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MAXIMIZING STEKLOV EIGENVALUES ON
SURFACES

Romain Petrides

Abstract

We study the Steklov eigenvalue functionals σk (Σ, g)Lg (∂Σ)
on smooth surfaces with non-empty boundary. We prove that,
under some natural gap assumptions, these functionals do admit
maximal metrics which come with an associated minimal surface
with free boundary from Σ into some Euclidean ball, generalizing
previous results by Fraser and Schoen in [10].

Let Σ be a smooth compact connected surface with a smooth bound-
ary ∂Σ 6= ∅. We denote by γ its genus and bym the number of connected
components of its boundary, which, together with orientability, charac-
terize topologically the surface. Given a Riemannian metric g on Σ, the
Dirichlet-to-Neumann operator, L : C∞ (∂Σ) 7→ C∞ (∂Σ), is defined as
follows: for any u ∈ C∞ (∂Σ), consider the harmonic extension û of u in
Σ, which is unique, then Lu = ∂ν û where ν is the outward unit conormal
along ∂Σ. This operator is self-adjoint and has a discrete spectrum

0 = σ0 < σ1(Σ, g) ≤ σ2(Σ, g) ≤ · · · ≤ σk(Σ, g) ≤ · · · → +∞
of so-called Steklov eigenvalues counted with multiplicity. These are the
σ’s for which there exists a non-trivial solution u ∈ C∞ (Σ), smooth up
to the boundary, of {

∆gu = 0 in Σ,
∂νu = σu on ∂Σ,

where ∆g = −divg (∇) is the Laplace–Beltrami operator. These eigen-
values are also characterized by the following variational problem:

σk (Σ, g) = inf
Ek+1

sup
φ∈Ek+1\{0}

∫
Σ |∇φ|

2
g dvg∫

∂Σ φ
2dσg

,

where the infimum is taken over the vector space of smooth functions
Ek+1 of dimension k + 1.

These eigenvalues may be seen as functionals depending on the met-
ric g. For obvious scaling reasons, it is more interesting to consider
the functionals σk (Σ, g)Lg (∂Σ). There has been a recent interest in
studying these Steklov eigenvalue functionals because of the connection
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between critical metrics for these functionals and minimal immersions
of Σ with free boundary into some Euclidean ball. A smooth immersion
Φ : Σ 7→ Bn+1 is a minimal surface with free boundary if Φ (Σ) is a min-
imal surface with Φ (∂Σ) ⊂ Sn which hits the boundary orthogonally
(that is, ∂νΦ is parallel to Φ on ∂Σ). These free boundary minimal sur-
faces arise as critical points of the area when the surface is constrained
to lie in the ball but is free to vary on the boundary of the ball. This
link between this purely geometric problem and the Steklov eigenvalues
was first discovered by Fraser–Schoen [8]. In particular, it is proved
in Fraser–Schoen [9], proposition 2.4, that a metric g0 on Σ such that
σk (Σ, g0)Lg0 (∂Σ) is maximal among smooth metrics on Σ comes with
a conformal minimal immersion with free boundary Φ : Σ 7→ Bn+1 for
some n such that Φ is an isometry on ∂Σ, up to scaling. Note that,
conversely, see again Fraser–Schoen [9], the coordinates of any confor-
mal minimal immersion with free boundary are Steklov eigenfunctions
corresponding to some σk. This link has led Fraser and Schoen to start
an intensive study of the first Steklov eigenvalue (see [8], [10], [9]).

Thus, it is geometrically interesting to look for maximal metrics for
Steklov eigenvalues in order to get conformal minimal immersions with
free boundary. That’s a good reason to introduce the topological invari-
ant

σk (γ,m) = sup
g
σk (Σ, g)Lg (∂Σ) ,

where Σ is an oriented surface of genus γ with m boundary components.
Girouard and Polterovich [13] proved that

σk(γ,m) ≤ 2πk (γ +m) ,

generalizing for k ≥ 2 an estimate due to Fraser and Schoen [8] in the
case k = 1. Very few exact values of σk (γ,m) are known. Weinstock
[26] proved in 1954 that

(0.1) σk(0, 1) = 2πk,

and that for k = 1, the case of equality holds for the Euclidean disk. The
exact value of σ1(0, 2) was found by Fraser–Schoen [10] and the maxi-
mizing metric was characterized as coming from the critical catenoid. In
this same paper, an asymptotic of σ1 (0,m) as m→ +∞ was obtained.

It can also be shown by standard gluing procedures (even if a bit tech-
nical, see [7]) that the following inequalities between these topological
invariants hold:

(0.2) σk (γ,m) ≥ max
i1+···+is=k
∀q,iq≥1

γ1+···+γs≤γ
γ1+···+γs+m1+···+ms≤γ+m
γ1<γ or γ1+m1<γ+m if s=1

s∑
q=1

σiq(γq,mq).

We prove the following existence result:
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Theorem 1. Let Σ be a compact orientable surface of genus γ, with
a smooth boundary with m ≥ 1 connected components. Let k ≥ 1. If
the inequality (0.2) is strict, then there exists a smooth metric g on
Σ such that σk (γ,m) = σk (Σ, g)Lg (∂Σ). Moreover, up to scaling,
this maximizing metric is the pull-back of the Euclidean metric by some
conformal minimal immersion with free boundary in the unit Euclidean
ball Bn+1 for some n.

This theorem was proved for the first eigenvalue k = 1, with γ = 0
and any m in Fraser–Schoen [10]. In this case, the condition that (0.2)
is strict reads as σ1 (0,m) > σ1 (0,m− 1). They also proved that this
condition holds true for any m so that σ1 (0,m) is achieved by a smooth
maximal metric for all m ≥ 1. Their proof easily extends to higher
genus, still for k = 1, except that we do not know if the gap condition
holds for γ ≥ 1.

Note that our theorem gives suitable conditions for the existence of
conformal minimal immersion with free boundary with specified genus
and number of boundary components given by k-th Steklov eigenfunc-
tions for any k ≥ 1. Note also that the gap assumption, i.e., the fact
that (0.2) is strict, is necessary to get an existence result. Indeed, it was
proved by Girouard–Polterovich [12] that σ2(0, 1) is not achieved by a
maximizing metric. Note that, in this case, we have σ2(0, 1) = 2σ1(0, 1)
by (0.1) so that (0.2) is not strict.

Even in the case k = 1, our proof differs a little bit from that of
Fraser–Schoen [10]. And for higher eigenvalues, compared to the first,
we have to deal with possible bubbling phenomena and, thus, to analyze
them precisely in order to rule them out thanks to the gap assumption.
The starting point of our proof is the following simple remark: it is
somewhat more convenient (even if not easy) to maximize the Steklov
eigenvalue among metrics in a given conformal class since everything de-
pends then from a single function. Then we pick up a special maximizing
sequence for σk (γ,m) consisting in maximizers in their own conformal
class. These maximizers come, as we shall see, with a corresponding
harmonic map with free boundary from Σ into some Euclidean ball and
the proof of Theorem 1 relies on a careful asymptotic analysis of these
harmonic maps when the conformal class degenerates. Quantification
results for such sequences of harmonic maps with free boundary were
recently obtained in Laurain–Petrides [19].

In order to carry out this program, we introduce the conformal in-
variant

σk (Σ, [g]) = sup
g̃∈[g]

σk (g̃)Lg̃ (∂Σ) ,

for any smooth compact Riemannian surface (Σ, g) with a non-empty
boundary. Here [g] denotes the conformal class of g, that is all the
metrics on Σ which are a multiple of g by a smooth positive function.
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Then, if Σ is orientable of genus γ and with m boundary components,
we have of course that

σk (γ,m) = sup
[g]

σk (Σ, [g]) .

Once again, one can prove by standard gluing techniques (see [7]) that

(0.3) σk(Σ, [g]) ≥ max
1≤j≤k

i1+···+is=j

(
σk−j(Σ, [g]) +

s∑
m=1

σim(D, [ξ])

)
.

Note that thanks to (0.1), this inequality reads completely as

σk(Σ, [g]) ≥ max
1≤j≤k

i1+···+is=j

(σk−j(Σ, [g]) + 2πj) ,

but, for a reason which will become clear in the proofs, we prefer to state
it in the form of (0.3). Then we have the following existence result:

Theorem 2. Let (Σ, g) be a compact Riemannian surface with a non-
empty smooth boundary. Let k ≥ 1. Then, if (0.3) is strict, there exists
a smooth maximal metric g̃ ∈ [g], such that σk(Σ, [g]) = σk(Σ, g̃)Lg̃(Σ).

Note that by (0.1) and (0.3), the gap condition of our theorem would
be a consequence of

σk(Σ, [g]) > σk−1(Σ, [g]) + 2π.

If a maximal metric g̃ for σk (Σ, [g]) exists, the conformal factor related
to g of a maximal metric g̃, is Φ.∂νΦ on ∂Σ, where Φ is some harmonic
map from Σ into Bn+1 with free boundary whose coordinates are eigen-
functions for the k-th Steklov eigenvalue. Such a map takes values in
the Euclidean ball, is harmonic inside Σ, satisfies that |Φ| = 1 and ∂νΦ
is orthogonal to TΦSn on the boundary of Σ. These harmonic maps
with free boundary have been studied in particular in Da Lio [5], Da
Lio–Rivière [6], Laurain–Petrides [19] and Scheven [23].

The strategy of proof of Theorem 2 is the following. We do not
prove either that any maximizing sequence does converge, up to a sub-
sequence, to a maximizer nor that maximizers in a possible “weaker
sense” are regular. Instead, as was initiated by Fraser–Schoen [10],
we carefully select a maximizing sequence by a regularization process
which does converge to a smooth maximizer. This special maximiz-
ing sequence is the solution of an approached variational problem and
comes with a sequence of “almost” harmonic maps with free boundary
in some Euclidean ball. The core of the proof is to carefully analyze
the asymptotic behavior of these maps to prove that they do converge
to a real smooth harmonic map with free boundary, leading to a max-
imal metric for the Steklov eigenvalue under consideration. The main
difficulty is that, contrary to the case k = 1, one cannot a priori avoid
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phenomenon of concentration, with multiple bubbles appearing. We,
thus, have to perform a bubble tree decomposition for this sequence,
to understand precisely the behavior of these maps at a concentration
point, to prove a no-neck energy result, in order to get a quantification
result, and enough test-functions to use the variational characterization
of the k-th Steklov eigenvalue in order to violate the gap assumption of
the theorem.

The proof of Theorem 1 starts from the existence of maximal metrics
in their own conformal class: this gives once again a special maximizing
sequence. We then understand the behavior of this sequence if the con-
formal class degenerates in order to prove that it cannot happen under
the gap assumption of the theorem. Then we rely on a compactness
result by Laurain–Petrides [19] to finally prove that our maximizing
sequence does converge to a smooth maximizer once degeneracy of the
conformal class has been ruled out.

Analogous questions can be considered concerning the maximization
of Laplace eigenvalues on closed surfaces. Inequalities (0.2) and (0.3)
were proved in this situation by Colbois–El Soufi [4]. Maximizing met-
rics for Laplace eigenvalues come with minimal immersion of the surface
into some sphere. If one adds the conformal class constraint, they come
with smooth harmonic maps into the sphere. The analog of Theorem
1 for Laplace eigenvalues was proved in Petrides [22]. The analog of
Theorem 2 was recently announced with a very brief sketch of proof
in Nadirashvili–Sire [20] and proved in Petrides [22]. The proofs in
the Steklov case are somewhat more difficult since one has to deal with
“almost” harmonic maps with free boundary in some Euclidean ball
instead of “almost” harmonic maps in some sphere. The analysis of
such maps is more tricky: regularity and quantification results are, for
instance, more recent (see Scheven [23], Da Lio–Rivière [6], Da Lio [5],
Laurain–Petrides [19] compared to Hélein [14], Parker [21]) and the de-
scription of the bubbling phenomenon in the case of the present paper
was explicitly asked for by Fraser–Schoen [9].

The paper is organized as follows:
In Section 1, we introduce some notations and recall some more or less

classical tools that we shall use during the proof. Section 2 is devoted
to the set up of the proof of Theorem 2, proof carried out in Sections 3
to 5. We refer to the end of Section 2 for a detailed sketch of the proof
of Theorem 2.

We prove Theorem 1 in Section 6, dealing with a maximizing sequence
of metrics for σk(γ,m) whose k-th eigenvalue is maximal in its confor-
mal class. We then study the asymptotics of the harmonic maps on Σ
with free boundary into some Bn+1 they define, and thanks to the gap
assumption of the theorem, we remove all the problems of convergence
which could occur for this maximizing sequence.
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1. Preliminaries

1.1. Notations. Let (M, g) be a smooth Riemannian surface with a
boundary of length Lg(∂M) = 1. Let x ∈ M and r > 0. We denote
by Bg(x, r) the open ball of radius r centered at x. If x ∈ ∂M , we
let Ig(x, r) = ∂M ∩ Bg(x, r). In the Euclidean upper half-plane R2

+ =
{(s, t) ∈ R2; t ≥ 0} , we let for x ∈ R × {0}, D+

r (x) = Dr(x) ∩ R2
+ and

Ir(x) = (−r, r)× {0}.
We denote by M(∂M) the set of positive Radon measures equipped

with the weak? topology on ∂M and by M1(∂M) the subset of proba-
bility measures.

As already said, we denote by σk(M, g) the k-th eigenvalue of the
Dirichlet-to-Neumann operator on M . It satisfies the classical min-max
variational characterization:

(1.1) σk(M, g) = inf
Ek+1

sup
φ∈Ek+1\{0}

∫
M |∇φ|

2
g dvg∫

∂M φ2dσg
,

where the infimum is taken over the spaces of smooth functions Ek+1

of dimension k + 1.
For an open set Ω ⊂M such that ∂Ω = Γ∪Γ̃ where Γ = ∂Ω∩∂M and

Γ̃ = ∂Ω \ ∂M are non-empty piecewise smooth curves, and a smooth
density eu on Γ we denote by σ? (Ω, g,Γ, eu) the first eigenvalue for the
following problem

∆gφ = 0 in Ω,
∂νφ = σ? (Ω, g,Γ, eu) euφ on Γ,

φ = 0 on Γ̃,

that is

σ? (Ω, g,Γ, eu) = inf
φ∈H

∫
Ω |∇φ|

2
g dvg∫

Γ φ
2eudσg

,

where

H = {φ ∈W 1,2(Ω), φ = 0 on Γ̃},
the value of φ on ∂Ω being understood taken in the sense of the Sobolev
trace.

For all the paper, we fix δ > 0, a constant C0 > 1 and a family
(xl)l=1,...,L of points in ∂M and smooth functions vl : M 7→ R such that

• for any l ∈ {1, . . . , L}, gl = e−2vlg is a flat metric in Ωl =
Bgl (xl, 2δ), and Γl = Igl(xl, 2δ) is a geodesic line for gl so that
the exponential map expgl,xl defines an isometry between D+

2δ(0)
and (Bgl (xl, 2δ) , gl).
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• ∂M =

L⋃
l=1

γl where γl = Igl (xl, δ).

• For any 1 ≤ l ≤ L, C−2
0 ≤ e2vl ≤ C2

0 .

• For any x ∈ ωl and 0 < r < δ, Bg(x,C
−1
0 r) ⊂ Bgi(x, r) ⊂

Bg(x,C0r).

For 1 ≤ l ≤ L and a point z ∈ D+
2δ(0), we let

e2ṽl(z) = e2vl(expgl,xl
(z)) and z̄l = expgl,xl(z),

and for x ∈ Ωl and a set Ω ⊂ Ωl,

x̃l = exp−1
gl,xl

(x) and Ω̃l = exp−1
gl,xl

(Ω).

For a smooth density eu on ∂M we let

eũ
l(z) = eṽl(z)eu(expgl,xl

(z)),

so that for Γ ⊂ Γl, ∫
Γ
eudσg =

∫
Γ̃l
eũ

l
ds.

For other functions φ ∈ L1(M) or measures ν ∈M(∂M), we let

φ̃l(z) = φ(expgl,xl(z)) and ν̃l = exp?gl,xl(ν).

Let pε(x, y) be the heat kernel of ∂M at time ε > 0 for the induced
measure dσg. Then, for y, z ∈ Γl, we let

p̃lε(z, y) = eṽl(z)pε(expgl,xl(z), expgl,xl(y)),

so that for a density eu(x) =
∫

Γ pε(x, y)dν(y) for Γ ⊂ Γl and some
measure ν, we have

eũ
l(z) =

∫
Γ̃l
p̃lε(z, y)dν̃(y),

and for φ ∈ L1(∂M),∫
Γ̃l
φ̃l(s, 0)p̃lε((s, 0), ỹl)ds =

∫
Γ
φ(x)pε(x, y)dσg(x).

When the context is clear, we drop the exponent l in all the notations.
Now, for parameters a ∈ R× {0} and α > 0, we define the following

rescaled objects

x̂ =
x̃− a
α

, Ω̂ =
Ω̃− a
α

, Γ̂ =
Γ̃− a
α

,

e2û(z) = α2e2ũ(αz+a), φ̂(z) = φ̃(αz + a),

ν̂ = H?
a,α(ν̃), p̂ε(z, y) = αp̃lε(αz + a, αy + a),

where Ha,α(x) = αx+ a, so that if eu(x) =
∫

Γ pε(x, y)dν(y), we have

eû(z) =

∫
Γ̂
p̂ε(z, y)dν̂(y),
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and ∫
Γ̂
φ((s, 0))p̂ε((s, 0), ŷ)ds =

∫
Γ
φ(x)pε(x, y)dσg(y).

We also denote for z ∈ R2,

z̆ = expgl,xl(αz + a),

so that ˆ̆z = z and

Ω̆ = expgl,xl(αΩ + a).

1.2. Estimates on the heat kernel. The heat kernel pε(x, y) of a
the union of circles ∂M at time ε > 0 with respect to the measure dσg
satisfies the following uniform estimates as ε→ 0
(1.2)

pε(x, y) =ε→0
e−

dg(x,y)2

4ε

√
4πε

(
a0(x, y) + εa1(x, y) + ε2a2(x, y) + o(ε2)

)
,

with a0, a1, a2 ∈ C∞(∂M × ∂M) are Riemannian invariants such that
a0(x, x) = 1 as proved, for instance, in [2]. We have also a uniform
bound: there exists A0 > 0 such that for any ε > 0,

(1.3) ∀x, y ∈ ∂M,
1

A0

√
4πε

e−
dg(x,y)2

4ε ≤ pε(x, y) ≤ A0√
4πε

e−
dg(x,y)2

4ε .

We deduce the same uniform properties for the rescaled heat kernel
p̂ε(x, y) by some parameters aε ∈ R × {0} and αε > 0 such that aε →
a ∈ R× {0} and αε → 0 as ε→ 0. We have for any R > 0,

(1.4) p̂ε(z, y) =
e−
|y−z|2

4θε
(1+o(1))

√
4πθε

(1 + o(1)) uniformly on DR × DR,

where θε = ε
e2ṽl(a)α2

ε
and we have the following bound for any fixed

0 < ρ < 1

(1.5)
e−
|y−z|2

4θε
(1+ρ)

√
4πθε

(1− ρ) ≤ p̂ε(z, y) ≤ e−
|y−z|2

4θε
(1−ρ)

√
4πθε

(1 + ρ),

for all ε > 0 small enough.
Let’s prove (1.4). We fix R > 0 and we have uniformly for (x, y) ∈

IR × IR as ε→ 0

p̂ε(x, y) =
αεe

vl(x̆)

√
4πε

e−
dg(x̆,y̆)2

4ε (a0(x̆, y̆) + o(1))

=
αεe

ṽl(a)

√
4πε

(1 + o(1))e−
dg(x̆,y̆)2

4ε

by (1.2). It remains to notice that

dg(x̆, y̆) = eṽl(a) |x− y|αε(1 + o(1))
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uniformly for (x, y) ∈ D+
R × D+

R and we get the desired approximation
(1.4).

For a sequence of measures νε ∈ M(∂M), we also have uniform
bounds for R > r > 0 and θε → 0 as ε→ 0

(1.6) sup
x∈IR−r

∫
∂M\ĬR

αεpε(x̆, y)dνε(y) = O

e− (R−r)2
8θε

√
θε

 .

We prove it thanks to (1.3) and (1.5). Let x ∈ IR−r.

αε

∫
∂M\ĬR

pε(x̆, y)dνε(y) = e−vl(x̆)

∫
I
C2

0R
\IR

p̂ε(x, z)dν̂ε(z)

+

∫
∂M\Ĭ

C2
0R

αεpε(x̆, y)dνε(y)

≤ C0

∫
I
C2

0R
\IR

e−
|x−z|2

8θε

√
πθε

dν̂ε(z)

+

∫
∂M\Ig(āε,

αεC
2
0R

C0
)

αεA0√
4πε

e−
dg(x̆,y)2

4ε dνε(y)

≤ O

e− (R−r)2
8θε

√
θε

+
A0αε√

4πε
e−

α2
ε (R−r)2

4ε ,

where Ĭr ⊂ Ig(āε, αεC0r) ⊂ Ig(āε, αεC0R). This proves (1.6). We also
have

(1.7) sup
x∈∂M\ĬR

∫
Ĭr

pε(x, y)dσg(y) = O

e− (R−r)2
8θε

√
θε

 .

Let x ∈ ∂M \ ĬR. We assume that x ∈ IC2
0R
\ IR. Then,∫

Ĭr

pε(x, y)dσg(y) =

∫
Ir

p̂ε(z, x̆)dz

≤ 1√
πθε

∫
Ir

e−
|x−z|2

8θε dz

≤ 2r√
πθε

e−
(R−r)2

8θε .

Now, if ε is small enough and if x ∈ ∂M \ ĬC2
0R
⊂ ∂M \ Ig(āε, αεRC0),

we have∫
Ĭr

pε(x, y)dσg(y) ≤
∫
Ig(āε,αεC0r)

pε(x, y)dσg(y)
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≤ A0√
4πε

∫
Ig(āε,αεC0r)

e−
dg(x,y)2

4ε dσg(y)

≤ O

e−α2
ε (R−r)2

4ε

√
θε

 .

We proved (1.7). Now let’s prove that

(1.8) lim
R→+∞

lim
ε→0

sup
x∈Ir

∣∣∣∣∫
IR

p̂ε(z, x)dz − 1

∣∣∣∣ = 0.

We fix 0 < ρ < 1
2 and R > 0. Then, for ε small enough, we have by

(1.5) that∫
IR

p̂ε(z, x)dz ≤
∫
R×{0}

e−
|x−z|2(1−ρ)

4θε

√
4πθε

(1 + ρ)dz =
1 + ρ√
1− ρ

for any x ∈ Ir and∫
IR

p̂ε(z, x)dz ≥
∫
IR

e−
|x−z|2(1+ρ)

4θε

√
4πθε

(1− ρ)dz

≥
∫
R×{0}

e−
|x−z|2(1+ρ)

4θε

√
4πθε

(1− ρ)dz −
∫
R×{0}\IR

e
−|x−z|2

8θε

√
πε

dz

≥ 1− ρ√
1 + ρ

+ o(1) as ε→ 0

uniformly on Ir. Letting ε → 0, then R → +∞ and then ρ → 0 gives
(1.8).
1.3. Capacity and Poincaré inequalities. We first notice the follow-
ing consequence of the classical computation of the capacity of annuli
in R2.

Claim 1. Let (M, g) be a compact Riemannian surface. Then, there
is C > 0 and r0 > 0 such that for all x ∈ M and all 0 < r2 < r1 < r0,
there exists a smooth function ηg,x,r1,r2 : M → R with

• 0 ≤ ηg,x,r1,r2 ≤ 1,
• ηg,x,r1,r2 = 1 on Bg(x, r2),
• ηg,x,r1,r2 ∈ C∞c (Bg(x, r1)),

•
∫
M |∇ηg,x,r1,r2 |

2
g dvg ≤

C

ln
(
r1
r2

) .

We now recall two theorems giving Poincaré inequalities on surfaces.

Theorem 3 ([1], Lemma 8.3.1). Let (M, g) be a Riemannian man-
ifold. Then, there exists a constant B > 0 such that for any L ∈
W−1,2(M) with L(1) = 1, we have the following Poincaré inéquality

∀f ∈W 1,2(M),

∫
M

(f − L(f))2dvg ≤ B ‖L‖2W−1,2(M)

∫
M
|∇f |2g dvg.
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We denote by

C1,2(K) = inf

{∫
R2

φ2dvg +

∫
R2

|∇φ|2g dvg;φ ∈ C
∞
c (R2), φ ≥ 1 on K

}
,

the capacity of a compact set K ⊂ R2 and

Cap2(K,Ω) = inf

{∫
Ω
|∇φ|2g dvg;φ ∈ C

∞
c (Ω), φ ≥ 1 on K

}
,

the relative capacity of K ⊂⊂ Ω.

Theorem 4 ([1], Corollary 8.2.2). Let Ω ⊂ R2 be a bounded extension
domain. Then, there exists a constant CΩ such that for any compact
K ⊂ Ω with C1,2(K) > 0 and for any function f ∈ C∞(Ω) such that
f = 0 on K,

‖f‖L2(Ω) ≤
CΩ

C1,2(K)
‖∇f‖L2(Ω) .

Ω is a bounded extension domain means that the extension by 0 on
R2 of every function in W 1,2

0 (Ω) is W 1,2 in R2. This is true for the
family of sets we consider during the proof:

Ω = D+
1
ρ

\
s⋃
i=1

Dρ(xi),

where ρ > 0, xi ∈ D 1
ρ

such that if i 6= j, then xi 6= xj and

10ρ < min

(
min
i
d(xi, ∂D 1

10ρ
); min

i 6=j

|xi − xj |
2

)
.

We now set

ΩK = D+
1
Kρ

\
s⋃
i=1

DKρ

for some fixed number 1 < K < 10 chosen independent of the problem
we consider. We obtain the corollary:

Corollary. Let r > 0 fixed. Then, we have a constant Cr > 0 such
that for every f ∈ C∞(Ω) which vanishes on a smooth piecewise curve
Γ ⊂⊂ ΩK which connects two points of distance r > 0,

‖f‖L2(Ω) ≤ Cr ‖∇f‖L2(Ω) .

Indeed, it is proved in ([15], pages 95–97) that

Cap2(Γ,Ω) ≥ K0

ln(1
r )
,

and that

C1,2(Γ) ≥ K1Cap2(Γ,Ω)

for constants K0 > 0 and K1 > 0 which only depend on Ω and K.
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2. Selection of a maximizing sequence

We fix k ≥ 1. In this section, we build a specific maximizing sequence
for σk(M, [g]) thanks to the heat equation on ∂M . Let ε > 0. We denote
by Kε the heat operator on ∂M so that for a positive Radon measure
ν ∈M(M), Kε[ν]dσg is the solution at time ε > 0 of the heat equation
on the curves (∂M, dσg) which converges to ν as ε → 0 in M(∂M).
Given x, y ∈ M(∂M), we denote by pε(x, y) the heat kernel of (∂M, g)
so that for ν ∈M(∂M),

Kε[ν](x) =

∫
∂M

pε(x, y)dν(y).

For f ∈ L1(∂M), we set Kε[f ] := Kε[fdσg] so that∫
∂M

Kε[f ]dν =

∫
∂M

fKε[ν]dσg.

For ε > 0, we set

(2.1) σε = sup
ν∈M(∂M)

σk(M, g, ∂M,Kε[ν]).

By continuity of ν ∈ M1(∂M) 7→ σk(M, g, ∂M,Kε[ν]), a maximizing
sequence for the variational problem (2.1) converges inM1(∂M), up to
the extraction of a subsequence, to a measure νε ∈M1(∂M) such that

(2.2) σε = σk(M, g, ∂M,Kε[νε]).

We set

(2.3) euε = Kε[νε],

a sequence of smooth positive densities satisfying

(2.4) σε = σk(M, g, ∂M, euε)→ σk(M, [g]) as ε→ 0.

Indeed, σε ≤ σk(M, [g]) for all ε > 0 and for η > 0, there exists some
density eu such that

∫
∂M eudσg = 1 and σk(M, g, ∂M, eu) ≥ σk(M, [g])−

η
2 . By uniform estimates on the heat operator, Kε[e

u]→ eu as ε→ 0 in

C0(∂M). Then, there exists ε0 > 0 such that

σε ≥ σk(M, g, ∂M,Kε[e
u]) ≥ σk(M, g, ∂M, eu)− η

2
≥ σk(M, [g])− η

for ε < ε0. We get (2.4). Now, thanks to the choice of the maximizing
sequence (2.3) the variational problem (2.1) gives

Proposition 1. Fix ε > 0. Then, there exists a family Φε =

(φ0
ε , · · · , φ

n(ε)
ε ) of smooth independent functions in L2(∂M, euεdσg) such

that

(i) For i ∈ {0, · · · , n(ε)}, φiε ∈ Ek(M, g, ∂M, euε), that is to say{
∆gφ

i
ε = 0 in M,

∂νφ
i
ε = σεe

uεφiε in ∂M,
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(ii) Kε[|Φε|2] ≥ 1 on ∂M ,

(iii) Kε[|Φε|2] = 1 on supp(νε).

Proof. Since ε is fixed, we omit the indices ε for σε, νε and euε up to
the end of the proof of the claim.

Let µ ∈ M(∂M) and t > 0. We set σt = σk(M, g, ∂M,Kε[ν + tµ]).
Note that σ = σt=0 and by continuity, σt → σ as t→ 0+. We first prove
that

(2.5) lim
t→0+

σt − σ
t

= inf
φ∈Ek(M,g,∂M,eu)

(
−σ
∫
∂M Kε[φ

2]dµ∫
∂M φ2eudσg

)
.

Let φ0, φ1, · · · , φk be an orthonormal family of functions in L2(∂M, eudσg)
such that φi ∈ Ei(M, g, ∂M, eu). We set E = V ect{φ0, · · · , φk}. Then,
by the min-max variational characterization (1.1),

σt ≤ sup
φ∈E\{0}

( ∫
M |∇φ|

2
g dvg∫

∂M φ2Kε[ν + tµ]dσg

)

= sup
φ∈E∩Sk

( ∫
M |∇φ|

2
g dvg∫

∂M φ2Kε[ν]dσg + t
∫
∂M Kε[φ2]dµ

)
,

where Sk = {
∑k

i=0 βiφi, β ∈ Sk} and

σt ≤ sup
φ=
∑k
i=0 βiφi∈Sk

(
k∑
i=0

β2
i σi

(
1− t

∫
∂M

Kε[φ
2]dµ+ o(t)

))

≤ σ

(
1− t

∫
∂M Kε[φ

2
k]dµ∫

∂M φ2
ke
udσg

+ o(t)

)
,

uniformly as t → 0, where σi = σi(M, g, ∂M, eu). Indeed, by the
gap σk(M, [g]) ≥ σk−1(M, [g]) + 2π, we have σ = σk(M, g, ∂M, eu) >
σk−1(M, g, ∂M, eu) and since we have (2.4). Then, minimizing among
the φk ∈ Ek(M, g, ∂M, eu), we get that

(2.6) lim sup
t→0+

σt − σ
t
≤ inf

φ∈Ek(M,g,∂M,eu)

(
−σ
∫
∂M Kε[φ

2]dµ∫
∂M φ2eudσg

)
.

Now, we let φt ∈ Ek(M, g, ∂M,Kε[ν+ tµ]) with ‖φt‖L2(∂M,Kε[ν]dσg) = 1.

We have that

(2.7)

{
∆gφt = 0 in M,
∂νφt = σtKε[ν + tµ]φt = σt(e

u + tKε[µ])φt in ∂M.

For t ≤ ‖eu‖L∞
2‖Kε[µ]‖L∞

, we have that

1

2
eu ≤ Kε[ν + tµ] ≤ 2eu,
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and that for any φ ∈ C∞(∂M),

1

2

∫
∂M

euφ2 ≤
∫
∂M

φ2Kε[ν + tµ] ≤ 2

∫
∂M

φ2eu,

so that L2(Kε[ν+tµ]dσg) and L2(Kε[ν]dσg) = L2(eudσg) define the same
sets with equivalent norms and constants in the equivalence independent
of t. Then, {φt} is bounded in L2(eudσg). By elliptic regularity theory
for the Dirichlet-to-Neumann operator with equation (2.7), (see [25],
Chapter 7.11, page 37), there exists φ ∈ Ek(M, g, ∂M, eu) such that
up to the extraction of a subsequence, φt → φ in Cm(M) as t → 0+

and ‖φ‖L2(∂M,eudσg) = 1. We denote by Π the orthogonal projection on

Ek(M, g, ∂M, eu) with respect to the L2(∂M, eudσg)-norm. Then, we
write (2.7) as
(2.8) ∆g

(
φt−Πφt
αt

)
= 0 in M,

∂ν

(
φt−Πφt
αt

)
− σteu

(
φt−Πφt
αt

)
= σt−σ

αt
euφt + t

αt
σtKε[µ]φt in ∂M,

with

(2.9) αt = ‖φt −Πφt‖L∞ + t+ (σ − σt).

Up to the extraction of a subsequence, we have that

t0 = lim
t→0+

t

αt
and δ0 = lim

t→0+

σ − σt
αt

.

Notice that δ0 ≥ 0. By elliptic theory on the Dirichlet-to-Neumann
operator (see [25], Chapter 7.11, page 37), since φt−Πφt

αt
is uniformly

bounded as t→ 0+, we get up to the extraction of a subsequence that

φt −Πφt
αt

→ R0 as t→ 0+ in Cm(M),

where R0 ∈ Ek(M, g, ∂M, eu)⊥. Passing to the limit in equation (2.8),
we get

(2.10)

{
∆gR0 = 0 in M,
∂νR0 − σeuR0 = −δ0e

uφ+ t0σKε[µ]φ in ∂M,

and by (2.9)

(2.11) ‖R0‖∞ + t0 + δ0 = 1.

Testing (2.10) against φ, and using the fact thatR0 ∈Ek(M, g, ∂M, eu)⊥,
we have that

δ0 = δ0

∫
∂M

euφ2dσg = t0σ

∫
∂M

Kε[µ]φ2dσg.

If t0 = 0, then δ0 = 0 and then R0 = 0 thanks to (2.10) and the fact
that R0 ∈ Ek(M, g, ∂M, eu)⊥. This is absurd with (2.11). Thus, t0 6= 0
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and

lim
t→0+

σt − σ
t

=
−δ0

t0
= −σ

∫
∂M Kε[φ

2]dµ∫
∂M φ2eudσg

.

This and (2.6) gives (2.5).
Since (1 + t

∫
∂M dµ)σt ≤ σ for all t ≥ 0, we deduce from (2.5) that

for any µ ∈ ∂M, there exists φ ∈ Ek(M, g, ∂M, eu) such that

(2.12)

∫
∂M

φ2eudσg = 1 and

∫
∂M

(1−Kε[φ
2])dµ ≤ 0.

We define the following subsets of C0(∂M)

K =

{
ψ =

n∑
i=0

Kε[φ
2
i ]− 1 ∈ C0(M);φ0, · · · , φn ∈ Ek,

∫
∂M

ψdν = 0

}
,

where Ek = Ek(M, g, ∂M, eu) and

F = {f ∈ C0(∂M), f ≥ 0}.

F is closed and convex. The set K is convex since it is a translation of
the convex hull of

C = {Kε[φ
2];φ ∈ Ek(M, g, ∂M, eu), ‖φ‖L2(M,g,∂M,eu) = 1}.

Since Ek(M, g, ∂M, eu) is finite dimensional, the vector space spanned
by C is finite dimensional and C is compact. Caratheodory’s theorem
gives that K is compact.

If F ∩ K = ∅, Hahn–Banach theorem gives the existence of some
µ ∈M(∂M) such that

(2.13) ∀f ∈ F,
∫
∂M

fdµ ≥ 0,

and

(2.14) ∀ψ ∈ K,
∫
∂M

ψdµ < 0.

Then, µ is a non-zero, by (2.13), positive, by (2.14), measure and
µ contradicts (2.12) by (2.14). Thus, F ∩ K 6= ∅ and there exists
φ0, · · · , φn ∈ Ek(M, g, ∂M, eu) with

(2.15)

∫
∂M
|Φ|2 eudσg = 1 and Kε[|Φ|2] ≥ 1,

where Φ = (φ0, · · · , φn). By Gaussian decomposition of some non-
negative quadratic form, we can assume that (φ0, · · · , φn) is a family of
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independent eigenfunctions in L2(∂M, eudσg) and satisfies (2.15). This
gives (i) and (ii). We can write that

1 =

∫
∂M
|Φ|2 eudσg =

∫
∂M

Kε[|Φ|2]dν ≥
∫
∂M

dν = 1.

Therefore, Kε[|Φ|2] = 1 ν-a.e and sinceKε[|Φ|2] is continuous, Kε[|Φ|2] =
1 on supp(ν). This gives (iii) and ends the proof of the claim. q.e.d.

By a result of Fraser–Schoen [9] and Karpukhin–Kokarev–Polterovich
[18], there exists a bound for the multiplicity of k-th Steklov eigenvalues
on surfaces which only depends on k and the topology of the surface.
Therefore, up to the extraction of a subsequence, we assume in the
following that n(ε) = n is fixed.

We organize the proof of Theorem 2 as follows:
In Section 3, we give regularity estimates on the densities euε and

on the associated Steklov eigenfunctions defined by Proposition 1 (see
Claim 4). These estimates permit to pass to the limit on the eigenvalue
equation (Proposition 1 (i)) as ε → 0 (see Claim 5). However, we
cannot pass to the limit on the whole surface. We have to avoid some
singularities for the maximizing sequence which could occur. We cannot
remove a priori some concentration points of {e2uεdvg} even with the
assumption that (0.3) is strict. Other harmless singularities are also
carefully avoided (see Claim 3).

From Sections 4 to 6, we assume the existence of concentration points
for the maximizing sequence and we aim at deducing the case of equality
in (0.3). In Section 4, we detect all the concentration scales thanks to
the construction of a bubble tree. This leads to the proof of Proposition
2, page 132.

We then give in Section 5 regularity estimates on the eigenfunctions
at each scale of concentration and pass to the limit in the equation they
satisfy. Notice that this work is divided into two subsections, depending
on the speed of convergence to zero of the concentration scale αε as
ε→ 0.

Finally, in Section 6.1, capitalizing on the energy estimates for the
limiting measures and equations given in Section 3.2 on M (see (3.28)),
at the end of Section 5.1 (see (5.35)) and Section 5.2 (see (5.40)) on some
disks D, we both prove the regularity of the limiting measures at all the
scales of concentration, and that no energy is lost in the necks in the
bubbling process. This is given by Proposition 3, page 168. Thanks to
this proposition, we prove in Section 6.2 that the presence of concentra-
tion points implies the case of equality in (0.3) by a suitable choice of test
functions for the variational characterization of σε = σk(M, g, ∂M, euε).

Therefore, since the specific maximizing sequence {euεdσg} does not
concentrate with the assumption that (0.3) is strict, the end of the proof
of Theorem 2 just uses the second part of Proposition 3 in Section 6.1.
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3. Regularity estimates in the surface

3.1. Regularity estimates far from singularities. In this subsec-
tion, we aim at getting finer and finer regularity estimates on the eigen-
functions which appear in Proposition 1 and pass to the limit on the
equation they satisfy. We denote by ν the weak? limit of νε. Notice that
ν is also the weak? limit of {euεdσg}. Indeed, if ζ ∈ C0(∂M),∣∣∣∣∫

∂M
ζ (euεdσg − dνε)

∣∣∣∣ =

∣∣∣∣∫
∂M

(Kε[ζ]− ζ)dνε

∣∣∣∣
≤ sup

M
|Kε[ζ]− ζ| ,

which goes to 0 as ε→ 0 by uniform continuity of ζ.
Hypothesis (iii) in Proposition 1 gives uniform estimates on the eigen-

functions {φiε} on sets of points which lie at a distance to supp(νε)
asymptotically smaller than

√
ε.

Claim 2. For any R > 0 there exists a constant CR > 0 such that
for any sequence (xε) of points in ∂M , with dg(xε, supp(νε)) ≤ R

√
ε, we

have ∣∣φiε(xε)∣∣ ≤ CR for all ε > 0.

Proof. We refer the reader to Section 1.1 for the notations used during
this proof. We can assume that xε ∈ ωl for 1 ≤ l ≤ L fixed and we set

Φ̂ε(x) = Φ̃ε
l
(
√
εx+ x̃lε)

for x ∈ D
δε−

1
2
∩ R2

+. Then,{
∆ξΦ̂

i
ε = 0 in D+

δε−
1
2
,

∂tφ̂
i
ε = −σε

√
εeũ

l
ε(
√
εx+x̃lε)φ̂iε in I

δε−
1
2
,

for 0 ≤ i ≤ n. By estimate (1.3) of Section 1.2, {
√
εpε} is uniformly

bounded so that {
√
εeũ

l
ε(
√
εx+x̃lε)} is uniformly bounded. Now, we let

yε ∈ supp(νε) be such that dg(xε, yε) ≤ R
√
ε. Thanks to Proposition 1,

we have that Kε[|Φε|2](yε) = 1. Let us write then with (1.3), Section
1.2 that for ρ > 0,

1 = Kε

[
|Φε|2

]
(yε) ≥

n∑
i=0

Kε

[∣∣φiε∣∣2] (yε)

=

n∑
i=0

∫
∂M

pε (y, yε)
(
φiε(y)

)2
dσg(y)

≥
n∑
i=0

1

A0

√
4πε

e−ρ
2C2

0

∫
I

(
φiε(y)

)2
dσg(y)

≥
n∑
i=0

1

A0

√
4πC0

e−ρ
2C2

0

∫
I2ρ(ẑε)

(
φ̂iε(z)

)2
dz,
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where I = Ig (yε, 2ρC0
√
ε) in the third line and we set ẑε = 1√

ε
(ỹlε − x̃lε)

so that, up to the extraction of a subsequence ẑε → z0 ∈ ∂M as ε → 0
and we deduce from the previous inequality that, for any ρ > 0, φ̂iε
is bounded in L2(Iρ(z0)). Thus, by elliptic regularity of the Dirichlet-
to-Neumann operator (see Taylor [25], Chapter 7.11, page 37), we get

that {φ̂iε} is uniformly bounded in Iρ by some constant Dρ. Setting
CR = D2C0R gives the claim. q.e.d.

Now, we will restrict the estimates on the eigenfunctions φiε far from
some singularities which could appear.

Ar,ε: We say that a point x ∈ ∂M satisfies Ar,ε for some r > 0 and
some ε > 0 if

σ?(Bg(x, r), g, Ig(x, r), e
uε) ≤ σk(M, [g])

2
.

Br,ε: We say that a point x ∈ M satisfies Br,ε for r > 0 and ε > 0 if
there exists f ∈ Ek(M, g, ∂M, {euε}) such that f(x) = 0 and the Nodal
set of f which contains x does not intersect ∂Bg(x, r) \ ∂M .

Note that if r1 < r2, Ar1,ε ⇒ Ar2,ε and Br1,ε ⇒ Br2,ε. We say that a
point x ∈M satisfies Pr,ε for r > 0 and ε > 0 if x ∈ ∂M and x satisfies
Ar,ε or if x satisfies Br,ε. For a surface (M, g), a sequence of densities
{euε} on ∂M and r > 0, we define the singular set

Xr(M, g, ∂M, {euε}) = {x ∈ Ω,∃ε > 0 such that x satisfies Pr,ε}.

Note that if r1 < r2, then Xr1(M, g, ∂M, {euε}) ⊂ Xr2(M, g, ∂M, {euε}).
The following claim holds true

Claim 3. There exists a sequence {euεm} with εm → 0 as m→ +∞
and there exist some points p1, · · · , ps ∈ ∂M with 0 ≤ s ≤ k such that

• ∀ρ > 0, ∃r > 0, Xr(M, g, ∂M, {euεm}) ⊂
⋃s
i=1Bg(pi, ρ),

• For any subsequence {euεm(j)}j≥0 of {euεm}m≥0,
(3.1)
∀ρ > 0,∀r > 0,∀1 ≤ i ≤ s,Xr(M, g, ∂M, {euεm(j)}) ∩Bg(pi, ρ) 6= ∅.

Proof. Assume by contradiction that for any sequence εm → 0, as
m → +∞, for any series of s points p1, · · · , ps ∈ ∂M with 0 ≤ s ≤ k,
there is ρ > 0 such that

(3.2) ∀r > 0, Xr(M, g, ∂M, {euεm}) \
s⋃
i=1

Bg(pi, ρ) 6= ∅.

Thanks to this hypothesis, we will deduce by induction the following
property Hs for 1 ≤ s ≤ k + 1

Hs: There exist sequences εm → 0, rm ↘ 0 as m→ +∞, some points
pm1 , · · · , pms ∈ M and s pairwise distinct points p1, · · · , ps ∈ ∂M such
that for 1 ≤ i ≤ s, pmi → pi as m→ +∞ and pmi satisfies Prm,εm .
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Let’s first prove H1. By (3.2) applied for s = 0 and a sequence {2−j},
we have the existence of pm1 ∈ X2−m(M, g, ∂M, {eu2−j }j≥0) for any fixed

m ≥ 0. For m ≥ 0, we choose εm = 2−j(m) such that pm1 satisfies
P2−m,εm . It is clear that εm → 0 as m→ +∞. Up to the extraction of
a subsequence, there exists p1 ∈ M such that pm1 → p1 as m → +∞.
Now, it is clear that p1 ∈ ∂M . Indeed, if p1 ∈M \ ∂M , then we choose
m0 ∈ N such that for m ≥ m0, Bg(p

m
1 , rm) ⊂M \∂M . Then pm1 satisfies

Brm,εm and the Nodal set of some function fm ∈ Ek(M, g, ∂M, {euεm})
which contains pm1 does not intersect ∂M since it does not intersect
∂Bg(p

m
1 , rm). Since fm is harmonic, it vanishes on an open set of M

by the maximum principle so that fm vanishes on M . This contradicts
the fact that fm is a k-th eigenfunction for the Dirichlet-to-Neumann
operator. Then p1 ∈ ∂M and we get H1.

We assume now that Hs is true for some 1 ≤ s ≤ k. We consider the
sequences {εm}, {rm}, {pmi } and p1, · · · , ps ∈ ∂M given by Hs. Let us
prove Hs+1. By (3.2), there is ρ > 0 such that for all r > 0,

Xr(M, g, ∂M, {euεm}) \
s⋃
i=1

Bg(pi, ρ) 6= ∅.

Let pms+1 ∈ Xrm(M, g, ∂M, {euεj }j≥0). For m ∈ N fixed, we let α(m) be
such that pms+1 satisfies Prm,εα(m)

. Since rm → 0 as m→ +∞, it is clear

that α(m) → +∞ as m → +∞. We set β(m) = min(m,α(m)). By

Hs, for 1 ≤ i ≤ s, pα(m)
i satisfies Prα(m),εα(m)

and since rm is decreasing,

p
α(m)
i satisfies Prβ(m),εα(m)

. Moreover, pms+1 satisfies Prm,εα(m)
and since

rm is decreasing pms+1 satisfies Prβ(m),εα(m)
. Up to the extraction of

a subsequence, we can assume that rβ(m) ↘ 0 as m → +∞ and we
let ps+1 ∈ M such that pms+1 → ps+1 as m → +∞. Since pms+1 ∈
M \

⋃s
i=1Bg(pi, ρ), ps+1 /∈ {p1, · · · , ps}. By the same arguments as in

the proof of H1, we also have that ps+1 ∈ ∂M . This proves Hs+1.
The proof of Hk+1 is complete. Now, we prove that Hk+1 leads

to a contradiction. We define k + 1 test functions for the variational
characterization of σεm = σk(M, g, ∂M, euεm ), ηmi for m ∈ N and 1 ≤
i ≤ k + 1 as follows

• If pmi satisfies Arm,εm , ηmi is the extension by 0 in M\Bg(pmi , rm) of
an eigenfunction for σ?(Bg(p

m
i , rm), g, Ig(p

ε
i , rm), {euεm}). In this

case,

(3.3)

∫
M |∇η

m
i |

2
g dvg∫

∂M (ηmi )2 dσg
≤ σk(M, [g])

2
.

• If pmi does not satisfy Arm,εm , it satisfies Brm,εm and ηmi is some
eigenfunction for σ?(D

m
i , g,Γ

m
i , e

uεm ) extended by 0 in M \ Dm
i

where Dm
i is a nodal domain of some Steklov eigenfunction as-

sociated to σεm which is included in Bg(p
m
i , rm). Such a domain
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exists by assumption Brm,εm and satisfies Γmi = ∂M ∩Dm
i 6= ∅. In

this case,

(3.4)

∫
M |∇η

m
i |

2
g dvg∫

∂M (ηmi )2 dσg
= σ?(D

m
i , g,Γ

m
i , e

uεm ) = σεm .

For m large enough, we have

min
1≤i<i′≤k+1

dg(p
m
i , p

m
i′ )− 3rm ≥

1

2
min

1≤i<i′≤k+1
dg(pi, pi′) > 0,

so that the functions ηm1 , · · · , ηmk+1 have pairwise disjoint supports.
Thanks to (3.3) and (3.4), the min-max characterization of σεm =
σ(M, g, ∂M, euεm ) (1.1) gives that

σεm ≤ max
1≤i≤k+1

∫
M |∇η

m
i |

2
g dvg∫

∂M (ηmi )2 dσg
≤ σεm ,

since for m large enough, σεm → σk(M, [g]) > σk(M,[g])
2 . Then, all

the inequalities are equalities and by the case of equality in the min-
max characterization of the k-th eigenvalue, one of the functions ηmi
is an eigenfunction on the surface for σεm = σk(M, g, ∂M, euε). Since
supp(ηmi ) ⊂ Bg(p

m
i , rm) and ηmi 6= 0, we contradict the harmonicity of

ηmi .
Therefore, we have proved that there exists a subsequence {euεm} and

p1, · · · , ps ∈ ∂M for some 0 ≤ s ≤ k such that

∀ρ > 0, ∃r > 0, Xr(M, g, ∂M, {euεm}) ⊂
s⋂
i=1

Bg(pi, ρ),

which is exactly the first part of the claim.
Let’s prove now the second part of the claim. If there exists a subse-

quence m(j)→ +∞ as j → +∞ such that there exists ρ > 0 and r > 0
and 1 ≤ i0 ≤ s with

Xr(M, g, ∂M, {euεm(j)}) ∩Bg(pi0 , ρ) = ∅,
then, taking the subsequence m(j), we can remove the index i0 ∈
{1, · · · , s} so that

Xr(M, g, ∂M, {euεm(j)}) ⊂
⋃

i∈{1,··· ,s}\{i0}

Bg(pi, ρ).

We go on with this process until we cannot find a subsequence such that
(3.1) does not hold. This ends the proof of the claim. q.e.d.

Up to the extraction of a subsequence, we assume in the following
that {euε} satisfies the conclusion of Claim 3. For ρ > 0, we let

M(ρ) = M \
s⋃
i=1

Bg(pi, ρ),
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and

I(ρ) = ∂M \
s⋃
i=1

Ig(pi, ρ).

We are now able to get regularity estimates on the functions euε in I(ρ)
and Φε in M(ρ).

Claim 4. We assume that m0(ρ) = limε→0

∫
I(ρ) e

uεdvg > 0 for any

ρ > 0 small enough. Then we have the following

• Estimates on Φε

∀ρ > 0, ∃C1(ρ) > 0,∀ε > 0, ‖Φε‖W 1,2(M(ρ)) ≤ C1(ρ),(3.5)

∀ρ > 0, ∃C2(ρ) > 0,∀ε > 0, ‖Φε‖C0(M(ρ)) ≤ C2(ρ),(3.6)

• Quantitative non-concentration estimates on euε and |∇Φε|2g

∀ρ > 0, ∃D1(ρ) > 0,∀r > 0, lim sup
ε→0

sup
x∈I(ρ)

∫
Ig(x,r)

euεdvg ≤
D1(ρ)

ln(1
r )
,

(3.7)

∀ρ > 0, ∃D2(ρ) > 0,∀r > 0, lim sup
ε→0

sup
x∈I(ρ)

∫
Bg(x,r)

|∇Φε|2gdvg ≤
D2(ρ)√

ln(1
r )
.

(3.8)

Proof. We first prove (3.5) by using Claim 3 and the assumption
m0(ρ) > 0.

For that purpose, let’s prove that { euε∫
I(ρ) e

uεdσg
dσg} is bounded in

W−1,2(M(ρ)). Let ρ > 0 and let r > 0 be such that

Xr (M, g, ∂M, {euε}) ⊂
s⋃
i=1

Bg(pi, ρ).

Then, for all x ∈ I(ρ) and all ε > 0, σ?(Bg(x, r), g, Ig(x, r), e
uε) >

σk(M,[g])
2 . By the compactness of I(ρ), we can find y1, · · · , yt ∈ I(ρ)

such that

I(ρ) ⊂
t⋃
i=1

Ig(yi, r).

Let ψ1, · · · , ψt be a partition of unity associated to this covering,
such that

∑t
i=1 ψi = 1 on I(ρ) and supp(ψi) ⊂ Bg(yi, r). Let L :

W 1,2(M(ρ)) → W 1,2(M) be a continuous extension operator. Then, if
ψ ∈W 1,2(M(ρ)), its trace on the boundary satisfies∫

I(ρ)
ψ

euεdσg∫
I(ρ) e

uεdσg
=

t∑
i=1

∫
I(ρ)∩Bg(yi,r)

ψψi
euεdσg∫

I(ρ) e
uεdσg
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≤
t∑
i=1

(∫
I(ρ)∩Bg(yi,r)

(ψiψ)2 euεdσg∫
I(ρ) e

uεdσg

) 1
2

≤
t∑
i=1

(∫
∂M∩Bg(yi,r)

(ψiL(ψ))2 euεdσg∫
I(ρ) e

uεdσg

) 1
2

≤
t∑
i=1

(∫
Bg(yi,r)

|∇(ψiL(ψ))|2g dvg
) 1

2

σ
1
2
i

(∫
I(ρ) e

uεdσg

) 1
2

≤ A0(ρ)(
σk(M,[g])

2

) 1
2
m0(ρ)

1
2

‖L(ψ)‖W 1,2(M)

≤ A1(ρ) ‖ψ‖W 1,2(M(ρ))

for some constants A0(ρ) and A1(ρ) which do not depend on ε > 0
(where σi = σ? (Bg(yi, r), g, Ig(yi, r), e

uεg)).
By Theorem 3 in Section 1.3, we now get the following Poincaré

inequality: there exists some constant A2(ρ) such that for any f ∈
C∞(M(ρ))

∀ε > 0,

∫
M(ρ)

(
f −

∫
I(ρ)

f
euεdσg∫

I(ρ) e
uεdσg

)2

dvg ≤ A2(ρ)

∫
M(ρ)

|∇f |2g dvg.

We deduce from this inequality that∫
M(ρ)

f2dvg ≤ 2A2(ρ)

∫
M(ρ)

|∇f |2g dvg + 2Vg(M)

∫
I(ρ) f

2euεdσg∫
I(ρ) e

uεdσg
.

Applying this inequality to the φiε’s and summing for i = 0 · · ·n, we get
that∫

M(ρ)
|Φε|2 dvg ≤ 2A2(ρ)σε

∫
∂M
|Φε|2 dσg + 2Vg(M)

∫
∂M |Φε|2 euεdσg∫

I(ρ) e
uεdσg

using the fact that∫
M(ρ)

|∇φεi |
2
g dvg ≤

∫
M
|∇φεi |

2
g dvg = σε

∫
∂M

euε(φiε)
2dσg,

by (iii) of Proposition 1,∫
∂M

euε |Φε|2 dσg =

∫
∂M
|Φε|2Kε[νε]dσg =

∫
∂M

Kε[|Φε|2]dνε = 1.

Then, we get that∫
M(ρ)

|Φε|2 dvg ≤ 2A2(ρ)σε +
2Vg(M)∫
I(ρ) e

uεdσg
.



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 117

Thanks to the assumption of the claim, namely that
∫
I(ρ) e

uεdσg →
m0(ρ) > 0, we get the existence of some A3(ρ) such that∫

M(ρ)
|Φε|2 dvg ≤ A3(ρ).

Now, with what we just said, we also know that∫
M(ρ)

|∇Φε|2g dvg ≤ σε,

and (3.5) follows.
In order to get (3.6), we first prove that

(3.9) ∀ρ > 0,∃C0(ρ), ∀ε > 0, ‖Φε‖C0(I(ρ)) ≤ C0(ρ).

Let ρ > 0, 0 ≤ i ≤ n and up to change φiε into −φiε, let (xε) be a
sequence of points of I(ρ) such that φiε(xε) = supI(ρ)

∣∣φiε∣∣. We set

δε = dg(xε, supp(νε)).

We divide the rest of the proof of (3.9) into three cases.

Case 1 – We assume that δ−1
ε = O(1). Then, {euε} is uniformly

bounded in Ig
(
xε,min

{
δε
2 ,

ρ
2

})
by (1.4). By (3.5), {φiε} is bounded in

L2(I(ρ2)). Then, {φiε} is bounded in W 1,2(Ig(xε,min{ δε2 ,
ρ
2})) by elliptic

theory for the Dirichlet-to-Neumann operator (see [25], chapter 7.11,
page 37), and {φiε(xε)} is bounded by Sobolev embeddings.

Case 2 – We assume that δε = O(
√
ε). Then, {φiε(xε)} is bounded

by Claim 2.

Case 3 – We assume that δε → 0 and
√
ε
δε
→ 0 as ε→ 0. We let

ψε = φ̃ε(δεx+ x̃ε) for x ∈ D+

δδ−1
ε

and ewε = δεe
ũε(δεx+xε) for x ∈ Iδδ−1

ε
,

so that

(3.10)

{
∆ψε = 0 in D+

δδ−1
ε
,

∂tψε = −σεewεψε on Iδδ−1
ε
.

Let yε ∈ supp(νε) be such that dg(xε, yε) = δε and set zε = ỹε−x̃ε
δε

so
that zε → z0 as ε → 0 up to the extraction of a subsequence. We set
R = |z0|. Thanks to Claim 2, we know that ψε(zε) = φiε(yε) = O(1).
Thanks to estimates (1.6) on the heat kernel, there exists D1 > 0 such
that

ewε ≤ D1 on IR
2
.

We first assume that ψε does not vanish in D+
3R. Then, we can apply

Harnack’s inequality and get some constant D2 > 0 such that

ψε ≥ D2ψε(0) on D+
R
4

,
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for all ε > 0. Since ψε is positive on D+
|zε|(zε) ⊂ D+

3R, by equation (3.10),

it is weakly superharmonic and we can write that

ψε(zε) ≥
1

π |zε|

∫
∂D+
|zε|

(zε)
ψεdσ.

Taking only the part of the integral which lies in D+
R
4

, we get the exis-

tence of some constant D3 > 0 such that

ψε(zε) ≥ D3ψε(0),

and this concludes the proof of (3.6) in this case since φiε(xε) = ψε(0) =
O(1).

We now assume that ψε vanishes on D+
3R. Since δε → 0 as ε→ 0, and

xε ∈ I(ρ), by Claim 3, ψε vanishes on a piecewise smooth curve in D+
4R

which connects two points of distance greater than R. By the corollary
of Theorem 4 of Section 1.3 on Ω = D+

5R, we get some constant CR > 0
such that ∫

D+
4R

ψ2
ε ≤ CR

∫
D+

5R

|∇ψε|2 dx,

which proves that {ψε} is bounded in W 1,2(D+
4R) by conformal invari-

ance of the L2-norm of the gradient in dimension 2. By trace Sobolev
properties, {ψε} is bounded in L2(I4R) and by elliptic regularity theory
for the Dirichlet-to-Neumann operator (see [25], Chapter 7.11, page 37),
ψε is bounded in L∞(DR

4
) which gives that {φiε(xε)} is bounded.

The study of these three cases completes the proof of (3.9).
We now prove (3.6). Let ρ > 0 and 0 ≤ i ≤ n. Then, since φiε is

harmonic in M
(ρ

2

)
, by elliptic regularity theory, there exists a constant

K0(ρ) > 0 such that∥∥φiε∥∥C0(M(ρ))
≤ K0(ρ)

(∥∥φiε∥∥L2(M( ρ2 )) +
∥∥φiε∥∥C0(I( ρ2 ))

)
,

so that (3.6) holds with C2(ρ) = K0(ρ)
(
C1

(ρ
2

)
+ C0

(ρ
2

))
.

Thanks to Claim 3, we have the existence of some r1(ρ) > 0 such
that for any 0 < r < r1(ρ),

∀ε > 0,∀x ∈ I(ρ),
1

σ? (Bg(x, r), g, Ig(x, r), euεg)
≤ 2

σk(M, [g])
.

By isocapacity estimates,∫
Ig(x,r)

euεdσg ≤
Cap2(Bg(x, r), Bg(x, r1))

σ?(Bg(x, r), g, Ig(x, r), euε)

≤ 2
Cap2(D r

C0
,DC0r1)

σk(M, [g])
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≤ 4π

σk(M, [g]) ln
(
C2

0r1
r

) ,
and we get (3.7).

Finally, let’s prove (3.8). We set for x ∈ Iδ such that x̄ ∈ M(ρ),
where x̄ = expgl,xl(x) as defined in Section 1.1 and for 0 < r ≤ δ

Fε(r) =

∫
D+
r (x)

∣∣∣∇Φ̃ε

∣∣∣2 dx.
We suppose in the following that δ < 1, without loss of generality. We
just aim at proving that

Fε(r) ≤
D0(ρ)√
ln
(

1
r

) .
We know that Φ̃ε satisfies the equations{

∆Φ̃ε = 0 in D+
δ ,

∂tΦ̃ε = −σεeũεΦ̃ε on Iδ,

and we deduce that

Fε(r) = σε

∫
Ir(x)

eũε
∣∣∣Φ̃ε

∣∣∣2 dx+

∫
∂D+

r (x)
Φ̃ε.∂νΦ̃εdσξ.

Using (3.6) and (3.7), there exist some constants K1(ρ) and K2(ρ) in-
dependent of ε, r and x with x̄ ∈ I(ρ), such that

Fε(r)
2 ≤ K1(ρ)

ln
(

1
r

)2 +K2(ρ)

(∫
∂D+

r (x)

∣∣∣∇Φ̃ε

∣∣∣ dx)2

≤ K1(ρ)

ln
(

1
r

)2 + πrK2(ρ)

∫
∂D+

r (x)

∣∣∣∇Φ̃ε

∣∣∣2 dx
≤ K1(ρ)

ln
(

1
r

)2 + πrK2(ρ)F ′ε(r)

for any 0 < r < δ. We can write that(
Fε(r)

√
ln

(
1

r

))′
(s) = F ′ε(s)

√
ln

(
1

s

)
− 1

2s
√

ln
(

1
s

)Fε(s)
≥

Fε(s)
2
√

ln
(

1
s

)
πsK2(ρ)

− K1(ρ)

πsK2(ρ) ln
(

1
s

) 3
2

− 1

2s
√

ln
(

1
s

)Fε(s).
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Setting

Jε =

{
s ∈ (0, δ);Fε(s) <

πK2(ρ)

ln
(

1
s

) } ,
we have for s ∈ (0, δ) \ Jε

(3.11)

(
Fε(r)

√
ln

(
1

r

))′
(s) ≥ − K3(ρ)

s ln
(

1
s

) 3
2

for K3(ρ) = K1(ρ)
πK2(ρ) . Let r ∈ (0, δ),

sε = inf{s ∈ [r, δ), s ∈ Jε}.
If sε = r, then

Fε(r)

√
ln

(
1

r

)
≤ πK2(ρ)√

ln
(

1
r

) ≤ πK2(ρ)√
ln
(

1
δ

) ,
and if sε > r, then, integrating (3.11) from r to sε leads to

Fε(r)

√
ln

(
1

r

)
≤ Fε(sε)

√
ln

(
1

sε

)
+

∫ sε

r

K3(ρ)

s ln
(

1
s

) 3
2

ds

≤ Fε(sε)

√
ln

(
1

sε

)
+

2K3(ρ)√
ln
(

1
sε

) .
If sε < δ, we deduce from this inequality and the definition of sε that

Fε(r)

√
ln

(
1

r

)
≤ πK2(ρ) + 2K3(ρ)√

ln
(

1
δ

) ,

and if sε = δ,

Fε(r)

√
ln

(
1

r

)
≤ σε

√
ln

(
1

δ

)
+

2K3(ρ)√
ln
(

1
δ

) ,
where we used conformal invariance of the L2-norm of the gradient to
get Fε(δ) ≤ σε.

Gathering all the cases, we get (3.8) and this ends the proof of the
claim. q.e.d.

In the following claim, we aim at passing to the limit in equation (i)
and the condition (ii) given by Proposition 1. The limiting functions
would then satisfy (3.15) and (3.16).

Claim 5. We assume that m0(ρ) = limε→0

∫
I(ρ) e

2uεdvg > 0 for any

ρ > 0 small enough. Then, the following assertions hold
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• For any ρ > 0, there exists βε → 0 as ε→ 0 such that

(3.12) ∀x ∈ I(ρ), |Φε|2 (x) ≥ 1− βε.

• For ρ > 0 and x ∈ I(ρ), we set Ψε(x) = Φε(x)
|Φε(x)| . Then for any

ρ > 0, {Ψε} is uniformly equicontinuous on C0(I(ρ),Sn).
• For any ρ > 0, up to the extraction of a subsequence of {Φε},

there exist functions Φ ∈W 1,2(M(ρ),Rn+1)∩L∞(I(ρ),Rn+1) and

Ψ ∈W
1
2
,2(I(ρ), Sn) ∩ C0(I(ρ), Sn) such that

(3.13) Φε ⇀ Φ in W 1,2(M(ρ),Rn+1) as ε→ 0,

and

(3.14) Ψε → Ψ in C0(I(ρ), Sn) as ε→ 0,

with

(3.15) |Φ|2 ≥a.e. 1 and Ψ =
Φ

|Φ|
on I(ρ).

Moreover, for 0 ≤ i ≤ n,

(3.16)

{
∆gφ

i = 0 in M(ρ),
∂νφ

i = σk(M, [g])ψidν on I(ρ),

in a weak sense.

Proof. Step 1 – Let 1 ≤ i ≤ s. We prove that at the neighborhood
of the singular points defined in Claim 3,

sup
x∈I(ρ)

∫
Ig(pi,

ρ
10

)
|Φε(y)|2 pε(x, y)dσg(y) = O(e−

ρ2

8ε ).

Let x ∈ I(ρ). Then, by estimate (1.3) of Section 1.2

e
ρ2

8ε

∫
Ig(pi,

ρ
10

)
|Φε(y)|2 pε(x, y)dσg(y) ≤ A0e

− 31ρ2

400ε

√
4πε

∫
Ig(pi,

ρ
10

) |Φε|2 euεdσg
infIg(pi,

ρ
10

) e
uε

≤ A0e
− 31ρ2

400ε

√
4πε infIg(pi,

ρ
10

)

,

since by (iii) of Proposition 1,∫
∂M
|Φε|2 euεdσg = 1.

We assume by contradiction that

inf
Ig(pi,

ρ
10

)
euε ≤ e−

31ρ2

400ε

√
ε
.
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Let y ∈ Ig(pi, ρ10) be such that euε(y) = infIg(pi,
ρ
10

) e
uε . Then, by (1.3) of

Section 1.2,

euε(y) =

∫
∂M

pε(y, x)dνε(x) ≥ e−( 2ρ
10 )

2 1
4ε

A0

√
4πε

∫
Ig(pi,

ρ
10

)
dνε.

We deduce from this and the previous inequality that∫
Ig(pi,

ρ
10

)
dνε ≤ A0

√
4πe−

27ρ2

400ε .

Let z ∈ Ig(pi, ρ20), and let us write thanks again to (1.3) of Section 1.2
that

euε(z) ≤ A0

∫
Ig(pi,

ρ
10

) dνε + e−
ρ2

4ε
1

202

√
4πε

≤ A2
0√
ε
e−

27ρ2

400ε +
A0√
4πε

e−
ρ2

1600ε .

Then, ‖euε‖C0(Ig(pi,
ρ
20

)) → 0 as ε→ 0. This implies that

(3.17) σ?

(
Bg(pi,

ρ

20
), g, Ig(pi,

ρ

20
), euε

)
→ +∞ as ε→ 0.

It is clear that A ρ
20
,ε defined before Claim 3 cannot be true for pi and

ε small enough. By (3.1) in Claim 3, B ρ
20
,ε holds true for pi. Then,

there is an eigenfunction f associated to σε = σk(M, g, ∂M, euε) such
that fε(pi) = 0 and the nodal set which contains pi does not intersect
∂Bg(pi,

ρ
20) \ ∂M . We obtain a nodal domain Dε ⊂ Bg(pi,

ρ
10) for fε

such that pi ∈ Dε ∩ ∂M . By 3.17,

σε = σ?(Dε, g,Dε ∩ ∂M, euε) ≥ σ?
(
Bg(pi,

ρ

20
), g, Ig(pi,

ρ

20
), euε

)
→ +∞

as ε→ 0. Since σε ≤ σk(M, [g]), we get a contradiction. This completes
the proof of Step 1.

Step 2 – There exists βε → 0 as ε→ 0 such that

(3.18) ∀x, y ∈ I(ρ), dg(x, y) ≤
√
ε

βε
⇒ |Φε(x)− Φε(y)| ≤ βε.

We set γε = ‖
√
εeuε‖

1
2

L∞(I(ρ)). We have γε → 0 as ε → 0. Indeed, for

r > 0, and x ∈ I(ρ) such that γ2
ε =
√
εeuε(x),

√
εeuε(x) ≤ A0√

4π

∫
Ig(x,r)

dνε + o(1)

=
A0√
4π
ν(Ig(x, r)) + o(1)

≤ A0D1(ρ)√
4π ln

(
1
r

) + o(1).

By estimate (1.3), since νε ⇀? ν as ε → 0 and by (3.7) of Claim 4.
Letting ε → 0 and then r → 0, we get γε → 0 as ε → 0. We also have
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that γε√
ε
→ +∞ as ε → 0, since γε ≥ m0(ρ)

2

1
2 ε

1
4 (indeed, m0(ρ) + o(1) =

‖euε‖L1(I(ρ)) ≤ ‖euε‖L∞(I(ρ))). Let now xε, yε ∈ I(ρ) with dg(xε, yε) ≤√
ε

γε
. Up to the extraction of a subsequence, xε ∈ γl for some l fixed and

we set  Φ̂ε(x) = Φ̃l(x̃lε +
√
ε

γε
x),

eûε(x) =
√
ε

γε
e
ũε(x̃ε+

√
ε

γε
x)
,

which satisfy

(3.19)

{
∆ξΦ̂ε = 0 in D+

3C0

∂tΦ̂ε = −σεeûεΦ̂ε on I3C0

Let αε be the mean value of Φ̂ε in D+
3C0

. Then∥∥∥Φ̂ε − αε
∥∥∥
L∞(I2C0

(0))
≤ D0

∥∥∥Φ̂ε − αε
∥∥∥
H1(I2C0

)

≤ D
∥∥∥∂tΦ̂ε

∥∥∥
L2(I3C0

)(ρ)
+D

∥∥∥Φ̂ε − αε
∥∥∥
L2(D+

3C0
(0))

≤ Dσε ‖Φε‖L∞ C0γε +D′
∥∥∥∇Φ̂ε

∥∥∥
L2(D+

3C0
(0))

≤ DσεC2(ρ)C0γε +
D′
√
D2(ρ)

ln
(

γε
3C2

0

√
ε

) 1
4

.

The first inequality comes from Sobolev embeddings, the second comes
from the regularity theory for the Dirichlet-to-Neumann operator (see
[25], Chapter 7.11, page 37) looking at (3.19). The third inequality
comes from the classical Poincaré inequality on D+

3C0
, and, finally, we

use (3.6) and (3.8) in Claim 4. Setting

βε = 2Dσk(M, [g])C2(ρ)C0γε +
2D′

√
D2(ρ)

ln
(

γε
3C2

0

√
ε

) 1
4

,

we have that βε → 0 as ε→ 0 and that

|Φε(xε)− Φε(yε)| ≤ βε.

Up to increasing βε so that
√
ε

βε
≤
√
ε

γε
we proved Step 2.

Step 3 – For any ρ > 0, there exists βε → 0 as ε→ 0 such that

(3.20) ∀x ∈ I(ρ),
∣∣∣|Φε|2 (x)−Kε[|Φε|2](x)

∣∣∣ ≤ βε,
and

(3.21) ∀x ∈ I(ρ) ∩ supp(νε), |Kε[|Φε|](x)− 1| ≤ βε.
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Note that (3.20) implies (3.12) by Proposition 1. Let’s prove (3.20).
For x ∈ I(ρ),∣∣∣|Φε|2 −Kε[|Φε|2]

∣∣∣ (x) ≤
∫
Ig(x, ε

βε
)

∣∣∣|Φε|2 (x)− |Φε|2 (y)
∣∣∣ pε(x, y)dσg(y)

+2C2(
ρ

10
)2

∫
∂M\Ig(x,

√
ε

βε
)
pε(x, y)dσg

+
s∑
i=1

∫
Ig(pi,

ρ
10

)
|Φε|2 (y)pε(x, y)dσg(y).

Notice that we can assume here that
√
ε

βε
→ 0 up to increasing βε and

that we used (3.6). We can estimate the first RHS term thanks to Step
2 and (3.6), the second RHS term thanks to estimates (1.3) and the
third RHS term thanks to Step 1 and we get∣∣∣|Φε|2 −Kε[|Φε|2]

∣∣∣ (x) ≤ 2C2(
ρ

2
)βε +O(e

− 1

4C4
0β

2
ε ) +O(e−

ρ2

8ε ).

Up to increase βε, we get (3.20) and then (3.12).
Thanks to Point (iii) in Proposition (1), we deduce that

(3.22) ∀x ∈ supp(νε) ∩ I(ρ), ||Φε(x)| − 1| ≤ βε,

and for x ∈ I(ρ), we have

||Φε| −Kε[|Φε|]| (x) ≤
∫
Ig(x, ε

βε
)
||Φε| (x)− |Φε| (y)| pε(x, y)dσg(y)

+2C2(
ρ

10
)

∫
∂M\Ig(x,

√
ε

βε
)
pε(x, y)dσg

+
s∑
i=1

(∫
Ig(pi,

ρ
10

)
|Φε|2 (y)pε(x, y)dσg(y)

) 1
2

,

and the same arguments, together with (3.22) lead to (3.21), up to
increase again βε.

Step 4 – Let Ψε = Φε
|Φε| on I(ρ). Then, for ρ > 0, there exists C3(ρ)

such that

|Ψε(x)−Ψε(y)|2
√

ln

(
2δ(∂M)

dg(x, y)

)
≤ C3(ρ)

for all x, y ∈ I(ρ), where δ(∂M) is the diameter of ∂M . In particular,
Ψε is uniformly equicontinuous on I(ρ).

We first prove that there exists D3(ρ) > 0 such that

(3.23) sup
x∈I(ρ)

sup
v∈Ψ⊥ε ∩Sn

1

V olg(Bg(x, r))

∫
Bg(x,r)

(Φε.v)2 dvg ≤
D3(ρ)√
ln
(

1
r

)
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for all r small enough. Indeed, for x ∈ I(ρ) and v ∈ Ψε(x)⊥ ∩ Sn, Φε.v
vanishes at x. By Claim 3, x does not satisfy Br,ε. Thus, the nodal set
which contains x intersects ∂Bg(x, r). By the corollary of Theorem 4 on
a disk and a dilatation on this disk, we get some constant D4(ρ) such
that

1

V olg(Bg(x, r))

∫
Bg(x,r)

(Φε.v)2 dvg ≤ D4(ρ)

∫
Bg(x,2r)

|∇ (Φε.v)|2g dvg

for all r small enough. With (3.8) in Claim 4, we deduce that

1

V olg(Bg(x, r))

∫
Bg(x,r)

(Φε.v)2 dvg ≤
D2(ρ)D4(ρ)√

ln
(

1
2r

)
for all r small enough. Thus, (3.23) is proved.

Assume now by contradiction that the conclusion of Step 4 is false:
there exist εm → 0 as m → +∞, xm and ym some points in I(ρ) such
that

(3.24) |Ψεm(xm)−Ψεm(ym)|2
√

ln

(
1

rm

)
,→ +∞ as m→ +∞

where rm = dg(xm, ym) → 0 as m → +∞. Since for a fixed m, Ψεm is
not constant at the neighborhood of ym, one can assume that for any
m, Ψεm(ym) 6= −Ψεm(xm) without changing (3.24). Thanks to (3.12),
up to the extraction of a subsequence, there exists a fixed vector v ∈ Sn
of the canonical basis of Rn+1 such that

1

Lg(Ig(xm, rm))

∫
Ig(xm,rm)

(Φεm .v)2 dσg ≥
1

n+ 1
+ o(1).

Since, by Sobolev trace inequalities, there exists K > 0 independent of
m such that

1

L

∫
Ig(xm,rm)

(Φεm .v)2 dσg ≤
K

V olg(Bg(x, r))

∫
Bg(x,r)

(Φεm .v)2 dvg

+K

∫
Bg(xm,rm)

|∇ (Φεm .v)|2g dvg,

where L = Lg(Ig(xm, rm)). We get thanks to (3.8) of Claim 4 that

1

V olg(Bg(x, r))

∫
Bg(x,r)

(Φεm .v)2 dvg ≥
1

(n+ 1)K
− D2(ρ)√

ln
(

1
rm

) + o(1)

=
1

K(n+ 1)
+ o(1).
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Thanks to the assumption (3.24), we now prove that there exist Xm ∈
Ψεn (xm)⊥ and Ym ∈ Ψεm (ym)⊥ such that

(3.25) v = Xm + Ym and |Xm|2 + |Ym|2 = o

(√
ln

1

rm

)
.

We denote am = Ψεm (xm) ∈ Sk−1, bm = Ψεm (ym) ∈ Sk−1 and Πm

the vector space generated by am and bm. Notice that Πm is a plane
since bm /∈ {am,−am} by assumption. Let cm ∈ Πm ∩ Sk−1 such that
{am, cm} is an orthonormal basis of Πm. We get θm ∈ R such that

bm = cos θmam + sin θmcm,

and sin θm 6= 0. We let v = pm + qm with pm ∈ Πm and qm ∈ Π⊥m.
Notice that |pm| ≤ 1 and |qm| ≤ 1. Let αm ∈ R be such that

pm = |pm| (cosαmam + sinαmcm).

We then set

Xm = tmcm + qm ∈ a⊥m,

Ym = sm(− sin θmam + cos θmcm) ∈ b⊥m,
with

sm = − |pm|
cosαm
sin θm

,

tm = |pm|
(

sinαm +
cosαm cos θm

sin θm

)
,

so that v = Xm + Ym. Then,

|Xm|2 + |Ym|2 = |qm|2 + t2m + s2
m ≤ 1 + fθm(αm),

where for α and θ ∈ R,

fθ(α) =
cos2 α

sin2 θ
+

(
sinα+

cosα cos θ

sin θ

)2

=
1 + cos2 θ cos 2α+ cos θ sin θ sin 2α

sin2 θ
.

We easily prove that fθ(α) ≤ fθ( θ2) = 1
1−cos θ . Then,

|Xm|2 + |Ym|2 ≤ O
(

1

1− cos θm

)
= O

(
1

|am − bm|2

)
= o

(√
ln

1

rm

)
.

This ends the proof of (3.25).
We now write thanks to (3.23) that

1

(n+ 1)K
+ o(1) ≤ 1

V olg(Bg(x, r))

∫
Bg(x,r)

(Φεm .v)2 dvg

≤ 2

V olg(Bg(x, r))

∫
Bg(x,r)

(Φεm .Xm)2 dvg
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+
2

V olg(Bg(x, r))

∫
Bg(ym,2rm)

(Φεm .Ym)2 dvg

≤ 2D3(ρ) |Xm|2
(

ln

(
1

rm

))− 1
2

+8C2
0D3(ρ) |Ym|2

(
ln

(
1

2rm

))− 1
2

= o(1).

This clearly gives a contradiction and proves Step 4.
It is clear now that there exist some functions Φ and Ψ such that up

to the extraction of a subsequence, (3.13), (3.14) and (3.15) hold. It
remains to prove Step 5:

Step 5 – We have that

φiεe
uεdσg ⇀? ψ

idν as ε→ 0 in I(ρ).

Let ζ ∈ C0
c (I(ρ)). Then∫

∂M
ζφiεe

2uεdσg −
∫
∂M

ζψidν =

∫
∂M

(
Kε[ζφ

i
ε]− ζKε[φ

i
ε]
)
dνε

+

∫
∂M

ζ
(
Kε[φ

i
ε]− ψiεKε[|Φε|]

)
dνε

+

∫
∂M

ζ
(
ψiεKε[|Φε|]− ψiε

)
dνε

+

∫
∂M

ζ
(
ψiεdνε − ψidν

)
.(3.26)

Let us estimate these four terms. We have for x ∈ ∂M that∣∣Kε[ζφ
i
ε]− ζKε[φ

i
ε]
∣∣ (x) =

∣∣∣∣∫
∂M

(ζ(y)− ζ(x))φiε(y)pε(x, y)dσg(y)

∣∣∣∣
≤ C2

( ρ
10

)∫
I( ρ

10)
|ζ(y)− ζ(x)| pε(x, y)dσg(y)

+ |ζ(x)|
s∑
j=1

∫
Ig(pj , ρ10)

∣∣φiε(y)
∣∣ pε(x, y)dσg(y),

since supp(ζ) ⊂ I(ρ) and thanks to (3.6) of Claim 4. By Step 1 and
since supp(ζ) ⊂ I(ρ), we deduce that this function uniformly converges
to 0 in ∂M as ε→ 0. Thus, the first RHS term in (3.26) converges to 0
as ε→ 0. For x ∈ I(ρ),∣∣Kε[φ

i
ε]− ψiεKε[|Φε|]

∣∣ ≤ ∫
∂M

∣∣φiε(y)− ψiε(x) |φε| (y)
∣∣ pε(x, y)dσg(y)

≤
∫
I( ρ

10
)
|Φε(y)|

∣∣ψiε(y)− ψiε(x)
∣∣ pε(x, y)dσg(y)
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+2
s∑
j=1

∫
Ig(pj ,

ρ
10

)
|Φε(y)| pε(x, y)dσg(y)

≤ C2

( ρ
10

)∫
I( ρ

10)

∣∣ψiε(y)− ψiε(x)
∣∣ pε(x, y)dσg(y)

+O(e−
ρ2

16ε ),

thanks to (3.6) of Claim 4 and Step 1. Thanks to the uniform equicon-
tinuity of {Ψε} on I( ρ10), it uniformly converges to zero in ∂M as ε→ 0.
Thus, the second RHS term of (3.26) converges to 0 as ε → 0. Thanks
to (3.21), we can write since |Ψε| = 1 that∣∣∣∣∫

∂M
ζ
(
ψiεKε[|Φε|]− ψiε

)
dνε

∣∣∣∣ ≤ βε ‖ζ‖∞ ,
so that the third RHS term in (3.26) converges to 0 as ε → 0. At last,
we use the convergences Ψε → Ψ in C0(I(ρ)) and νε ⇀? ν on I(ρ) to
obtain that the fourth RHS term in (3.26) also converges to 0 as ε→ 0.
This clearly ends the proof of Step 5.

Finally, passing to the weak limit in I(ρ) for ρ > 0, in the equation
satisfied by φiε permits to end the proof of the claim thanks to these
steps. q.e.d.

Thanks to Claim 5, with the assumptionm0(ρ) = limε→0

∫
I(ρ) e

uεdvg >

0, a diagonal extraction gives some functions Φ : M \ {p1, · · · , ps} →
Rn+1 and Ψ : ∂M \ {p1, · · · , ps} → Sn such that for all ρ > 0 the
conclusions (3.13), (3.14), (3.15) and (3.16) hold true for Φ and Ψ.

3.2. Energy estimates. Now, we give some energy estimates which
will be useful later in the proof. We set a function ω on M satisfying
the following equation

(3.27)

{
∆gω = 0 in M,
ω = |Φ| on ∂M,

in a weak sense. Since |Φ| ∈ W
1
2
,2(∂M), such a solution exists and

satisfies ω ∈ W 1,2(M) (see [11], Theorem 8.3). Let’s prove this energy
inequality:

Claim 6.
(3.28)

lim
ρ→0

lim
ε→0

∫
M(ρ)

|∇Φε|2g dvg ≥
∫
M

|∇Φ|2g
ω

dvg ≥ σkm+

∫
M

|Φ|2 |∇ω|2g
ω3

dvg,

where σk = σk (M, [g]), m = limρ→0m0(ρ) = limρ→0

∫
I(ρ) dν.

Proof. Let ρ > 0. By Claim 1, there exists C > 0 independent of
ρ and a nonnegative function η ∈ C∞(M) such that supp(η) ⊂ M(ρ),
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η = 1 on M(
√
ρ), 0 ≤ η ≤ 1, and∫

M
|∇η|2g dvg ≤

C

ln
(

1
ρ

) .
By the weak maximum principle on (3.27), (see [11], Theorem 8.1),

inf
M
ω ≥ inf

∂M
|Φ| ≥ 1,

and

lim
ε→0

∫
M(ρ)

|∇Φε|2g dvg ≥
∫
M(ρ)

|∇Φ|2g dvg

≥
∫
M
η
|∇Φ|2g
ω

dvg

=
n∑
i=0

∫
M

〈
∇ηφi

ω
,∇φi

〉
g

dvg

−
n∑
i=0

∫
M

φi
ω
〈∇η,∇φi〉g dvg

−
n∑
i=0

∫
M
φiη

〈
∇ 1

ω
,∇φi

〉
g

dvg.

We have that
n∑
i=0

∫
M

〈
∇ηφi

ω
,∇φi

〉
g

dvg =
n∑
i=0

∫
M

ηφi
ω

∆gφidvg

+
n∑
i=0

∫
∂M

ηφi
ω
∂νφidσg

= σk(M, [g])

∫
∂M

η
|Φ|
ω
dν

= σk(M, [g])

∫
∂M

ηdν,

thanks to (3.16) and that
n∑
i=0

∫
M
ηφi

〈
∇ 1

ω
,∇φi

〉
g

dvg = −
∫
M

〈
∇η,∇ 1

ω

〉
g

|Φ|2

2
dvg

+

∫
M
η
|Φ|2

2
∆g

(
1

ω

)
dvg

+

∫
∂M

|Φ|2

2
η∂ν

(
1

ω

)
dσg

=

∫
M
〈∇η,∇ω〉g

|Φ|2

2ω2
dvg
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−
∫
M
η
|Φ|2

ω3
|∇ω|2g dvg

−1

2

∫
M
|Φ|2 η∆gω

ω2
dvg

−1

2

∫
∂M

η∂νωdσg

=

∫
M
〈∇η,∇ω〉g

|Φ|2

2ω2
dvg

−
∫
M
η
|Φ|2

ω3
|∇ω|2g dvg

+
1

2

∫
M
η∆gωdvg

−1

2

∫
M
〈∇η,∇ω〉g dvg,

so that

lim
ε→0

∫
M(ρ)

|∇Φε|2g dvg ≥
∫
M(ρ)

|∇Φ|2g dvg

≥ σk(M, [g])

∫
∂M

ηdν +

∫
M
η
|Φ|2

ω3
|∇ω|2g dvg

−
n∑
i=0

∫
M

φi
ω
〈∇η,∇φi〉g dvg

−
∫
M
〈∇η,∇ω〉g

|Φ|2

2ω2
dvg

+
1

2

∫
M
〈∇η,∇ω〉g dvg

≥ σk(M, [g])

∫
∂M

ηdν

+

∫
M
η
|Φ|2

ω3
|∇ω|2g dvg −

C ′√
ln
(

1
ρ

) ,
where C ′ is a constant independent of ρ. Indeed, φi, ω ∈ W 1,2(M) and
we have for 0 ≤ i ≤ n that

∆g (ω − φi) = 0 and ∆g (ω + φi) = 0

in a weak sense. By the weak maximum principle (see [11], Theorem
8.1),

inf
M

(ω − φi) ≥ inf
∂M

(ω − φi) ≥ 0,
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and

inf
M

(ω + φi) ≥ inf
∂M

(ω + φi) ≥ 0,

since |φi| ≤ |Φ| ≤ ω on ∂M . Then,

sup
M

|φi|
ω
≤ 1 and sup

M

|Φ|2

ω2
≤ n+ 1.

We, finally, get the claim, passing to the limit as ρ→ 0. q.e.d.

4. Scales of concentration for the maximizing sequence

4.1. Concentration, capacity and rescalings. In this section, we
aim at describing all the concentration scales of the sequence {euεdσg}.
We denote by Z(M, {euεdσg}) the concentration points of a sequence of
measures {euεdσg} on the boundary ∂M of a surface (M, g) that is

Z(M, {euεdσg}) = {z ∈M ; lim
r→0

lim sup
ε→0

∫
Ig(z,r)

euεdσg > 0}.

Taking the maximizing sequence {euεdσg} for σk(M, [g]) given by the
previous subsection, which converges to ν in M1(∂M), we clearly have
that

Z(M, {euεdσg}) = {z ∈ ∂M ; ν({z}) > 0},
and that

(4.1) Z(M, {euεdσg}) ⊂
⋂
r>0

Xr(M, {euεσg}) = {p1, · · · , ps},

where p1, · · · , ps are defined in Claim 3. This is a consequence of Claim
1 in Section 1.3: indeed, for x ∈ Z(M, {euεdσg}) and for r > 0 small
enough, let ηg,x,r,r2 be given by Claim 1. Then

σ?(Bg(x, r), g, Ig(x, r), e
uε) ≤

∫
M

∣∣∇ηg,x,r,r2

∣∣2
g
dvg∫

∂M

(
ηg,x,r,r2

)2
euεdσg

≤ C

ln
(

1
r

) ∫
Bg(x,r2) e

uεdσg
,

so that

lim
r→0

lim sup
ε→0

σ?(Bg(x, r), g, Ig(x, r), e
uε) = 0.

Then there is a subsequence {εj} for which x satisfies Ar,εj for all r
small enough. Thanks to Claim 3, this gives that x ∈ {p1, · · · , ps}.

We now define some functions which will rescale the problem at the
neighborhood of the concentration points. For a ∈ R× {0} and α > 0,
we let

Ha,α(y) = αy + a for y ∈ R2.
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For p = (1, 0) ∈ S1, we define λ : D \ {p} → R2
+ the conformal diffeo-

morphism such that

F ◦ λ ◦ F−1(z) = i
z + 1

1− z
with its inverse

F ◦ λ−1 ◦ F−1(z) =
z − i
z + i

,

where F : R2 → C is the canonical map F (x, y) = x+iy. In this section,
we prove the following:

Proposition 2. There exist some points aε1, · · · , aεN ∈ R × {0} and
some scales

0 < αεN < αεN−1 < · · · < αε1,

such that for 1 ≤ i ≤ N ,

(4.2) αεi → 0 as ε→ 0,

and letting

Fi =

{
j > i;

dg(ā
ε
i , ā

ε
j)

αεi
is bounded

}
,

we have for j 6= i that

(4.3) j ∈ Fi ⇒
αεj
αεi
→ 0 as ε→ 0,

and that

(4.4) j /∈ Fi ⇒
dg(ā

ε
i , ā

ε
j)

αεi
→ +∞ as ε→ 0.

There exist some disjoint sets Iε0, I
ε
1, · · · , IεN ⊂ ∂M , some sets Γε1, · · · ,

ΓεN ⊂ R× {0} and Sε1, · · · , SεN ⊂ S1 given by

Γεi = H−1
aεi ,α

ε
i

(
Ĩεi
li
)

and Sεi =
(
Haεi ,α

ε
i
◦ λ
)−1

(
Ĩεi
li
)
,

some associated densities defined by

eû
ε
ids =

(
Haεi ,α

ε
i

)? (
eũ

li
ε ds

)
and eǔ

ε
idθ =

(
Haεi ,α

ε
i
◦ λ
)? (

eũ
li
ε ds

)
,

some masses mi > 0 satisfying

(4.5) Leuεdσg(I
ε
i ) = L

eû
ε
i ds

(Γεi) = L
eǔ
ε
i dθ

(Sεi )→ mi as ε→ 0

for 1 ≤ i ≤ N and some li ∈ {1, · · · , L}, and m0 ≥ 0 satisfying

(4.6) Leuεdσg(I
ε
0)→ m0 as ε→ 0,

such that

(4.7) Z(S1, {1Sεi e
ǔεidθ}) = ∅

for 1 ≤ i ≤ N ,

(4.8) Z(M, {1Iε0e
uεdσg}) = ∅,
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and

(4.9)
N∑
i=0

mi = 1.

4.2. Proof of Proposition 2. Let us denote by z1, · · · , zN0 the atoms
of ν with N0 ≤ s ≤ k (s is given by 4.1 or Claim 3) so that

euεdσg ⇀
? ν0 +

N0∑
i=1

miδzi ,

where ν0 ∈M(∂M) has no atoms. Let m0 =
∫
∂M dν0 ≥ 0. All the mi’s

are positive for 1 ≤ i ≤ N0, and

N0∑
i=0

mi = 1.

Let 1 ≤ i ≤ N0. We choose li ∈ {1, · · · , L} such that zi ∈ γli . Up
to the extraction of a subsequence, one can build a sequence {rεi} such
that rεi > 0 and rεi → 0 as ε→ 0 with∫

Ig(zi,rεi )
euεdσg → mi as ε→ 0.

We associate to sequences aεi ∈ R×{0} and αεi > 0 that we shall choose
later the sets

Γεi = H−1
aεi ,α

ε
i

(
˜Ig(zi, rεi )

li
)
⊂ R× {0},

Sεi = λ−1(Γεi) ⊂ S1,

M ε
i = Bg(z

ε
i , r

ε
i ),

Iεi = Ig(z
ε
i , r

ε
i ),

M ε
0 = M \

N0⋃
i=1

M ε
i ,

Iε0 = ∂M \
N0⋃
i=1

Iεi ,

and the densities

eû
ε
i = αεie

(ũ
li
ε +ṽ

li
li

)◦Haε
i
,αε
i : Γεi → R,

eǔ
ε
idθ = λ?(eû

ε
ids) : Sεi → R.

For the notations, we refer to Section 1.1.
Note that

M = M ε
0 ∪

N0⋃
i=1

M ε
i ,
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with Leuεdσg(I
ε
i )→ mi as ε→ 0 for 0 ≤ i ≤ N0. We assign to the subset

M ε
i a test function ηεi ∈ C∞c (M ε

i ) given by Claim 1 in Section 1.3

ηεi = η
g,zi,(rεi )

1
2 ,rεi

for 1 ≤ i ≤ N0,

ηε0 = 1−
N0∑
i=1

η
g,zi,(rεi )

1
4 ,(rεi )

1
2
.

Note that these test functions with pairwise disjoint supports and small
Rayleigh quotient may also be used to prove that N0 ≤ k if m0 = 0 or
N0 ≤ k − 1 if m0 > 0.

For 1 ≤ i ≤ N0, let’s now adjust the parameters aεi and αεi in order
to detect other scales of concentration of the mass at the neighborhood
of zi. By Hersch theorem (see [16], lemma 1.1 in the case of the circle
S1) we can choose aεi ∈ R× {0} and αεi > 0 such that

(4.10)

∫
S1

xeǔ
ε
i1Sεi dθ = 0.

Note that āεi → zi and that αεi → 0 as ε→ 0. This normalization of the
center of mass gives a dichotomy in the description of the concentration
points of {eǔεi1Sεi dθ}: if z ∈ Z(S1, {eǔεi1Sεi dθ}), then, some mass is also

concentrated in the opposite hemisphere {x ∈ S1; (x, z) ≤ 0} and we
can increase the number of test functions with small Rayleigh quotient
on the manifold among ηε1, · · · , ηεN0

. From this remark, we will build by
induction a finite bubble tree which describes the concentrations at all
the scales they appear.

A tree T is a set of finite sequences

γ = (i1, · · · , i|γ|) ∈
⋃
j∈N

Nj ,

where |γ| is the length of γ which satisfies

• (∅) ∈ T is the root of the tree.
• if γ ∈

⋃
j∈NNj and i ∈ N, then (γ, i) ∈ T ⇒ γ ∈ T and (γ, i) is

called a son of γ.
• If (γ, 0) ∈ T then ∀i ∈ N, (γ, 0, i) /∈ T . (γ, 0) is called a leaf of T .

We denote by LT the set of leaves of T .
• If γ ∈ T , then {i ∈ N; (γ, i) ∈ T} = {0, · · · , Nγ} with Nγ ∈ N and
Nγ is the number of sons of γ.

Let T be a tree. We let |T | = sup{|γ| ; γ ∈ T} be the depth of the tree.
We let also Tj = {γ ∈ T ; |γ| ≤ j} be the truncated tree of depth j ∈ N.
We say that γ̃ ∈ T is a descendant of γ ∈ T if there exists γ′ ∈

⋃
j∈NNj

such that γ̃ = (γ, γ′).
In the following, we define by induction a tree T with

• some sets Iεγ ⊂ ∂M for γ ∈ T and Γεγ ⊂ R × {0}, Sεγ ⊂ S1 for
γ ∈ T \ LT ,
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• some parameters lγ ∈ {1, · · · , L}, rεγ > 0, aεγ ∈ R×{0} and αεγ > 0
for γ ∈ T \ LT ,
• some points zγ ∈ S1 if γ ∈ T \ LT and |γ| ≥ 2 and zγ ∈ ∂M if
γ ∈ T \ LT and |γ| = 1,
• some measures ν0 ∈M(M) of mass m0 =

∫
M dν0 ≥ 0, νγ ∈M(S1)

of mass mγ =
∫
S1 dνγ ≥ 0 if γ ∈ LT and |γ| ≥ 2 and some masses

mγ > 0 for γ ∈ T \ LT ,
• some functions ûεγ : Γεγ → R and ǔεγ : Sεγ → R,
• some test functions ηεγ : M → R with ηεγ ∈ C∞c (M ε

γ) for γ ∈ T ,

depending on ε. We describe the process of construction, by induction
of this tree now and will prove in Claim 7 that it is a finite tree.

If γ ∈ T and |γ| = 1, these objects are defined at the beginning of
Section 4.2.

Assume now that these objects are defined for all γ of length |γ| ≤ j.
Let γ ∈ T \LT with |γ| ≤ j. Then, up to the extraction of a subsequence,

(4.11) 1Sεγe
ǔεγdθ ⇀? ν(γ,0) +

Nγ∑
i=1

m(γ,i)δz(γ,i) ,

where for 1 ≤ i ≤ Nγ , m(γ,i) > 0, m(γ,0) =
∫
S1 dν(γ,0) and ν(γ,0) is

without atom. As we will see in the proof of Claim 7 and by the same
arguments as in the previous subsection, Claim 1 provides some test
functions which prove that Nγ ≤ k. Notice that

Nγ∑
i=0

m(γ,i) = mγ .

Let 1 ≤ i ≤ Nγ . We define l(γ,i) = lγ and up to the extraction of a
subsequence, we can build {rε(γ,i)} such that rε(γ,i) > 0 and rε(γ,i) → 0 as

ε→ 0 with ∫
Iξ(z(γ,i),r

ε
(γ,i)

)∩Sεγ
eǔ

ε
γdθ → m(γ,i) as ε→ 0.

We define

η̄ε(γ,i) = η
ξ,z(γ,i),(r(γ,i))

1
2 ,r(γ,i)

◦ λ−1 ◦H−1
aεγ ,α

ε
γ
◦ exp−1

glγ ,xlγ
,

and

η̄ε(γ,0) = 1−
Nγ∑
i=1

η
ξ,z(γ,i),(r(γ,i))

1
4 ,(r(γ,i))

1
2
◦ λ−1 ◦H−1

aεγ ,α
ε
γ
◦ exp−1

glγ ,xlγ
,

naturally extended by a constant on M so that η̄ε(γ,i) ∈ C
∞(M). For

0 ≤ i ≤ Nγ the function

ηε(γ,i) = ηεγ η̄
ε
(γ,i)
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satisfies (4.13) in the proof of Claim 7 and that

supp(ηε(γ,i)) ∩ supp(η
ε
(γ,j)) = ∅ for i 6= j and supp(ηε(γ,i)) ⊂ supp(η

ε
γ).

The use of these test functions proves that Nγ ≤ k.
Let 1 ≤ i ≤ Nγ . We define the sets

Γε(γ,i) = H−1
aε

(γ,i)
,αε

(γ,i)

(
Haεγ ,α

ε
γ

(
Γεγ ∩ λ−1

(
Iξ(z(γ,i), r

ε
(γ,i))

)))
,

Sε(γ,i) = λ−1
(
Dε

(γ,i)

)
,

Iε(γ,i) = expglγ ,xlγ

(
Haε

(γ,i)
,αε

(γ,i)

(
Γε(γ,i)

))
= Γ̆ε(γ,i),

Iε(γ,0) = Iεγ \
Nγ⋃
i=1

Iε(γ,i),

and the densities

e
ûε

(γ,i)

(
z−aε

(γ,i)
αε

(γ,i)

)
αε(γ,i)

=
e
ûεγ

(
z−aεγ
αεγ

)
αεγ

,

e
ǔε

(γ,i)ds = λ?
(
e
ûε

(γ,i)dθ
)
,

and by Hersch’s normalization, we choose the parameters aε(γ,i) and αε(γ,i)
with

(4.12)

∫
S1

xe
ǔε

(γ,i)1Sε
(γ,i)

dθ = 0,

and ∫
Iε
(γ,i)

euεdσg =

∫
Γε

(γ,i)

e
ûε

(γ,i)ds =

∫
Sε

(γ,i)

e
ǔε

(γ,i)dθ = m(γ,i).

Claim 7. T is a finite tree.

Proof. Step 1 – We prove that if γ ∈ T \ LT , then

either Nγ = 0 or ]{0 ≤ i ≤ Nγ ;m(γ,i) > 0} ≥ 2.

Since m(γ,i) > 0 for 1 ≤ i ≤ Nγ , we get Step 1 if Nγ ≥ 2 or Nγ = 0.
We now assume that Nγ = 1. By (4.11) and (4.12),∫

S1

(x, z(γ,1))dν(γ,0) +m(γ,1) = 0.

Since m(γ,1) > 0, we get that ν(γ,0) 6= 0 and m(γ,0) > 0. This proves
Step 1.

Step 2 – We prove that if γ ∈ T \ LT , then

(4.13)

∫
M

∣∣∣∇ηε(γ,i)∣∣∣2g dvg∫
∂M

(
ηε(γ,i)

)2
euεdσg

→ 0 as ε→ 0,
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and that if γ, γ̃ ∈ T with |γ| ≤ |γ̃|, then

• If γ̃ is not a descendant of γ, then supp(ηεγ̃) ∩ supp(ηεγ) = ∅.
• If γ̃ is a descendant of γ, then supp(ηεγ̃) ⊂ supp(ηεγ).

We prove (4.13) by induction on |γ|. This is clearly true for |γ| = 1.
Let j ≥ 1 and assume that (4.13)holds for all |γ| ≤ j. We have∫

M

∣∣∣∇ηε(γ,i)∣∣∣2g dvg∫
∂M

(
ηε(γ,i)

)2
euεdσg

=

∫
M

∣∣∣∇ηεγ η̄ε(γ,i)∣∣∣2g dvg∫
∂M

(
ηεγ η̄

ε
(γ,i)

)2
euεdσg

with∫
M

∣∣∣∇ηεγ η̄ε(γ,i)∣∣∣2
g
dvg ≤ 2

(∫
M

∣∣∇ηεγ∣∣2g dvg +

∫
M

∣∣∣∇η̄ε(γ,i)∣∣∣2
g
dvg

)
= 2

(
o

(∫
∂M

(
ηεγ
)2
euεdσg

)
+ o(1)

)
,

by the induction assumption, and for i ≥ 1,∫
∂M

(
ηεγ η̄

ε
(γ,i)

)2
euεdσg ≥

∫
S1

(
η
ξ,z(γ,i),(r

ε
(γ,i)

)
1
2 ,rε

(γ,i)

)2

eǔ
ε
γ1Sεγdθ

≥
∫
S1

eǔ
ε
γ1Sεγ∩Iξ(z(γ,i),rε(γ,i))dθ

= m(γ,i),

and for i = 0, fixing ρ > 0,∫
∂M

(
ηεγ η̄

ε
(γ,0)

)2
euεdσg ≥

∫
Sεγ

1−
Nγ∑
i=1

η
ξ,z(γ,i),(r

ε
(γ,i)

)
1
4 ,(rε

(γ,i)
)

1
2

2

eǔ
ε
γ

≥
∫
Sεγ\

⋃Nγ
i=1 Iξ(pi,ρ)

eǔ
ε
γdθ

=

∫
S1\
⋃Nγ
i=1 Iξ(pi,ρ)

dν(γ,0) +

Nγ∑
i=1

m(γ,i)δz(γ,i)


+o(1)

=

∫
S1\Iξ(pi,ρ)

dν(γ,0) + o(1)

as ε→ 0. Gathering the previous inequalities, together with∫
∂M

(
ηεγ
)2
euεdσg ≤

∫
∂M

euεdσg = 1,

we get (4.13).
We now prove the second part of step 2, also by induction. Assume

that, for some j ≥ 1 fixed, for all γ, γ̃ ∈ T with |γ| ≤ |γ̃| ≤ j we have
that
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• If γ̃ is not a descendant of γ, then supp(ηεγ̃) ∩ supp(ηεγ) = ∅.
• If γ̃ is a descendant of γ, then supp(ηεγ̃) ⊂ supp(ηεγ).

Let us prove now that this is still true for any γ, γ̃ ∈ T with |γ| ≤ |γ̃| ≤
j + 1. If |γ̃| ≤ j, there is of course nothing to prove. Assume that
|γ̃| = j + 1

If |γ| = j + 1, then,

supp(ηεγ) ∩ supp(ηεγ̃) ⊂ supp(η̄εγ) ∩ supp(η̄εγ̃),

which is empty if and only if γ 6= γ̃.
If |γ| ≤ j, we denote γ̃ = (γ̂, i) with 0 ≤ i ≤ Nγ̂ . We can apply the

induction hypothesis to |γ| ≤ |γ̂| ≤ j. Then,

• if supp(ηγ̃) ∩ supp(ηγ) 6= ∅, we get supp(ηγ̂) ∩ supp(ηγ) 6= ∅ since
supp(ηγ̃) ⊂ supp(ηγ̂). By the induction assumption, γ̂ is a descen-
dant of γ and γ̃ is a descendant of γ.
• If γ̃ is a descendant of γ, then, γ̂ is a descendant of γ and by the

induction assumption, supp(ηγ̃) ⊂ supp(ηγ̂) ⊂ supp(ηγ).

The proof of Step 2 is complete.

Step 3 – We prove the following assertion Hj by induction on j.
Hj : If Tj 6= Tj+1, then, Tj+1 = T or there exist j + 1 test functions

with pairwise disjoint support in the set {ηεγ , γ ∈ Tj+1}.
Notice that by (4.13) in Step 2, the assumption Tk+1 6= T would

give a contradiction. Indeed, it suffices to test the k + 1 functions
given by the assumption Hk+1 in the variational characterization of
σε = σk(M, g, ∂M, euε), (1.1). Therefore, the increasing sequence of
trees {Tj} is stationary, and Claim 7 will follow.

Note that H1 is true by the existence of {ηε1}.
Let j ≥ 2 and we assume that Hj−1 is true and that Tj 6= Tj+1.

Then, Tj−1 6= Tj and Hj−1 gives j test functions with pairwise disjoint
support in the set {ηεγ ; γ ∈ Tj} denoted by ηεγ1

· · · ηεγj . We assume that

Tj+1 6= T . Then, there is γ ∈ Tj such that Nγ ≥ 1. By Step 1, there
are two indices i1 6= i2 such that m(γ,i1) > 0 and m(γ,i2) > 0.

If γ is not a descendant of one of γ1, · · · , γj , then we take the set of
test functions {ηεγ1

, · · · , ηεγj , η
ε
(γ,i1)}.

If γ is a descendant of one of γ1, · · · , γj , then, by Step 2, since the
functions ηεγ1

, · · · , ηεγj have pairwise disjoint support, there is a unique

1 ≤ i ≤ j such that γ is a descendant of γi and we take the set of test
functions with pairwise disjoint support:

{ηεγ1
, · · · , ηεγi−1

, ηεγi+1
, · · · , ηεγj , η

ε
(γ,i1), η

ε
(γ,i2)}.

Thus, Hj holds. This ends the proof of Step 3 and as already said
the proof of the claim. q.e.d.
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Thanks to this construction, the parameters (aεγ , α
ε
γ) define separated

bubble or bubbles over bubbles. This reads as a formula which originates
from [3] and [24] in the context of bubble tree constructions:

Claim 8. If γ ∈ T \LT , αεγ → 0 as ε→ 0 and if γ1, γ2 ∈ T \LT with
γ1 6= γ2, then

dg(ā
ε
γ1
, āεγ2

)

αεγ1
+ αεγ2

+
αεγ1

αεγ2

+
αεγ2

αεγ1

→ +∞ as ε→ 0.

Proof. We recall that there exists C0 > 0 such that for all 0 < r < δ,

Bg(x,C
−1
0 r) ⊂ expgl,xl(D

+
r (x̃l)) ⊂ Bg(x,C0r)

for all x ∈ γl with 1 ≤ l ≤ L. On the disks, there also exists C1 > 0 and
some δ1 > 0 such that for all 0 < r < δ1,

Bξ(zγ , C
−1
1 r) ⊂ λ−1(D+

r (ẑγ)) ⊂ Bξ(zγ , C1r)

for all γ ∈ T \ LT such that |γ| ≥ 2 and zγ 6= p, where ẑγ = λ(zγ); and

Bξ(p, C
−1
1 r) ⊂ λ−1

(
R2

+ \ D+
1
r

)
⊂ Bξ(p, C1r).

Now, given γ1, γ2 ∈ T \ LT , we let γ ∈ T such that γ1 = (γ, γ̃1),
γ2 = (γ, γ̃2) and |γ| is maximal. We consider 5 cases in order to prove
the claim.

Case 1 – γ = (∅). Then γ1 = (i, γ̂1) and γ2 = (j, γ̂1) with i 6= j.
Since

Iεγ1
⊂ Ig(zi, rεi ) ⊂ expgl,xl

(
IC0rεi

(z̃i)
)
,

we get with (4.10) that

|aεi − z̃i| ≤ C0r
ε
i ,

and

αεi ≤ C0r
ε
i + |aεi − z̃i| ,

so that aεi → z̃i as ε→ 0 and αεi → 0 as ε→ 0 and the same is true for
j. Then, since zi 6= zj ,

dg(ā
ε
i , ā

ε
j)

αεi + αεj
=
dg(zi, zj) + o(1)

αεi + αεj
→ +∞ as ε→ 0.

Case 2 – γ 6= (∅), γ̃1 = (∅), γ̃2 = (j, γ̂2) with z(γ,j) 6= p.
Then, we have

Iεγ2
⊂ Iε(γ,j) ⊂ expgl,xl

(
IC1rε(γ,j)α

ε
γ
(αεγ ẑ(γ,j) + aεγ)

)
,

so that by (4.12), we have that∣∣∣αεγ ẑ(γ,j) + aεγ − aε(γ,j)
∣∣∣ ≤ C1r

ε
(γ,j)α

ε
γ ,



140 R. PETRIDES

and

αε(γ,j) ≤ C1r
ε
(γ,j)α

ε
γ +

∣∣∣αεγ ẑ(γ,j) + aεγ − aε(γ,j)
∣∣∣ ,

and
αεγ

αε
(γ,j)
→ +∞ as ε→ 0.

Case 3 – γ 6= (∅), γ̃1 = (∅), γ̃2 = (j, γ̂2) with z(γ,j) = p.

We assume that

∣∣∣aε(γ,j)−aεγ ∣∣∣
αε

(γ,j)
+αεγ

is bounded and we prove by contradiction

that
αε

(γ,j)

αεγ
→ +∞ as ε → 0. We assume that αε(γ,j) = O(αεγ). Then, it

is clear that

∣∣∣aε(γ,j)−aεγ ∣∣∣
αεγ

is bounded and we have by (4.12) that

αε(γ,j) ≥
αεγ

C1rε(γ,i)
−
∣∣∣aεγ − aε(γ,j)∣∣∣ ,

so that

αε(γ,j)

αεγ
≥ 1

C1rε(γ,i)
−

∣∣∣aεγ − aε(γ,j)∣∣∣
αεγ

→ +∞ as ε→ 0,

which contradicts the assumption αε(γ,j) = O(αεγ). Thus,
αε

(γ,j)

αεγ
→ +∞

as ε→ 0.

Case 4 – γ 6= (∅), γ̃1 = (i, γ̂1), γ̃2 = (j, γ̂2) with i 6= j, z(γ,i) 6= p and
z(γ,j) 6= p.

We have that
∣∣∣aε(γ,i) − aε(γ,j)∣∣∣ = αεγ

(∣∣ẑ(γ,i) − ẑ(γ,j)

∣∣+ o(1)
)
,
αε

(γ,i)

αεγ
=

o(1) and
αε

(γ,j)

αεγ
= o(1) by Case 2 so that

dg

(
āε(γ,i), ā

ε
(γ,j)

)
αε(γ,i) + αε(γ,j)

→ +∞ as ε→ 0.

Case 5 – γ 6= (∅), γ̃1 = (i, γ̂1), γ̃2 = (j, γ̂2) with z(γ,i) 6= p and
z(γ,j) = p.

As in Case 3, we assume that

∣∣∣aε(γ,i)−aε(γ,j)∣∣∣
αε

(γ,i)
+αε

(γ,j)
is bounded and we will

prove by contradiction that
αε

(γ,j)

αε
(γ,i)
→ +∞ as ε → 0. Let’s assume that

αε(γ,j) = O(αε(γ,i)). Then,∣∣∣aε(γ,j) − aεγ∣∣∣
αεγ + αε(γ,j)

≤

∣∣∣aε(γ,j) − aε(γ,i)∣∣∣
αεγ + αε(γ,j)

+

∣∣∣aε(γ,i) − aεγ∣∣∣
αεγ + αε(γ,j)

≤

∣∣∣aε(γ,j) − aε(γ,i)∣∣∣
αε(γ,i) + αε(γ,j)

+

∣∣∣aε(γ,i) − aεγ∣∣∣
αεγ + o(αεγ)
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≤

∣∣∣aε(γ,j) − aε(γ,i)∣∣∣
αε(γ,i) + αε(γ,j)

+O(1),

since αε(γ,i) = o(αεγ) by Case 2, and
∣∣∣aε(γ,i) − aεγ∣∣∣ = O(αεγ). Then,∣∣∣aε(γ,j)−aεγ ∣∣∣

αεγ+αε
(γ,j)

is bounded and by Case 3,
αε

(γ,j)

αεγ
→ +∞ as ε → 0 so that

αε
(γ,j)

αε
(γ,i)
→ +∞ as ε→ 0 which gives a contradiction. Thus,

αε
(γ,j)

αε
(γ,i)
→ +∞

as ε→ 0.
Gathering all the cases, the proof is complete. q.e.d.

Now, we are in position to prove Proposition 2. We denote by L+ ⊂
LT the set of leaves γ ∈ LT such that mγ > 0.

To simplify, we now denote the elements of L+ by {1, · · · , N} and
all the indices γ ∈ L+ in Iεγ , Γεγ S

ε
γ , aεγ , αεγ , eû

ε
γ , eǔ

ε
γ , νγ and mγ are

replaced by the corresponding index i ∈ {1, · · · , N}.
Up to the extraction of a subsequence and up to reordering the αεi ’s,

we get (4.2), (4.3) and (4.4) thanks to Claim 8. By construction, we
obtain the remaining facts of the proposition.

5. Regularity estimates at the concentration scales

In this section, we aim at proving some energy estimates in order
to prove later Proposition 3 page 168. We fix i ∈ {1, · · · , N} given
by Proposition 2 and up to the end of the section drop the index i of
the parameters li, a

ε
i , α

ε
i the functions ûεi , we defined. As described in

Section 1.1, we let

Φ̂ε(z) = Φ̃l
ε ◦Haε,αε(z) = Φ̃l

ε(αεz + aε),

and

ν̂ε = H?
aε,αε(ν̃ε).

Then, for 0 ≤ i ≤ n and for ρ > 0 fixed, we get the equations

(5.1)

 ∆ξφ̂
i
ε = 0 in D+

1
ρ

,

∂tφ̂
i
ε = −σεeûε φ̂iε on I 1

ρ
.

As we will see, the properties gathered in Proposition 1 and Claim
3 are in some sense invariant by dilatation. Indeed, this is clear in
equation (5.1). We also have that if Ω ⊂ ωl and Γ = Ω ∩ ∂M ,

σ?(Ω, g,Γ, e
uε) = σ?(Ω̂, ξ, Γ̂e

ûε),

where we set Ω̂ = H−1
aε,αε

(
Ω̃l
)

and Γ̂ = H−1
aε,αε

(
Γ̃l
)

. The heat equation

is also invariant by dilatation, up to some errors on the surface M we
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precised in Section 1.2 (see (1.2) and (1.4)), thanks to the following
identity in the Euclidean case∫

R

1√
4πε

e−
|x−y|2

4ε f(y)dy =

∫
R

α√
4πε

e−α
2 | xα−y|

2

4ε f(αy)dy.

Therefore, we can derive regularity estimates of the eigenfunctions at
all the concentration scales.

However, we have to distinguish two cases, depending on the speed
of concentration αε when compared to ε. In Section 5.1, we treat the

case when α2
ε
ε → +∞ as ε→ 0, and in Section 5.2, we will treat the case

when α2
ε = O(ε).

5.1. Regularity estimates when α2
ε
ε → +∞. We assume in this

subsection that α2
ε
ε → +∞ as ε → 0. We set θε = ε

e2ṽl(a)α2
ε
, where

aε → a ∈ R × {0} as ε → 0, and i0 ∈ {1, · · · , N0} such that z̃i0 = a.
Then

(5.2) θε → 0 as ε→ 0.

We will adapt the technics of Section 3.1 in the surface (D2, ξ,S1, eǔε).
First, notice that

(5.3) eûεds− dν̂ε ⇀? 0 in M(R× {0}) as ε→ 0.

Indeed, for ζ ∈ C0
c (IR0) for some R0 > 0, and R > R0, we can write that∫

R×{0}
ζ
(
e2ûεdx− dν̂ε

)
=

∫
∂M\ĬR

(∫
˘IR0

pε(y, x)ζ(ŷ)dσg(y)

)
dνε(x)

+

∫
IR

∫
IR

(ζ(z)− ζ(x)) p̂ε(z, x)dzdν̂ε(x)

+

∫
IR0

(∫
IR

p̂ε(z, x)dz − 1

)
ζ(x)dν̂ε(x).

By estimates (1.7) on the heat kernel, we have that∫
∂M\ĬR

(∫
˘IR0

pε(x, y) |ζ(ŷ)| dσg(y)

)
dνε(x)

≤ ‖ζ‖∞ sup
x∈∂M\ĬR

∫
˘IR0

pε(x, y)dσg(y)

≤ O

e− (R−R0)2

8θε

√
θε

→ 0 as ε→ 0.

By estimates (1.5) on the heat kernel, we have that∫
IR

(∫
IR

|ζ(z)− ζ(x)| p̂ε(z, x)dz

)
dν̂ε(x)
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≤ sup
x∈IR

∫
R×{0}

|ζ(x)− ζ(z)| e
− |x−z|

2

8θε

√
πθε

dz → 0 as ε→ 0,

since ζ is uniformly continuous on R×{0}. Finally, we have by the heat
kernel estimate (1.8) that

lim
R→+∞

lim
ε→0

sup
x∈IR0

∣∣∣∣∫
IR

p̂ε(z, x)dz − 1

∣∣∣∣ = 0,

so that we get (5.3). We denote by ν̂ the weak star limit of both {eûεdx}
and {ν̂ε} in M(R× {0}).

Let’s tackle a generalization of Claim 3 at all the scales which appear
between αε and δ0. For a sequence {γε}, we let

euε
γε (x) = γεe

ũlε(γεx+aε) and Φε
γε

(x) = Φ̃ε
l
(γεx+ aε),

and for a sequence of domains Ωε ⊂ ωl, with Γε = ∂Ωε ∩ ∂M 6= ∅.

Ωε
γε

= H−1
aε,γε

(
Ω̃l
ε

)
and Γε

γε
= H−1

aε,γε

(
Γ̃lε

)
,

so that

σ? (Ωε, g,Γε, e
uε) = σ?

(
Ωε

γε
, ξ,Γε

γε
, euε

γε)
,

and {
∆ξΦε

γε
= 0 in Ωε

γε
,

∂tΦε
γε

= −σεeuε
γε

Φε
γε

on Γε
γε
.

We also let Aρ be the half-annulus D+
1
ρ

\ D+
ρ and Jρ = I 1

ρ
\ Iρ.

We recall that Xr(Ω, ξ,Γ, {euε
γε}) is the set of points x of Ω ⊂ R2

+

(with Γ = Ω∩R×{0}) such that there exists ε > 0 which satisfies Pr,ε,
that is Ar,ε or Br,ε, where

Ar,ε: x ∈ Γ and σ?(Dr(x), ξ, Ir(x), euε
γε

) ≤ σk(M,[g])
2

Br,ε: There exists f ∈ Ek(M, g, ∂M, euε) such that f
γε

(x) = 0 and the

Nodal set of f
γε

which contains x does not intersect ∂D+
r (x).

Note that for γε = αε, e
uεγε = eûε and that the set of concentration

points satisfies

(5.4) Z(Ω, {eûεds}) ⊂ Xr(Ω, ξ,Γ, {eûε})

for all r > 0. We write ωε1 � ωε2 if two sequences {ωε1} and {ωε2} satisfy
ωε1
ωε2
→ 0 as ε→ 0.

Claim 9. Up to the extraction of a subsequence, there exist some
sequences {ωεi} with 0 ≤ i ≤ t+ 1 and 0 ≤ t ≤ k such that

αε = ωε0 � ωε1 � ωε2 � · · · � ωεt � ωεt+1 = δ0,
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there exist R0 > 0 and some points pi,j with 0 ≤ i ≤ t and 1 ≤ j ≤ si
such that if 1 ≤ i ≤ t, pi,j ∈ J 1

R0

and if i = 0, p0,j ∈ IR0, with

s− 1 +
t∑
i=0

si ≤ k,

and for all 0 < ρ < 1
2R0

, there exists some r > 0 such that for all
1 ≤ i ≤ t,

Xr

(
Aρ, ξ, Jρ, {euε

ωεi }
)
⊂

si⋃
j=1

D+
ρ (pi,j),

Xr

(
D+

1
ρ

, ξ, I 1
ρ
, {eûε}

)
⊂

s0⋃
j=1

D+
ρ (p0,j),

for all sequence {γε} such that
ωεi
ρ < γε < ρωεi+1 with 0 ≤ i ≤ t fixed,

Xr

(
AR0ρ, ξ, JR0ρ, {euε

γε}
)

= ∅,

and for all 0 < ρ < 1
2R0

, for all r > 0, for all 0 ≤ i ≤ t, 1 ≤ j ≤ si and
for all subsequence εm → 0 as m→∞,

(5.5) Xr

(
D+

1
ρ

, ξ, I 1
ρ
, {euεm

ω
εm
i }m≥0

)
∩ D+

ρ (pi,j) 6= ∅.

Proof. By contradiction, we assume that for all subsequence εm → 0
as m→ +∞, for all {ωεmi }m≥0 with 0 ≤ i ≤ t and

αε = ωε0 � ωε1 � ωε2 � · · · � ωεt � ωεt+1 = δ0,

for all families of points pi,j ∈ R2 with 0 ≤ i ≤ t and 1 ≤ j ≤ si such
that if 1 ≤ i ≤ t, pi,j ∈ J 1

R0

and if i = 0, p0,j ∈ IR0 , with

s− 1 +
t∑
i=0

si ≤ k,

and

R0 = max

{
max

1≤i≤t,1≤j≤si

{
max

{
|pi,j | ,

1

|pi,j |

}}
, max

1≤j≤s0
{|p0,j |} , δ0

}
+ 1,

there exists 0 < ρ < 1
2R0

such that for all r > 0, either there exists
1 ≤ i ≤ t such that

(5.6) Xr

(
Aρ, ξ, Jρ, {euε

ωεi }
)
\

si⋃
j=1

D+
ρ (pi,j) 6= ∅,

or

(5.7) Xr

(
D+

1
ρ

, ξ, I 1
ρ
, {eûε}

)
\

s0⋃
j=1

D+
ρ (p0,j) 6= ∅,
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or there exists a sequence {γε} such that
ωεi
ρ < γε < ρωεi+1 for some

0 ≤ i ≤ t, with

(5.8) Xr

(
AR0ρ, ξ, JR0ρ, {euε

γε}
)
6= ∅.

With this assumption, we prove by induction the following property
Hs̃ for s− 1 ≤ s̃ ≤ k + 1

Hs̃: there exist sequences εm → 0 and rm ↘ 0 as m → +∞, some
scales

αε = ωε0 � ωε1 � ωε2 � · · · � ωεt � ωεt+1 = δ0,

some points pmi,j ∈ R2
+ \ {0} and pi,j ∈ R× {0} if 1 ≤ i ≤ t, 1 ≤ j ≤ si;

and pm0,j ∈ R2 and p0,j ∈ R× {0} if 1 ≤ j ≤ s0 with

s− 1 +
t∑
i=0

si = s̃,

and pi,j 6= pi,j′ if j 6= j′ for 0 ≤ i ≤ t, such that for all 0 ≤ i ≤ t,

1 ≤ j ≤ si, pmi,j satisfies Prm,εm in
(
R2

+, ξ,R× {0}, {euεm
ω
εm
i
)
}m≥0.

We already have Hs−1, let’s prove Hs. We fix ρ > 0. By assumption,
since we apply it with all si’s equal to 0, either (5.8) or (5.7) happen.
Let’s study these two cases:

Case (5.8)s−1: There exists a sequence {γεm} with αεm
ρ < γεm < ρδ0

and some xm ∈ X2−m

(
Aρ, ξ, Jρ, {euε

γε}
)

. We choose εm such that xm

satisfies P2−m,εm . It is clear that εm → 0 as m→∞.

• If γεm
αεm
→ +∞, we set a new scale ωεm1 = γεm and pm1,1 = xm ∈ Aρ.

Up to the extraction of a subsequence, pm1,1 → p1,1 ∈ R2
+ \ {0} as

m → +∞. It is clear by Claim 3 that ωεm1 � δ0 up to reduce ρ.
By the same arguments as in Claim 3, p1,1 ∈ R×{0} \ {0} and we
get Hs in this case.
• If γεm

αεm
is bounded, up to reduce ρ, one gets that (5.7) holds and

we can go to Case (5.7)s−1.

Case (5.7)s−1: There exists xm ∈ X2−m

(
D+

1
ρ

, ξ, I 1
ρ
{eûε}

)
. We set

pm0,1 = xm and up to the extraction of a subsequence, pm0,1 → p0,1 as

m → +∞. By the same arguments as in Claim 3, p0,1 ∈ R × {0} and
we get Hs in this case.

Now, we assume that Hs̃ is true for some s ≤ s̃ ≤ k. Let’s prove
Hs̃+1. We define all the parameters εm, rm, ωεmi , pmi,j and pi,j given by

Hs̃. We fix ρ > 0. By assumption, one of the assertions (5.6), (5.7) and
(5.8) must happen. Let’s study these three cases:



146 R. PETRIDES

Case (5.6)s̃: Let 1 ≤ i ≤ t and xm ∈ Xrm

(
Aρ, ξ, Jρ, {euεm

ω
εm
i }

)
\⋃si

j=1 D+
ρ (pi,j). For m ≥ 0, we set pmi,si+1 = xm and we let εβ(m) be

such that pmi,si+1 satisfies Prm,εβ(m)
. Since rm ↘ 0, as m→ +∞, setting

M(m) = min{m,β(m)} gives that p
β(m)
i,j satisfies PrM(m),εβ(m)

for all
1 ≤ j ≤ si and pmi,si+1 satisfies PrM(m),εβ(m)

. Up to the extraction of
a subsequence, we can assume that pmi,si+1 → pi,si+1 as m → +∞ and

that rM(m) ↘ 0 as m → +∞. Since pmi,si+1 ∈ Aρ \
⋃si
j=1 D+

ρ (pi,j),

pi,si+1 ∈ R2
+ \ {0, pi,1 · · · , pi,si}. By the same arguments as in Claim 3,

pi,si+1 ∈ R× {0} \ {0} and the proof of Hs̃+1 is complete in this case.

Case (5.7)s̃: The proof of Hs̃+1 is the same as in (5.6)s̃.

Case (5.8)s̃: Let {γεm} be a sequence such that
ωεmi
ρ < γεm < ρωεmi+1

and xm ∈ Xrm

(
AR0ρ, ξ, JR0ρ, {euεq

γεq }q≥0

)
.

• If γεm
ωε
m
i

→ +∞ and γεm
ωεmi+1

→ 0, we define a new scale ωεmt+1 = γεm and

pmt+1,1 = xm. Up to the extraction of a subsequence, pmt+1,1 ∈ Aρ
satisfies Prm,εm , pmt+1,1 → pt+1,1 ∈ R2

+ \ {0} and rm ↘ 0 as m →
+∞. By the same arguments as in Claim (3), pt+1,1 ∈ R×{0}\{0}.
Up to reorder {ωεmi }, we get Hs̃+1 in this case.
• If i = 0 and γεm

ωεm0
is bounded, up to reduce ρ, we get that (5.7)

holds and go back to Case (5.7)s̃.

• The case i = t and
ωεmt+1

γεm
is bounded leads to a contradiction by

Claim 3.
• The other cases lead to the fact that (5.6) holds up to reduce ρ

and we are back to Case (5.6)s̃.

Gathering the three cases, we deduce Hs̃+1. Therefore, Hk+1 holds
true and we now prove that this leads to a contradiction. We will
define new test functions for the variational characterization of σε =
σk(M, g, ∂M, euε), ηmi,j for 0 ≤ i ≤ t, 1 ≤ j ≤ si.

• If pmi,j satisfies Arm,εm , ηmi,j is defined by the extension by 0 in M \
Ωm
i,j of an eigenfunction for σ?

(
Ωm
i,j , g,Γ

m
i,j , e

uεm

)
, where Ωm

i,j ⊂M

and Γmi,j ⊂ ∂M are defined by D+
rm(pmi,j) = Ωm

i,j
ωεmi and Irm(pmi,j) =

Γmi,j
ωεmi .

• If pmi,j does not satisfy Arm,εm , it satisfies Brm,εm and ηmi,j is defined

by an eigenfunction for σ?

(
Dm
i,j , g,Γ

m
i,j , e

uεm

)
extended by 0 in

M \Dm
i,j , where Dm

i,j ⊂M is the Nodal domain of an eigenfunction

associated to σεm such that Dm
i,j
ωεmi ⊂ D+

rm(pmi,j) and Γmi,j = Dm
i,j ∩

∂M .
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We also use the functions ηmi for {1 ≤ i ≤ s}, already defined in the
proof of Claim 3. Note that these k+ 1 functions have pairwise disjoint
support for m large enough. Then, by (1.1),

σεm ≤ max
0≤i≤t

1≤j≤si
l 6=i0


∫
M

∣∣∣∇ηmi,j∣∣∣2
g
dvg∫

∂M

(
ηmi,j

)2
euεmdσg

,

∫
M |∇η

m
l |

2
g dvg∫

∂M

(
ηml
)2
euεmdσg

 ≤ σεm .
The last inequality comes from the definition of the properties A and
B and we have equality if and only if one of the test functions is an
eigenfunction for σεm = σk(M, g, ∂M, euεm ). This test function is a non-
zero harmonic function which vanishes on an open set of the surface.
This is absurd.

Therefore, we proved the first part of the claim. Up to making suc-
cessive extractions of subsequences of {εm} and up to removing some
points pi,j , one easily proves that the last condition (5.5) also holds.

q.e.d.

For ρ > 0, we set

Ω(ρ) = D+
1
ρ

\
s0⋃
j=1

D+
ρ (p0,j) and Γ(ρ) = I 1

ρ
\

s0⋃
j=1

Iρ(p0,j).

As previously remarked, the set of concentration points of {eûεds} sat-
isfies

(5.9) Z(R× {0}, {eûεdx}) ⊂ {p0,1, · · · , p0,s0},
and letting

mi(ρ) = lim
ε→0

∫
Γ(ρ)

eûεds,

we have that mi(ρ) ≥ mi+o(1) > 0 since we have (4.5), (4.7), (5.9) and

mi > 0. We aim at getting regularity estimates on Φ̂ε and eûε in Ω(ρ).
We follow the proof of Claim 4, thanks to the fact that mi(ρ) > 0 for ρ
small enough.

Claim 10. We have the following

• Estimates on Φ̂ε:

(5.10) ∀ρ > 0, ∃C1(ρ) > 0,∀ε > 0,
∥∥∥Φ̂ε

∥∥∥
W 1,2(Ω(ρ))

≤ C1(ρ),

(5.11) ∀ρ > 0,∃C2(ρ) > 0, ∀ε > 0,
∥∥∥Φ̂ε

∥∥∥
C0(Ω(ρ))

≤ C2(ρ).

• Quantitative non-concentration estimates on e2ûε and |∇Φ̂ε|2

(5.12) ∀ρ > 0, ∃D1(ρ) > 0, ∀r > 0, lim sup
ε→0

sup
x∈Γ(ρ)

∫
Ir(x)

eûε ≤ D1(ρ)

ln(1
r )
,
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(5.13)

∀ρ > 0, ∃D2(ρ) > 0, ∀r > 0, lim sup
ε→0

sup
x∈Γ(ρ)

∫
D+
r (x)
|∇Φ̂ε|2 ≤

D2(ρ)√
ln(1

r )
.

Proof. The proof of (5.10) follows exactly the proof of (3.5) in Claim
4, using the fact that mi

0(ρ) > 0 for ρ small enough and Claim 9.
For the proof of (5.11), we first prove that

(5.14) ∀ρ > 0,∃C0(ρ) > 0,∀ε > 0,
∥∥∥Φ̂ε

∥∥∥
C0(Γ(ρ))

≤ C0(ρ).

We now prove (5.14). Let 0 ≤ i ≤ n. Up to change φ̂iε into −φ̂iε,
there exists a subsequence {xε} of points in Γ(ρ) such that φ̂iε(xε) =

supΓ(ρ)

∣∣∣φ̂iε∣∣∣. We set δε = dξ(xε, supp(ν̂ε)) and we let yε ∈ supp(ν̂ε) be

such that δε = |xε − yε|. We divide the proof into 3 cases:

Case 1 – δ−1
ε = O(1). Then, {eûε} is uniformly bounded in

Imin( δε2 ,
ρ
2 )(xε) by estimates on the heat kernel (see (1.6)). By (5.10),

φ̂iε is bounded in L2
(
Γ
(ρ

2

))
. By elliptic theory for the Dirichlet-to-

Neumann operator (see [25], Chapter 7.11, page 37), φ̂iε is bounded in

W 1,2
(
Γ
(ρ

2

))
(see (5.1)), and {φ̂iε(xε)} is bounded by Sobolev embed-

dings.

Case 2 – δε = O
(√

ε
αε

)
. Using Claim 2, we get that {φ̂iε(xε)} is

bounded.

Case 3 – δε → 0 as ε→ 0 and
√
ε

αεδε
→ 0 as ε→ 0. We set

ewε(x) = δεe
2ûε(xε+δεx),

ψε(x) = φiε(xε + δεx),

zε =
1

δε
(xε − yε),

so that

(5.15)

{
∆ψε = 0 in D+

5 ,
∂tψε = −σεewεψε on I5.

Up to the extraction of a subsequence, there is z0 ∈ R×{0} with |z0| = 1
such that zε → z0 as ε → 0. By estimates (1.6), there is D1 > 0 such
that

ewε ≤ D1 in I 1
2
.

By Claim 2, since yε ∈ supp(ν̂ε), ψε(zε) = O(1) as ε→ 0.
We first assume that ψε does not vanish in D+

3 (0). Since ψε(0) > 0,
ψε > 0 in D+

3 (0). Then, by Harnack’s inequality, we get D2 > 0 such
that

∀x ∈ D+
1
4

, ψε(x) ≥ D2ψε(0).
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Since ψε is positive, ψε is weakly superharmonic in D+
|zε|(zε) ⊂ D+

3 (0) by

(5.15) so that

ψε(zε) ≥
1

π |zε|

∫
∂D+
|zε|

(zε)
ψεdσ,

and keeping the part of the integral which lies in D+
1
4

, we get a constant

D3 > 0 such that ψε(zε) ≥ D3ψε(0). We conclude that φiε(xε) = ψε(0)
is bounded.

We now assume that ψε vanishes in D+
3 (0). Xr(Ω(ρ), ξ,Γ(ρ), eûε) = ∅

by Claim 9, then ψε vanishes in D+
4 (0) on a piecewise smooth curve

between two points of distance greater than 1. By the corollary of
Theorem 4, Section 1.3, on Ω = D+

5 (0) we get some constant C1 > 0
such that ∫

D+
4 (0)

ψ2
εdx ≤ C1

∫
D+

5 (0)
|∇ψε|2 dx.

By elliptic estimates on (5.15), {ψε} is uniformly bounded on D+
1
4

(0) and

φiε(xε) = ψε(0) = O(1).

We now prove (5.11). Let ρ > 0 and 0 ≤ i ≤ n. Since φ̂iε is harmonic
in Ω(ρ2), by elliptic regularity theory, there exists a constant K0(ρ) > 0
such that∥∥∥φ̂iε∥∥∥C0(Ω(ρ))

≤ K0(ρ)

(∥∥∥φ̂iε∥∥∥
L2(Ω( ρ2 ))

+
∥∥∥φ̂iε∥∥∥C0(Γ( ρ2 ))

)
,

and setting C2(ρ) = K0(ρ)
(
C1

(ρ
2

)
+ C0

(ρ
2

))
gives (5.11).

As in the proof of Claim 4, Claim 9 gives some capacity estimates and
we get (5.12), and (5.13) is a consequence of (5.11), (5.12) and equation
(5.1). q.e.d.

We now need an estimate of {Φε} on the whole surface in order to
prove later that no energy is lost in the necks.

Claim 11. For any ρ > 0, there exists a constant C0(ρ) > 0 such
that

∀x ∈M\

⋃
i 6=i0

Bg(pi, ρ) ∪
t⋃
i=0

si⋃
j=1

Ωi,j

 ,

|Φε(x)| ≤ C0(ρ)

(
ln

(
1 +

dg(x, āε)

αε

)
+ 1

)
,

where

Ω̃l
i,j = ωεiDρ(pi,j) + aε and āε = exp−1

gl,xl
(aε).

Proof. Let 0 < ρ < 1
20R0

and let r > 0 which satisfies the conclusion
of Claim 9 for this ρ.
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Step 1: We prove that for 0 ≤ i ≤ t, there exists Ai(ρ) > 0 such that

for all 0 ≤ β ≤ n, for all sequence {γε} with
ωεi
ρ ≤ γε ≤ ρω

ε
i+1, either

∀x ∈ A12R0ρ,
∣∣∣φβε γε(x)

∣∣∣ ≤ Ai(ρ),

or

∀x, y ∈ A12R0ρ,

∣∣∣φβε γε(y)
∣∣∣

Ai(ρ)
≤
∣∣∣φβε γε(x)

∣∣∣ ≤ Ai(ρ)
∣∣∣φβε γε(y)

∣∣∣ .
We let Ãi(ρ) be equal to

max
0≤β≤n

sup
ε>0

ωεi
ρ
<γε<ρωεi+1

min

 max
x∈J10R0ρ

∣∣∣φβε γε(x)
∣∣∣ , max
x,y∈A10R0ρ

∣∣∣φβε γε(x)
∣∣∣∣∣∣φβε γε(y)
∣∣∣

 ,

where we recall that for r > 0 Jr = Ar ∩ R × {0}. We assume by

contradiction that Ãi(ρ) = +∞. Then there exist 0 ≤ β ≤ n,
ωεmi
ρ <

γεm < ρωεi+1 such that εm → 0 as m→ +∞ and

min

 max
x∈J10R0ρ

∣∣∣φβεmγεm (x)
∣∣∣ , max
x,y∈A10R0ρ

∣∣∣φβεmγεm (x)
∣∣∣∣∣∣φβεmγεm (y)
∣∣∣
→ +∞

as m→ +∞. Let xm ∈ J10R0ρ be such that∣∣∣φβεmγεm (xm)
∣∣∣ = max

x∈J10R0ρ

∣∣∣φβεmγεm (x)
∣∣∣ .

We set δm = d(xm, supp (νεm
γεm )) and take ym ∈ supp (νεm

γεm ) such
that |xm − ym| = δm. We study 3 cases each one leading to a contra-
diction.

Case 1 – δm = O
(√

εm
γεm

)
. We apply Claim 2 for the sequence of

points {expgl,xl(γεmxm + aεm)}m in ∂M and we get a contradiction.

Case 2 – δm → 0 and δmγεm√
εm
→ +∞ as m→ +∞. We set

ewm = δme
uεm

γεm (xm + δmx),

ψm = φβεm
γεm

(xm + δmx), and

zm =
1

δm
(ym − xm),

so that {
∆ψm = 0,
∂tψm = −σεmewmψm.

Up to the extraction of a subsequence, there is z0 ∈ R×{0} with |z0| = 1
such that zm → z0 as m→ +∞. By (1.6), there is D1 > 0 such that

e2wm ≤ D1 on I 1
2
.
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By Claim 2, since ym ∈ supp (νεm
γεm ), ψm(zm) = O(1) as m→ +∞.

We first assume that ψm does not vanish in D+
3 (0). Up to take −ψm,

we can assume that ψm > 0 on D+
3 (0). Then, by Harnack inequality, we

get D2 > 0 such that

∀x ∈ D+
1
4

, ψm(x) ≥ D2ψm(0).

Since ψm is positive, ψm is weakly superharmonic in D+
|zm|(zm) ⊂ D+

3 (0).

Then,

ψm(zm) ≥ 1

π |zm|

∫
∂D|zm|(zm)

ψmdσ,

and keeping the part of the integral which lies in D+
1
4

, we get a constant

D3 > 0 such that ψm(zm) ≥ D3ψm(0). We conclude that φβεm
γεm

(xm) =
ψm(0) = O(1) which is absurd.

We assume now that ψm vanishes in D+
3 (0). By Claim 9, ψm vanishes

in D+
4 (0) on a piecewise smooth curve between two points of distance

greater than 1. By the corollary of Theorem 4 on Ω = D+
5 (0), we get a

Poincaré inequality∫
D+

4 (0)
ψ2
mdx ≤ C1

∫
D+

5 (0)
|∇ψm|2 dx.

By elliptic regularity theory, ψm is uniformly bounded on D+
1
4

(0) and

φβεm
γεm

(xm) = ψm(0) = O(1) which is absurd.

Case 3 – 1
δm

= O(1). Up to the extraction of a subsequence, we
assume that xm → x in J10R0ρ as m→ +∞.

We first assume that ψm := φβεm
γεm

vanishes in A5R0ρ. We get by
Claim 9 and the corollary of Theorem 4 on Ω = A2R0ρ, a constant
Cr > 0 such that ∫

A4R0ρ

ψ2
mdx ≤ Cr

∫
A2R0ρ

|∇ψm|2 dx.

By (1.6), there are some constants r̃ > 0 and D1 > 0 such that

euεm
γεm ≤ D1 on Ir̃(x).

By elliptic estimates, {ψm} is uniformly bounded on A5R0ρ ∩ D r̃
2
(x)

which gives a contradiction.

We assume now that ψm := φβεm
γεm

does not vanish in A5R0ρ. Up to
take −ψm, we assume that ψm > 0 on A5R0ρ.

Let’s assume that ym → y as m→ +∞ with y ∈ J7R0ρ. By Claim 2,
ψm(ym) = O(1). By (1.6), there exists a constant D1 > 0 such that

euεm
γεm ≤ D1 in Iδ−δ̃(x),
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where δ̃ = min
(
δ
4 ,

R0ρ
4

)
. By Harnack’s inequality, there exists D2 > 0

such that

∀z ∈ A6R0ρ ∩ D+

δ−2δ̃
(x), ψm(xm) ≤ D2ψm(z).

By weak superharmonicity on D+

3δ̃
(ym) ⊂ A5R0ρ,

ψm(ym) ≥ 1

π × 3δ̃

∫
∂D+

3δ̃
(ym)

ψmdσ.

We keep the part of the integral which lies in A6R0ρ ∩ D+

δ−2δ̃
. Since the

length of ∂D+

3δ̃
(ym) ∩ A6R0ρ ∩ D+

δ−2δ̃
is uniformly bounded from below,

we get a constant D3 > 0 such that ψm(ym) ≥ D3ψm(xm). Then,

φβεm
γεm

(xm) = ψm(xm) = O(1) which is absurd.
Assume now that ym ∈ R×{0} \ J8R0ρ. By (1.6), there is a constant

D1 > 0 such that

euεm
γεm ≤ D1 in A9R0ρ.

By Harnack inequality, there exists a constant C1 > 0 such that

∀z, z̃ ∈ A10R0ρ,

∣∣∣φεmγεm ∣∣∣ (z̃)
C1

≤
∣∣∣φεmγεm ∣∣∣ (xm) ≤ C1

∣∣∣φεmγεm ∣∣∣ (z),
which also leads to a contradiction.

We get Ãi(ρ) < +∞. We now let Ai(ρ) be equal to

max
0≤β≤n

sup
ε>0

ωεi
ρ
<γε<ρωεi+1

min

 max
x∈A12R0ρ

∣∣∣φβε γε(x)
∣∣∣ , max
x,y∈A12R0ρ

∣∣∣φβε γε(x)
∣∣∣∣∣∣φβε γε(y)
∣∣∣

 ,

and we assume by contradiction that Ai(ρ) = +∞. Let γεm with
ωεmi
ρ ≤

γεm ≤ ρωεmi+1 and εm → 0 as m→ +∞ be such that

min

 max
x∈A12R0ρ

∣∣∣φβεmγεm (x)
∣∣∣ , max
x,y∈A12R0ρ

∣∣∣φβεmγεm (x)
∣∣∣∣∣∣φβεmγεm (y)
∣∣∣
→ +∞

as m → +∞. Then, by elliptic estimates there is some constant K(ρ)
such that

max
x∈A12R0ρ

∣∣∣φβεmγεm (x)
∣∣∣ ≤ K(ρ)

(
max
J10R0ρ

∣∣∣φβεmγεm ∣∣∣+
∥∥∥φβεmγεm∥∥∥

L2(A10R0ρ
)

)
,

so that since Ãi(ρ) < +∞,∥∥∥φβεmγεm∥∥∥
L2(A10R0ρ

)
→ +∞ as m→ +∞.
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By Poincaré inequalities given by the corollary of Theorem 4 on Ω =

A5R0ρ, and by Claim 9, we clearly have that φβεm
γεm

does not vanish in
A5R0ρ and by Harnack inequalities,

sup
m≥0

max
x,y∈A10R0ρ

∣∣∣φβεmγεm (x)
∣∣∣∣∣∣φβεmγεm (y)
∣∣∣ < +∞,

which contradicts the fact that Ai(ρ) = +∞. Then Ai(ρ) < +∞ and
we get Step 1.

Step 2: We have that for 1 ≤ i ≤ t, there exists Bi(ρ) > 0 such that
for all 0 ≤ β ≤ n, either

∀x ∈ Aρ \
si⋃
j=1

D+
ρ (pi,j),

∣∣∣∣φβε ωεi (x)

∣∣∣∣ ≤ Bi(ρ),

or

∀x, y ∈ Aρ \
si⋃
j=1

D+
ρ (pi,j),

∣∣∣∣φβε ωεi (y)

∣∣∣∣
Bi(ρ)

≤
∣∣∣∣φβε ωεi (x)

∣∣∣∣ ≤ Bi(ρ)

∣∣∣∣φβε ωεi (y)

∣∣∣∣ ,
and there exists Bt+1(ρ) > 0 such that for all 0 ≤ β ≤ n, either

∀x ∈M \
s⋃
i=1

Bg(pi, ρ),
∣∣∣φβε (x)

∣∣∣ ≤ Bt+1(ρ),

or

∀x, y ∈M \
s⋃
i=1

Bg(pi, ρ),

∣∣∣φβε (y)
∣∣∣

Bt+1(ρ)
≤
∣∣∣φβε (x)

∣∣∣ ≤ Bt+1(ρ)
∣∣∣φβε (y)

∣∣∣ .
The proof of Step 2 follows exactly that of Step 1. Notice that if

m0(ρ) > 0, the third inequality holds by Claim 4. We leave the details
to the reader.

Step 3: We prove that there exists Ki(ρ) > 0 such that for 0 ≤ i ≤ t,
and for all x ∈ D+

τεi+1
\ D+

tεi
,

(5.16) |Fε| (x) ≤ Ki(ρ)

max
∂D+

tε
i

|Fε|+ ln

(
|x|
tεi

) ,

where tεi = 12R0ω
ε
i , τ

ε
i+1 =

ωεi+1

12R0
and Fε(x) = Φ̃ε

l
(aε + x).

Let 0 ≤ β ≤ n. We set

N ε
i = {tεi ≤ t ≤ τ εi ;∃x ∈ R2, |x| = t and Fε(x) = 0}.

Then, by the Courant Nodal theorem, N ε
i has a finite number of con-

nected components, bounded by k+ 1, since each connected component



154 R. PETRIDES

adds at least one nodal domain for the eigenfunction Φβ
ε . By Step 1, we

clearly have that

(5.17) ∀x ∈ R2; |x| ∈ N ε
i ⇒

∣∣∣F βε (x)
∣∣∣ ≤ Ai(ρ).

We let

cεi,1 < dεi,1 < cεi,2 < dεi,2 < · · · < cεi,qε < dεi,qε
be such that

N ε
i = [tεi , τ

ε
i ] \

qε⋃
j=1

]cεi,j , d
ε
i,j [

with {qε} a bounded sequence of integers. Let 1 ≤ j ≤ qε. Then, F βε
does not vanish on D+

dεi,j
\D+

cεi,j
, and we can assume that F βε > 0 up to take

−F βε . By the eigenvalue equation, F βε is then weakly superharmonic on
D+
dεi,j
\ D+

cεi,j
. We set

fε(u) =

∫
∂D+

u
F βε (x)dσ(x)

πu
.

Then,

f ′ε(u) =

∫
∂Du ∂νF

β
ε (x)dσ(x)

πu

=
−
∫
Du ∆F βε (x)dx+

∫
Iu
∂tF

β
ε (s, 0)ds

πu

=

∫
Icε
i,j

∂tF
β
ε (s, 0)ds+

∫
Iu\Icε

i,j

∂tF
β
ε (s, 0)ds

πu
,

so that

fε(u) = fε(c
ε
i,j) +

∫
Icε
i,j

∂tF
β
ε (s, 0)ds

π
ln

(
u

cεi,j

)

+

∫ u

cεi,j

∫
Iv\Icε

i,j

∂tF
β
ε (s, 0)ds

πv
dv.

By a Hölder inequality,∣∣∣∣∣∣
∫
Icε
i,j

∂tF
β
ε (s, 0)ds

∣∣∣∣∣∣ ≤
(∫

∂M

(
φβε

)2
euεdσg

) 1
2
(∫

∂M
euεdσg

) 1
2

≤ 1,

and since F βε is positive on Idεi,j \ Icεi,j ,

fε(u) ≤ fε(cεi,j) +
1

π
ln

(
u

cεi,j

)
for cεi,j ≤ u ≤ dεi,j .
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By the second condition of Step 1, we have for cεi,j ≤ u ≤ dεi,j that

∀x ∈ ∂D+
u , F

β
ε (x) ≤ Ai(ρ)fε(u).

Gathering these inequalities, for 1 ≤ j ≤ qε, we get a constant Ki(ρ) > 0
such that,

(5.18) ∀x ∈ ∂D+
u ,
∣∣∣F βε (x)

∣∣∣ ≤ Ki(ρ)

max
∂D+

tε
i

∣∣∣F βε ∣∣∣+ ln

(
u

tεi

) ,

which is exactly Step 3.
We are now in position to prove the claim. By Step 2, we get some

constant Li(ρ) > 0 such that for 1 ≤ i ≤ t,

(5.19) sup
D+
tε
i
\D+

τε
i

|Fε| ≤ Li(ρ)

 inf
D+
tε
i
\D+

τε
i

|Fε|+ 1

 ,

and we get some constant Lt+1(ρ) such that

(5.20) sup
M(ρ)
|Φε| ≤ Lt+1(ρ)

 max
∂D+

τεt+1

|Fε|+ 1

 .

By (5.11) in Claim 10,

(5.21) sup
D+
tε0

|Fε| ≤ C2

(
1

12R0

)
.

Gathering (5.16), (5.19), (5.20) and (5.21), we get the claim. q.e.d.

In the following claim, we aim at passing to the limit in equation
(i) and the condition (ii) given by Proposition 1 at the scale αε. The
limiting function would then satisfy (5.25) and (5.26).

Claim 12. We have that

• For any ρ > 0, there exists βε → 0 as ε→ 0 such that

(5.22) ∀x ∈ Γ(ρ),
∣∣∣Φ̂ε

∣∣∣2 (x) ≥ 1− βε.

• For ρ > 0 and x ∈ Γ(ρ), we set Ψ̂ε = Φ̂ε
|Φ̂ε| . Then for any ρ > 0,

{Ψ̂ε} is uniformly equicontinuous on C0(Γ(ρ), Sn).

• For any ρ > 0, up to the extraction of a subsequence of {Φ̂ε},
there exist functions Φ̂ ∈W 1,2(Ω(ρ),Rn+1) ∩ L∞(Γ(ρ),Rn+1) and

Ψ̂ ∈W
1
2
,2(Γ(ρ), Sn) ∩ C0(Γ(ρ), Sn) such that

(5.23) Φ̂ε ⇀ Φ̂ in W 1,2(Ω(ρ),Rn+1),

and

(5.24) Ψ̂ε → Ψ̂ in C0(Γ(ρ),Sn) as ε→ 0
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with

(5.25)
∣∣∣Φ̂∣∣∣2 ≥a.e. 1 and Ψ̂ =

Φ̂∣∣∣Φ̂∣∣∣ on Γ(ρ),

and for 0 ≤ i ≤ n,

(5.26)

{
∆φ̂i = 0 in Ω(ρ),

∂tφ̂
i = −σk(M, [g])ψ̂idν̂ on Γ(ρ),

in a weak sense.

Proof. Step 1: We recall that aε → a as ε→ 0 with z̃i0 = a.
For 1 ≤ j ≤ s0 and θε = ε

e2ṽl(a)α2
ε
,

(5.27) sup
x∈Γ(ρ)

∫
I ρ

10
(p0,j)

∣∣∣Φ̂ε(z)
∣∣∣2 p̂ε(z, x)dz = O(e−

ρ2

8θε ).

For 0 ≤ i ≤ t, 1 ≤ j ≤ si and τ εi = ε

e2ṽl(a)(ωεi)
2 ,

(5.28) sup
x∈Γ(ρ)

∫
I ρ

10
(pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2 pεωεi (z, αε
ωεi
x

)
dz = O(e

− ρ2

8τε
i ).

For 1 ≤ i ≤ s and i 6= i0,

(5.29) sup
x∈Γ(ρ)

∫
Ig(pi,

ρ
10

)
|Φε(z)|2 pε(x̆, z)dσg(z) = O(e−

ρ2

8ε ).

Note that (5.29) was already proved in Step 1 of Claim 5. Note also
that the proof of (5.27) reduces to (5.28) for i = 0. Let 0 ≤ i ≤ t and
1 ≤ j ≤ si. Then, for y ∈ Γ(ρ),

e
ρ2

8τε
i

∫
I ρ

10 (pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2pεωεi (z, αε
ωεi
y

)
dz

≤

∫
I ρ

10
(pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2 euεωεi
infI ρ

10
(pi,j) e

uε
ωε
i

.O

e− ρ2

4τε
i

( 92

102−
1
2
− 1

100
)√

τ εi


≤ C0

infI ρ
10

(pi,j) e
uε
ωε
i

e
− 3ρ2

40τε
i√

τ εi
,

where we used the uniform bound (1.5) on pε
ωεi on D 1

ρ
×D 1

ρ
. We assume

by contradiction that

inf
I ρ

10
(pi,j)

euε
ωεi ≤ e

− 3ρ2

40τε
i√

τ εi
.
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Let y ∈ ∂M be such that yω
ε
i ∈ I ρ

10
(pi,j). Then,

euε
ωεi (yω

ε
i ) = evl(y)ωεi

∫
∂M

pε(x, y)dνε(y)

≥
∫
I ρ

10
(pi,j)

pε
ωεi (z, yω

ε
i )dνε

ωεi (z)

≥ α0
e
− ρ2

80τε
i√

τ εi

∫
I ρ

10
(pi,j)

dνε
ωεi ,

so that the assumption leads to∫
I ρ

10
(pi,j)

dνε
ωεi ≤ e

− ρ2

16τε
i

α0
.

For z ∈ I ρ
20

(pi,j),

euε
ωεi (z) ≤

∫
I ρ

10
(pi,j)

dνε
ωεi +O

(
e
− ρ2

4τε
i

(
1

202−
1

1000

))
√
τ εi

≤
e
− ρ2

16τε
i +O

(
e
− 3ρ2

8000τε
i

)
α0

√
τ εi

.

Then, euε
ωεi → 0 uniformly on C0(I ρ

20
(pi,j)) as ε→ 0 and

σ?(D ρ
20

(pi,j), ξ, I ρ
20

(pi,j), e
uε
ωεi ξ)→ +∞ as ε→ 0.

This contradicts (5.5) in Claim 9. The proof of Step 1 is now complete.

Step 2: There exists a sequence βε → 0 as ε→ 0 such that

(5.30) ∀x, y ∈ Γ(ρ), |x− y| ≤
√
θε
βε
⇒
∣∣∣Φ̂ε(x)− Φ̂ε(y)

∣∣∣ ≤ βε.
We set γε =

∥∥√θεeûε∥∥ 1
2

C0(Γ(ρ))
. We have that γε → 0 as ε→ 0. Indeed,

for r > 0, and x ∈ Γ(ρ),√
θεe

ûε(z) ≤
(
A0√
4π

+ o(1)

)∫
Ir(x)

dν̂ε + o(1)

≤ A0ν̂(Ir(x))

4π
+ o(1)

≤ A0D1(ρ)√
4π ln(1

r )
+ o(1),
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since we have (5.2) and thanks successively to (1.6), (1.5) and to (5.3),

(5.12). We also have γε√
θε
→ +∞ as ε → 0 since θ

1
4
ε
γε

=
∥∥eûε∥∥− 1

2

C0(Γ(ρ))
≤

mi(ρ)−
1
3 is bounded and we have (5.2). Let xε and yε ∈ Γ(ρ) with

|xε − yε| ≤
√
θε
γε

. We set

Fε(z) = Φ̂ε(xε +

√
θε
γε

z),

and αε the mean value of Fε in D+
3 . Then, we get constants D0, D,D

′ >
0 such that

‖Fε − αε‖L∞(I2(0)) ≤ D0 ‖Fε − αε‖H1(I2(0))

≤ D ‖∂νFε‖L∞(I3(0)) +D ‖Fε − αε‖L2(D+
3 (0))

≤ D
∥∥∥Φ̂ε

∥∥∥
L∞(Γ(ρ))

σεγε +D′ ‖∇Fε‖L2(D+
3 (0))

≤ DC2(ρ)σεγε +D′
√
D2(ρ)

ln
(

γε
3
√
θε

) 1
4

,

thanks successively to (5.13) and (5.11). See also Step 2 in the Proof of
Claim 5. Setting

βε = 2DC2(ρ)σεγε + 2D′
√
D2(ρ)

ln
(

γε
3
√
θε

) 1
4

,

βε → 0 as ε→ 0 and we get Step 2.

Step 3: There exists a sequence βε → 0 as ε → 0 such that for all
x ∈ ∂M ,

(5.31) x̂ ∈ Γ(ρ)⇒
∣∣∣∣∣∣∣Φ̂ε(x̂)

∣∣∣2 −Kε[|Φε|2](x)

∣∣∣∣ ≤ βε,
and

(5.32) x̂ ∈ Γ(ρ) ∩ supp(ν̂ε)⇒ |Kε[|Φε|](x)− 1| ≤ βε.
Note that (5.31) gives (5.22) for x ∈ supp(νε) by Proposition 1. Let

x ∈ ∂M be such that x̂ ∈ Γ(ρ).∣∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣2 −Kε[|Φε|2](x)

∣∣∣∣ ≤ ∫
∂M

pε(x, y)
∣∣∣|Φε(x)|2 − |Φε(y)|2

∣∣∣ dσg(y)

≤
∫
I√θε
βε

(x̂)
p̂ε(z, x̂)

∣∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣2 − ∣∣∣Φ̂ε(z)

∣∣∣2∣∣∣∣ dz
+ Iε

+
∑
i 6=i0

∫
Ig(pi,

ρ
10

)
|Φε|2 pε(x, y)dσg(y)



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 159

+

t∑
i=0

st∑
j=1

∫
Iρ(pi,j)

∣∣∣Φε
ωεi
∣∣∣2 pεωεi (z, αε

ωεi
x̂

)
dz,

where

Iε = C2
2 (ρ)

∫
∂M\Ĭ√θε

βε

(x̂)
pε(x, y)

+C2
0 (ρ)

∫
∂M\Ĭ√θε

βε

(x̂)
pε(x, y)

(
ln

(
1 +

dg(y, āε)

αε

)
+ 1

)2

dσg(y).

Here, we used Claim 10 and Claim 11. By (5.27), (5.28), (5.29) and
(5.30), ∣∣∣∣∣∣∣Φ̂ε(x̂)

∣∣∣2 −Kε[|Φε|2](x)

∣∣∣∣ ≤ 2C2(ρ)βε +O(e
− ρ2

8α2
ε ) + Iε,

and there are some constants K0(ρ) > 0 and K1(ρ) > 0 such that

Iε ≤ K0(ρ) ln

(
δ(∂M)

αε

)2 ∫
∂M\Γl

pε(x, y)dσg(y)

+K1(ρ)

∫
Γ̂l\I√θε

βε

(x̂)
p̂ε(z, x̂)

(
ln(1 + |z|)2 + 1

)
dz.

Since α2
ε
ε → +∞ as ε→ 0,

ln

(
δ(∂M)

αε

)2 ∫
∂M\Γl

pε(x, y)dσg(y)

≤ ln

(
δ(∂M)

αε

)2

.O

e− δ(M)2

4ε

√
ε

 = o(1) as ε→ 0,

and by (1.3),∫
Γ̂l\I√θε

βε

(x̂)
p̂ε(z, x̂)

(
ln(1 + |z|)2 + 1

)
dz

≤
∫
R\I√θε

βε

A0√
4πθε

e−
|x̂−z|2

8θε

(
ln(1 + |z|)2 + 1

)
dz

≤
∫
R\I 1

βε

(0)

A0√
4π
e−
|y|2

8

(
ln
(

1 +
∣∣∣x̂+

√
θεy
∣∣∣)2

+ 1

)
dy

= o(1) uniformly for x̂ ∈ Γ(ρ).

Up to increasing βε, we get (5.31). The same estimates can be obtained

for |Φε| instead of |Φε|2, and we get up to increase βε for x ∈ ∂M such
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that x̂ ∈ Γ(ρ), ∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣−Kε[|Φε|](x)

∣∣∣ ≤ βε.
Since, if z ∈ supp(ν̂ε) ∩ Γ(ρ), we have∣∣∣∣∣∣∣Φ̂ε(z)

∣∣∣2 − 1

∣∣∣∣ ≤ βε,
up to increase βε, we get for x ∈ ∂M such that x̂ ∈ supp(ν̂ε) ∩ Γ(ρ),

|Kε[|Φε|](x)− 1| ≤ βε.

We follow Step 4 in the proof of Claim 5 to prove that Ψ̂ε is uniformly
equicontinuous on Γ(ρ). Indeed, we can use the corollary of Theorem
4 thanks to Claim 9. Therefore, up to the extraction of a subsequence,
Ψ̂ε → Ψ̂ in C0(Γ(ρ),Sn) as ε→ 0.

Step 4: We have that

φ̂iεe
ûεds ⇀? ψ̂

iν̂ in M(Γ(ρ)) as ε→ 0.

Let ζ ∈ C0
c (I(ρ)) and R > 1

ρ . Then∫
R×{0}

ζ(z)
(
φ̂iε(z)e

ûε(z)dz − ψ̂i(z)dν̂(z)
)

=

∫
∂M\ĬR

(∫
Γ̆(ρ)

pε(x, y)ζ(y)φiε(y)dσg(y)

)
dνε(x)

+

∫
IR

(∫
IR

(ζ(z)− ζ(x))φ̂iε(z)p̂ε(z, x)dz

)
dν̂ε(x)

+

∫
Γ(ρ)

ζ(x)

(∫
IR

(
ψ̂iε(z)− ψ̂iε(x)

) ∣∣∣Φ̂ε(z)
∣∣∣ p̂ε(z, x)dz

)
dν̂ε(x)

+

∫
Γ(ρ)

ζ(x)ψ̂iε(x)

(∫
IR

(∣∣∣Φ̂ε(z)
∣∣∣− 1

)
p̂ε(z, x)dz

)
dν̂ε(x)

+

∫
Γ(ρ)

ζ(x)

(
ψ̂iε(x)

(∫
IR

p̂ε(z, x)dz

)
dν̂ε(x)− ψ̂i(x)dν̂(x)

)
.

We have by (1.7) that∫
∂M\ĬR

(∫
Γ̆(ρ)

pε(x, y)ζ(y)φiε(y)dσg(y)

)
dνε(x)

≤ ‖ζ‖∞C2(ρ) sup
y∈∂M\ĬR

∫
Ĭ 1
ρ

pε(x, y)dσg(x)

= o(1) as ε→ 0.

By Step 1, Claim 11 and (1.5),∫
IR

(∫
IR

(ζ(z)− ζ(x))φ̂iε(z)p̂ε(z, x)dz

)
dν̂ε(x)
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≤ sup
x∈IR

∫
IR

|ζ(z)− ζ(x)|
∣∣∣φ̂iε(z)∣∣∣ p̂ε(z, x)dz

≤
s0∑
j=1

sup
x∈IR

|ζ(x)|
∫
I ρ

10
(p0,j)

∣∣∣φ̂iε(z)∣∣∣ p̂ε(z, x)dz

+ sup
x∈IR

∫
IR\

⋃s0
j=1 I ρ

10
(p0,j)

|ζ(z)− ζ(x)|
∣∣∣φ̂iε(z)∣∣∣ p̂ε(z, x)dz

≤ ‖ζ‖∞
s0∑
j=1

sup
x∈Γ(ρ)

∫
I ρ

10
(p0,j)

∣∣∣Φ̂ε(z)
∣∣∣2 p̂ε(z, x)dz

 1
2

+ C0(ρ) (1 + ln(1 + C0R)) sup
x∈IR

∫
R×{0}

|ζ(z)− ζ(x)| e
|x−z|2

8θε

√
πθε

dz

= o(1) as ε→ 0,

and∫
Γ(ρ)

ζ(x)

(∫
IR

(
ψ̂iε(z)− ψ̂iε(x)

) ∣∣∣Φ̂ε(z)
∣∣∣ p̂ε(z, x)dz

)
dν̂ε(x)

≤ 2 ‖ζ‖∞ sup
x∈Γ(ρ)

s0∑
j=1

∫
I ρ

10
(p0,j)

∣∣∣Φ̂ε(z)
∣∣∣2 p̂ε(z, x)dz

 1
2

+ ‖ζ‖∞C2

( ρ
10

)
sup
x∈Γ(ρ)

∫
Γ( ρ

10
)

∣∣∣ψ̂iε(x)− ψ̂iε(z)
∣∣∣ p̂ε(z, x)dz

+ 2 ‖ζ‖∞C0(ρ) (1 + ln(1 + C0R)) sup
x∈Γ(ρ)

∫
IR\Γ( ρ

10)
p̂ε(z, x)dz

= o(1) as ε→ 0,

where by (1.5),

sup
x∈Γ(ρ)

∫
Γ( ρ

10)

∣∣∣ψ̂iε(x)− ψ̂iε(z)
∣∣∣ p̂ε(z, x)dz

≤ sup
x∈Γ(ρ)

∫
Γ( ρ

10)

∣∣∣ψ̂iε(x)− ψ̂iε(z)
∣∣∣ e− |x−z|28θε

√
πθε

dz

= o(1) as ε→ 0.

We also have that∫
Γ(ρ)

ζ(x)ψ̂iε(x)

(∫
IR

(∣∣∣Φ̂ε(z)
∣∣∣− 1

)
p̂ε(z, x)dz

)
dν̂ε(x)

≤ ‖ζ‖∞ sup
x∈Γ(ρ)∩supp(ν̂ε)

∫
IR

(∣∣∣Φ̂ε(z)
∣∣∣− 1

)
p̂ε(z, x)dz.
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We use (5.32) of Step 3, in order to prove that

(5.33) sup
x∈Γ(ρ)∩supp(ν̂ε)

∫
IR

(∣∣∣Φ̂ε(z)
∣∣∣− 1

)
p̂ε(z, x)dz → 0 as ε→ 0.

Let x ∈ ∂M be such that x̂ ∈ Γ(ρ) ∩ supp(ν̂ε),

Kε[|Φε|](x)− 1 =

∫
∂M\ĬR

(|Φε(y)| − 1) pε(x, y)dσg(y)

+

∫
IR

(∣∣∣Φ̂ε(z)
∣∣∣− 1

)
p̂ε(z, x̂)dz,

and

|
∫
∂M\ĬR

(|Φε(y)| − 1) pε(x, y)dσg(y)|

≤
∫
∂M\Γl

pε(x, y)dσg(y)K0(ρ) ln

(
δ(∂M)

αε

)
+K1(ρ)

∫
Γ̂l\IR

p̂ε(z, x̂) (1 + ln(1 + |z|)) dz

≤ O

e− δ(∂M)2

4ε

√
4πε

ln

(
δ(∂M)

αε

)
+K1(ρ)

∫
R\IR

A0
e−
|x̂−z|2

8θε

√
4πθε

(1 + ln(1 + |z|))dz

≤ O

∫
R\I R√

θε

e−
|y|2

8

(
1 + ln(1 +

∣∣∣x̂+
√
θεy
∣∣∣)) dz


= o(1) as ε→ 0.

This gives (5.33). By (1.8),

lim
R→+∞

lim
ε→0

sup
x∈I 1

ρ

∣∣∣∣∫
IR

p̂ε(z, x)dz − 1

∣∣∣∣ = 0,

so that

lim
ε→0

(∫
Γ(ρ)

ζ(x)

(
ψ̂iε(x)

(∫
IR

p̂ε(z, x)dz

)
dν̂ε(x)− ψ̂i(x)dν̂(x)

))
→ 0

as R→ +∞. Gathering all these computations, we get Step 4.
As a conclusion, (5.31) in Step 3 gives (5.22) for x ∈ supp(νε) by

Proposition 1. In the remark before Step 4, we get (5.24). Then, (5.22),
(5.23) and (5.24) give (5.25). We, finally, get (5.26) passing to the limit

in the equation satisfied by φ̂iε thanks to Step 4. This ends the proof of
the Claim. q.e.d.
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Thanks to Claim 12, a diagonal extraction gives some functions Φ̂ :
R2

+ \ {p0,1, · · · , p0,s0} → Rn+1 and Ψ̂ : R \ {p0,1, · · · , p0,s0} → Sn such
that for any ρ > 0, the conclusions (5.23), (5.24), (5.25) and (5.26) of

Claim 12 hold true for Φ̂ and Ψ̂.
We now give energy estimates on these limit functions which will be

useful at the end of the proof. We recall that λ : D \ {p} → R2
+ is

defined page 132. We set Φ̌ = Φ̂◦λ : D\{p, q0, · · · , qs0} and Ψ̌ = Φ̂◦λ :
S1 \ {p, q0, · · · , qs0}, where qj = λ−1(p0,j) ∈ S1 and we set

D(ρ) = D \

(
Dρ(p) ∪

s0⋃
i=1

Dρ(qi)

)
and S(ρ) = S1 ∩D(ρ).

We Let ν̌ be the measure without atom on S1 such that

eûεdθ ⇀? dν̌ in M(S(ρ)) as ε→ 0

for any ρ > 0. It is equal to λ?(ν̂) outside {p, q0, · · · , qs0}.
We also set some function ω on D which satisfies the following equa-

tion

(5.34)

{
∆ω = 0 in D,
ω =

∣∣Φ̌∣∣ on S1,

in a weak sense. Such a harmonic function exists since
∣∣Φ̌∣∣ ∈ W 1

2
,2(S1)

and we have ω ∈W 1,2(D).

Claim 13.
(5.35)

lim
ρ→0

lim
ε→0

∫
D(ρ)

∣∣∇Φ̌ε

∣∣2 dx ≥ ∫
D

∣∣∇Φ̌
∣∣2

ω
dx ≥ σk

∫
S1

dν̌ +

∫
D

∣∣Φ̌∣∣2 |∇ω|2
ω3

dx,

where σk = σk (M, [g]) and
∫
S1 dν̌ ≥ mi.

Proof. Let η ∈ C∞c (D(
√
ρ)) be given by Claim 1 with η ≥ 1 on D(ρ)

and ∫
D
|∇η|2 ≤ C

ln
(

1
ρ

) .
By the weak maximum principle on (5.34),

inf
D
ω ≥ inf

S1

∣∣Φ̌∣∣ ≥ 1,

and by the same computations as in the proof of Claim 6,

lim
ε→0

∫
D(ρ)

∣∣∇Φ̌ε

∣∣2 dx ≥
∫
D(ρ)

∣∣∇Φ̌
∣∣2 dx

≥
∫
D
η

∣∣∇Φ̌
∣∣2

ω
dx
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≥ σk(M, [g])

∫
S1

ηdν̌ +

∫
D
η

∣∣Φ̌∣∣2
ω3
|∇ω|2

−
n∑
i=0

∫
D

φ̌i
ω

〈
∇η,∇φ̌i

〉
−
∫
D
〈∇η,∇ω〉

∣∣Φ̌∣∣2
2ω2

+
1

2

∫
D
〈∇η,∇ω〉

≥ σk(M, [g])

∫
S1

ηdν̌ +

∫
D
η

∣∣Φ̌∣∣2
ω3
|∇ω|2

− C ′√
ln
(

1
ρ

) ,
where C ′ is a constant independent of ρ. Indeed, φ̌i, ω ∈ W 1,2(D) and
we have for 0 ≤ i ≤ n that

∆
(
ω − φ̌i

)
= 0 and ∆

(
ω + φ̌i

)
= 0,

in a weak sense. By the weak maximum principle (see [11], Theorem
8.1),

inf
D

(
ω − φ̌i

)
≥ inf

S1

(
ω − φ̌i

)
≥ 0,

and

inf
D

(
ω + φ̌i

)
≥ inf

S1

(
ω + φ̌i

)
≥ 0,

since
∣∣φ̌i∣∣ ≤ ∣∣Φ̌∣∣ ≤ ω on S1. Then,

sup
D

∣∣φ̌i∣∣
ω
≤ 1 and sup

D

∣∣Φ̌∣∣2
ω2
≤ n+ 1.

We, finally, get (5.35), passing to the limit as ρ → 0. We have that∫
S1 dν̌ ≥ mi thanks to (4.5), (4.7) and (5.9). This ends the proof of the

claim. q.e.d.

5.2. Regularity estimates when α2
ε
ε = O(1). We now assume that

α2
ε
ε = O(1), we let θ0 = limε→0

ε
e2ṽl(a)αε

and we denote by ν̂ the weak?

limit of ν̂ε in M(R × {0}). Let R0 > 0 and x ∈ IR0 . We have by (1.5)
that

eûε(x) = evl(x̆)αε

∫
∂M

pε(x̆, y)dνε(y)

≤ A0e
vl(x̆)αε√
4πε

∫
∂M

dνε

≤ A0√
4πε

(1 + o(1)).
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Since mi > 0, we get that θ0 < +∞. Now, we let û be a smooth function
on R× {0} defined by

(5.36) eû(x) =

∫
R×{0}

e
− |x−y|

2

4θ0

√
4πθ0

dν̂(y).

Let R0 > 0, R > R0 and x ∈ IR0 . We have∣∣∣eûε(x) − eû(x)
∣∣∣ =

∣∣∣∣∫
∂M

αεpε(x̆, y)dνε(y)− eû(x)

∣∣∣∣
≤

∫
∂M\ĬR

αεpε(x̆, y)dνε(y)

+

∣∣∣∣∣∣
∫
IR

p̂ε(x, y)dν̂ε(y)−
∫
R×{0}

e
− |x−y|

2

4θ0

√
4πθ0

dν̂(y)

∣∣∣∣∣∣
= o(1) +

A0√
4πθ0

(1 + o(1))e
− (R−R0)2

8θ0

+

∣∣∣∣∣∣
∫
IR

p̂ε(x, y)− e
− |x−y|

2

4θ0

√
4πθ0

 dν̂ε

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
IR

e
− |x−y|

2

8θ0

√
4πθ0

(dν̂ε − dν̂)

∣∣∣∣∣∣+

∫
R×{0}\IR

e
− |x−y|

2

4θ0

√
4πθ0

dν̂

→ A0√
4πθ0

e
− (R−R0)2

8θ0 +

∫
R×{0}\IR

e
− |x−y|

2

4θ0

√
4πθ0

dν̂ as ε→ 0.

Letting R→ +∞, we get for any R0 > 0 that

(5.37) eûε → eû in C0(IR0) as ε→ 0.

With Claim 2, {φ̂iε} is bounded in L2(IR) for any R > 0. With (5.37)
and elliptic estimates on the Dirichlet-to-Neumann operator (see [25],
Chapter 7.11, page 37){

∆φ̂iε = 0 in D+
R0
,

∂tφ̂
i
ε = −σεeûε φ̂iε on IR0 ,

we get some smooth function Φ̂ on R2
+ such that for any R0 > 0,

(5.38) φ̂iε → φ̂i in C1(D+
R0

) as ε→ 0,

and

(5.39)

{
∆φ̂i = 0 in R2

+,

∂tφ̂
i = −σk(M, [g])eûφ̂i on R× {0}.

We now prove the following
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Claim 14. We have the following energy inequality

(5.40)

∫
R2

+

∣∣∣∇Φ̂(x)
∣∣∣2 dx ≥ σk(M, [g])

∫
S1

eǔdθ,

where eǔ = eû ◦ λ

Proof. Step 1: Up to the extraction of a subsequence, there exists
some sequence {ωεi} with 0 ≤ i ≤ t+ 1 and 0 ≤ t ≤ k and

αε = ωε0 � ωε1 � · · · � ωεt+1 = δ0,

and for 1 ≤ i ≤ t and 1 ≤ j ≤ si some points pi,j ∈ J 1
R0

with R0 > 0

and s− 1 +
∑t

i=1 si ≤ k such that for all ρ > 0, there exists C0(ρ) such
that

∀x ∈M\

⋃
i 6=i0

Bg(pi, ρ) ∪
t⋃
i=1

si⋃
j=1

Ωi,j

 ,

|Φε| (x) ≤ C0(ρ)

(
ln

(
1 +

dg(āε, x)√
ε

)
+ 1

)
,

where Ω̃i,j = ωiεD+
ρ (pi,j) + aε and āε = exp−1

gl,xl
(aε). We also have that

for all ρ > 0,

(5.41) sup
x∈Γ(ρ)

∫
I ρ

10
(pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2 pεωεi (z, αε
ωεi
x

)
dz = O(e

− ρ2

8τε
i )

for 1 ≤ i ≤ t, 1 ≤ j ≤ si and τ εi = ε
e2ṽl(a)(ωiε)

2 and

(5.42) sup
x∈Γ(ρ)

∫
Ig(pi,

ρ
10

)
|Φε(z)|2 pε(x̆, z)dz = O(e−

ρ2

8ε ).

For 1 ≤ i ≤ s and i 6= i0.
For the estimate of Φε, we follow the proof of Claim 9 and Claim 11,

using (5.37) and (5.38) instead of the estimates of Claim 10. The proof
of (5.41) and (5.42) follows the proof of Step 1 in Claim 12, which is a
consequence of Claim 9.

Step 2: We have that

(5.43)

∫
R×{0}

∣∣∣Φ̂(y)
∣∣∣2 e− |x−y|

2

4θ0

√
4πθ0

dy ≥ 1.

In order to prove (5.43), it suffices to use Proposition 1 and prove
that for R0 > 0 fixed, x ∈ ∂M such that x̂ ∈ IR0 , we have

(5.44)

∫
R×{0}

∣∣∣Φ̂(y)
∣∣∣2 e− |x̂−y|

2

4θ0

√
4πθ0

−Kε[|Φε|2](x)→ 0 as ε→ 0.
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Let’s prove (5.44). We fix r > 0 and R > r. Let x ∈ M be such that
x̂ ∈ Ir. We fix ρ > 0. Then,∣∣∣∣∣∣Kε[|Φε|2](x)−

∫
IR

∣∣∣Φ̂(z)
∣∣∣2 e− |x̂−z|

2

4θ0

√
4πθ0

dz

∣∣∣∣∣∣ =

∫
∂M\ĬR

|Φε(y)|2 pε(x, y)dσg(y)

+

∫
IR

p̂ε(z, x̂)
∣∣∣Φ̂ε(z)

∣∣∣2 dz
−
∫
IR

∣∣∣Φ̂(z)
∣∣∣2 e− |x̂−z|

2

4θ0

√
4πθ0

dz.

There exist some constants K0(ρ) > 0 and K1(ρ) > 0 such that, by
Step 1,∫

∂M\ĬR
|Φε(y)|2pε(x, y)dσg(y)

≤ K0(ρ)

∫
∂M\Γl

ln

(
δ(∂M)√

ε

)2

pε(x, y)dσg(y)

+K1(ρ)

∫
Γ̂l\IR

(
ln(1 + |z|)2 + 1

)
p̂ε(z, x̂)dz

+
t∑
i=1

si∑
j=1

∫
I ρ

10
(pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2 pεωεi (z, αε
ωεi
x̂

)
dz

+
∑
i 6=i0

∫
Ig(pi,

ρ
10

)
|Φε(y)|2 pε(x, y)dσg(y)

≤ O

ln

(
δ(∂M)√

ε

)2 e−
δ(∂M)2

4ε

√
ε


+O

(
e
− ρ2

8τε1

)

+
K1(ρ)A0√

πθ0

∫
R×{0}\IR

(
ln(1 + |z|)2 + 1

)
e
− |x̂−z|

2

8θ0 dz.

Passing to the limit as ε→ 0 and then as R → +∞, we get (5.44) and
then (5.43). This ends the proof of Step 2.

Step 3: We have that

(5.45) σk(M, [g])

∫
R×{0}

∣∣∣Φ̂(y)
∣∣∣2 eû(y)dy ≤

∫
R2

+

∣∣∣∇Φ̂(x)
∣∣∣2 dx.
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By contradiction, we assume that there is ε0 > 0 such that

σk(M, [g])

∫
R×{0}

∣∣∣Φ̂(y)
∣∣∣2 eû(y)dy ≥

∫
R2

+

∣∣∣∇Φ̂(x)
∣∣∣2 dx+ ε0.

We fix R > 0. By equation (5.39),
1
2∆
∣∣∣Φ̂∣∣∣2 = −

∣∣∣∇Φ̂
∣∣∣2 in R2

+,

1
2∂t

∣∣∣Φ̂∣∣∣2 = −σk(M, [g])eû
∣∣∣Φ̂∣∣∣2 on R× {0}.

We integrate on D+
R,

−1

2

∫
∂D+

R

∂ν

(∣∣∣Φ̂∣∣∣2) dσ = σk(M, [g])

∫
IR

eû
∣∣∣Φ̂∣∣∣2 − ∫

D+
R

∣∣∣∇Φ̂
∣∣∣2 ≥ ε0

2

for any R > R0, for some R0 > 0, since eû
∣∣∣Φ̂∣∣∣2 ∈ L1(R × {0}) and∣∣∣∇Φ̂

∣∣∣2 ∈ L1(R2
+). We set

f(r) =

∫
∂D+

r

∣∣∣Φ̂∣∣∣2 dσ
πr

.

Then, for R > R0, πf ′(R) ≤ − ε0
R so that

f(R) ≤ −ε0
π

ln

(
R

R0

)
+ f(R0)→ −∞ as R→ +∞,

which contradicts the fact that f(R) > 0. This ends the proof of Step
3.

We are now in position to get the claim. We integrate (5.43) against
ν̂ and (5.36) against dx, and we obtain

(5.46)

∫
R×{0}

∣∣∣Φ̂(y)
∣∣∣2 eû(y)dy ≥

∫
R×{0}

dν̂ =

∫
R×{0}

eû(y)dy,

and we get (5.40) with (5.46) and (5.45). q.e.d.

6. Proof of Theorem 2

6.1. Regularity of the limiting measures. In this subsection, we
aim at proving the following no neck energy and regularity result, keep-
ing the notations of Proposition 2.

Proposition 3. For i ∈ {1, · · · , N}, there exists qi,1, · · · , qi,si ∈ S1

and eǔi ∈ L∞(S1), smooth except maybe at one point, positive such that
for all ρ > 0,

eǔ
ε
idθ ⇀? e

ǔidθ on M(Si(ρ)) as ε→ 0,

with Si(ρ) = S1 \
(
Dρ(p) ∪

⋃si
i=j Dρ(qi,j)

)
and

∫
S1 e

ǔidθ = mi.
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If m0 > 0, there exists p1, · · · , ps and a density eu0 on ∂M , smooth,
such that

euεdσg ⇀? e
u0dσg on M(I(ρ)) as ε→ 0

with M(ρ) = M \
⋃s
i=1Bg(pi, ρ) and

∫
∂M eu0dσg = m0.

Proof. Let Ñ be such that for 1 ≤ i ≤ N ,

1 ≤ i ≤ Ñ ⇒ αiε√
ε
→ +∞ as ε→ 0,

and

Ñ + 1 ≤ i ≤ N ⇒ αiε√
ε

is bounded.

We now reintroduce the indices i we dropped in Section 5:
For 1 ≤ i ≤ Ñ fixed, we recall (see just before Claim 13) that we set

{qi,1, · · · , qi,si} = {λ−1(p0,1), · · · , λ−1(p0,s0)}
defined by Claim 9 and we recall that (5.9), that is qi,1, · · · , qi,si ∈
R× {0} satisfy

Z
(
S1, {eǔiεdθ}

)
⊂ {p, qi,1, · · · , qi,si},

and that the notations before Claim 13 hold:

Di(ρ) = D \

Dρ(p) ∪
si⋃
j=1

Dρ(qi,j)

 and Si(ρ) = S1 ∩Di(ρ),

and ν̌i is the measure without atoms defined by

eǔ
i
εdθ ⇀? ν̌i in M(Si(ρ)) as ε→ 0

for any ρ > 0.
For Ñ + 1 ≤ i ≤ N , the notations just before Claim 14 define eǔi and

eǔi as
eû

i
ε → eûi in C0(I 1

ρ
) as ε→ 0, and

eǔ
i
ε → eǔi in C0(S1 \ Dρ(p)) as ε→ 0

for any ρ > 0. Notice that eǔi = eûi ◦ λ.
We also have {p1, · · · , ps} such that (4.1) holds and denote

M(ρ) = M \
s⋃
i=1

Bg(pi, ρ),

and

I(ρ) = ∂M \
s⋃
i=1

Ig(pi, ρ),

and ν0 the measure without atoms such that

euεdσg ⇀? ν0 in M(I(ρ)) as ε→ 0.
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Then, we have by (4.5) and (4.7) that

(6.1)

∫
S1

dν̌i ≥ mi

for 1 ≤ i ≤ Ñ and

(6.2)

∫
S1

eǔidθ ≥ mi,

and by (4.6) and (4.8) that

(6.3)

∫
∂M

dν0 ≥ m0.

Considering for 1 ≤ i ≤ N the set M ε
i (ρ) such that(

Haεi ,α
ε
i

)−1
(
M̃ ε
i (ρ)

li
)

= Ωi(ρ),

(4.2), (4.7) give that

(6.4) M(ρ) ∩M ε
i (ρ) = ∅,

and (4.4) or (4.3) and (4.8) give that

(6.5) i 6= j ⇒M ε
i (ρ) ∩M ε

j (ρ) = ∅
for ε small enough.

By (6.4) and (6.5), we have for ρ > 0 and ε small enough

(6.6)

∫
M
|∇Φε|2g dvg ≥ 1m0>0

∫
M(ρ)

|∇Φε|2g dvg +

N∑
i=1

∫
Ωi(ρ)

∣∣∣∇Φ̂i
ε

∣∣∣2 dx,
Then, applying (3.28) in Claim 6 if m0 > 0, (5.35) in Claim 13 for

1 ≤ i ≤ Ñ , (5.38) and (5.40) in Claim 14 for Ñ +1 ≤ i ≤ N , (6.1), (6.3)
and the conservation of the mass (4.9),

N∑
i=0

mi = 1,

we get from (6.6) that

σk(M, [g]) = lim
ρ→0

lim
ε→0

∫
M
|∇Φε|2g

≥ 1m0>0

∫
M

|∇Φ|2g
ω

dvg +
Ñ∑
i=1

∫
D

∣∣∇Φ̌i

∣∣2
ωi

dx

+
N∑

i=Ñ+1

∫
R2

+

∣∣∣∇Φ̂i

∣∣∣2 dx
≥ 1m0>0

(
σk(M, [g])

∫
∂M

dν0 +

∫
M

|Φ|2 |∇ω|2g
ω3

dvg

)
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+
Ñ∑
i=1

(
σk(M, [g])

∫
S1

dν̌i +

∫
D

∣∣Φ̌i

∣∣2 |∇ωi|2
ω3
i

dx

)

+

N∑
i=Ñ+1

σk(M, [g])

∫
S1

eǔidθ

≥ σk(M, [g]) + 1m0>0

∫
M

|Φ|2 |∇ω|2g
ω3

dvg

+
Ñ∑
i=1

∫
D

∣∣Φ̌i

∣∣2 |∇ωi|2
ω3
i

dx.

Therefore, all the inequalities are equalities in Claim 6, (6.3), Claim

13, (6.1) and Claim 14. Then, we get for 1 ≤ i ≤ Ñ that ωi = 1 on D
so that ∣∣∣Φ̂i

∣∣∣2 = 1 on S1,

for 1 ≤ i ≤ Ñ that ∫
S1

dν̌i = mi,

and if m0 > 0 that ω = 1 so that

|Φ|2 = 1 on ∂M,

and ∫
∂M

dν0 = m0.

Let 1 ≤ i ≤ Ñ . Then, Ψ̂i = Φ̂i on R× {0} and equation (5.26) gives
that {

∆Φ̂i = 0,

(−∂t)Φ̂i = σk(M, [g])Φ̂idνi,

in a weak sense on R × {0} \ {qi,1, · · · , qi,si}. Then, dν̂i = Φ̂i.(−∂t)Φ̂i
σk(M,[g]) ds

which means that ν̂i is absolutely continuous with respect to ds and{ ∣∣∣Φ̂i

∣∣∣2 = 1 in R× {0},
(−∂t)Φ̂i ∧ Φ̂i = 0 in R× {0}.

This means that Φ̂i is weakly 1
2 -harmonic on R2

+\{qi,1, · · · , qi,si}. Then,

by Da Lio (see [5], Proposition 2.2), since
∫
R2

+

∣∣∣∇Φ̂i

∣∣∣2 dx < +∞, we can

extend Φ̂i as a 1
2 -harmonic map on R2

+. By the regularity theory for

weakly 1
2 -harmonic maps of Da Lio–Rivière, see [6], Φ̂i is smooth and

1
2 -harmonic on R2

+. Setting eûi = Φ̂i.(−∂t)Φ̂i
σk(M,[g]) , and coming back to the

disk, we get the first part of the claim for 1 ≤ i ≤ Ñ .
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For Ñ + 1 ≤ i ≤ N , the convergence (5.37) ends the proof of the first
part of the proposition.

If m0 > 0, then, Ψ = Φ and equation (3.16) gives that{
∆gΦ = 0,
∂νΦ = σk(M, [g])Φdν,

in a weak sense on M \ {p1, · · · , ps}. Then, dν = Φ.∂νΦ
σk(M,[g])dσg which

means that ν is absolutely continuous with respect to dσg and{
|Φ|2 = 1 in ∂M,
∂νΦ ∧ Φ = 0 in ∂M.

This means that Φ is weakly harmonic on M \ {p1, · · · , ps} with free

boundary. Then, since
∫
M |∇Φ|2 dvg < +∞, by Laurain–Petrides (see

[19], Claim 4), we can extend Φ as a harmonic map on M with free
boundary and Φ is smooth on M . The smoothness of weakly harmonic
maps with free boundary was proved in [23] and [19]. Setting eu =

Φ.∂νΦ
σk(M,[g]) , we get the second part of the proposition. q.e.d.

6.2. Gaps and no concentration. We prove now by contradiction
that N = 0, so that the maximizing sequence {euεdσg} does not have
any concentration points. Therefore, by Proposition 3 with m0 = 1, the
proof of Theorem 2 will follow.

We now assume that N ≥ 1 and we use Proposition 3 and the gap
assumption that (0.3) is strict in order to get a contradiction.

For 1 ≤ i ≤ N , let θi be the maximal integer such that

(6.7)
σθi(D)

mi
< σk(M, [g]),

and let θ0 be the maximal integer such that

(6.8)
σθ0(M, [g])

m0
< σk(M, [g]),

if m0 > 0. We set θ0 = −1 if m0 = 0. We get that for i ∈ {1, · · · , N},

(6.9) σθi+1 (D) ≥ miσk(M, [g]),

and

(6.10) σθ0+1 (M, [g]) ≥ m0σk(M, [g]).

Then, by the spectral gap assumption that (0.3) is strict, we have that

(6.11)
N∑
i=0

(θi + 1) ≥ k + 1.

Indeed, if
∑N

i=0 (θi + 1) ≤ k, the spectral gap gives that



MAXIMAL METRICS FOR STEKLOV EIGENVALUES 173

N∑
i=1

σθi+1 (D) + σθ0+1 (M, [g]) < σk(M, [g]),

and this contradicts (4.9) (6.9) and (6.10).
Now, we define at least k + 1 test functions for the min-max charac-

terization of σε = σk(M, g, ∂M, euε).

Let 1 ≤ i ≤ N . We denote by (ϕ0
i , · · ·ϕ

θi
i ) an orthonormal family of

functions in L2(∂M, eu0dvg) if i = 0 and in L2(S1, eǔidθ) if i 6= 0, such

that if 0 ≤ j ≤ θi, ϕ
j
i is an eigenfunction for σj(M, g, ∂M, eu0) if i = 0

and for σj(D, ξ,S1, eui) if i 6= 0. Such functions exist by Proposition 3
and lie in C1.

We fix ρ > 0. We denote by ηi some function defined with Claim 1
by

• η0 ∈ C∞c (M(
√
ρ)), η0 ≥ 1 on M(ρ) and

∫
M |∇η0|2g dvg ≤

C
ln( 1

ρ
)
.

• If i 6= 0, ηi ∈ C∞c (Si(
√
ρ)), ηi ≥ 1 on Si(ρ) and

∫
D |∇ηi|

2 dx ≤ C
ln( 1

ρ
)
.

We set for 0 ≤ i ≤ N and 0 ≤ j ≤ θi some test functions ξji , defined by

ξj0 = η0ϕ
j
0 on M,

and if i 6= 0, ξji depends on ε and satisfies for any ε > 0

ˇ(
ξji

)i
ε

= ηiϕ
j
i on D

extended by 0 on M .

Note that all the test functions ξji lie in C1 and are uniformly bounded.
Note also that by (6.4) and (6.5), if ε small enough,

i 6= i′ ⇒ supp(ξji ) ∩ supp(ξ
j′

i′ ) = ∅
for i, i′ ∈ {0, · · · , N}, 0 ≤ j ≤ θi and 0 ≤ j′ ≤ θi′ . For 1 ≤ i ≤ N , we

let Ei be the vector space spanned by (ξ0
i , ξ

1
i , · · · , ξ

θi
i ) and with (6.11),

we deduce by (1.1) that

(6.12) σε ≤ max
0≤i≤N

sup
ξ∈Ei\{0}

∫
M |∇ξ|

2
g dvg∫

∂M ξ2euεdσg
.

Let i ∈ {1, · · · , N}. For ξ =
∑θi

j=0 µjξ
j
i ∈ Ei, with µj ∈ R and∑

j µ
2
j = 1, we get∫

M
|∇ξ|2g dvg =

∫
D

∣∣∣∣∣∣∇
ηi θi∑

j=0

µjϕ
j
i

∣∣∣∣∣∣
2

dx,

and denoting ϕ =
∑θi

j=0 µjϕ
j
i , we have∫

M
|∇ξ|2g dvg =

∫
D

(ηi)
2 |∇ϕ|2 dx+ 2

∫
D
ηiϕ 〈∇ηi,∇ϕ〉 dx
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+

∫
D
ϕ2 |∇ηi|2 dx

≤
∫
D
|∇ϕ|2 dx

+2 ‖ηiϕ‖∞
(∫

D
|∇ϕ|2 dx

) 1
2
(∫

D
|∇ηi|2 dx

) 1
2

+ ‖ϕ‖2∞
∫
D
|∇ηi|2 dx

≤
∫
D
|∇ϕ|2 dx+O

 1√
ln(1

ρ)

 as ρ→ 0.

We also have that ∫
∂M

ξ2euεdσg =

∫
S1

η2
i ϕ

2eǔ
i
εdθ.

By Proposition 3, we get that∫
∂M

ξ2euεdσg =

∫
S1

η2
i ϕ

2eǔidθ + o(1) as ε→ 0,

so that

lim
ε→0

∫
∂M

ξ2euεdσg ≥
∫
S1

ϕ2eǔidθ + o(1) as ρ→ 0.

The same work can be done for ξ ∈ E0, so that passing to the limit as
ε→ 0 and then as ρ→ 0 in (6.12), we get

σk(M, [g]) ≤ max

{
max

1≤i≤N
sup

ϕ∈Fi\{0}

∫
D |∇ϕ|

2 dx∫
S1 ϕ2eǔidθ

, sup
ϕ∈F0\{0}

∫
M |∇ϕ|

2
g dvg∫

∂M ϕ2eǔidσg

}
,

where Fi is the space spanned by ϕ0
i , · · · , ϕ

θi
i . Therefore,

σk(M, [g]) ≤ max

{
max

1≤i≤N
σθi(D, ξ,S

1, eǔi), σθ0(M, g, ∂M, eu0)

}
≤ max

{
max

1≤i≤N

σθi (D)

mi
,
σθ0(M, [g])

m0

}
,

which contradicts (6.9) and (6.10). Therefore, there is no concentration
of {euεdσg}.

Therefore, N = 0 and by Proposition 3 with m0 = 1, Theorem 2
follows.

7. Proof of Theorem 1

We prove Theorem 1 in this section. Notice that light modifications
of the proof allow us to prove that if (0.3) is strict, the set of maximal
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metrics for σk(M, [g]) is compact, and if we have that (0.2) is strict, the
set of maximal metrics for σk(γ,m) is compact.

Let γ ≥ 0 and m ≥ 1 be such that (γ,m) 6= (0, 1) and [gα] be a
sequence of conformal classes on a compact oriented manifold of genus
γ with m boundary components such that

(7.1) σα = σk(M, [gα])→ σk(γ,m) as α→ +∞,
where gα denotes the unique metric in its conformal class such that

• The curvature of gα is constant, equal to 0 if (γ,m) = (0, 2), and
−1 if (γ,m) 6= (0, 2).
• The boundary ∂M of M is a union of closed geodesics with respect

to gα.

By the gap assumption that (0.2) is strict, we have, in particular, that

σk(M, [gα]) > max
1≤j≤k

i1+···+is=j

σk−j(M, [gα]) +

s∑
m=1

σim(D2, [ξ])

for α large enough. By Theorem 2, this gives some smooth harmonic
maps with free boundary φα : (M, gα) → Snα for some nα > 0, such
that if g̃α is a metric conformal to gα with the induced metric on the
boundary ∂M satisfying

dσg̃α = euαdσgα ,

where

euα =
Φα.∂ναΦα

σα
,

then
∫
∂M dσg̃α = 1 and σk(M, g̃α) = σk(M, [gα]). Since the multiplicity

of σk is bounded by a constant which only depends on k, γ and m (see
[9] and [18]), we can assume that n = nα is fixed.

We have the following quantification result on sequences of harmonic
maps with free boundary by Laurain–Petrides, [19], Theorem 1:

Proposition 4. Let (M, g) be a smooth Riemannian surface with a
smooth non-empty boundary. We refer to the notations introduced in
Section 1.1 for the metric g. Let q1, · · · , qt ∈ M . Let Φα : (Mα, gα) →
Bn+1 be a harmonic map with free boundary on an open set Mα ⊂ M
such that

• For any ρ > 0, there exists αρ > 0 such that for any α > αρ,

Mα ⊃M \
⋃t
i=1Bg(qi, ρ).

• For any ρ > 0, gα → g in M \
⋃t
i=1Bg(qi, ρ) as α→ +∞.

• Φα.∂ναΦα > 0 on Mα ∩ ∂M and

lim sup
α→+∞

∫
Mα∩∂M

Φα.∂ναΦαdσgα < +∞.

Then, up to the extraction of a subsequence, there exist

• Some harmonic map with free boundary Φ : M → Sn.
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• Sequences of points p1
α, · · · , psα of ∂M converging to some points

p1, · · · , ps of ∂M as α → +∞ and sequences of scales δ1
α, · · · , δsα

converging to 0 as α→ +∞ such that

(7.2)
dg(p

i
α, p

j
α)

δiα + δjα
+
δiα

δjα
+
δjα
δiα
→ +∞ as α→ +∞.

• Some harmonic extensions of non-constant 1
2 -harmonic maps,

ω1, · · · , ωs : D→ Bn+1,

such that

(7.3)

∫
M
|∇Φ|2g dvg +

s∑
i=1

∫
D
|∇ωi|2 dx = E ,

where

E = lim
ρ→0

lim
α→+∞

∫
∂M\

⋃t
i=1 Ig(qi,ρ)

Φα.∂ναΦαdσgα ,

and for all ρ > 0,

(7.4) Φα.∂ναΦαdσgα ⇀? Φ.∂νΦdσg on I(ρ),

(7.5) Φ̂i
α.
(
−∂tΦ̂i

α

)
ds ⇀? ω̂i. (−∂tω̂i) ds on Γi(ρ),

where we define the sets

I(ρ) = ∂M \

 t⋃
i=1

Ig(qi, ρ) ∪
⋃

z∈Z(∂M\
⋃t
i=1 Ig(qi,ρ),Φα.∂ναΦαdσgα )

Ig(z, ρ)

 ,

Γi(ρ) = I 1
ρ
\

⋃
z∈Z(I 1

ρ
,Φ̂iα.(−∂tΦ̂iα)ds)

Iρ(z),

and the functions on R2
+

Φ̂i
α(x) = Φ̃α

li
(δiαx+ p̃liα) and ω̂i = ωi ◦ λ−1,

where 1 ≤ li ≤ L is chosen such that pi ∈ ωli and λ is defined page 132.

Assuming that gα → g as α → +∞ for some metric g with constant
curvature and which defines closed geodesics boundary components, we
apply Proposition 4 for Mα = M , Φα, gα and g. Notice that the use
of Proposition 4 together with the gap assumption that (0.2) is strict
follows exactly the same path as the use of Proposition 3 together with
the gap assumption that (0.3) is strict in order to prove that the maxi-
mizing sequences do not have any concentration points. Therefore, one
can easily contradict the fact that (0.2) is assumed to be strict in this
case.

We assume now that the sequence of conformal classes [gα] degener-
ates in the following sense:
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• If (γ,m) = (0, 2), in the case of the annulus, this means that
Rα → +∞ or Rα → 1, where Rα > 1 denotes the real parameter
such that (M, gα) is isometric to DRα \ D.
• If (γ,m) 6= (0, 2), in the hyperbolic case, this means that the

injectivity radius igα(M) → 0 as α → +∞ so that there exist
closed geodesics which length goes to 0 or geodesics which cross
two boundary components of (M, gα) with length going to 0.

Let’s tackle both cases in order to contradict that the gap (0.2) is strict.
During all the proof, we identify R2 and C thanks to the map F (x, y) =
x+ iy.

7.1. The case of the annulus. Let (γ,m) = (0, 2). Then, (M, gα) is
isometric to (DRα \ D, ξ).

We first assume that Rα → +∞ as α→ +∞. We denote by Γ1 = S1

and Γ2 = S1
Rα

the boundary components,

m1 = lim
α→+∞

∫
Γ1

euαdσξ and m2 = lim
α→+∞

∫
Γ2

euαdσξ.

With the inversion ι(z) = 1
z̄ , we have ι(DRα\D) = D\D 1

Rα

, ι(Γ1) = S1

and the harmonic map with free boundary

Φ1
α = Φα ◦ ι : D \ D 1

Rα

→ Bn+1

satisfies the hypotheses of Proposition 4 on (D, ξ) since D\D 1
Rα

exhausts

D. We have some limits Φ1, ω1
1, · · · , ω1

s1 such that∫
D

∣∣∇Φ1
∣∣2 dx+

s1∑
i=1

∫
D

∣∣∇ω2
i

∣∣2 dx = m1,

and the conclusion of Proposition 4 holds for some associated scales.
With the dilatation H(z) = z

Rα
, we have H(DRα \ D) = D \ D 1

Rα

,

H(Γ2) = S1 and the harmonic map with free boundary

Φ2
α = Φα ◦H−1 : D \ D 1

Rα

→ Bn+1

satisfies the hypotheses of Proposition 4 on (D, ξ) since D\D 1
Rα

exhausts

D. We have some limits Φ2, ω2
1, · · · , ω2

s2 such that∫
D

∣∣∇Φ2
∣∣2 dx+

s1∑
i=1

∫
D

∣∣∇ω2
i

∣∣2 dx = m2,

and the conclusion of Proposition 4 holds for some associated scales.
Following the proof of Section 6.2, we use suitable eigenfunctions as-

sociated to the previous smooth limiting maps at their respective con-
centration scales as test functions for σα. They give a contradiction for
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the assumption that (0.2) is strict which reads as

σk(0, 2) > max
i1+···+is=k

s∑
q=1

σiq(0, 1)

on the annulus, for s = 2 + s1 + s2.
We now assume that Rα → 1 as α → +∞. Then thanks to the

application

f(z) = exp

((
z +

π

4

) 2 ln(Rα)

π

)
,

we have
f (Tα) = DRα \ D

with

Tα =
[
−π

4
,
π

4

]
× [0, bα] and bα =

π2

ln(Rα)
→ +∞ as α→ +∞.

Notice that we identify {Im(z) = 0} and {Im(z) = bα} and that
{Re(z) = −π

4 } and {Re(z) = π
4 } correspond to the boundary com-

ponents of the annulus. We denote by

Iα =
(
{−π

4
} ∪ {π

4
}
)
× [0, bα] ,

and for 0 ≤ r ≤ s ≤ bα,

Iα(r, s) = {(x, y) ∈ Iα; r ≤ y ≤ s}.
For sequences {rα} and {sα}, rα � sα means sα − rα → +∞ as α →
+∞. Then, denoting again g̃α on Tα the metric f?(g̃α) we claim that

Claim 15. If some sequences {riα} and {siα} for 1 ≤ i ≤ t satisfy

0 = s0
α � r1

α � s1
α � · · · � rtα � stα � rt+1

α = bα

and
mj = lim

α→+∞
Lg̃α(Iα(riα, s

i
α)) > 0

for 1 ≤ i ≤ t, then t ≤ k.

Proof. We proceed by contradiction and assume that we have such
sequences with t ≥ k+ 1. Let θα → +∞ be such that θα = o(ri+1

α − siα)
as α→ +∞ for 0 ≤ i ≤ t. We set for 1 ≤ i ≤ t

ηiα =



1 riα ≤ y ≤ siα,

y − riα + θα
θα

riα − θα ≤ y ≤ riα,

siα + θα − y
θα

siα ≤ y ≤ siα + θα,

0 y ≥ siα + θα or y ≤ riα − θα.
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Then,∫
Tα

|∇ηαi |
2
g̃α
dvg̃α =

∫
Tα

|∇ηαi |
2 dx =

2

θα
= o(1) as α→ +∞,∫

Iα

(ηαi )2 dσg̃α ≥ mj + o(1) as α→ +∞.

Taking these at least k + 1 functions with pairwise disjoint support for
the variational characterization of σα = σk(M, g̃α) (1.1) gives that

σα ≤ max
1≤i≤k+1

∫
Tα
|∇ηαi |

2
g̃α
dvg̃α∫

Iα
(ηαi )2 dσg̃α

= o(1) as α→ +∞,

which contradicts (7.1). q.e.d.

Now, we prove that up to a rotation on M , there exist sequences
0� rα � sα � bα such that

(7.6) lim
α→+∞

Lg̃α(Iα(rα, sα)) = 1.

Indeed, denying (7.6) would mean that for any sequence 1 � uα �
vα � bα,

lim
α→+∞

Lg̃α(Iα(uα, vα)) > 0.

Taking for 1 ≤ j ≤ k+1 yjα = j
k+2bα and θα =

√
bα gives for 1 ≤ j ≤ k+1

mj = lim
α→+∞

Lg̃α(Iα(yjα − θα, yjα + θα)) > 0,

so that the k+1 test functions for σα = σk(M, g̃α) with pairwise disjoint
support,

ηjα =



1 yjα − θα ≤ y ≤ yjα + θα,

y − yjα + 2θα
θα

yjα − 2θα ≤ y ≤ yjα − θα,

yjα + 2θα − y
θα

yjα + θα ≤ y ≤ yjα + 2θα,

0 y ≥ yjα + 2θα or y ≤ yjα − 2θα,

would satisfy ∫
Tα

∣∣∇ηαj ∣∣2g̃α dvg̃α =
2

θα
= o(1) as α→ +∞,∫

Iα

(
ηαj
)2
dσg̃α ≥ mj + o(1) as α→ +∞,

so that σα = o(1) by (1.1). This contradicts again (7.1).
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We take a rotation of M so that (7.6) holds. Then, by Claim 15, we
can take t the maximal integer such that there exist sequences

0 = s0
α � r1

α � s1
α � · · · � rtα � stα � rt+1

α = bα

with
mj = lim

α→+∞
Lg̃α(Iα(rjα, s

j
α)) > 0,

and
t∑

j=1

mj = 1.

We define a sequence rjα < yjα < sjα such that

lim
α→+∞

Lg̃α(Iα(rjα, y
j
α)) = lim

α→+∞
Lg̃α(Iα(yjα, s

j
α)) =

mj

2
,

and
Ψj
α(x+ iy) = tan(x+ i(y − yjα))

for z = x+ iy ∈ Tα. We consider the harmonic map Φ̌j
α = Φα ◦

(
Ψj
α

)−1

on D. We let θα → +∞ be such that θα = o(rj+1
α −sjα) for all 0 ≤ j ≤ t.

Then,
Dj
α = Ψj

α(Tα(rjα − θα, rjα + θα))

exhausts D,
Sjα = Ψj

α(Iα(rjα − θα, rjα + θα))

exhausts S1, and
lim

α→+∞
Lˇ̃gα

(Sjα) = mj ,

where ˇ̃gα =
(

Ψj
α

)
?
g̃α.

Then, we apply Proposition 4 on (D, ξ) to Φ̌j
α : (Dj

α, S
j
α)→ (Bn+1,Sn).

In order to define suitable test functions which naturally extend to the

surface, we have to prove that 1
Sjα

Φ̌j
α.∂νΦ̌j

αdθ does not concentrate at

the poles (0, 1) and (0,−1). Let’s prove it by contradiction: if, for
instance, we have

1
Sjα

Φ̌j
α.∂νΦ̌j

αdθ ⇀? mδ(0,1) + ν on S1

with m > 0, and ν({(0, 1)}) = 0, then,
∫
S1 dν > 0 and up to the

extraction of a subsequence, we can build cjα � yjα such that

lim
α→+∞

Lg̃α(Iα(rjα − θα, cjα)) = m,

so that if we set rα = yjα + τα and sα = cjα + τα with τα =

√
yjα − cjα,

we have
m1
j = lim

α→+∞
Lg̃α(Iα(rjα − θα, sα)) > 0, and

m2
j = lim

α→+∞
Lg̃α(Iα(rα, s

j
α + θα)) > 0

with m1
j +m2

j = mj and this contradicts the maximality of t.
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Therefore, we use eigenfunctions associated to the densities associ-

ated to the limits of Φ̌j
α given by Proposition 4 and we follow the com-

putations of Section 6.2. This defines test functions for the variational
characterization (1.1) of σα = σk(M, g̃α). Since (0.2) is strict, as already
said,

σk(0, 2) > max
i1+···+is=k

s∑
q=1

σiq(0, 1),

and we have at least k + 1 test functions which would give a contradic-
tion.

7.2. The hyperbolic case. Now, we assume that (γ,m) 6= (0, 2). We
let γ1

α, · · · , γsα the geodesics whose length l1α, · · · , lsα go to 0 as α→ +∞,
where 1 ≤ s ≤ 3γ− 3 +m ([17], IV, Lemma 4.1) satisfying one of these
conditions

(i) For 1 ≤ i ≤ s1, γiα is a boundary component, that is a closed
geodesic such that γiα ⊂ ∂M .

(ii) For s1+1 ≤ i ≤ s1+s2, γiα is a closed geodesic such that γiα∩∂M =
∅.

(iii) For s1 + s2 + 1 ≤ i ≤ s1 + s2 + s3, γiα is a geodesic which crosses
two distinct boundary components at its ends.

(iv) For s1 + s2 + s3 + 1 ≤ i ≤ s1 + s2 + s3 + s4 = s, γiα is a geodesic
which crosses one boundary component at its ends.

The collar lemma ([27], Lemma 4.2) gives for 1 ≤ i ≤ s an open
neighborhood P iα of γiα isometric to the cylinder

{(t, θ),−µiα < t < µiα, 0 ≤ θ ≤ 2π},

if γiα satisfies (ii) or (iii) and

{(t, θ), 0 ≤ t < µiα, 0 ≤ θ ≤ 2π},

if γiα satisfies (i), endowed with the metric liα

2π cos
(
liαt
2π

)
2

(dt2 + dθ2)

with

µiα =
π

liα

(
π − 2 arctan

(
sinh

(
liα
2

)))
.

Note that the geodesic γiα corresponds to the line {t = 0}. Note also
that in the cases (i) and (ii) we identify the segments {θ = 0} and
{θ = 2π} and that in the case (iii), the segments {θ = 0} and {θ = 2π}
correspond to portions of the boundary components crossed by γiα. In
the following, we identify P iα with the corresponding cylinder.
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We denote M1
α, · · · ,M r

α the connected components of M \
⋃s
i=1 P

i
α so

that

M =

(
s⋃
i=1

P iα

)
∪

 r⋃
j=1

M j
α


is a disjoint union. For s1 + s2 + 1 ≤ i ≤ s, and −µiα < a < b < µiα, we
denote

P iα(a, b) = {(t, θ); a < t < b},
and for c = {ci,−, ci,+}s1+s2+1≤i≤s, we denote M j

α(c) the connected com-
ponent of

M \

(
s⋃

i=1+s1+s2

P iα(−µiα + ci,−, µiα − ci,+) ∪
s2⋃

i=s1+1

γiα

)
,

which contains M j
α. We also denote

Iiα = M i
α ∩ ∂M,

and for c = {ci,−, ci,+}s1+s2+1≤i≤s,

Iiα(c) = M i
α(c) ∩ ∂M.

For all the proof, we identify R2 and C thanks to the map F (x, y) =
x+ iy.

Let 1 ≤ i ≤ s1. Then, γiα satisfies the condition (i). Then, the image
by the map E : z 7→ eiz, of P iα is an annulus D\D

e−µ
i
α

which exhausts D,

where S1 is the image of the closed geodesic. The map Φ̌i
α = Φi

α ◦E−1 :
D \ D

e−µ
i
α
→ Bn+1 satisfies the hypotheses of Proposition 4 and we get

some regular limits Φ̌i, ωi1, · · · , ωiti such that∫
D

∣∣∇Φ̌i
∣∣2 dx+

tj∑
j=1

∫
D

∣∣∣∇ωj1∣∣∣2 dx = lim
α→+∞

∫
γiα

euαdσg̃α ,

and the conclusion of the proposition holds for some associated scales
and gives natural test functions.

Let s1 + s2 + 1 ≤ i ≤ s. Then, γiα satisfies the condition (iii). We
denote by

Γiα = {(θ, t) ∈ P iα; θ = 0 or θ = 2π},
and for −µiα ≤ a ≤ b ≤ µiα,

Γiα(a, b) = {(θ, t) ∈ Γiα; a ≤ t ≤ b}.

We denote aα � bα if two sequences aα and bα satisfy bα − aα → +∞
as α→ +∞. Then, we claim that

Claim 16. If for integers ti ≥ 0, some sequences ai,lα , bi,lα for 1 ≤ l ≤
ti, cα = {ci,+α , ci,−α } and a set J ⊂ {1, · · · , r} satisfy
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−µiα � −µiα + ci,−α = bi,0α �ai,1α � bi,1α � · · ·

� ai,tiα � bi,tiα � a
i,ti+1
α = µiα − ci,+α � µiα,

and for 1 ≤ i ≤ s, 1 ≤ l ≤ ti, j ∈ J ,

mi,l = lim
α→+∞

Lg̃α(Γα(ai,lα , b
i,l
α )) > 0,

mj = lim
α→+∞

Lg̃α(Ijα(cα)) > 0,

then,
∑s

i=1 ti + |J | ≤ k.

Proof. By contradiction, we assume that there exist such sequences

with
∑s

i=1 ti+|J | ≥ k+1. Let θα → +∞ be such that θα = o(ai,l+1
α −bi,lα )

for 1 ≤ i ≤ s and 0 ≤ l ≤ ti. We set ηi,lα be such that supp(ηi,lα ) ⊂ P iα
and

ηi,lα =



1 ai,lα ≤ t ≤ bi,lα + θα,

t− ai,lα + θα
θα

ai,lα − θα ≤ t ≤ ai,lα ,

bi,lα + θα − t
θα

bi,lα ≤ t ≤ bi,lα + θα,

0 t ≥ bi,lα + θα or t ≤ ai,lα − θα,
and ηjα such that supp(ηjα) ⊂ M j

α(cα + θα) and if {t = µiα} is on the

boundary of M j
α,

ηjα =


1 µiα − ci,+α ≤ t ≤ µiα,

t− µiα + ci,+α + θα
θα

µiα − ci,+α − θα ≤ t ≤ µiα − ci,+α ,

and we proceed the same way for the symmetric case {t = −µiα} with

ci,−α . Taking these at least k + 1 test functions with pairwise disjoint
support for the variational characterization (1.1) of σα = σk(M, g̃α), we
get

σα ≤ max

 max
1≤i≤s
1≤l≤ti

∫
M

∣∣∣∇ηi,lα ∣∣∣2
g̃α
dvg̃α∫

∂M

(
ηi,lα
)2
dσg̃α

,max
j∈J

∫
M

∣∣∣∇ηjα∣∣∣2
g̃α
dvg̃α∫

∂M

(
ηjα
)2
dσg̃α

 .

Then σα ≤ o(1) which contradicts (7.1). q.e.d.

We now prove that the set of such sequences such that
s∑
i=1

ti∑
l=1

mi,l +
∑
j∈J

mj = 1

is not empty.
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Claim 17. We let I0 be the set of indices i ∈ {1, · · · , s} such that
there exists a sequence 0� ciα � µiα such that

lim
α→+∞

Lg̃α(Γiα(−µiα + ciα, µ
i
α − ciα)) = 0,

and I1 = {1, · · · , s} \ I0. Then, there exist sequences ci,±α → +∞ 0 �
ci,±α � µiα for 1 ≤ i ≤ s and sequences aiα, biα for i ∈ I1 with

−µiα + ci,+α � aiα � biα � µiα − ci,−α ,

such that

lim
α→+∞

Lg̃α(Γiα(−µiα + ci,−α , µiα − ci,+α )) = 0

for i ∈ I0,

lim
α→+∞

s∑
i=1

Lg̃α(Γiα(aiα, b
i
α)) > 0

for i ∈ I1 and

lim
α→+∞

∑
i∈I1

Lg̃α(Γiα(aiα, b
i
α)) +

r∑
j=1

Lg̃α(Ijα(cα)) = 1.

Proof. We proceed by contradiction, assuming the opposite to hold.
Then I1 6= ∅ and we set for i ∈ I1 and 1 ≤ j ≤ k + 1

µiα − ci,+α = µiα − ci,−α = ti,jα + θα,

bjα = −ajα = tjα − θα,

where tjα = jµiα
k+2 and θα → +∞ satisfies θα = o(µiα). Then, by assump-

tion,
s∑
i=1

lim
α→+∞

Lg̃α
(
Γiα(−ti,jα − θα,−ti,jα + θα) ∪ Γiα(ti,jα − θα, ti,jα + θα)

)
> 0

for any 1 ≤ j ≤ k + 1. We now set ηjα some test functions for the
variational characterization of σα = σk(M, g̃α) with pairwise disjoint

support defined such that supp(ηjα) ⊂
⋃
i∈I1 P

i
α, ηiα is an even function

on P iα and

ηi,jα =



0 0 ≤ t ≤ ti,jα − 2θα,

t− ti,jα + 2θα
θα

ti,jα − 2θα ≤ t ≤ ti,jα − θα,

1 ti,jα − θα ≤ t ≤ ti,jα + θα,

ti,jα + 2θα − t
θα

ti,jα + θα ≤ t ≤ ti,jα + 2θα,

0 ti,jα + 2θα ≤ t ≤ µiα.
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With these k+1 test functions, we easily prove that σα ≤ o(1) by (1.1),
which contradicts (7.1). q.e.d.

Thanks to Claim 16 and Claim 17 there exist for 1 ≤ i ≤ s some
integers ti ≥ 0, sequences ai,lα , bi,lα for 1 ≤ l ≤ ti, cα = {ci,+α , ci,−α } and a

set J ⊂ {1, · · · , r} satisfying ci,±α < µiα,

−µiα � −µiα + ci,−α = bi,0α �ai,1α � bi,1α � · · ·

� ai,tiα � bi,tiα � a
i,ti+1
α = µiα − ci,+α � µiα,

and for 1 ≤ i ≤ s, 1 ≤ l ≤ ti, j ∈ J ,

mi,l = lim
α→+∞

Lg̃α(Γα(ai
l

α, b
i,l
α )) > 0,

mj = lim
α→+∞

Lg̃α(Ijα(cα)) > 0,

with
s∑
i=1

ti∑
m=1

mi,l +
∑
j∈J

mj = 1,

such that
∑s

i=1 ti is maximal.
For fixed 1 ≤ i ≤ s and 1 ≤ l ≤ ti, we focus on the asymptotic

behavior of the harmonic map Φα on the cylinder P iα(ai,lα , b
i,l
α ). We

define a sequence ti,lα such that

lim
α→+∞

Lg̃α

(
Γα(ai,lα , t

i,l
α )
)

= lim
α→+∞

Lg̃α

(
Γα(ti,lα , b

i,l
α )
)

=
mi,l

2
.

We set

Ψi,l
α (θ + it) = tan

(
θ − π + i(t− ti,lα )

4

)
,

and we consider the 1
2 -harmonic map Φ̌i,l

α = Φα ◦
(

Ψi,l
α

)−1
on D. Let

θα → +∞ be such that θα = o(ai,l+1
α − bi,lα ) for 0 ≤ l ≤ ti and 1 ≤ i ≤ s.

Then,

Di,l
α = Ψi,l

α

(
T iα(ai,lα − θα, bi,lα + θα)

)
exhausts D,

Si,lα = Ψi,l
α

(
Γiα(ai,lα − θα, bi,lα + θα)

)
exhausts S1 and

lim
α→+∞

L(
Ψi,lα

)
?
(g̃α)

(Si,lα ) = mi,l.

We can now apply Proposition 4 to Φ̌i,l
α (Di,l

α , S
i,l
α ) → (Bn+1,Sn) on

(D, ξ). In order to obtain test functions which naturally extend to the
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manifold, we have to prove that 1
Si,lα

Φ̌i,l
α ∂νΦ̌i,l

α dθ does not concentrate

at the poles (0, 1) and (0,−1). By contradiction, if we have

1
Si,lα

Φ̌i,l
α ∂νΦ̌i,l

α dθ ⇀? mδ(0,1) + ν

with m > 0, ν({(0, 1)}) = 0, then
∫
S1 dν > 0 by the hypothesis on ti,lα we

did and up to the extraction of a subsequence, we can build qi,lα � ti,lα
such that

lim
α→+∞

Lg̃α(Γα(ai,lα − θα, qi,lα )) = m.

Setting bα = qi,lα + τα and aα = ti,lα − τα, with τα =

√
ti,lα − ri,lα , we have

m1
i,l = lim

α→+∞
Lg̃α

(
Γiα(ai,lα − θα, bα)

)
> 0,

m2
i,l = lim

α→+∞
Lg̃α

(
Γiα(aα, b

i,l
α + θα)

)
> 0

with m1
i,l +m2

i,l = mi,l and this contradicts the maximality of
∑s

i=1 ti.
For a fixed j ∈ J , we now focus on the asymptotic behavior of Φα on

M j
α(cα). We denote by M̃ j

α the connected component of M\
(
γ1
α, · · · , γsα

)
which contains M j

α. There exists a diffeomorphism τα : Σj → M̃ j
α such

that (Σj , hα) is a non-compact hyperbolic surface with hα = τ?αgα. On
Σj , we have

hα → h in C∞loc(Σj) as α→ +∞
for a hyperbolic metric h. We let c = [h] and (Σ̂j , ĉ) the compactifi-

cation of the cusps of (Σj , h) so that (Σ̂j \ {p1, · · · , pt}, ĉ) is conformal
to (Σj , c) for some punctures p1, · · · , pt as described in [17]. The se-

quence of sets Σα = τ−1
α

(
M j
α(cα)

)
exhausts Σ̂j , so that the sequence of

harmonic maps with free boundary Φ̂α = Φα◦τα : (Σα, hα)→ Bn+1 sat-
isfies the hypotheses of Proposition 4. In order to extend on the whole
manifold the suitable test functions we define on Σj , we will prove that

1ΣαΦ̂α.∂ναΦ̂αdσhα does not concentrate at the punctures which lie in

the boundary of Σ̂j (and correspond to the degeneration of some geo-
desic γiα which satisfies condition (iii)). By contradiction, we assume
that

1ΣαΦ̂α.∂ναΦ̂αdσhα ⇀? mδpl + ν on Σ̂j

for some puncture pl ∈ {p1, · · · , pt} ∩ ∂Σ̂j with m > 0, ν({pl}) = 0.
Then, up to the extraction of a subsequence, we can build qα → +∞
such that

lim
α→+∞

Lg̃α
(
Γiα(−µiα + qα,−µiα + ci,−α )

)
= m

for s1 +s2 +1 ≤ i ≤ s such that τ−1
α

(
{−µiα < t < 0}

)
is a neighborhood

of the puncture pl of Σ̂j . We proceed the same way for the symmetric
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case {0 < t < µiα}. Setting dα =
√
qα, aα = −µiα + qα −

√
q
α

and

bα = −µiα + ci,−α , we have

m = lim
α→+∞

Lg̃α
(
Γiα(aα, bα)

)
> 0,

lim
α→+∞

Lg̃αI
j
α (cα) = mj −m,

where cα comes from cα, taking dα instead of ci,−α . Adding the sequences
aα � bα contradicts the maximality of

∑s
i=1 ti.

As described in Proposition 4 and the computations of Section 6.2,
the limit functions given by Φ̌i

α : Di
α ⊂ D → Bn+1 for 1 ≤ i ≤ s1,

Φ̌i,l
α : Di,l

α ⊂ D→ Bn+1 for s1 +s2 +1 ≤ i ≤ s and Φ̂j
α : Σα ⊂ Σ̂j → Bn+1

and their associated scales give at least k+ 1 well defined test functions
for the variational characterization of σα by the gap (0.2). Indeed,

denoting γj the genus of Σ̂j and mj its number of boundary components,
we notice that

∑
j∈J γj ≤ γ and

∑
j∈J γj + mj ≤ γ + m and that if

|J | = 1, γ1 < γ or γ1 +m1 < γ +m. These at least k+ 1 test functions
for the variational characterization (1.1) of σα give a contradiction. This
ends the proof of Theorem 1.
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Berlin, 2005. Une analyse géométrique. [A geometric analysis].

[16] J. Hersch. Quatre propriétés isopérimétriques de membranes sphériques ho-
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