 —— ) = In— ).
ot s <0 (=g, ) =0 (o p) =2 ()

This ends the proof of (3.25).
We now write thanks to (3.23) that

1 1 )
S 4o(1) < / o, )2 dv
ok S Vel B Joyn e

2 / 9
< B, X)) dv
VOZQ(BQ(:E7 T)) By (z,r) ( 7
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2 / 9
R o, .Y, dv
VOlg(Bg(l', T)) By (Yym,2Tm) ( g

2D3(p) | Xom | (hl <r1n>>;
+8C3 Ds(p) [Yon? (ln (2:”1»_

= o(1).

This clearly gives a contradiction and proves Step 4.
It is clear now that there exist some functions ® and ¥ such that up
to the extraction of a subsequence, (3.13), (3.14) and (3.15) hold. It

remains to prove Step 5:
STEP 5 — We have that
pLetdoy —, 'dv as e — 0 in I(p).
Let ¢ € Co(I(p)). Then

/ CoicPdoy — / CWidy = / (K] — K1) due
4 / ¢ (K] — 0 K [|0l]]) doe
oM
[ iR ~ i) dve
oM

IN

=

(3.26) + / ¢ (Yidve —p'dv) .
oM
Let us estimate these four terms. We have for x € OM that

K] — (Ko (2) = / (C(W) - () 6 (W)pe, 9oy ()
oM
<af)/ . )60 = Sl oy

e |Z / 16800 e ) ),

pj710

since supp(¢) C I(p) and thanks to (3.6) of Claim 4. By Step 1 and
since supp(¢) C I(p), we deduce that this function uniformly converges
to 0 in OM as € — 0. Thus, the first RHS term in (3.26) converges to 0
as € = 0. For z € I(p),

|Ke[¢z:] - %KeH‘I’JH < /BM ‘éf?i(y) - 1/}2(1") |¢e| (y){pe(xay)dgg(y)
/[ @ [¢0) )] e ) v

P
10

IN
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023" [ ) pe oy )

j=1 Ig(Pjal%)

< () [ i) - v pde. oy )
107 J1(4)
2
+O(eF),
thanks to (3.6) of Claim 4 and Step 1. Thanks to the uniform equicon-
tinuity of {¥.} on I({5), it uniformly converges to zero in 9M as € — 0.

Thus, the second RHS term of (3.26) converges to 0 as ¢ — 0. Thanks
to (3.21), we can write since | V.| = 1 that

/ ¢ (szEH(I)eH - 1/12) dve| < Be ”CHoo7
oM

so that the third RHS term in (3.26) converges to 0 as e — 0. At last,
we use the convergences ¥, — W in C%(I(p)) and v, —, v on I(p) to
obtain that the fourth RHS term in (3.26) also converges to 0 as € — 0.
This clearly ends the proof of Step 5.

Finally, passing to the weak limit in I(p) for p > 0, in the equation
satisfied by ¢! permits to end the proof of the claim thanks to these
steps. q.e.d.

Thanks to Claim 5, with the assumption mg(p) = lim._o f () eedvg >

0, a diagonal extraction gives some functions ® : M \ {p1, -+ ,ps} —
R and ¥ : OM \ {p1,---,ps} — S"™ such that for all p > 0 the
conclusions (3.13), (3.14), (3.15) and (3.16) hold true for ® and V.

3.2. Energy estimates. Now, we give some energy estimates which
will be useful later in the proof. We set a function w on M satisfying
the following equation

Ayw=0 1in M,
(3.27) { w=|®| on oM,

in a weak sense. Since |®| € W%Q(@M ), such a solution exists and
satisfies w € W12(M) (see [11], Theorem 8.3). Let’s prove this energy
inequality:

Claim 6.

(3.28)
Vol

o[, % [Vl
dvg > opm +/ 3 dvga
w M w

lim lim Vo2 dv, > /
p—0e—0 M(P) 9 M

where oy, = oy, (M, [g]), m = lim,_,o mo(p) = lim,—o f[(p) dv.

Proof. Let p > 0. By Claim 1, there exists C' > 0 independent of
p and a nonnegative function n € C*°(M) such that supp(n) C M(p),
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n=1on M(\/p),0<n<1,and

/M ]V?ﬂ? dvg < 111?/1]).

By the weak maximum principle on (3.27), (see [11], Theorem 8.1),

infw > inf |®| > 1,
M oM

and

lim Vo, |? dv 2/ Vo dv
=0 M(p)| s M(p)| o s

We have that

% nd; = [ nd
ZZ;/M <v ¥ ,V¢i>gdvg - Z/M L Dgidy,

thanks to (3.16) and that

Z/ 77¢Z V*, VQZ)Z d’l)g = —/ vn7 Ay ud’l)g
i=0 /M w g M w/, 2
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|2/”
—/MU ’VWE dvg

w3
1 Agw
~3 | 19107 au,

w
1

—/ noywdo
2 Jom
|2/°

P
— /M <v77, Vw>g Taﬂdvg

so that

v

lim V[ dvg
p)

V|2 dv
=0 Jar( /M(m’ s
||

)]
o (M, [g)) / ndv + / o [Vl du
oM M W

B /M‘fjwn, Vi), dv,
=0
2
- [ on v, S,
M

g 2w2

Y

1
+§ /M (Vn, Vw), dvg

ox(M, [g]) / nd

oM
D|? C
o e, O
M In (l)
p
where C’ is a constant independent of p. Indeed, ¢;,w € W12(M) and
we have for 0 <7 < n that

v

Ag(w—¢i) =0and Ay (w+¢;) =0

in a weak sense. By the weak maximum principle (see [11], Theorem
8.1),

inf (w — ¢s) 2 inf (w — ¢3) 2 0,
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and
s ) > .n w —'— O;) >
inf (w+¢1) = 18 f( Z) - 07

since |¢;| < |®| < w on M. Then,
|9l |2/”

sup <land sup— <n+1
M W M W
We, finally, get the claim, passing to the limit as p — 0. q.e.d.

4. Scales of concentration for the maximizing sequence

4.1. Concentration, capacity and rescalings. In this section, we
aim at describing all the concentration scales of the sequence {e"<doy}.
We denote by Z(M, {e"<doy}) the concentration points of a sequence of
measures {e“<doy} on the boundary M of a surface (M, g) that is

e—0

Z(M,{e"doy}) = {z € M;lim limsup/ e'“dog > 0}.
r—0 Ig(z,r)

Taking the maximizing sequence {e"<do,} for o;(M,[g]) given by the
previous subsection, which converges to v in M;(9M), we clearly have
that

Z(M,{e"doy}) = {z € OM;v({z}) > 0},

and that
(4.1) Z(M, {e"dog}) C () Xn(M,{e"0y}) = {p1,-- ,ps},
>0
where p1,--- ,ps are defined in Claim 3. This is a consequence of Claim

1 in Section 1.3: indeed, for x € Z(M,{e"do,}) and for r > 0 small
enough, let 7, ;.2 be given by Claim 1. Then

2
St Vg2 ‘g dvg

faM (779790,7",?2)2 eledogy
C

In (%) fBg(:D,T'Q) euﬁdo-g7

J*(Bg(:v,r),g, Ig($7r)? eug) S

IN

so that

lim lim sup 0. (By(x,7), g, I4(z,7),e") = 0.

T=0 >0
Then there is a subsequence {¢;} for which x satisfies A, for all r
small enough. Thanks to Claim 3, this gives that x € {p1,--- ,ps}.

We now define some functions which will rescale the problem at the

neighborhood of the concentration points. For a € R x {0} and o > 0,
we let

Hyo(y) =ay+aforye R2.
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For p = (1,0) € S, we define A : D\ {p} — R? the conformal diffeo-
morphism such that

z+1

1—-2

FoloF l(z2)=i
with its inverse )
z—1
241’

where F : R? — C is the canonical map F(z,y) = x-+iy. In this section,
we prove the following;:

FoldloF(2)=

Proposition 2. There exist some points af,--- ,ayy € R x {0} and
some scales
0<ayy<ay_;<---<af,
such that for 1 <i < N,
(4.2) a; >0 ase—0,

and letting

F; = {j > i;W 1s bounded },
we have for j # i that Z
(4.3) jEFi:>Z§—>Oase—>O,
and that l
(4.4) j¢Fi:>M—>+ooase—>0.

i
There exist some disjoint sets I§,I{,--- 15 C OM, some sets I'{,---,
'S, CR x {0} and S§,---, S5 C St given by

Nli — ’Vli
1= Al (1) and = (oo 02) (1),
some associated densities defined by
~ € ~l; ~e ~l;
etids = (Hag,a;)* (e“e ds) and e"idf = (Hag,ag o )\)* (e“e ds) ,

some masses m; > 0 satisfying

(4.5) Levedo, (I7) = L ac , (I5) = L ac 1, (S5) = mi as e = 0
for 1 <i< N and some l; € {1,--- ,L}, and mg > 0 satisfying
(4.6) Leuedo, (15) — mo as € — 0,

such that

(4.7) Z(S' {1see™ido}) = 0

for1 <i <N,

(4.8) Z(M,{1ce"dogy}) =0,
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and
N
(4.9) > mi=1.
i=0
4.2. Proof of Proposition 2. Let us denote by z1,--- , 2, the atoms
of v with Ny < s <k (s is given by 4.1 or Claim 3) so that
No
et“dog =" 1y + Z mids,,
i=1

where vy € M(OM) has no atoms. Let mg = [}, dvg > 0. All the m;’s
are positive for 1 < i < Ny, and

No
Z m; = 1.
=0

Let 1 < i < Ny. We choose [; € {1,---,L} such that z; € 7,. Up
to the extraction of a subsequence, one can build a sequence {r{} such
that r§ > 0 and r{ — 0 as € — 0 with

/ e'“dog — m; as € — 0.
Ig(ziv 25)

We associate to sequences af € R x {0} and af > 0 that we shall choose
later the sets

1 = gl (L)) € R x o)

S;=1"1(r§) c s,
Mz'e = BQ(Z§7T§)7

I = Iy(23,75),

No
Mg =M\ Mg,
=1

No
Is=om\ | It,
=1

and the densities

1€ ~li Ji o] € €

e = age(ue oo et af I's - R,
elidf = \*(e%ds) : S¢ — R.

For the notations, we refer to Section 1.1.

Note that
No

M = Msu | Mg,
=1
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with Leue o, (If) = m; as e = 0 for 0 < i < Ny. We assign to the subset
MY a test function 7§ € C2°(M;) given by Claim 1 in Section 1.3

n =" for 1 <14 < Ny,

g»Ziy(Tf)%,Tf
No
Sp— —
=12 oo
1=
Note that these test functions with pairwise disjoint supports and small
Rayleigh quotient may also be used to prove that Ng < k if mg = 0 or
No <k—1if mg > 0.

For 1 < ¢ < Ny, let’s now adjust the parameters a; and o in order
to detect other scales of concentration of the mass at the neighborhood
of z;. By Hersch theorem (see [16], lemma 1.1 in the case of the circle
S1) we can choose a$ € R x {0} and af > 0 such that

(4.10) / ze"i1gedd = 0.
St

Note that a; — z; and that of — 0 as € — 0. This normalization of the
center of mass gives a dichotomy in the description of the concentration
points of {eﬂilsfde}: if z € Z(S, {eﬂglgied@}), then, some mass is also
concentrated in the opposite hemisphere {x € S';(x,z) < 0} and we
can increase the number of test functions with small Rayleigh quotient
on the manifold among 7, - -+ , 7y, . From this remark, we will build by
induction a finite bubble tree which describes the concentrations at all
the scales they appear.
A tree T is a set of finite sequences

Y= (ila"' aZ|'y|) € U NJ?
JEN
where || is the length of « which satisfies
e (0) € T is the root of the tree.
o if y € Uy and i € N, then (v,i) € T = v € T and (v,14) is
called a son of ~.
o If (,0) € T then Vi € N, (v,0,7) ¢ T. (7,0) is called a leaf of T
We denote by Lt the set of leaves of T.
o If y €T, then {i € N;(v,i) € T} ={0,--- ,N,} with N, € N and
N, is the number of sons of ~.
Let T be a tree. We let |T'| = sup{|y|;y € T’} be the depth of the tree.
We let also T; = {y € T;|vy| < j} be the truncated tree of depth j € N.
We say that 4 € T is a descendant of v € T' if there exists 7/ € UjeN I\
such that 4 = (v,7/).
In the following, we define by induction a tree T" with
e some sets IS C OM for v € T and ', C R x {0}, S5 C St for
yeT \ Lr,
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e some parameters [, € {1,---, L}, r5 >0, a5, € Rx {0} and af, > 0
fory €T\ Lp,

e some points z, € St if v € T\ Ly and |y| > 2 and z, € OM if
v €T\ Ly and 4] = 1,

e some measures vy € M(M) of mass mg = [, dvg > 0, v, € M(S')
of mass m, = fSl dv, > 0if v € Ly and || > 2 and some masses
m~ > 0 for v € T'\ L,

e some functions a5 : I';, = R and 4f : S5 = R,

e some test functions 75 : M — R with n5 € C2°(MS) for vy € T,

depending on €. We describe the process of construction, by induction
of this tree now and will prove in Claim 7 that it is a finite tree.

If v € T and |y| = 1, these objects are defined at the beginning of
Section 4.2.

Assume now that these objects are defined for all v of length |y| < j.
Let v € T\ Ly with |y| < j. Then, up to the extraction of a subsequence,

Ny

(4.11) Lse€™dd =" vy gy + Y M50
i=1

7,%)”?

where for 1 < i < Ny, my ;) > 0, mey ) = [ dvy0) and v, g) is
without atom. As we will see in the proof of Claim 7 and by the same
arguments as in the previous subsection, Claim 1 provides some test
functions which prove that N, < k. Notice that

N’V
Z m(’Yv’L) = m'Y‘
=0

Let 1 <14 < N,. We define l(%i) = |, and up to the extraction of a
subsequence, we can build {T’E%i)} such that () >0 and r(, , — 0 as
e — 0 with

/ e dh — M(y,5) as € = 0.
Te(2(v,1)7(4,1)) NS5

We define

neo .= oA toH ! oexp.t
n(’le) 77672:(7’7;) 7(T('y,i) )% T (,4) an 0y pgl»y 7Ll )

and
Ny
.oy =1— E n 1 v oX o H ! coexprt
(:0) — 62, (10) Tr,) 2 Ay Gl
1=

naturally extended by a constant on M so that ﬁa 5 € C>®(M). For
0 <1 < N, the function

€

775%2') = n;ﬁ(%i)
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satisfies (4.13) in the proof of Claim 7 and that

€

supp(n(, ;) N supp(n(,, ;) = 0 for i # j and supp(n(, ;) C supp(1y)-

The use of these test functions proves that IV, < k.
Let 1 <14 < N,. We define the sets

() = Ha_fi,wa?m <H“%ua% (FfY nA™ (Ié(z(V’i)’ TEW)>>>> ’
Sty = AT <DEW')> ’

€ _ € __ The
I('Yvi) - engl,y,LL‘l,y (Ha?y,i)’ag'y,i) (F('le)>> - F('Yvi)7

Ny
IE0 = 5\ U IG 0
=1

~€ Zﬁa?"/v")) ~€ (Ziu"e‘/)
u . B a— u €
. <w>< I Lo\

and the densities

€

)
el ds = A* (eaE%i)cw) ,

and by Hersch’s normalization, we choose the parameters af,y 0 and af

with

(4.12) / zeti Ly df =0,
st V%)

and
Ue _ us . _ us_ . _
/€ e'“doy = /e e (rdds = /6 e dh = my ;.

(7,2) (7,1) (7,2)

Claim 7. T is a finite tree.

v5%)

Proof. STEP 1 — We prove that if v € T'\ Ly, then
either Ny =0 or {0 <i < Ny; M) > 0} > 2.
Since my ;) > 0 for 1 <1i < N,, we get Step 1 if N, > 2 or N, = 0.
We now assume that N, = 1. By (4.11) and (4.12),

/S (2, 2,1))dv(5.0) +Mq0) = 0.

Since my,1) > 0, we get that v, ) # 0 and m(, 5 > 0. This proves
Step 1.

STEP 2 — We prove that if v € T'\ Ly, then
fM ‘vngv,z)

faM <77€%i)) ’ etedo,

2
dvg
g

(4.13) —0ase—0,
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and that if v,5 € T with |y| < |7|, then
e If 7 is not a descendant of v, then supp(ns) N supp(n;) = 0.
e If 4 is a descendant of v, then supp(n%) C supp(nfy).

We prove (4.13) by induction on |y|. This is clearly true for |y| = 1.
Let j > 1 and assume that (4.13)holds for all |y| < j. We have

Ju ‘anw-)

Jonr (nfmi)) ’ euedo, - Jour (n%ﬁfw.o ? et<do,

€2 _e |?
2 </M ’Vn7|g dvg + /M ‘Vn(w.) , dvg>
= 2 <o </ (77;)26“Edag> + 0(1)> ,
oM

by the induction assumption, and for ¢ > 1,

2 i
n; ) e“do / ( € ) e ) e is 0
/E)M< YH(7,9) g st 77§7Z(mi)v(’"(w,i))§’T<v»i) k

,':LE
v € €
/gl ‘ 1SWm5(Z(W)”"<w>)d9

= m(

2 2
g dvg Ju ‘anyﬁfy,i) g dvg

with

Vning i
/M‘ 7 (759)

IN

2
dvg
g

v

Ok
and for ¢ = 0, fixing p > 0,

2
2 Al
€ —€ Ue a5
1,1 0 ) e ClO'g Z / 1 - n € I € 5 e
/8M ( 711(+,0) s ZZ; 20,0 (1) T () 2
> / N ™ dh
SA\U,; 24 Ie (pip)

Ny
- dvy 0y + My )0z, .
/Sl\Ui'V;l I¢(pi,p) (.0) z_zl (7,9) 92(+,3)

+o(1)

= dl/ 0 —1—0(1)
/Slvg(pi,p) 00

as € — 0. Gathering the previous inequalities, together with

/ (17%)2 e'doy < / eledoy =1,
oM oM

we get (4.13).

We now prove the second part of step 2, also by induction. Assume
that, for some j > 1 fixed, for all v,5 € T with |y| < |§| < j we have
that
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e If 7 is not a descendant of v, then supp(ns) N supp(n;) = 0.
e If 4 is a descendant of v, then supp(nS) C supp(ny5).

Let us prove now that this is still true for any v,5 € T with |y| < |7] <
j+ 1. If |3] < j, there is of course nothing to prove. Assume that
Al =j+1

If |y| = 7 + 1, then,

supp(n5,) N supp(ng) C supp(i5,) N supp(75),

which is empty if and only if v # 7.
If |v] < j, we denote ¥ = (¥,4) with 0 <4 < N5. We can apply the
induction hypothesis to |y| < |¥] < j. Then,

o if supp(ns) N supp(n,) # 0, we get supp(nz) N supp(ny) # O since
supp(nz) C supp(nz). By the induction assumption, ¥ is a descen-
dant of v and 7 is a descendant of ~.

e If 4 is a descendant of v, then, 4 is a descendant of v and by the
induction assumption, supp(ns) C supp(nsy) C supp(ny).

The proof of Step 2 is complete.

STEP 3 — We prove the following assertion H; by induction on j.

H;: If T; # Tj41, then, Tj 1 = T or there exist j + 1 test functions
with pairwise disjoint support in the set {nfy, v €T}

Notice that by (4.13) in Step 2, the assumption Tjy1 # T would
give a contradiction. Indeed, it suffices to test the k& + 1 functions
given by the assumption Hyg,; in the variational characterization of
oc = ox(M,g,0M,e"), (1.1). Therefore, the increasing sequence of
trees {T}} is stationary, and Claim 7 will follow.

Note that H; is true by the existence of {nf}.

Let j > 2 and we assume that H;_; is true and that T; # Tj41.
Then, T;_1 # T and H;_; gives j test functions with pairwise disjoint
support in the set {ng; v € Tj} denoted by N5y '77%-- We assume that
Tj+1 # T. Then, there is v € T; such that NV, > 1. By Step 1, there
are two indices i1 # iz such that m, ;) > 0 and m, ;,) > 0.

If v is not a descendant of one of 71, - ,7;, then we take the set of
test functions {73, ,nfyj,nf%il)}.

If v is a descendant of one of ~q,--- ,7;, then, by Step 2, since the
functions /SRR 777% have pairwise disjoint support, there is a unique

1 <4 < j such that « is a descendant of 7; and we take the set of test
functions with pairwise disjoint support:

{77%’ T ’n;i—l’n;i-‘rl’ o ”75/]-7775%1‘1)’77?%1‘2)}'

Thus, H; holds. This ends the proof of Step 3 and as already said
the proof of the claim. q.e.d.
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Thanks to this construction, the parameters (CL;, af/) define separated
bubble or bubbles over bubbles. This reads as a formula which originates
from [3] and [24] in the context of bubble tree constructions:

Claim 8. Ify € T\ L, a5, — 0 as € = 0 and if y1,72 € T'\ L1 with
Y1 # Y2, then

€

dg(as, ,al,) af !

g >

%4_%_’_%_)4_00 as € — 0.
a’Y1+a’72 Oé,yQ a’Yl

Proof. We recall that there exists Cy > 0 such that for all 0 < r < 4,
By(x, Cglr) C exPy, 4, (Dj‘(il)) C By(x,Cor)
for all x € v with 1 <1 < L. On the disks, there also exists C| > 0 and
some 671 > 0 such that for all 0 < r < 41,
Be (2, Cl_lr) C /\_1(]1)):7(27)) C Be(zy, C17)
for all v € T'\ Ly such that |y| > 2 and 2z, # p, where 2, = A(z,); and

Be(p, C’l_lr) c At <Ri \DT) C Be(p, Cyr).

Now, given 71,72 € T \ Ly, we let v € T such that v1 = (v,%1),
v2 = (7,7%2) and || is maximal. We consider 5 cases in order to prove
the claim.

CASE 1 — v = (0). Then vy = (¢,71) and v2 = (j,v1) with ¢ # j.
Since
I’;l C Ig(ZZ',T;) C engl,xl (ICOTf (22)) )
we get with (4.10) that
|la; — Zi| < Cory,
and
o < Cors + |a§ — Zi],

so that ai — Z; as € =+ 0 and o — 0 as € — 0 and the same is true for

j. Then, since z; # z;,

dg(as,as)  d,(z,z; 1
gE i i) _ g(zwjj) +50( ) — 400 as € — 0.

Cask 2 — v # (0), 71 = (0), 2 = (4,F2) with 2(, ;) # p.
Then, we have

IE/Q - I(G’Yv]) C enghxl (IClT?y,j)afY (a’eyé(’YJ) + af/)> ’
so that by (4.12), we have that

€ 2z € € € €
Q) Z(y,5) T Gy — a(w‘)’ =< Oy )@y
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and
W) < O 05 + ‘0@%4) +ag —ag |

€

— 400 as € — 0.

and
(w 7)

Case 3 — vy # (0), 71 = (0), 72 = (J,92) with 2, ;) = p.
‘ (7,9) a""
. (7])+
(3 .
that % — 400 as € — 0. We assume that af
Yy

We assume that is bounded and we prove by contradiction

+.) = 0(a5). Then, it

is clear that GT_%‘ is bounded and we have by (4.12) that
Y

€ afy €
« —la
Y, y
(.0) = Clr( 9 (
so that
af . 1 ‘a7 —af ‘
(7;]) > — — €(W) — +o0o0 as € — 0,
o O o5

which contradicts the assumption afv 7)
as € — 0.

CASE 4 — ¥ 75 (m)a ;5/1 = (ivﬁ/l), ;5/2 = (]7/?2) with i 75 j’ Z(7,i) ?ép and
Z(y,§) F P
We have that

(.9)
= O(a5). Thus, -2 — 400
vy

i) %,j)’ = 05 (|20,0) = 2| +0(1)), =% =

o(1) and (”) = o(1) by Case 2 so that
f

)f)

9

— 400 as € — 0.

CAsE 5 - Y 7é ((2))7 ;5/1 - (Z 71) 7 (]7’?2) with Z(v,4) 7é p and
A(v.4) = P-
As in Case 3, we assume that W is bounded and we will
X)) T*(v.4)

prove by contradiction that % — 400 as € — 0. Let’s assume that
v,1

afm) O(af af, )). Then,
b~ ot~ al | [9t0 —95]
s+ a(w) - ay + afw,j) asy + O‘E%j)
o ltn =l |, Jotn =]

afw’) + OZE’YJ) a5+ O(a%)
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W) ~ Uoi)
< 0 +00),
Yoy T ¥ )
since af, , = o(a5) by Case 2, and ag,y — 05| = O(a5). Then,

af .—ae‘
’(%J) 2l

P is bounded and by Case 3, % — +o0 as € — 0 so that
Y ( v

753)

ae ¥ . . . . ae 1

—04) 5 400 as € — 0 which gives a contradiction. Thus, -2 — +00
(7:1) (7:1)

as € — 0.

Gathering all the cases, the proof is complete. q.e.d.

Now, we are in position to prove Proposition 2. We denote by LT C
Lt the set of leaves v € Lt such that m, > 0.

To simplify, we now denote the elements of L™ by {1,---, N} and
all the indices v € LT in I, T% S5, af, af, e, e, v, and m. are
replaced by the corresponding index i € {1,---, N}.

Up to the extraction of a subsequence and up to reordering the as’s,
we get (4.2), (4.3) and (4.4) thanks to Claim 8. By construction, we

obtain the remaining facts of the proposition.

5. Regularity estimates at the concentration scales

In this section, we aim at proving some energy estimates in order
to prove later Proposition 3 page 168. We fix i € {1,---, N} given
by Proposition 2 and up to the end of the section drop the index i of
the parameters [;, a$, of the functions 45, we defined. As described in
Section 1.1, we let

D (2) = (I)le ° Hq, a. (2) = Cf)le(ozez + ace),

and
ve=H} . (7e).

Ge,Oe

Then, for 0 < ¢ < n and for p > 0 fixed, we get the equations

Agdi =0 in DY,

(5.1) g . E
O, = —oce' gl on 1.

P

As we will see, the properties gathered in Proposition 1 and Claim
3 are in some sense invariant by dilatation. Indeed, this is clear in
equation (5.1). We also have that if Q@ Cw; and ' = QN IoM,

U*(Q7gv F) eue) = G*(Qv fa feae)a

where we set ) = Ha_iae <§~21> and I = Ha:’lae (fl> The heat equation
is also invariant by dilatation, up to some errors on the surface M we
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precised in Section 1.2 (see (1.2) and (1.4)), thanks to the following
identity in the Euclidean case

1 eyl a  _elEf
R Ll v ()

4me 4me

Therefore, we can derive regularity estimates of the eigenfunctions at
all the concentration scales.

However, we have to distinguish two cases, depending on the speed
of concentration . when compared to e. In Section 5.1, we treat the
case when %2 — 400 as € — 0, and in Section 5.2, we will treat the case
when a? = O(e).

e =

2
5.1. Regularity estimates when % — +o0o. We assume in this

subsection that %? — 400 as € — 0. We set 0, = m, where
ac — a € Rx {0} ase — 0, and igp € {1,---, Np} such that z;, = a.
Then

(5.2) 6. — 0 as e — 0.

We will adapt the technics of Section 3.1 in the surface (D?, &, S, ef).
First, notice that

(5.3) eleds — die —, 0 in M(R x {0}) as € — 0.
Indeed, for ¢ € CY(Ig,) for some Ry > 0, and R > Ry, we can write that

+ /I ) /I (€ )l )z

+/IR0 (/IR pelz, w)dz — 1) C(2)dbe(x).

By estimates (1.7) on the heat kernel, we have that

/BM\IV (/Iv pﬁ(xay) |C(Q)| do_g(:U)) dVe(-T)

<ll¢lle sup / ' pela, y)doy(y)

z€dM\Ip Y IRy

_ (R—Rg)?
e 80¢
<O|———] —-0ase—0.

Ve

By estimates (1.5) on the heat kernel, we have that

/IR ( In €(2) — C(x)’ﬁe(z,x)dz> die(z)
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_Jz—z|?

< sup/ I¢(x) — C(z)\ i ————dz—0ase—0,
Rx {0} e

zelR

since ¢ is uniformly continuous on R x {0}. Finally, we have by the heat
kernel estimate (1.8) that

lim lim sup
R—+00e—0 IEIRO

/ De(z,x)dz — 1' =0,
Ig

so that we get (5.3). We denote by © the weak star limit of both {e%dx}
and {Z¢} in M(R x {0}).

Let’s tackle a generalization of Claim 3 at all the scales which appear
between a, and dy. For a sequence {7}, we let

. . ]
(@) = 7&eué(’yex+a€) and E% (.CE) =P, (7637 + ae)>
and for a sequence of domains Q, C w;, with I', = 9Q, N OM +# (.
Q) = H ! (le) and T, = H. (fi) ,

Qe Ve Qe Ve
so that
Ox (967 9, FE? eus) = Ox (976%757@57 euie’ye) )
and
A®. =0 in Q.
0D, = —ge™ D, onT."

We also let A, be the half-annulus ID)+ \Df and J, =T 1 \ I,

We recall that X, (,¢,T, {ewe}) is the set of pomts zof Q C R
(with ' = QN R x {0}) such that there exists ¢ > 0 which satisfies Pn67
that is A, or B, ., where
A,z €T and 0,(Dy(), &, I (x), €% ) < 2eU0Ll))

B, : There exists f € Ey(M,g,0M,e") such that f“(x) = 0 and the
Nodal set of f’* which contains z does not intersect O ().

Note that for v, = a, e’ = ¢l and that the set of concentration
points satisfies

(5.4) Z(Q, {elds}) € X, (Q,&,T, {e})

for all r > 0. We write w{ < w§ if two sequences {w{} and {w5} satisfy
%% —0ase—0.

Claim 9. Up to the extraction of a subsequence, there exist some
sequences {wi} with 0 <i <t+1 and 0 <t < k such that

af = wh K w] K wsh K - L wp K wpyq = do,
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there exist Ry > 0 and some points p;; with 0 <1 <t and 1 < j < s
such that if 1 <i<t, p;; € J1 and if i =0, po; € Igr,, with
Ro

t
s—1+> s <k,
1=0

1

and for all 0 < p < SRy

1<i<t,

there exists some r > 0 such that for all
X, (Ap7§> Jpa {eui“’i }) - U ]D);_(pi,j),
j=1

50
Xr (D—f’f? I%? {eu6}> - U D;r(povj)v
P =1

€
Wi

for all sequence {~¢} such that T < Ve < pwiy with 0 <@ <t fived,

X?' (ARopv‘ga JRop7 {eITE'Y }) = @7
andforallO<p<ﬁ,forallr>0,f0ra110§i§t, 1<5<s; and
for all subsequence €, — 0 as m — oo,

63 % (DLEn 1 b ) NDE ) 20
P
Proof. By contradiction, we assume that for all subsequence €, — 0
as m — o0, for all {w™},;,>0 with 0 <7 <t and
af = w) K wj K wh < -+ K wp L wiyq = 0o,

for all families of points p;; € RZwith0<i<tandl< 7 < s; such
that if 1 <i<t¢,p;,; € J1 andif i =0, po; € Ig,, with
Ro

t
s—l—i—Zsigk,
i=0
and

1
Ry = max {@éﬁ%gsi {maX{pi,jl ; w}} ) ax {Ipo,jl}, 50} +1,

there exists 0 < p < ﬁ such that for all » > 0, either there exists
1 < ¢ <t such that

(5.6) X, (9 & Jp (™ I\ U D (pig) # 0,
=1

or ’

(5.7 X (D161 (%) \ U B m) 20

J=1
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or there exists a sequence {v.} such that %E < Y < pwi, for some
0 <1 <t, with

(5.8) X, (ARop,g, Trops {e“‘s”e}) £ 0.

With this assumption, we prove by induction the following property
H;fors—1<s<k+1

Hj;: there exist sequences €, — 0 and r,, \, 0 as m — +o00, some
scales

af = w) K wj K wh < -+ K wp L wpyq = 0o,

some points p;; € R2\ {0} and p;; e Rx {0} if 1 <i<t, 1<j<s;
and pg’; € R? and pp; € R x {0} if 1 < j < s¢ with

t
s—l—i—Zsizé,
i=0

and p;j # piy if j # j' for 0 < ¢ < t, such that for all 0 < i < ¢,
1 <j < s, p satisfies Py, ,, in (Ri,f,R x {0}, {eem )}mzo-
We already have H;_1, let’s prove H;. We fix p > 0. By assumption,

since we apply it with all s;’s equal to 0, either (5.8) or (5.7) happen.
Let’s study these two cases:

CASE (5.8)s—1: There exists a sequence {7, } with O*Tm < Ve < Po

and some T, € Xo9-m (Ap,g, Jps {e“ﬁﬁve}). We choose €, such that z,,
satisfies Py-m . . It is clear that €, — 0 as m — occ.

o If z;—m — +00, we set a new scale w{™ = 7, and pi’y =z, € A,

Up to the extraction of a subsequence, pi"; — p11 € R2 \ {0} as

m — +o0. It is clear by Claim 3 that w{™ < dp up to reduce p.

By the same arguments as in Claim 3, p1 1 € R x {0} \ {0} and we

get Hy in this case.
o If Z;i is bounded, up to reduce p, one gets that (5.7) holds and

m

we can go to Case (5.7)s_1.

P
Poy = Tm and up to the extraction of a subsequence, pj"; — po1 as

m — +o00. By the same arguments as in Claim 3, pp1 € R x {0} and
we get H; in this case.

Now, we assume that Hj is true for some s < § < k. Let’s prove
H;,1. We define all the parameters €, rp, w™, p;”; and p; ; given by

H;. We fix p > 0. By assumption, one of the assertions (5.6), (5.7) and
(5.8) must happen. Let’s study these three cases:

CASE (5.7)s—1: There exists z,, € Xo-m <DT,§,I1{€QE}). We set
P
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CASE (56)§ Let 1 S ¢ S ¢ and Lm € er (Apvgvjp’{emwim }> \

Uj;l ]D);f(pi,j). For m > 0, we set pj", ;1 = Zm and we let eg(,) be

such that pj; |, satisfies Py, €8(m) " Since 1, \, 0, as m — —+00, setting

M(m) = min{m, 3(m)} gives that pﬁ( ™) satisfies Pty sesim fior all
1 <j < s; and pf, 4 satisfies Prkl(m)veﬁ(m)' Up to the extraction of
a subsequence, we can assume that pj’y. .} — pis,+1 as m — 400 and
that ra/omy) N\ 0 as m — +oo. Since p 1 € A, \ UL, D (pij),
Di,si+1 € ]R \{0,pi1-- ,pis; }.- By the same arguments as in Claim 3,
Pisi € R x {0} \ {0} and the proof of Hs;1 is complete in this case.

CASE (5.7)5: The proof of Hgzy is the same as in (5.6)§.

Case (5.8);: < pwity
and z,, € er <ARopv &, JR0p7 {6 ‘1 }qZO) .
o If %m — o0 and Zgi- — 0, we define a new scale w;?; = 7, and

z+
pt+171 = om. Up to the extraction of a subsequence, py’{,; € A,

satisfies Py, c,., {11 = Pt+1,1 € Ri \ {0} and 7, \, 0 as m —
+00. By the same arguments as in Claim (3), pi11,1 € Rx{0}\{0}.
Up to reorder {w;™}, we get Hz; 1 in this case.

e If i = 0 and 76m is bounded, up to reduce p, we get that (5.7)
holds and go back to Case (5.7)s.

e The case i = t and “7;1 is bounded leads to a contradiction by
Claim 3.

e The other cases lead to the fact that (5.6) holds up to reduce p
and we are back to Case (5.6);.

Gathering the three cases, we deduce Hjz; 1. Therefore, Hy 1 holds
true and we now prove that this leads to a contradiction. We will
define new test functions for the variational characterization of o, =
or(M,g,0M,e"), ni for 0 <i <, 1<j<s,.

o If p"; satisfies A;,, (., 0}y is defined by the extension by 0 in M \

Q" of an eigenfunction for o, (Q;’;, g, '€ “6m>, where (", C M
and T C OM are defined by Dff (p]"}) = lejwfm and I, (p}y) =

6'm
m Wi

z?] :
o If pi"; does not satisty A it satisfies B and 7;7; is defined

Tm,€m Tm,€m

by an eigenfunction for oy (D”,g,I‘”7 “€m> extended by 0 in
M\ Dy, where D", C M is the Nodal domain of an eigenfunction
associated to o, such that DTjwim C D} (pi%) and 7% = D% N
oM.
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We also use the functions 1" for {1 < i < s}, already defined in the
proof of Claim 3. Note that these k + 1 functions have pairwise disjoint
support for m large enough. Then, by (1.1),

2
Jar (WZ} gdvg Iy |V7ﬁn|§ dv,
€m S 52?2% 2 ) m 2 “ d -~ U€m'
1<j<s; faM (”Z) etemdoy, faM (771 ) erem a0y
+io

The last inequality comes from the definition of the properties A and
B and we have equality if and only if one of the test functions is an
eigenfunction for o, = o, (M, g,0M,e*<m). This test function is a non-
zero harmonic function which vanishes on an open set of the surface.
This is absurd.

Therefore, we proved the first part of the claim. Up to making suc-
cessive extractions of subsequences of {€,,} and up to removing some
points p; j, one easily proves that the last condition (5.5) also holds.

q.e.d.

For p > 0, we set

S0

Q(p) =DI\ (D[ (poy) and T(p) = I \ | L (po,)-
r= |

As previously remarked, the set of concentration points of {e%ds} sat-
isfies

(5.9) Z(R x {0}, {e"dz}) C {po1, - Do}
and letting
m;(p) = lim eleds,
e—0 T(p)
we have that m;(p) > m; +0(1) > 0 since we have (4.5), (4.7), (5.9) and
m; > 0. We aim at getting regularity estimates on ®. and e% in Q(p).
We follow the proof of Claim 4, thanks to the fact that m;(p) > 0 for p
small enough.
Claim 10. We have the following

e Estimates on Cf)e:

(5.10) Vp > 0,3C1(p) > 0,Ve > 0, || D, < Ci(p),
L2(Q(p))
5.11 Vp >0,3C 0,Ve > 0, || & < Cy(p).
( ) p >0, Q(P) >0, ve > U, CO(Qp)) 2(:0)
e Quantitative non-concentration estimates on e*%< and |V<i>6]2
0 D
(5.12) Vp>0,3D:(p) > 0,¥r > 0,limsup sup / et < 1(p)
I ()

e—=0  zel(p) B 111(%)7
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(5.13)

Vp > 0,3Dy(p) > 0,Yr > 0,limsup sup / ]V@EP <
=0 zel'(p) /D (x)

Da(p)
In(})

T

Proof. The proof of (5.10) follows exactly the proof of (3.5) in Claim
4, using the fact that mg(p) > 0 for p small enough and Claim 9.
For the proof of (5.11), we first prove that

(5.14) ¥p > 0,3Co(p) > 0,Ve > 0, Hcp Colp).

<
Co(T'(p))
We now prove (5.14). Let 0 < ¢ < n. Up to change g%é into — Ai,
there exists a subsequence {z.} of points in T'(p) such that ¢!(z.) =
SUpp(p) ‘qu’ We set 6. = d¢(xe, supp(Pe)) and we let y. € supp(Ze) be
such that d. = |z, — y.|. We divide the proof into 3 cases:
Case 1 — 671 = O(1). Then, {e%} is uniformly bounded in
Imin(‘ie g)(atg) by estimates on the heat kernel (see (1.6)). By (5.10),
272
#' is bounded in L2 (F (%)) By elliptic theory for the Dirichlet-to-
Neumann operator (see [25], Chapter 7.11, page 37), ngSé is bounded in
W2 (T (%)) (see (5.1)), and {¢i(zc)} is bounded by Sobolev embed-
dings.
CASE 2 — 6. = O (}){—f) Using Claim 2, we get that {¢i(zc)} is
bounded.
CASE 3 — 6, 2 0as e — 0 and Ve 0 ase— 0. We set

oede

ews(x) _ 5E€2ﬁ6(x5+(56x)’

¢€(x) = Qbé(xe + 6633)’
1
Ze = a(xe - ys)a

so that

_ Mt
(5.15) { Ay =0 in Dy,

Ope = —oce¥ 1. on Is.

Up to the extraction of a subsequence, there is zg € Rx {0} with |zo| = 1
such that zc — 29 as € — 0. By estimates (1.6), there is D; > 0 such
that

e < Dj in I%.

By Claim 2, since ye € supp(?e), Pe(ze) = O(1) as € — 0.

We first assume that . does not vanish in D7 (0). Since %(0) > 0,
e > 0 in ]D);(O). Then, by Harnack’s inequality, we get Do > 0 such
that

Vz € D;,we(x) > Datpe(0).
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Since 1. is positive, 1. is weakly superharmonic in ]D)‘J; |(z€) C ]D);)r(()) by
(5.15) so that
1

m|zel Jonr (z)

¢s(ze) > Yedo,

and keeping the part of the integral which lies in ]D)I, we get a constant

4
D3 > 0 such that 9(z.) > D39(0). We conclude that ¢i(z¢) = 1.(0)
is bounded.

We now assume that . vanishes in D3 (0). X, (Q(p),&,T(p), e) =0
by Claim 9, then 1), vanishes in D} (0) on a piecewise smooth curve
between two points of distance greater than 1. By the corollary of
Theorem 4, Section 1.3, on Q = D7 (0) we get some constant C7 > 0

such that
/ Yide < Oy /
D} (0) D7 (

5

By elliptic estimates on (5.15), {¢} is uniformly bounded on D7 (0) and
i 4
Pe(rc) = ¥e(0) = O(1).

We now prove (5.11). Let p > 0 and 0 < i < n. Since ¢! is harmonic
in Q(%), by elliptic regularity theory, there exists a constant Ko(p) > 0

such that
‘ c0<9<p>>§K°(p)<‘ LQ(Q(Z))+‘ CO(F(’S))>’

and setting Ca(p) = Ko(p) (C1(5) + Co (§)) gives (5.11).
As in the proof of Claim 4, Claim 9 gives some capacity estimates and

we get (5.12), and (5.13) is a consequence of (5.11), (5.12) and equation
(5.1). q.e.d.

(Vb |? da.
0)

% % o

We now need an estimate of {®.} on the whole surface in order to
prove later that no energy is lost in the necks.

Claim 11. For any p > 0, there ezists a constant Cy(p) > 0 such
that

t s
Vo e M\ U By(pi, p) U U U Q%
i#10 i=0j=1
d 75
(0)] < o) (1 (14 222 ) 1)
where

Qi] = wiD,(pij) + ae and ac = exp;}ml(ae).

Proof. Let 0 < p < ﬁ and let r > 0 which satisfies the conclusion
of Claim 9 for this p.
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STEP 1: We prove that for 0 < i < ¢, there exists Ai(p) > 0 such that
for all 0 < 8 < n, for all sequence {v.} Wlth <Y < pwi,q, either

o7 () < Ai(p),

Vx € A12R0p7

or

] —
T(P) < be (x)) < A;(p)

We let :4:(/)) be equal to

i

Pe

)]

Vl’, ye A12R0p7

/8 €
€

()
y max —_— s
7y€A10R0p qsﬁ y ‘

B

¢ (z)

max sup min max
0<B<n e>0 z€J10Ryp

£<’Ys<pwf+l
where we recall that for r > 0 J, = A, NR x {0}. We assume by

contradiction that A (p) = +0o. Then there exist 0 < < n, w"p <
Yem < pwiyq such that €, — 0 as m — +oo and

min max

; max _ — 400
IeJlOROp

z,Yy€A10R)p ¢5 (y)‘

as m — +oo. Let x,, € Jigr,, be such that

o2, " @).

x = max
( m)‘ erlORop

We set 0y, = d(xp, supp (7, Yem)) and take y,, € supp (7, Yem) such
that |z, — Ym| = 0. We study 3 cases each one leading to a contra-
diction.

Case 1 -9, = O (M) We apply Claim 2 for the sequence of

points {expy, ,, (Ye,, Tm + Ge,,) }m in OM and we get a contradiction.

CASE27(5m—>0andM%+ooasm%+oo. We set
Jem

e’ = §e

5 Yem
Y = gi)fm (zm + Omz), and

e (

T + O ),

1
Zm = a(ym — Tm),
so that
A¢m = 07
6t¢m = —0¢,, ewm¢m

Up to the extraction of a subsequence, there is zp € Rx {0} with |zg| = 1
such that z,, — zp as m — +o0. By (1.6), there is D; > 0 such that

e2m < Dy on I1.
2
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By Claim 2, since y,, € supp (Te,, "), ¥Ym(z2m) = O(1) as m — +o0.

We first assume that 10,,, does not vanish in D3 (0). Up to take —),
we can assume that ¢, > 0 on D7 (0). Then, by Harnack inequality, we
get Dy > 0 such that

Yz € Dg,wm(m > Dotp (0).

Since 1y, is positive, 1, is weakly superharmonic in Dﬁ;m‘ (zm) C D3 (0).
Then,
1

wm(zm) > —
ﬂ- |Zm| aD‘2m|(Zm)

Ymdo,

and keeping the part of the integral which lies in ]Dir, we get a constant
4

D3 > 0 such that {m,(zm) > D31 (0). We conclude that Esm (Tm) =
¥m(0) = O(1) which is absurd.

We assume now that 1y, vanishes in D3 (0). By Claim 9, 1,,, vanishes
in DJ (0) on a piecewise smooth curve between two points of distance
greater than 1. By the corollary of Theorem 4 on = D (0), we get a
Poincaré inequality

/ V2dw < O /
D (0) D (

5

|Vipy|* dez.
0)

By elliptic regularity theory, ¥, is uniformly bounded on D7} (0) and

4

7 Yem
¢2 " (2m) = Pm(0) = O(1) which is absurd.

CASE 3 — 5= = O(1). Up to the extraction of a subsequence, we
assume that x,, — x in Jigr,, as m — +oo.

5 Yem
We first assume that ¢, := ¢5m vanishes in Asg,,. We get by
Claim 9 and the corollary of Theorem 4 on €2 = Asg,,, a constant
C, > 0 such that

/ W2 de < C, Vi | daz.
Adrgp Asrgp

By (1.6), there are some constants 7 > 0 and D; > 0 such that
U Ve

etem ™ < Dy on Ip(z).

By elliptic estimates, {ty,} is uniformly bounded on Asg,, N Dz (z)
2
which gives a contradiction.

We assume now that i, := @Vm does not vanish in Asg,,. Up to
take —tp,, we assume that ¢, > 0 on Asg,.

Let’s assume that y,, — y as m — +oo with y € Jrg,,. By Claim 2,
Ym(ym) = O(1). By (1.6), there exists a constant D; > 0 such that

Yem

etem " < Dy in I 5(x),
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where 6 = min <§ Rop ) By Harnack’s inequality, there exists Ds > 0

104
such that

Vz € A6R0p N D;_25($), wm(xm) < DQd’m(z)'

By weak superharmonicity on ]D;%(ym) C Asryps

1

T X 30 oD} (ym)

wm(ym) > wme'

We keep the part of the integral which lies in Agg,, N ]D;r_ 05" Since the
length of 81D);)%(ym) N AgRp N ID);2~ is uniformly bounded from below,

é
we get a constant D3 > 0 such that ¥y, (ym) > D3y (zm). Then,

—a Yem
d2 " (2m) = Ym(2m) = O(1) which is absurd.

Assume now that y,, € R x {0} \ Jsgr,,- By (1.6), there is a constant
D1 > 0 such that

Tp— .
glem M < Dj in A9Rop-

By Harnack inequality, there exists a constant C'; > 0 such that

P OB -
V.2 € Atongp 5 < [fen " [ (@m) < C1 |00, | (),
which also leads to a contradiction.
We get A;(p) < +00. We now let A;(p) be equal to
e
| e 2 (@)
max su min max x)|, max —— ,
0<B<n . 5>Ig z€A12Rp o (@) z,y€A12Ryp Eﬂy (y)‘

Y << pwt
P Ve<PW;1

and we assume by contradiction that A;(p) = +oo. Let ~,,, with % <
Yem < pwify and €, — 0 as m — +oc be such that

5 Yem
O

, 5 em v ‘
min max |¢ T
IEEAlgROp

)|, max — +00

z,y€A12Ryp

7 Yem
b

(v)|

as m — +o00. Then, by elliptic estimates there is some constant K (p)
such that

max |42 €”<x>|<K<p>(max AR P )
z€A12R)p " o J10Ryp " " L2(A1oRgp) 7

so that since 4;(p) < +00,

B Tem
‘gbem ‘ — 400 as m — +o0.

L? (Al()Rop)
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By Poincaré inequalities given by the corollary of Theorem 4 on 2 =

—a Yem
AsR,p, and by Claim 9, we clearly have that qﬁ'?m does not vanish in
Aspr,, and by Harnack inequalities,

ﬂCm

ol (@)
sup max ——m——— < +00,
m>0 TYEA10R)p (;5/3 (y)’

which contradicts the fact that A;(p) = 4+o00. Then A;(p) < 400 and
we get Step 1.

STEP 2: We have that for 1 < i < ¢, there exists B;(p) > 0 such that
for all 0 < 8 < n, either

va € A\ | D (pig), [¢¢  (2)| < Bip),
j=1
or
S; € l(y)‘ “’Jf 7('%?
oy €\ D5 g < [ @) < B [o ).

j=1
and there exists By1(p) > 0 such that for all 0 < g < n, either

Vo € M\ | By(pi, p),
=1

2(@)] < B (o),

or

S
ve,ye M\ | | B,(pi,p), < }
y \i:U1 opinp) g 40
The proof of Step 2 follows exactly that of Step 1. Notice that if
mo(p) > 0, the third inequality holds by Claim 4. We leave the details
to the reader.

STEP 3: We prove that there exists K;(p) > 0 such that for 0 <1i <*¢,
and for all x € ID)+ \]Dte,

{@)| < Bea(p)

(5.16) I (x) < Ki(p) ngax|F|+1n(' ') ,

te A

o~
where t§ = 12Row§, 77| = 121121 and F.(z) = ¢ (ae + ).

Let 0 < B <n. We set
Nf ={t; <t <7f;3c € R? |¢| = t and Fe(z) =0},

Then, by the Courant Nodal theorem, N{ has a finite number of con-
nected components, bounded by &+ 1, since each connected component
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adds at least one nodal domain for the eigenfunction <I>EB . By Step 1, we
clearly have that

(5.17) Vz € R |z| € Nf =

F2(x)] < 4i(p).
We let
C;l < d:,l < 022 < d,iQ < e K CG < de

1,qe 1,qe
be such that

qe
Ni = [t5, 7]\ U]Cze',jvdze',j[
j=1

with {g.} a bounded sequence of integers. Let 1 < j < g.. Then, s
does not vanish on ]D);r§ \ID);Fe , and we can assume that FP >0 up to take
¥ 2,

—Ff . By the eigenvalue equation, Ff is then weakly superharmonic on
Df \ DX . We set
V) %)

_ Jong Fe@do(a)

U

fe(u)

Then,
Jom, O FL ()do(x)

U
— AFEB x)dx + 6th s,0)ds
Dy I,
U

Ji. OFZ(s,0)ds+ [, ;. OiF(s,0)ds
J 2]

i

U

fIé ‘ Oth(s,O)ds "
Flw) = fulcy) + In ()

so that

s

w Jip. OFC(s,0)ds
]

</
€ U

1,]

dv.

By a Holder inequality,

1
2 2 2
0;Ff(s,0)ds| < </ (¢€B> e“ﬁdag> </ e“ﬁdag> <1,
L | oM oM

and since FEB is positive on Idij \ Icgj,

™ Ci,j

. 1 U c .
fe(u) < fe(cf ;) + =In (g) for ¢ ; <u < dj ;.
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By the second condition of Step 1, we have for ¢f ; < u < d; ; that
va € 0D, F2(x) < Ai(p)f.(u).
Gathering these inequalities, for 1 < j < g., we get a constant K;(p) > 0

such that,
U
In(—
+n () ).
which is exactly Step 3.

We are now in position to prove the claim. By Step 2, we get some
constant L;(p) > 0 such that for 1 <i <t,

(5.18) vz € oD, FP

Fi(x)| < Ki(p) | max
oD,

(5.19) sup |Fe| < Li(p) Enf+ |Fel+1 1,

Dj% \Dfie Dtg \DT;

and we get some constant L;1(p) such that

(5.20) sup |®| < Lip1(p) | max |Fe|+1
M(p) 8]D):rt€+1

By (5.11) in Claim 10,
1
5.21 F|<Co| — ).
(521) sup £ < Co g3
£
Gathering (5.16), (5.19), (5.20) and (5.21), we get the claim. q.e.d.

In the following claim, we aim at passing to the limit in equation
(i) and the condition (ii) given by Proposition 1 at the scale a,. The
limiting function would then satisfy (5.25) and (5.26).

Claim 12. We have that
e For any p > 0, there exists B — 0 as € — 0 such that

2

($) Z 1- Be-
o
o

A

(5.22) vz € D(p), | .

e For p >0 and x € I'(p), we set U, = . Then for any p > 0,

{0} is uniformly equicontinuous on CO(T'(p),S™).

e For any p > 0, up to the extraction of a subsequence of {®},
there exist functions ® € WH2(Q(p), R**1) N L>=(T'(p), R"*1) and
¥ € W22(T(p),S™) N CO(T(p),S™) such that

(5.23) b, — & in WH(Q(p), R™HY),
and

(5.24) U, — U in CO(T(p),S") as e — 0
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with

(5.25) ’<i>

and for 0 <i<n,

{ A(%i =0 ) in Q(p),
Op' = —op(M, [g])¥'dD  on T(p),

m a weak sense.

(5.26)

Proof. STEP 1: We recall that ac — a as € — 0 with z;, = a.
Forlgjgsoandeszﬁ

a2’
. 2 _2
(5.27) sup / @6(2)’ De(z,x)dz = O(e” 3%).
z€l(p) I% (po,j)
FOI'OSZSt,].S]éS'L andT;:W,
—ws 2 € Qe — p2€
(5.28) sup / o, 1(,2)‘ D (z, ea;) dz=0(e 7).
2€l(p) /1 p (Pij) Wi
For 1 <1i < s and i # i,
2
(5.29) sup / ]@De(z)]Qpe(fv, z)dog(z) = O(e*g*e).
z€T(p) J14(pi, {5)

Note that (5.29) was already proved in Step 1 of Claim 5. Note also
that the proof of (5.27) reduces to (5.28) for ¢ = 0. Let 0 < i < t and
1 < j < s;. Then, for y € T'(p),

e 2 .
w7t (220 a:
Wi

2

L{
e 87‘i'
Ip

10(F7L,j)
2 €
—ws —w 2 2
Ue 1 P 9 1 1
fli(pn) e l(Z)‘ er e_F(W_i_wO)
S 10 _ RO =
3 Ue © T
inf; £ (Pig) © g
_ 3p?
€
CO e 407'1,
S W€ €
3 Ue @ T
mf[rpo (pij) €™ i

where we used the uniform bound (1.5) on pc* on D1 xD1. We assume
P P

by contradiction that
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Let y € OM be such that 7¥i € Il% (pi,j)- Then,

€

FEET) )y / pe(, y)dve(y)
oM

€

> / B (2, 7 )dme (2)
IT% (pi,5)

2

T 807F
1

e
VT / e,
i Iﬁﬂj (pi,5)

e

> O[O

so that the assumption leads to
52
e_ 167'1.6

/ dve i <
I i @
T%(P )

. ,ﬁ(L,L>
. ) Mwi + O e 4T7L€ 202 1000
2J

_ 8726 _ LQE
e 167‘2. + O e SOOOT,L.
< .
ao\/Tf

Then, e 50 uniformly on CO(I% (pij)) as € = 0 and

€

0x(Dp (pig); € Tp (pi), €% §) = +00 as € = 0.
This contradicts (5.5) in Claim 9. The proof of Step 1 is now complete.

STEP 2: There exists a sequence 8. — 0 as € — 0 such that

NCA
Be

1
éo(r(p))- We have that v — 0 as € — 0. Indeed,

(5.30) Va,y € T(p), |z —y| < = D (2) — De(y)| < Be.

We set 7 = H\/Eeae
for r > 0, and = € I'(p),

A A
0.e%®) < (0 +o(1 ) / dv. + o(1
Ve e (1) o (1)

Aov (I ()
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since we have (5.2) and thanks successively to (1. 6) (1.5) and to (5.3),
(5.12). We also have \/Q

mz(p) 5 is bounded and we have (5.2). Let x and ye € I'(p) with
Ye| < %. We set

— 400 as € — 0 since i = He HCO () <

|z,
Ve

Ve

and a, the mean value of F; in ]D)g'. Then, we get constants Dy, D, D" >
0 such that

F.(z) = ®c(zc +

Z)?

Do [|[Fe = aell g1 (1,0
D Hal/FeHLOO(Ig(O)) + D|Fe - a6||L2(]D>§“(0))

[ Fe = cell oo (150

IN A

IN

/
o 77 T DIV E 20 o))

Dy (p)
In

IN

DCy(p)oee + D'

I

v )i
3v0. )
thanks successively to (5.13) and (5.11). See also Step 2 in the Proof of
Claim 5. Setting

Ds(p)

In (33/9‘>

STEP 3: There exists a sequence 8. — 0 as ¢ — 0 such that for all
x € OM,

Be = 2DCy(p)oeye + 2D’

)

N

Be — 0 as € — 0 and we get Step 2.

(5.31) 2 eT(p ] — K| ()| < 8.,
and
(5.32) & € L(p) N supp(e) = |Ke[|Pe[](x) — 1] < Be.

Note that (5.31) gives (5.22) for x € supp(ve) by Proposition 1. Let
x € OM be such that & € I'(p).

®.(2)| — KJ|®H)(2)] < pe(,y) [|®(2)]? — |®c(y)|?| doy(y
oM
g/ b2 3) |63 - ée(z)f dz
I%(i)
+ I,
+> || pe(x, y)dog ()

i#io I (Pz 10)
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t St 9
€ € Qe
59 Sy BN A <w>d

where
L = Cp) / O pe(ay)
aM\I\/Bﬂ(j)
dy(y, ac 2
+cio) [ pe(z,y) (ln (1+9(“)>+1) dorg(y).
OM\I /5- (2) Qe

€

Here, we used Claim 10 and Claim 11. By (5.27), (5.28), (5.29) and
(5.30),

2

o) = Kgoiw)| < 20005+ 0 4 1,

and there are some constants Ky(p) > 0 and K;(p) > 0 such that

§(OM)\ >
I < Ko(p)ln< . )/W\Flpe(x,y)d(fg(y)

—i—Kl(p)/ Pe(z,2) (In(1 + [2])% + 1) dz.
Fl\f\éj(i)

2
Since % — +oo as € — 0,

5(OM)\?
w (M) i)
Qe AM\I,
s(M)?2
§(OM)\? e e
<In|—2L) O|——|=
_ln( o ) (0] e o(1) as € = 0,
and by (1.3),

/ Pe(z,2) (In(1 + |2])* + 1) dz
Fz\I\gi—e(;f:)

Ay ez :
< e 8% (In(l+|z))*+1)dz
Lo e a4
2
) +1> dy

Be

Ay P < .
< ——=e 8 |In{1+4+ |24+ Oy
/R\Iﬁl(o) o ( ‘ NG

= 0(1) uniformly for & € T'(p).

Up to increasing ¢, we get (5.31). The same estimates can be obtained
for |®.| instead of |®.|%, and we get up to increase S, for & € M such
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that & € I'(p),

N 2
@6(2)‘ 1

< Be,

up to increase [, we get for x € M such that & € supp(Pe) NT'(p),
[Ke[|®e[](z) — 1] < Be.

We follow Step 4 in the proof of Claim 5 to prove that U, is uniformly
equicontinuous on I'(p). Indeed, we can use the corollary of Theorem
4 thanks to Claim 9. Therefore, up to the extraction of a subsequence,
U, — U in COT(p),S") as € — 0.

STEP 4: We have that
dieteds —, ' in M(I(p)) as € — 0.
Let ¢ € CO(I(p)) and R > %. Then

JARCICEEECE)

—/ ) </ pe(z,y)C(y) i(y)dag(y)> dve(z)
oM\ \JT(p)

‘iDE(z)

De(z, x)dz) dve(x)

We have by (1.7) that

/ ) (/ pe(ﬂc,y)C(y)éi(y)dUg(y)) dve(x)
oM\Ir \J/T(p)

<IclCale) s [ plag)doy (o)

yEOM\IR I%
=o0(1) as e = 0.

By Step 1, Claim 11 and (1.5),

[ ([ €= ctopiteinaiz) anio
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<sup [ [¢(2) = ¢(@)]|L(2)| ez, x)d2
xG[R Ig
< Z sup |¢(x 3(2)| pe(z, x)dz
,] 11}6]3 IT%(pO’j)
+ sup / 5 C() = C@)||[6(2)| pelz, 2)d=
zelR IR\Ujozllle)(pO,j)

[ I

~ 2
<Y, s ([ (8] ae e
j—1 =€l(p) I{%(Po,j)

|z —z|2
+Colp) (1 + 1+ Cor) sup [ 1) (o) & o
z€lp JRx{0} 7T9€
=o0(1) as e = 0,
and
[ @ ([ (6 = i) [Buo] e, 2yis ) anio
9 2
2 ve(z, x)d
<2<l xgpp Z (/Ip . (z)‘ Pe(2, ) z)

+¢le © (E) s f o i@ iz i

1 2||C]l.. Colp) (1 +In(1 + CoR)) sup / pelz )dz
wel(p) JI\I()

=o(l) as e — 0,

where by (1.5),

_ o=z
Ji(2) — ()| iz

0,

< |
zel'(p) JT (%)
=o0(1) as € = 0.

We also have that

[ @it ([ (8

<lole s [ (Jbua
z€l(p)Nsupp(Pe) J IR

’ - 1) Pe(z, 1:)dz> dve(x)

‘ - 1) Pe(z,x)dz.
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We use (5.32) of Step 3, in order to prove that

(5.33) sup / (’@E(z)‘ - 1) Pe(z,x)dz — 0 as € — 0.
z€l(p)Nsupp(Pe) J IR

Let € OM be such that & € I'(p) N supp(Ze),

Ko )z) -1 = /aM\i (19:(9)] — 1) pel(r,y)dorg ()

+/I (‘@e(z)‘ — 1) Pe(z, 2)dz,

and

| / (e — 1) pel, y)dog ()]
OM\Ig

5(6M))

S I C

+ Ki(p) / P ) (02 s

_ sM)?

<0 e 4 o (6(6M)>
4re O
_ Ji—z)?
Kip) | Ao (1 +In(1 + |2]))dz
+ K1(p R\ L 0 1m0,

0 / o (1+ln(1+’i~+\/@y
R\I r_

Voc
o(1) as € = 0.

This gives (5.33). By (1.8),

IN

)) dz

lim lim sup
R—+00e—0 x€ly
P

/ Pe(z,x)dz — 1' =0,

Ir

so that

lmn ( / @ (s ([ R b)) do(o) - mac)da(x))) -0

as R — +oo. Gathering all these computations, we get Step 4.

As a conclusion, (5.31) in Step 3 gives (5.22) for x € supp(ve) by
Proposition 1. In the remark before Step 4, we get (5.24). Then, (5.22),
(5.23) and (5.24) give (5.25). We, finally, get (5.26) passing to the limit

in the equation satisfied by ¢! thanks to Step 4. This ends the proof of
the Claim. q.e.d.



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 163

Thanks to Claim 12, a diagonal extraction gives some functions ® :
R2 \ {po,1, - ,poset — R and U : R\ {po1, " ,pos} — S" such
that for any p > 0, the conclusions (5.23), (5.24), (5.25) and (5.26) of
Claim 12 hold true for & and .

We now give energy estimates on these limit functions which will be
useful at the end of the proof. We recall that A : D\ {p} — R2 is

defined page 132. We set & = do ) : D\ {p,q0, - ,qs,} and ¥ = do:
S\ {p, g0, +qs } where g; = A" (po;) € S' and we set

D(p) =D\ (Dp(p) v Dp(q¢)> and S(p) = S' N D(p).
=1

We Let 7 be the measure without atom on S* such that
eledf —, div in M(S(p)) as e =0

for any p > 0. It is equal to A*(2) outside {p, qo, - , qso }-
We also set some function w on DD which satisfies the following equa-
tion

(5.34) { Aw=0 inD,

w= ‘i)‘ on St,

v 1
in a weak sense. Such a harmonic function exists since ‘@‘ € W22(sh)
and we have w € W12(D).

Claim 13.
(5.35)

> (2 > (2 2
lim lim |V<i>5’2d:z2/ }VQ)‘ deak/ dl)—i—/ Mdﬂ?,
p—0e—0 D(p) D w ! D w

where o, = oy (M, [g]) and [o dv > m;.

Proof. Let n € C2°(D(y/p)) be given by Claim 1 with > 1 on D(p)

and o
/DIW\2 < - (%)

By the weak maximum principle on (5.34),

inf w > inf ‘Cﬁ‘ > 1,
D st
and by the same computations as in the proof of Claim 6,

lim [ |Vé|* do 2/ Vo|* dx
D(p) D(p)

e—0
/ Ve[’
n———dx
D w

Vv
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V i
> UMNLMDA;WM+:Anuﬁ‘VM
_’LEZ%/]D Z <vn7v¢z> - /]D) <V777VW> v
1
212
N ki

P
AT R e
st D W
Cl
1
ln <;>
where C” is a constant independent of p. Indeed, ¢;,w € Wh2(D) and
we have for 0 < i < n that
A(w—tﬁi) :OandA(aH—qu) =0,

in a weak sense. By the weak maximum principle (see [11], Theorem
8.1),

i%f (w—¢5) > iéllf (w—¢i) >0,
and
inf (w+ ¢i) > inf (w+ ) >0,

since ‘(;VSZ‘ < ‘Ci)‘ < w on S'. Then,

¢

sup — < 1 and sup
D

2

<n-+1.

i
D W we

We, finally, get (5.35), passing to the limit as p — 0. We have that

Js1 d7 > m; thanks to (4.5), (4.7) and (5.9). This ends the proof of the
claim. q.e.d.

5.2. Regularity estimates when %g = O(1). We now assume that

2
% = 0O(1), we let 6y = lim_,0 m and we denote by U the weak*

limit of . in M(R x {0}). Let Ry > 0 and = € Ir,. We have by (1.5)
that

eﬁ€(.tv) = e”l(%)ag/ Pe(Z,y)dve(y)
oM

< Ape"Pae dv,

B Vame OM ‘
A

< O (1+o0(1)).

W

4re
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Since m; > 0, we get that 8y < +00. Now, we let & be a smooth function

on R x {0} defined by

_Ja—y?

. 469
5.36 (@) :/ ¢ do(y).
(5.36) iy VATl ()
Let Ry > 0, R > Rp and x € Ir,. We have

/ aepe(i'a y)dVe(y) - eﬁ(x)
oM

6126 (z) e'zl(z)

< /  aepel®, y)dve(y)
OM\Ig
_lz—y?
| e - [ S
+ Pe\T,Yy)ave -
Ir Rx {0} V4mbo
Ao _(R—Ro)2
= ol 1+ o(1 0
o(1) + (1t o) %
_lz—y|?
/ (y) — | ap
+ DPelX, Y €
Ir \/47‘(‘90
_lz—y|? _lz—y?
/ e 80p (d/\ d/\) +/ e 400 dﬁ
+ ——(dVe — dV
Ir VA4mty Rx{o)\Ix V4mo
A (R—FRg)? —n
_ — 0 0
— 0 € dv as e — 0.

e 86p + /
Vémty Rx{0N\Ir V4Tt
Letting R — 400, we get for any Ry > 0 that
(5.37) el — e in CO(Ig,) as € — 0.
With Claim 2, {¢!} is bounded in L%(Ig) for any R > 0. With (5.37)

and elliptic estimates on the Dirichlet-to-Neumann operator (see [25],
Chapter 7.11, page 37)

Adt =0 in DY, |

0idt = —oce™ Gl on Ig,,
we get some smooth function @ on Ri such that for any Rg > 0,
(5.38) ¢ — ¢' in C'(Df, ) as e — 0,
and

10 ; 2
(5.39) A(;AS‘—O . in R%,
0" = —op (M, [g])e"d" on R x {0}.

We now prove the following
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Claim 14. We have the following energy inequality

(5.40) /R

where e* = e* o \

vé(x))zdx > o (M, [g]) / b,

2 1
2 S

Proof. STEP 1: Up to the extraction of a subsequence, there exists
some sequence {wf} with 0 <7 <t¢+1and 0 <t <k and

e = wh K wp K-+ Lwpyg = o,
and for 1 <4 <t and 1 < j < s; some points p; ; € J1 with Rg > 0
Ro

and s — 1+ 3°!_ s; < k such that for all p > 0, there exists Cp(p) such
that

t  s;
Vo e M\ UBg(pi,p)UUUQi,j ;

iio i=1j=1

@] (2) < Colp) (m (1 ¥ ‘“f””)) " 1) ,

where Q; ; = w!DF (p; ;) + ac and ac = expy,l, (ac). We also have that
for all p > 0,

—we 2 € Q¢ 7%
(5.41) sup / ‘(IDG ’(z)‘ pi | 2, —w | dz=0(e *7)
z€l(p) /L p (i ;) Wi
forlgigt,1§j§siand7'fzmand
2
(5.42) sup / 1D.(2)|? pe(, 2)dz = Oe™ %).
z€l(p) J 1g(pir {5)

For 1 <i < s and i # ip.

For the estimate of ®., we follow the proof of Claim 9 and Claim 11,
using (5.37) and (5.38) instead of the estimates of Claim 10. The proof
of (5.41) and (5.42) follows the proof of Step 1 in Claim 12, which is a
consequence of Claim 9.

STEP 2: We have that

_lz—yl?
~ ‘2 e 49

(5.43) /R o2 e

In order to prove (5.43), it suffices to use Proposition 1 and prove
that for Rg > 0 fixed, x € OM such that & € Ig,, we have

dy > 1.

_le—y?
A ‘2 e 49

5.44 / P —
(5.44) Rx {0} Vb

K.[|®|*)(z) = 0 as € — 0.
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Let’s prove (5.44). We fix r > 0 and R > r. Let x € M be such that
€ I,. We fix p > 0. Then,

K[|2.](2) - /I §

_ |a—z|?
2 e 40(

(=)] i

dz| = / 10 ()P pele, y)doy (1)
OM\Ig
+/ Pe(z, &)
Ir
/ 2 6_ 40
Ir \/471‘90

There exist some constants Ky(p) > 0 and K;(p) > 0 such that, by
Step 1,

dz

b

|2—z|2

dz.

&)(z)(

/ @) Ppe(a y)doy(y)
OM\Ir

§(OM)\?
< Kalp) | M\F,1“< 20) betaia, o)
+ Kl(p)[ (I(1+ |2)? + 1) pe(z, 2)dz

+Z/ Y)|? pel, y)doy(y)

i#io p“lo)

5(aM)2
S(OM)\? e ac
< |
=0 n( Ve > Ve
+ O (e_;Tf)
l&—z|2
Kl(p)AO (1n(1+‘z|)2+1)6 80, dZ

_|_ P LA
V7lty  Jrx {0\

Passing to the limit as € — 0 and then as R — 400, we get (5.44) and
then (5.43). This ends the proof of Step 2.

STEP 3: We have that

(5.45) or(M, [g]) /R o \(f(y)reﬁ(y)dy = /Rz

2
‘ dz.

Vo (z)
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By contradiction, we assume that there is ¢y > 0 such that

i) [ few] iy [

We fix R > 0. By equation (5.39),
2

.2
V@(az)‘ dx + €.

2
+

~ |2 ~
a6 = ~|vé in R?
2 .

= —or(M, [g])e"

%at)‘i” @’2 on R x {0}.

~ 12
@‘—/
D},

~ 12
@’ e L'(R x {0}) and

We integrate on ID)E,

‘;/am); o, ( ) do = ox(M, [gD/IR

for any R > Ry, for some Ry > 0, since e®

2

A

vol > D

o >
-2

‘V@)Q € L'(R?%). We set

12
Jon+ |2 do
fy =220
Then, for R > Ry, 7f'(R) < —% so that
€0 R
f(R)<——1In () + f(Rop) — —o0 as R — +00,
T Ry

which contradicts the fact that f(R) > 0. This ends the proof of Step
3.

We are now in position to get the claim. We integrate (5.43) against
v and (5.36) against dz, and we obtain

~ 2 .
(5.46) / ‘(I)(y)’ eu(y)dy > / dp = / €u(y)dy,
Rx{0} Rx{0} Rx{0}

and we get (5.40) with (5.46) and (5.45). q.e.d.

6. Proof of Theorem 2

6.1. Regularity of the limiting measures. In this subsection, we
aim at proving the following no neck energy and regularity result, keep-
ing the notations of Proposition 2.

Proposition 3. Fori € {1,---, N}, there exists gi1, - ,qis;, € St
and €% € L>®(S'), smooth except maybe at one point, positive such that
for all p >0,

elidf —, €%dh on M(Si(p)) as e — 0,
with Si(p) = S'\ (B,(p) UL, Dylaiy) ) and fi e = m.
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If mg > 0, there exists p1,--+ ,ps and a density e* on OM, smooth,
such that
e'“dog —, e"dog on M(I(p)) ase—0
with M(p) = M\ Uj_, By(pi, p) and [, e“dog =my.

Proof. Let N be such that for 1 <i < N,
~ i
1§i§N:>%—>—|—ooase—>0,
and
~ ai
N +1<¢< N = —< is bounded.
Ve

We now reintroduce the indices i we dropped in Section 5:
For 1 <14 < N fixed, we recall (see just before Claim 13) that we set

{gity i} = N Hwoa) s A Hposo) }
defined by Claim 9 and we recall that (5.9), that is g1, - ,¢is, €
R x {0} satisfy
Z <Sla {eﬂéd9}> C {p’ qi1," 7qi,Si}a
and that the notations before Claim 13 hold:

Di(p) =D\ | Dy@) U | Dyaiy) | and Si(o) = ' 1 i),
j=1

and ; is the measure without atoms defined by
eed —, i; in M(Si(p)) as e — 0

for any p > 0.
For N 41 < i < N, the notations just before Claim 14 define % and
e as _
ele — ¢ in CY(I1) as € — 0, and
p

e — % in COS'\D,(p)) as € — 0

for any p > 0. Notice that e% = e% o \.
We also have {pi,---,ps} such that (4.1) holds and denote

S
i=1
and
S
I(p) = OM\ | J Iy(pi, p),
i=1
and 1y the measure without atoms such that

e'“dog — vp in M(I(p)) as e = 0.
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Then, we have by (4.5) and (4.7) that

(6.1) / dv; > m;
St

for1 <i< N and

(6.2) / eidf > m;,
St

and by (4.6) and (4.8) that

(6.3) / dvy > mo.
oM

Considering for 1 <4 < N the set Mf(p) such that

(Hagag) ™ (J\?(/ﬂ)l> = Qi(p),

(4.2), (4.7) give that

(6.4) M (p) N M (p) =0,
and (4.4) or (4.3) and (4.8) give that
(6.5) i § = ME(p) (1 ME(p) = 0

for € small enough.
By (6.4) and (6.5), we have for p > 0 and € small enough

N
(6.6) / V@2 dvg > 1, >O/ IV®|? dv, + / ‘vég
w0 T gy ; (o)

Then, applying (3.28) in Claim 6 if mg > 0, (5.35) in Claim 13 for
1 <i<N, (5.38) and (5.40) in Claim 14 for N+1 < i < N, (6.1), (6.3)
and the conservation of the mass (4.9),

N
Smi=t
=0

2
dx,

we get from (6.6) that

op(M,lg]) = limlim /M ]V@e\?]

p—0e—0
Y < 12
Vel Y| vy
1 9d —d
mO>O/M w vg+;/u]> Wi v

2
dx

v

Vo,

| Vel
150 | 0k(M, [g])/ dl/o—l—/ —s dvg
oM M w

Y
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—i-zé(ak /gldu +/‘q)‘ le' )

N
M e

+ 3 anl) |

1=N+1

B Vsl
> (M. lg) + Lngo [ gy

N ‘@‘Q\Vu}z\z

+

Therefore, all the inequalities are equalities in Claim 6, (6.3), Claim
13, (6.1) and Claim 14. Then, we get for 1 < i < N that w; =1 on D

so that
2

“i’z =1on Sl,

/ dl)z = my,
St

and if mg > 0 that w = 1 so that
]@\2 =1 on OM,

/ dVg = my.
oM

Let 1 <i < N. Then, ¥; = ®; on R x {0} and equation (5.26) gives
that

for 1 <i < N that

and

{ Ad; =0,
(=01 ®i = o1 (M, [g]) Pidvs,
in a weak sense on R x {0} \ {gi1," -+ ,¢is}- Then, di; = ((T[;])’d

which means that »; is absolutely continuous with respect to ds and

~ |2
& =1 in R x {0},

{ (=0)®; AD; =0 in R x {0}.

This means that ®; is weakly 5 1_harmonic on R2 \{g, 1, -+ ,qis; ;- Then,
Vo,

extend ®; as a % harmonic map on ]R2 By the regularity theory for

by Da Lio (see [5], Proposition 2.2), since [g» d:c < 400, we can
+

weakly Z-harmonic maps of Da Lio-Riviere, see [6], ®; is smooth and

g—harmomc on Ri. Setting e = %, and coming back to the

disk, we get the first part of the claim for 1 < i < N.
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For N +1 < i < N, the convergence (5.37) ends the proof of the first
part of the proposition.
If mg > 0, then, ¥ = ® and equation (3.16) gives that

qu) =0,
0,0 = Uk(Ma [g])del@

in a weak sense on M \ {p1,---,ps}. Then, dv = %dag which

means that v is absolutely continuous with respect to do, and

%=1 in M,
OPNP=0 indM.

This means that ® is weakly harmonic on M \ {p1,--- ,ps} with free
boundary. Then, since [,, IV®|? dv, < +00, by Laurain-Petrides (see
[19], Claim 4), we can extend ® as a harmonic map on M with free
boundary and ® is smooth on M. The smoothness of weakly harmonic
maps with free boundary was proved in [23] and [19]. Setting e* =

.9, ..
oM g e get the second part of the proposition. q.e.d.

6.2. Gaps and no concentration. We prove now by contradiction
that N = 0, so that the maximizing sequence {e“<do,} does not have
any concentration points. Therefore, by Proposition 3 with mg = 1, the
proof of Theorem 2 will follow.

We now assume that N > 1 and we use Proposition 3 and the gap
assumption that (0.3) is strict in order to get a contradiction.

For 1 <i < N, let #; be the maximal integer such that
(6.7) o0.D) _ ;. (M. [g)),

mg
and let 6p be the maximal integer such that

00, (M’ [g])
mo

(6.8) < ox(M, [g)),

if mp > 0. We set 6y = —1 if mg = 0. We get that for i € {1,--- , N},

(6.9) 09,41 (D) > mior(M, [g]),

and

(6.10) oo9+1 (M, [9]) = mook (M, [g]).

Then, by the spectral gap assumption that (0.3) is strict, we have that
N

(6.11) 0;+1) > k+1.
i=0

Indeed, if sz\i o (6i + 1) <k, the spectral gap gives that
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N
200i+1 (D) + o941 (M, [9]) < or(M, [g]),
=1

and this contradicts (4.9) (6.9) and (6.10).

Now, we define at least k + 1 test functions for the min-max charac-
terization of o. = oy (M, g, OM, e"<).

Let 1 <i < N. We denote by (¢, - - cpfi) an orthonormal family of
functions in L?(OM, e“0dv,) if i = 0 and in L*(S', e%df) if i # 0, such
that if 0 < j < 6;, gog is an eigenfunction for o;(M, g,0M,e") if i =0
and for o;(D, &, S, e%) if i # 0. Such functions exist by Proposition 3
and lie in C.

We fix p > 0. We denote by n; some function defined with Claim 1
by

® o€ C?(M(ﬁ))v no > 1 on M(p) and fM |V’I’]0’§ dvg < 1n?l)'
’
o Ifi # 0,m; € C(Si(y/p)), i = 1on Sj(p) and [ (Vi da < hfl).
P

We set for 0 < i < N and 0 < 5 < 6; some test functions ff , defined by

& = now on M,
and if i # 0, 5? depends on € and satisfies for any € > 0

Y\ ¢ )
() =melonD

extended by 0 on M. .

Note that all the test functions &/ lie in C! and are uniformly bounded.
Note also that by (6.4) and (6.5), if € small enough,

i # 1 = supp(&]) N supp(&)) = 0

for i,/ € {0,--- ,N},0<j <0, and 0 < j <0y. For 1 <i < N, we
let E; be the vector space spanned by (£9,¢1,- - ,ffi) and with (6.11),
we deduce by (1.1) that

Ve dv
(6.12) o < max  sup M.
0i<N e\ (0} Jon E2¢"edog
Let i € {1,---,N}. For £ = Y% ;€] € E;, with p; € R and
> u? =1, we get
2

0;
/ \V§|§ dvg = / \Y mZujgog dzx,
M D e
j
and denoting ¢ = Z?i:() ,ujgog, we have

/ Ve dvy = /(m)2|ch\2dx+2/mga(Vm,V@da:
M D D
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+/<P2!V77i!2d$
D
< /|Vg0|2dx
D

N N
2 il ( [ 199l dx) ( [ dx)
D D

el /D V2 da

< /|Vg0|2dx—|—0 as p — 0.
D

ln(%)

/ 526“€do’g:/ n?gerﬁidG.
oM St

By Proposition 3, we get that

We also have that

f2e“€dag = / n?o*e%df + o(1) as € — 0,
oM St

so that

lim g2etedo, > / ©*e%dh + o(1) as p — 0.
=0 Jom st

The same work can be done for £ € Ey, so that passing to the limit as
e — 0 and then as p — 0 in (6.12), we get

Vol?d Vol? dv
oo(M, o) < max ) max  sup JRIVELAE o Tl Vel vy |
L<ISN e\ {0y Jor 97€%d0” per\ oy Jonr PP doyg

where F; is the space spanned by ¢, - - - ,cpf". Therefore,

O-k(M’ [g]) < max{ max 0-91'(]])757817eﬁi)?aeo(Mvgaaneuo)}

1<i<N
(D M
< max{ max 091( )70-90( 7[9])}7
1<i<N My mo

which contradicts (6.9) and (6.10). Therefore, there is no concentration
of {e"doy}.

Therefore, N = 0 and by Proposition 3 with mg = 1, Theorem 2
follows.

7. Proof of Theorem 1

We prove Theorem 1 in this section. Notice that light modifications
of the proof allow us to prove that if (0.3) is strict, the set of maximal



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 175

metrics for o3, (M, [g]) is compact, and if we have that (0.2) is strict, the
set of maximal metrics for oy (y,m) is compact.

Let v > 0 and m > 1 be such that (y,m) # (0,1) and [gs] be a
sequence of conformal classes on a compact oriented manifold of genus
~v with m boundary components such that

(7.1) 0a = 0k(M,[ga]) = ok(y,m) as a — 400,
where g, denotes the unique metric in its conformal class such that

e The curvature of g, is constant, equal to 0 if (v, m) = (0,2), and
—1if (v,m) # (0,2).
e The boundary 0M of M is a union of closed geodesics with respect
to gq-
By the gap assumption that (0.2) is strict, we have, in particular, that

k(M. [gal) > roax ki (M, [ga)) + Y _ 04, (D, [€])

i1+His=j m=1

for a large enough. By Theorem 2, this gives some smooth harmonic
maps with free boundary ¢, : (M, g,) — S™ for some n, > 0, such
that if g, is a metric conformal to g, with the induced metric on the
boundary OM satisfying

dog, = e"*doy,,
where
4.0, P4

)

U
Oa
then [,,,dog, =1 and 0y(M, go) = 0(M, [ga]). Since the multiplicity
of oy is bounded by a constant which only depends on k, v and m (see
[9] and [18]), we can assume that n = n,, is fixed.
We have the following quantification result on sequences of harmonic
maps with free boundary by Laurain—Petrides, [19], Theorem 1:

Proposition 4. Let (M, g) be a smooth Riemannian surface with a
smooth non-empty boundary. We refer to the notations introduced in
Section 1.1 for the metric g. Let q1,--- ,q € M. Let ®, : (Mqy, ga) —
B+ be a harmonic map with free boundary on an open set M, C M
such that

e For any p > 0, there exists a, > 0 such that for any o > «p,
Mo D M\ UE:l Bg(‘]ivp)'

e Foranyp>0,gq—gin M)\ U§:1 By(gi, p) as a — +o0.

e &,.0,, P, >0 on M,NOM and

lim sup/ ®,.0,, Podogy, < +o0.
a—+oo J M,NOM

Then, up to the extraction of a subsequence, there exist

e Some harmonic map with free boundary ® : M — S™.
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e Sequences of points pl,--- ,ps, of OM converging to some points
pt,-,p° of OM as a — +oo and sequences of scales 0., -+ , 65
converging to 0 as a« — +o0o such that

dg(pt, ' 5 57
(7.2) 7g<pap;)+—q+—q—>+ooasa—>+oo.
S+ 6, 0 0

e Some harmonic extensions of non-constant %—harmom’c maps,

Wi, e, ws : D — B
such that
(7.3) /M V|2 dvg + Z/D \Vw;|* dz = €,
i=1
where
£ =lim lim .0, Podoy,,

0400 JOM\UL-, 1g(ai.p)
and for all p > 0,

(7.4) .0y, Podog, = .0,2doy on I(p),

(7.5) L. (—8@2) ds =, ;. (—0w;) ds on I'i(p),

where we define the sets

I(p) = oM\ [ |J Iy(a: p) U U Iy(zp) | |

=1 2€Z(OM\U;=; 19(4i,p),®a-Oua Padag,)

Tip) =11\ U I(2),

2€Z(11,9},.(—0:D%, )ds)
P
and the functions on Ri

~ —~l o . B
(I)fx($) =P, (531‘ ‘|‘pfi) and W; = W; 0 A 1,
where 1 < 1; < L is chosen such that p* € w;, and \ is defined page 132.

Assuming that g, — g as a — 400 for some metric g with constant
curvature and which defines closed geodesics boundary components, we
apply Proposition 4 for M, = M, ®,, g, and g. Notice that the use
of Proposition 4 together with the gap assumption that (0.2) is strict
follows exactly the same path as the use of Proposition 3 together with
the gap assumption that (0.3) is strict in order to prove that the maxi-
mizing sequences do not have any concentration points. Therefore, one
can easily contradict the fact that (0.2) is assumed to be strict in this
case.

We assume now that the sequence of conformal classes [g,] degener-
ates in the following sense:
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o If (y,m) = (0,2), in the case of the annulus, this means that
R, — +o0 or R, — 1, where R, > 1 denotes the real parameter
such that (M, g4) is isometric to Dy, \ D.

o If (y,m) # (0,2), in the hyperbolic case, this means that the
injectivity radius i4, (M) — 0 as o — 400 so that there exist
closed geodesics which length goes to 0 or geodesics which cross
two boundary components of (M, g,) with length going to 0.

Let’s tackle both cases in order to contradict that the gap (0.2) is strict.
During all the proof, we identify R? and C thanks to the map F(z,y) =
r + 1y.

7.1. The case of the annulus. Let (y,m) = (0,2). Then, (M, gq) is
isometric to (Dg, \ D, ).

We first assume that R, — +00 as a — +00. We denote by I'; = S*
and I'y = S}%a the boundary components,

my = lim e'*doe and mg = lim e doe.
a—+00 I a—r—+00 Ty

With the inversion ¢(2) = 1, we have ¢(Dg, \D) = ]D)\]DR%, () =St

and the harmonic map with free boundary
dl =P, 00:D\D1 — B
Ra

satisfies the hypotheses of Proposition 4 on (D, £) since D\ D L exhausts

D. We have some limits &1, wi, - - ,wgl such that

S1
/|vq>1\2dx+2/ V| dz = ma,
D i—1 /D

and the conclusion of Proposition 4 holds for some associated scales.
With the dilatation H(z) = #-, we have H(Dg, \ D) = D\ D%,

H(T'3) = S! and the harmonic map with free boundary
P2 =d,0H ! D\D 1 — B!

satisfies the hypotheses of Proposition 4 on (D, £) since D\ D L exhausts

D. We have some limits <I>2,w%, e 7“’32 such that

S1
/|vq>2\2dx+2/ Vw?|* do = mo,
D 5 /D

and the conclusion of Proposition 4 holds for some associated scales.
Following the proof of Section 6.2, we use suitable eigenfunctions as-

sociated to the previous smooth limiting maps at their respective con-

centration scales as test functions for o,. They give a contradiction for
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the assumption that (0.2) is strict which reads as
S
0r(0,2) > max 0;, (0,1
k( ) i1+~~~+isk; 1q( )

on the annulus, for s = 2 + s1 + so.
We now assume that R, — 1 as @« — 4oo. Then thanks to the

application
™ 21In(R,)
) = (s T) 201,
we have
f(Ta) = Dg, \ D
with
2
T, = [—%,%} x [0,bs] and b, = anTTa) — 400 as a — +oo.
Notice that we identify {Im(z) = 0} and {Im(z) = by} and that
{Re(z) = —7%} and {Re(z) = 7} correspond to the boundary com-

ponents of the annulus. We denote by
0 m
Io = ({=F}U{§}) x (0.0l
and for 0 < r < s < b,
Io(r,s) = {(z,y) € la;r <y < s}.

For sequences {r,} and {s,}, 7o < So means s, — o — +00 as a —
+00. Then, denoting again g, on T, the metric f*(g,) we claim that

Claim 15. If some sequences {ri} and {s.} for 1 <i <t satisfy
0 1 1 1
0=s) <rl <s! <« - <l «st, <ritt =p,

and

for1 <i<t, thent <k.

Proof. We proceed by contradiction and assume that we have such
sequences with ¢t > k+ 1. Let 6, — 400 be such that 0, = o(ri — s)
as o — +oo for 0 < i <t. Weset for1 <i<t

1 ri, <y < s,
—rt 4+ 6
y 004+O‘ Zoz 90<y§rloza
i (6%
o =19
st + 0, — , ,
a+0a y S;Sygsla"‘ea,
o

0 yZSfX—I—@aorygrfx—Ha.
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Then,
Ve dvg, = | [VnPde = 2 = o(1) as a — +
5 |5, dvg, = 5 x—e——o( as a 00,
Ta Ta 0%
/ (18)* dog, > mj + o(1) as a — +oo.
I

Taking these at least k£ 4+ 1 functions with pairwise disjoint support for
the variational characterization of o, = o} (M, go) (1.1) gives that

Vie|? dug,
0q < max Jr. IV fo o _ o(1) as a — +o0,
l1sishk+1 fla (g ) dog,

which contradicts (7.1). q.e.d.

Now, we prove that up to a rotation on M, there exist sequences
0 K rq K sq K by such that
(7.6) lim L, (Ia(ra,sq)) = 1.

a—r+00

Indeed, denying (7.6) would mean that for any sequence 1 < u, <
Vo K ba,
lim Lg, (In(ta,va)) > 0.

a—r+00

Taking for 1 < j < k+1 ya = ki2b and 0, = /b, gives for 1 < j < k+1

mj = hm L (Ia(ygg - 9aayg¢ +9a)) >0

a—+

so that the k+1 test functions for o, = oy (M, §) with pairwise disjoint
support,

(1 Y — 00 <y <yl + 0o,
J 120 . 4
LoVt gl 90, <y <yl — O,
. (07
Mo = 4
J
1920 . .
Yo 0 yé—i—%ﬁyﬁy&-ﬁ-?@a,
(07
[ 0 y >yl + 20, or y <yl — 20,

would satisfy

2
/ ‘Vnﬂza dvg, = o= o(1) as a« — +o0,
Ta a

/ (n?‘)Qdaga >mj +o(l) as a — 400,
Io

so that o, = o(1) by (1.1). This contradicts again (7.1).
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We take a rotation of M so that (7.6) holds. Then, by Claim 15, we
can take t the maximal integer such that there exist sequences
0 1 1 t t t+1
0=s) <rl<st, < <l <st <rttt =p,

with .
mj = lim Lz, (In(r),s)) >0,

a——+oo
and

t
ij =1.
j=1

We define a sequence rgé < yé < sfy such that
i - J ) = 1 - J &l _J
agI—ll—loo Lga (Ia(rouya)) - aEI—Ii-loo Lga (I (yousa)) 2 )
and 4 A
Vg (z +iy) = tan(z +i(y — y7))

. N —1
for z = x +1iy € T,,. We consider the harmonic map ®}, = &, o (\Iﬂa)
on D. We let 6, — +o00 be such that 8, = o(r Jtt sé) forall0 <j <t.
Then,

D, = W(Ta(rh, — 0,7, + 0.))
exhausts D, ‘ ‘ . '
St =V (La(r), — Oa, ) + 64))
exhausts S', and '
I\ —
QETOOL (Sa) = my,
where o = (\I'ja) Jo-
* . . .

Then, we apply Proposition 4 on (I, £) to 2 : (D%, S5%) — (B"1,S™).
In order to define suitable test functions which naturally extend to the
surface, we have to prove that 1, 2,.0,8%,d0 does not concentrate at
the poles (0,1) and (0,—1). Let’s prove it by contradiction: if, for
instance, we have

1y ®),.0,8d0 —, md( 1) + v on S!
with m > 0, and v({(0,1)}) = 0, then, fgl dv > 0 and up to the
extraction of a subsequence, we can build 07 < ya such that
im L (T, G0, ) =

so that if we setﬁ:yg(—i—m and S, = cé—l—m with 7, = yzy—czy,
we have A
mj = lim Lg, (Ia(rf, — 0a;%a)) > 0, and

oa—+

mJ2 - agl}»loo Lga (Ia(ma Sgé + 90)) > O

with m]1 + mj2 = m; and this contradicts the maximality of ¢.



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 181

Therefore, we use eigenfunctions associated to the densities associ-
ated to the limits of ®}, given by Proposition 4 and we follow the com-
putations of Section 6.2. This defines test functions for the variational
characterization (1.1) of o, = oy (M, Go). Since (0.2) is strict, as already
said,

S

0,(0,2) > a i (0,1

%(0,2) i1+@+ﬁ:kzazq( 1),
q=1

and we have at least k + 1 test functions which would give a contradic-

tion.

7.2. The hyperbolic case. Now, we assume that (y,m) # (0,2). We
let L, -+ S the geodesics whose length I, --- |15 go to 0 as a — 400,
where 1 < s < 3y—3+m ([17], IV, Lemma 4.1) satisfying one of these
conditions
(i) For 1 < i < sy, 7% is a boundary component, that is a closed
geodesic such that 4%, C M.
(i) For s1+1 < < 81489, 7., is a closed geodesic such that 42 NOM =
0.
(iii) For s1 4+ s2 4+ 1 < i < 81+ s2 + 53, 7%, is a geodesic which crosses
two distinct boundary components at its ends.
(iv) For s; + sy + 534+ 1 <4 < 51+ 80+ 83+ 54 =5, 7., is a geodesic
which crosses one boundary component at its ends.

The collar lemma ([27], Lemma 4.2) gives for 1 < i < s an open

neighborhood P! of ~¢ isometric to the cylinder
{(t,0), —pi, <t < p,0 <0 <2},
if v¢ satisfies (ii) or (iii) and
{(t,0),0 <t < pi,0<6<2r},
if 42 satisfies (i), endowed with the metric

2

— | (dt* +d6?)

pl = % <7T — 2 arctan <sinh <l20‘>>> .

Note that the geodesic v/, corresponds to the line {t = 0}. Note also
that in the cases (i) and (ii) we identify the segments {# = 0} and
{0 = 27} and that in the case (iii), the segments {# = 0} and {6 = 27}
correspond to portions of the boundary components crossed by ~%. In
the following, we identify P/ with the corresponding cylinder.

with
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We denote M}, - -+, M~ the connected components of M\ |J;_; P¢ so

that
M = (U Pé) U U M
i=1 Jj=1

is a disjoint union. For s1 +s3 +1 <i < s, and —p!, < a < b < pt,, we
denote
Pi(a,b) = {(t,0);a < t < b},

and for ¢ = {c"~, "}, 5,4 1<i<s, we denote M (c) the connected com-
ponent of

s s
M\ < U Pi—pl+ " pl =) U Lj 73) :
i=14s1+s2 i=s1+1
which contains Mé We also denote
Ii, = M. N oM,
and for ¢ = {7, ¢ g, 4 sp1<i<s,
Il (c) = M!(c) N OM.
For all the proof, we identify R? and C thanks to the map F(z,y) =
T +1y.

Let 1 <4 < s7. Then, v satisfies the condition (i). Then, the image
by the map E : z — e'*, of P! is an annulus ]D)\]D)e, i, which exhausts D,

where S! is the image of the closed geodesic. The map <i>fl =® o B
D\ }D)e_ i = B"*+! satisfies the hypotheses of Proposition 4 and we get

some regular limits ®*, w7, -+ ,wi such that

b 12
/ ‘Vfi)"zdl‘+ Z/ ’Vw{‘ dr = lim / e'dog,,
D = D a—-+00 73

and the conclusion of the proposition holds for some associated scales
and gives natural test functions.

Let 81 + 8o +1 < i < 5. Then, 7/, satisfies the condition (iii). We
denote by

o

I ={(0,t) € P:;0 =0 or § =2r},
and for —ug <a<b< ,uia,
T (a,b) = {(0,t) €T\ ;a <t < b}

We denote a, < b, if two sequences a, and b, satisfy by, — aq — +00
as a — +o0o. Then, we claim that

Claim 16. If for integers t; > 0, some sequences afil, b’ for1 <1<
ti, ca = {8, c57 Y and a set J C {1,--- ,r} satisfy
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—pt, < =+ T =0 el < b <
< bt < it < alt =l — At <l
and for 1 <1 <s,1<1<¢t;,5€J,
mig = lim Lg, (Ta(a & 05)) >0,
a—
m; = lim L, (IZ(cy)) >0,

a—r+00
then, Y7t +|J| < k.

Proof. By contradiction, we assume that there exist such sequences
with S35, #i4|J| > k+1. Let 6, — 400 be such that 8, = o(af ™ —b5")
for1 <i<sand0<]<t;. Weset ng’l be such that supp(n&’l) cP
and

1 abt <t <+ 0y,
t—ail +0, ,
“g — 0o <t <ai,
il @
7701 - T
by + 6 , ,
@ ; bl <t < bil 4 6,,
(e}
0 t>bgl+¢9a0rt§af};l—9a,

and 7, such that supp(nh) € Mi(ca + 04) and if {t = i} is on the
boundary of M2,

1 fio = CaT << g,
m = 4 i+
t— ut Co 0 . . . .
Mo ey <<l ol
«
and we proceed the same way for the symmetric case {t = —pu’} with

b Taking these at least k 4+ 1 test functions with pairwise disjoint
support for the variational characterization (1.1) of oo = ok (M, §o), we
get

2 12
Ju ‘vngl _ dvg, I ‘Vn& _ dvg,
0o < max | max 2“ ,max 9o
1<i<s i, jeJ
1<I<t; faM (77(1 ) dog, faM (Tla> dog,
Then o, < o(1) which contradicts (7.1). q.e.d.

We now prove that the set of such sequences such that

S t;
szi’l—i_zmj =1

i=1 I=1 jeJ
is not empty.
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Claim 17. We let Iy be the set of indices i € {1,---,s} such that
there exists a sequence 0 < ¢, < g, such that

im Lo, (Th(—ph + cho i, = ch)) =0,

cmd L ={1,---,s}\ lo. Then, there exist sequences it = 400 0 <
* < ul, for 1 <i < s and sequences a’,, b, for i € I with

— i+ i < al, KU < ply— e
such that
lim L, (T4 (—ph + ¢ 1t — c)) =0

a—+00
for i € Iy,
lim ZLQQ ¢ (al,08)) >0

a——+00

forie Iy and

a—+00

lim > L5, (Th(ag, 00)) + ) Lg. (I (ca)) = 1.
1€ly j=1

Proof. We proceed by contradiction, assuming the opposite to hold.
Then I; # () and we set fori € [ and 1 < j <k +1

)

i =y — e = 18 4 0,
b= —al — 1 — 0,

«

where #/, = i’fé and 6, — +oo satisfies 0, = o(u’,). Then, by assump-
tion,

QEIEOOL (T4 (=t = O, —t5) + 6a) UTL (S — 00,1 +604)) >0
=1
for any 1 < 5 < k+ 1. We now set né some test functions for the
variational characterization of o, = ox(M, f]a) with pairwise disjoint

support defined such that supp(na) C Uier, P i mt is an even function

on P! and
0 0<t <ty — 20,
3;; W00 i o9, <t <pid_g,
=1 th) — 0o <t <t + 0o,
J +92a9 th) + 00 <t <t + 20,

0 thi 420, <t <.
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With these k+ 1 test functions, we easily prove that o, < o(1) by (1.1),
which contradicts (7.1). q.e.d.

Thanks to Claim 16 and Claim 17 there exist for 1 < 7 < s some

integers t; > 0, sequences aé;l, Abgl for 1 <1<t co= {cﬁfr, cif} and a
set J C {1,---,r} satisfying c5* < pi,
—pt < —pl T =0 <a) < b <

Cagh < < ag™ = g — g < gl
and for 1 <i<s,1 <1<, 7€,

. l l
mig = Jim_ Ly, (Dl 1)) > 0,
mj = lim_Lg, (B(ca)) > 0,

with

S t;
DD miat ) mi=1,
i=1 m=1 jeJ
such that Y 7_; t; is maximal.
For fixed 1 < i < sand 1 <[ < t;, we focus on the asymptotic
behavior of the harmonic map ®, on the cylinder Pé(a?;l,bgl). We

define a sequence t&! such that

lim Ly, (Ta(a!,62)) = Tim Lg, (Ta(ti,05)) =

a—+00 a—r—+00

We set

m;

2

. 1,1
\Iléll(e—l—it):tan(é’ ﬂ+i(t ta))’

and we consider the %—harmonic map (ff);l =d,0 (\I/’al> on D. Let

0, — o0 be such that 0, = o(aﬁ,zlJrl — bf);l) for0<!<t;and1<3i<s.
Then,

Dy = it (Tiak! = 0,05 + 00) )
exhausts D,

Sit = Wit (Th(ak! = 0, 05 +0)
exhausts S! and

: iy
QETML(WQZ)*@&)(S&) it

We can now apply Proposition 4 to i)i;l(Di;’, Séjl) — (B"*+1,S") on
(D, €). In order to obtain test functions which naturally extend to the
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manifold, we have to prove that 1 Si,zi)io;lﬁyégldH does not concentrate
at the poles (0,1) and (0,—1). By contradiction, if we have

1410510, 85d6 —, még 1) + v

with m > 0, v({(0,1)}) = 0, then [, dv > 0 by the hypothesis on th! we
did and up to the extraction of a subsequence, we can build qf)}l < t’ozl
such that

lim Lg, (I’a(agl —0Oq, qu)) =m.

a—+00

Setting b, = q(i;}l + 74 and @y = té}l — Tq, With 74, = 4/ té;l — rfjl, we have
= lim Ly, (rg(agl - ea@)> >0,

a—+00

1
m; g

) ) i
m; = oagr—ir-loo Lga <Fg(aaa b?y + 9&)) >0
with mil,l + m%l = m,; and this contradicts the maximality of )7, ¢;.

For a fixed j € J, we now focus on the asymptotic behavior of ®, on
M} (ca). We denote by M, the connected component of M\ (Vé» e 773)

which contains Mgl There exists a diffeomorphism 7, : ¥; — Mi such
that (X;, ha) is a non-compact hyperbolic surface with hy = 75g,. On
>, we have
ho = h in C,,(X5) as o = 400

for a hyperbolic metric h. We let ¢ = [h] and (i]j,é) the compactifi-
cation of the cusps of (X;,h) so that (X; \ {p1, - ,pt},¢) is conformal
to (¥4, c¢) for some punctures pq,--- ,p; as described in [17]. The se-
quence of sets ¥, = 7! (Mé (ca)> exhausts ij, so that the sequence of

harmonic maps with free boundary @, = ®4 07, : (Za, ha) — B" 1 sat-
isfies the hypotheses of Proposition 4. In order to extend on the whole
manifold the suitable test functions we define on X;, we will prove that
1x, @a.ﬁya i)adaha does not concentrate at the punctures which lie in
the boundary of f]j (and correspond to the degeneration of some geo-
desic «?, which satisfies condition (iii)). By contradiction, we assume
that
1ga(i)a.aya(i)addha — mépl + v on ij
for some puncture p; € {p1,---,p} N 8f3j with m > 0, v({p;}) = 0.
Then, up to the extraction of a subsequence, we can build g, — +o0
such that
Jm Lg, (U6 (=p + Gas —p +¢g7)) =m

for s1+s2+1 < < s such that 7, ({—pi, <t < 0}) is a neighborhood
of the puncture p; of flj. We proceed the same way for the symmetric
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case {0 < t < pi}. Setting dy = \/Ga, Ga = — i, + o — V4, and
bo = —pit, + co, we have

m= lim L, (T, (aa,ba)) >0,

a—+00

im Ly T (@) = my —m,
where ¢, comes from c,, taking d,, instead of ;. Adding the sequences
@ < b, contradicts the maximality of Y7, ¢;.

As described in Proposition 4 and the computations of Section 6.2,
the limit functions given by ®, : D! ¢ D — B"*! for 1 < i < s,
&5 Di c D — B for sy +s2+1 <i <sand & : %, C 3 — B
and their associated scales give at least k + 1 well defined test functions
for the variational characterization of o, by the gap (0.2). Indeed,
denoting «y; the genus of )y ; and my; its number of boundary components,
we notice that > . ;v; < v and Y. ;v +m; < v+ m and that if
|J| =1,y <7 or~vy+mi <~vy+m. These at least k+ 1 test functions
for the variational characterization (1.1) of o, give a contradiction. This
ends the proof of Theorem 1.
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