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QUANTITATIVE FLATNESS RESULTS AND
BV -ESTIMATES FOR STABLE NONLOCAL MINIMAL

SURFACES
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Abstract

We establish quantitative properties of minimizers and stable
sets for nonlocal interaction functionals, including the s-fractional
perimeter as a particular case.

On the one hand, we establish universal BV -estimates in every
dimension n > 2 for stable sets. Namely, we prove that any stable
set in B1 has finite classical perimeter in B1/2, with a universal
bound. This nonlocal result is new even in the case of s-perimeters
and its local counterpart (for classical stable minimal surfaces)
was known only for simply connected two-dimensional surfaces
immersed in R3.

On the other hand, we prove quantitative flatness estimates
for minimizers and stable sets in low dimensions n = 2, 3. More
precisely, we show that a stable set in BR, with R large, is very
close in measure to being a half space in B1 – with a quantita-
tive estimate on the measure of the symmetric difference. As a
byproduct, we obtain new classification results for stable sets in
the whole plane.
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1. Introduction

In this paper we establish quantitative properties of minimizers and
stable sets of nonlocal interaction functionals of perimeter type. We
consider very general – possibly anisotropic and not scaling invariant
functionals – including, as particular cases, the fractional s-perimeter
and its anisotropic version, introduced respectively in [12] and [31].

The results that we obtain can be grouped, roughly speaking, into
the following categories:

• Local BV -estimates (universal bounds for the classical perimeter)
and sharp energy estimates for minimizers and stable sets,
• Existence results and compactness of minimizers,
• Quantitative flatness results.

Before giving the most general statements of the results in the paper,
we just state them for the case of fractional s-perimeter. Even in this
very particular case, the results are new and interesting in themselves.

The precise setting of the (most general) nonlocal perimeter function-
als that we consider will be discussed in Subsection 1.1. In particular, in
the forthcoming Definitions 1.5 and 1.6 we precise the notions of min-
imizers and stable sets. Our results are stated in their full generality
later on in Subsection 1.3 – after having given in Subsection 1.2 several
concrete motivations for the problems under consideration.

We next state, in the case of the s-perimeter, our main BV -estimate.
This result is a particular case of our Theorem 1.7. It gives a universal
bound on the classical perimeter in B1/2 of any stable minimal set in
B1. As said above, the precise notion of stable solution will be given in
Definition 1.6, and it is an appropriate weak formulation of the nonneg-
ativity of the second variation of the functional.

Theorem 1.1. Let s ∈ (0, 1), R > 0 and E be a stable set in the
ball B2R for the nonlocal s-perimeter functional. Then, the classical
perimeter of E in BR is bounded by CRn−1, where C depends only on
n and s.

Moreover, the s-perimeter of E in BR is bounded by CRn−s.

Moreover, as a consequence of Theorem 1.7, we establish the same
result for the anisotropic fractional perimeter considered in [31].

To better appreciate Theorem 1.1 let us compare it with the best
known similar results for classical minimal surfaces. A universal perime-
ter estimate for (local) stable minimal surfaces is only known for the case
of two-dimensional stable minimal surfaces that are simply connected
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and immersed in R3. Conversely, the perimeter estimate in our Theo-
rem 1.1 holds in every dimension and without topological constraints.
The perimeter estimate for the classical case is a result due to Pogorelov
[36], and Colding and Minicozzi [19] – see also [33, Theorem 2] and [45,
Lemma 34], it reads as follows

Theorem 1.2 ([36, 19]). Let D be a simply connected, immersed,
stable minimal disk of geodesic radius r0 on a minimal (two-dimension-
al) surface Σ ⊂ R3, then

πr2
0 6 Area (D) 6

4

3
πr2

0.

As said above, our estimate for nonlocal perimeters is stronger in the
sense that we do not need ∂E to be simply connected and immersed.
In fact, an estimate exactly like ours cannot hold for classical stable
minimal surfaces since a large number of parallel planes is always a
classical stable minimal surface with arbitrarily large perimeter in B1.

The proof of Theorem 1.2 uses crucially the fact that for two-dimen-
sional minimal surfaces the sum of the squares of the principal curva-
tures κ2

1 + κ2
2 equals 2κ1κ2 = −2K, where K is the Gauß curvature –

since on a minimal surface κ1 + κ2 = 0. Then, the stability inequality
reads as

∫
D |∇ξ|

2 + 2Kξ2 > 0. By plugging a suitable radial test func-
tion ξ in this stability inequality, using the Gauß–Bonnet formula to
relate

∫
Dr
K and d

drLength (∂Dr), and integrating by parts in the radial

variable, one proves the bound Area (D) 6 4
3πr

2
0. This elegant proof is

unfortunately quite rigid and only applies to two-dimensional surfaces.
Having a universal bound for the classical perimeter of embedded

minimal surfaces in every dimension n > 4 would be a decisive step
towards proving the following well-known and long standing conjecture:
The only stable embedded minimal (hyper)surfaces in Rn are hyperplanes
as long as the dimension of the ambient space is less than or equal to 7.
Indeed, it would open the door to use the monotonicity formula to prove
that blow-downs of stable surfaces are stable minimal cones – which are
completely classified. On the other hand, without a universal perimeter
bound, the sequence of blow-downs could have perimeters converging
to ∞. In the same direction, we believe that our result in Theorem 1.1
can be used to reduce the classification of stable s-minimal surfaces in
the whole Rn to the classification of stable cones.

We note that our nonlocal estimate gives a control on the classical
perimeter (i.e., the BV -norm of the characteristic function), which is
stronger – both from the geometric and functional space perspective –
than a control on the s-perimeter (i.e., on the W s,1 norm of the charac-
teristic function). The sharp s-perimeter estimate stated in Theorem 1.1
is obtained as a consequence of the estimate for the classical perimeter
using a standard interpolation.



450 E. CINTI, J. SERRA & E. VALDINOCI

Since it is well-known [6, 20, 15, 2] that the classical perimeter is the
limit as s ↑ 1 of the nonlocal s-perimeter (suitably renormalized), it is
natural to ask whether our results give some informations in the limit
case s = 1. Unfortunately, our proof relies strongly on the nonlocal
character of the s-perimeter and the constant C appearing in Theorem
1.1 blows up as s ↑ 1.

The more general forms of our BV -estimates have quite remarkable
consequences regarding the existence and compactness of minimizers –
see Theorem 1.13 and Lemma 6.7. These existence and compactness
results are nontrivial since they apply, in particular, to some perimeter
functionals that are finite on every measurable set. Thus, although all
the perimeter functionals that we consider are lower semicontinuous,
sequences of sets of finite perimeter are in principle not compact in L1.
Thanks to our BV -estimates, we can obtain robust compactness results
that serve to prove existence of minimizers in a very general framework.

We next give our quantitative flatness estimate in dimension n = 2
for the case of the s-perimeter. This result is a particular case of our
Theorem 1.14. It states that stable sets in a large ball BR are close to
being a halfplane in B1, with a quantitative control on the measure of
the symmetric difference that decays to 0 as R→∞.

Theorem 1.3. Let the dimension of the ambient space be equal to 2.
Let R > 2 and E be a stable set in the ball BR for the s-perimeter.

Then, there exists a halfplane h such that |(E4h) ∩B1| 6 CR−s/2.
Moreover, after a rotation, we have that E ∩ B1 is the graph of a

measurable function g : (−1, 1) → (−1, 1) with osc g 6 CR−s/2 outside

a “bad” set B ⊂ (−1, 1) with measure CR−s/2.

The previous result provides a quantitative version of the classifica-
tion result in [38] which says that if E is a minimizer of the s-perimeter
in any compact set of R2, then it is necessarily a halfplane. Moreover,
Theorem 1.3 extends this classification result to the class of stable sets.

In Corollary 1.21 we will obtain also results in dimension n = 3 for
minimizers of anisotropic interactions with a finite range of dependence
(i.e., for “truncated kernels”).

The proofs of our main results have, as starting point, a nontrivial
refinement of the variational argument introduced by Savin and one of
the authors in [38, 39] to prove that halfplanes are the only cones min-
imizing the s-fractional perimeter in every compact set of R2. Namely,
we consider perturbations ER,t of a minimizer E which coincide with
E outside BR and are translations E + tv of E in BR/2 – with “in-
finitesimal” t > 0. A first step in the proof is estimating how much
PK,BR(ER,t) differs from PK,BR(E) depending on R – this is done in
Lemma 2.1. By exploiting the nonlocality of the perimeter functional,
the previous control on PK,BR(ER,t) − PK,BR(E) is translated into a
control on the minimum between |ER,t \E| and |E \ER,t| – the crucial
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estimates for this are given in Lemmas 2.2 and 2.4. Then, a careful
geometric analysis allows us to deduce our main results – i.e., Theorems
1.7, 1.9, 1.14, 1.19 and their corollaries. We emphasize that we always
use arbitrarily small perturbations of our set E. That is why we can
establish some results for stable sets.

In the following subsections, we introduce the mathematical frame-
work of nonlocal perimeters, we discuss some motivations for this general
framework, and we present the main results obtained.

1.1. The mathematical framework of nonlocal perimeter func-
tionals. The notion of fractional perimeter was introduced in [12]. Let
s ∈ (0, 1). Given a bounded domain Ω ⊂ Rn, we define the fractional
s-perimeter of a measurable set E ⊂ Rn relative to Ω as
(1.1)
Ps,Ω(E) := Ls(E ∩Ω, CE ∩Ω) +Ls(E ∩Ω, CE \Ω) +Ls(E \Ω, CE ∩Ω),

where CE denotes the complement of E in Rn and the interaction Ls of
two disjoint measurable sets A,B is defined by

Ls(A,B) :=

∫
A

∫
B

dx dx̄

|x− x̄|n+s
.

Roughly speaking, this s-perimeter captures the interactions between a
set E and its complement. These interactions occur in the whole of the
space and are weighted by a (homogeneous and rotationally invariant)
kernel with polynomial decay (see Figure 1). Here, the role of the do-
main Ω is to “select” the contributions which arise in a given portion
of the space and to “remove” possible infinite contributions to the en-
ergy which come from infinity but which do not change the variational
problem.

Figure 1. Kernels for: the s-perimeter, the anisotropic
s-perimeter, more general L2 kernels.

A set E is said to minimize the s-perimeter in Ω if

(1.2) Ps,Ω(E) 6 Ps,Ω(F ), for all F with E \ Ω = F \ Ω.

The (boundaries of the) minimizers of the s-perimeter are often called
nonlocal minimal (or s-minimal) surfaces.
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In this paper, we study a more general functional, in which the inter-
action kernel is not necessarily homogeneous and rotational invariant.
We consider a kernel K satisfying

(1.3) K(z) > 0,

(1.4) K(z) = K(−z),

(1.5)

∫
Rn
K(z) min{1, |z|} dz < +∞,

and

(1.6) K > 1 in B2.

To prove our main results we will require the following additional
assumption on the first and second derivatives of the kernel K:

(1.7) max

{
|z| |∂eK(z)| , |z|2 sup

|y−z|6|z|/2
|∂eeK(y)|

}
6 K∗(z),

for all z ∈ Rn \ {0} and for all e ∈ Sn−1, for some kernel K∗.
Throughout the paper we will have one of the three following cases:

• K∗(z) = C1K(z);
• K∗(z) = C1

(
K(z) + χ{|z|<R0}(z)

)
for some R0 > 2;

• K∗(z) ∈ L1(Rn).

We emphasize that the kernels of the fractional s-perimeter and its
anisotropic version satisfy (1.7) with K∗(z) = C1K(z). Therefore, a
reader interested in the results for these particular cases, can mentally
replace K∗ by C1K in all the paper. We allow the second case of K∗ in
order to obtain results for compactly supported kernels, as, for example,
(9−|z|2)3

+|z|−n−s. With the third case, we will be able to obtain strong

results for nonsingular kernels like e9−|z|2 .
We set

LK(A,B) =

∫
A

∫
B
K(x− x̄) dx dx̄.

We define, for a measurable set E ⊂ Rn, the K-perimeter of E in Rn
as

PK(E) = LK(E, CE).

We define the K-perimeter of E inside Ω, PK,Ω(E), similarly, as in
(1.1) with LK replacing Ls. That is,
(1.8)
PK,Ω(E) := LK(E∩Ω, CE∩Ω)+LK(E∩Ω, CE\Ω)+LK(E\Ω, CE∩Ω).

Note that our definition of PK,Ω(E) agrees with the one of PK(E,Ω)
given in [25, Section 3].
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Remark 1.4. We observe that if K satisfies (1.5), then every Lips-
chitz bounded domain U has finite K-perimeter in Rn. Indeed,

PK(U) =

∫
U

∫
CU
K(x̄− x)dxdx̄ =

∫
Rn
dz

∫
U∩(CU−z)

dxK(z)

=

∫
Rn
|U \ (U − z)|K(z)dz 6 C

∫
Rn

min{1, |z|}K(z)dz <∞,

where we have used the change of variables z = x̄− x and Fubini The-
orem.

We next formally state the definition of minimizer of theK-perimeter.

Definition 1.5. We say that E is a minimizer for PK,Ω in an open
bounded set Ω, if PK,Ω(E) <∞ and

PK,Ω(E) 6 PK,Ω(F ),

for any set F which coincides with E outside Ω, that is F \ Ω = E \ Ω.

We also define the notion of stable set for the K-perimeter.

Definition 1.6. We say that E is a stable set for PK,Ω if PK,Ω(E) <
∞ and for any given vector field X = X(x, t) ∈ C2

c (Ω × (−1, 1);Rn)
and ε > 0 there is t0 > 0 such that the following holds. Denoting
Ft = Ψt(E), where Ψt is the integral flow of X, we have

0 6 PK,Ω(Ft ∪ E)− PK,Ω(E) + εt2,

and
0 6 PK,Ω(Ft ∩ E)− PK,Ω(E) + εt2,

for all t ∈ (−t0, t0).

For our second theorem, we will consider kernels K in the class
L2(s, λ,Λ) introduced by Caffarelli and Silvestre in [13] (see Figure 1).
Namely, the kernels K(z) satisfying (1.4),

(1.9)
λ

|z|n+s
6 K(z) 6

Λ

|z|n+s
,

and

(1.10) max
{
|z| |∂eK(z)| , |z|2|∂eeK(z)|

}
6

Λ

|z|n+s
,

for all z ∈ Rn \ {0} and for all e ∈ Sn−1. Note that, after multiplying
a kernel K ∈ L2 by a positive constant, we may assume that λ > 2n+s

and, hence, K satisfies (1.3)–(1.7) with K∗ = C1K.
A very relevant particular case to which our results apply is that

of s-fractional anisotropic perimeters, introduced in [31]. This case
corresponds to the choice of the kernel

(1.11) K(z) =
a(z/|z|)
|z|n

,
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where a is some positive, even C2 function on the (n − 1)-dimensional
unit sphere Sn−1 (see Figure 1). The notion of anisotropic nonlocal
perimeter was considered in [31], where some asymptotic results for
s→ 1− where established.

1.2. Motivations of nonlocal perimeters. To favor a concrete intu-
ition of the nonlocal perimeter functional, we now recall some practical
applications of the nonlocal perimeter functionals. In these applications,
it is also natural to consider interactions that are not homogeneous or
rotationally invariant.

A. The first application that we present is related to image processing
and bitmaps.

Let us consider the framework of BMP type images with square pixels
of (small) size ρ > 0 (and suppose that 1/ρ ∈ N for simplicity). For
simplicity, let us consider a picture of a square of side 1, with sides
at 45◦ with respect to the orientation of the pixels and let us compare
with the “version” of the square which is represented in the image (see
Figure 2).

In this configuration, the classical perimeter functional provides a
rather inaccurate tool to analyze this picture, no matter how small the
pixels are, i.e., no matter how good is the image resolution.

Indeed, the perimeter of the ideal square is 4, while the perimeter of
the picture displayed by the monitor is always 4

√
2 (independently on

how small the the parameter ρ is), so the classical perimeter is always
producing an error by a factor

√
2, even in cases of extremely high

resolution.
Instead, the fractional perimeter (for instance, with s = 0.95) or

other nonlocal perimeters would provide a much better approximation
of the classical perimeter of the ideal square in the case of high image
resolution. Indeed, the discrepancy Ds(ρ) between the s-perimeter of
the ideal square and the s-perimeter of the pixelled square is bounded
by above by the sum of the interactions between the “boundary pixels”
with their complement: these pixels are the ones which intersect the
boundary of the original square, and their number is 4/ρ.

By scaling, the interaction of one pixel with its complement is of
the order of ρ2−s, therefore, we obtain that Ds(ρ) 6 Cρ1−s, which is
infinitesimal as ρ→ 0.

Since the fractional perimeter (suitably normalized) is close to the
classical one as s → 1−, that the fractional perimeter provides in this
case a more precise information that the classical one.

B. Another main motivation for the study of nonlocal s-minimal sur-
faces, as explained in [12], is the understanding of steady states for
nonlinear interface evolution processes with Lévy diffusion. Namely let
us think of u(t, · ) : Rn → [0, 1] as representing the state at time t of
some interface phenomenon where two stable states u ≡ 1 and u ≡ 0
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Figure 2. Discrepancy of local/nonlocal perimeters in a bitmap.

diffuse and “compete”to conquer the whole space. In concrete appli-
cations u could be, for instance, the density of an invasive biological
specie.

For a wide class of such situations, the evolution equation that governs
u is of the type

ut + Lu = f(u),

where L is a “diffusion operator” – e.g., L = (−∆)s/2, s ∈ (0, 2] – and
f is a bistable nonlinearity with f(0) = f(1) = 0 and f(z) increasing
(resp. decreasing) near z = 0 (resp. z = 1).

An extreme version of this evolution process, heuristically correspond-
ing to a huge balanced f like f(u) = M

(
(2u−1)−(2u−1)3

)
with M � 1

is the following.
Given an open set E ⊂ Rn with smooth boundary we define its

density function u by

u(x) = lim
r↘0

|Br(x) ∩ E|
|Br(x)|

.

That is u(x) takes the values 1, 1/2 or 0 depending on whether x belongs
to E, ∂E or the interior of CE.

Let L be a “diffusion operator”, or more rigorously, an infinitesimal
generator of a Lévy process. For t ∈ τN∪{0}, where τ is a tiny time step,
we define the discrete in time evolution ΦLt (u) of the density function u
of E as follows:

ΦLt+τ (u)(x) =


1 if v(ω, x) > 1/2,

1/2 if v(ω, x) = 1/2,

0 if v(ω, x) < 1/2,

where ω = ω(τ) is an appropriate time step depending on τ and v is
the solution to

vt + Lv = 0 with initial condition v(0, ·) = ΦLt (u).
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In this way ΦLt defines a discrete in time surface evolution of ∂E –
excluding pathological cases in which thickening of the set {v = 1/2}
might occur.

Heuristically, a set E with smooth enough boundary will be stationary
under the flow ΦLt (with infinitesimal τ) if and only if its density function
u satisfies

(1.12) Lu(x) = 0 for all x ∈ ∂E = {u = 1/2}.
Indeed, in this way the evolution vt + Lv = 0 will be vt ≈ 0 on ∂E for
0 < t < ω(τ) � 1, and the boundary points will not move. Note that
this heuristic argument is independent of the modulus of continuity ω.

In some cases, under an appropriate choice of ω = ω(τ) the discrete
flow ΦLt can be shown to converge to some continuous flow as τ ↘ 0.

When L = −∆ is the Laplacian, under the choice ω = τ the ΦLt con-
verges to the mean curvature flow. This classical result was conjectured
by Merriman, Bence, and Osher in [34], and proven to be true by Evans
[23] and Barles and Georgelin [4]. In [18], Chambolle and Novaga gen-
eralized this result to the case of anisotropic and crystalline curvature
motion. In [30] Ishii, Pires and Souganidis study the convergence of
general threshold dynamics type approximation schemes to hypersur-
faces moving with normal velocity depending on the normal direction
and the curvature tensor.

Finally, in [14], the case L = (−∆)s/2 was considered: in this case ΦLt
still converges to the mean curvature flow for s ∈ (1, 2) with ω = τ s/2

and for s = 1 with ω implicitly defined ω2| logω| = τ for τ small.

Instead, for s ∈ (0, 1) and ω = τ s/(1+s), the discrete flow ΦLt with

L = (−∆)s/2 converges to a new geometric flow: the s-nonlocal mean
curvature flow (see [14], Theorem 1) – a flow where the normal dis-
placement is proportional to the nonlocal mean curvature; see also
[17, 29, 37]. Fractional s-minimal surfaces are stationary under this
s-nonlocal mean curvature flow.

At the level of discrete flow, we can replace (−∆)s/2 with a more
general elliptic operator of form

(1.13) Lu(x) =

∫
Rn

(
u(x)− u(x̄)

)
K(x− x̄) dx̄,

where K satisfies (1.3)–(1.6). Heuristically, minimizers of the K-perime-
ter should be natural candidates to being stationary under the flow ΦLt
as τ → 0.

C. Another motivation for the study of nonlocal s-minimal surfaces
comes from models describing phase-transitions problems with long-
range interactions. In the classical theory of phase transitions, one
consider the energy functional

(1.14) E(u) =

∫
Ω
ε2|∇u|2 +W (u),
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where W is a double well potential representing the dislocation energy,
and the first term, involving ∇u, penalizes the formation of unnecessary
interfaces. The classical Γ-convergence result by Modica and Mortola
[35] states that the energy functional ε−1E Γ-converges to the (classical)
perimeter functional. A nonlocal analogue of (1.14) is the following

Eσ(u) = ε2σKσ(u,Ω) +

∫
Ω
W (u),

where

Kσ(u,Ω) :=
1

2

∫
Ω

∫
Ω

|u(x)− u(x̄)|2

|x− x̄|n+2σ
dxdx̄+

∫
Ω

∫
CΩ

|u(x)− u(x̄)|2

|x− x̄|n+2σ
dxdx̄.

The previous energy functional models long range (or nonlocal) inter-
actions between the particles – the density of particles at a point is
influenced by the density at other points that may be not infinitesi-
mally close. The minimizers of the functional Eσ(u) have been studied
in several recent papers [7, 8, 11, 10, 9, 43]. A list of results estab-
lished in these works includes: 1-D symmetry in low dimensions, energy
estimates, Hamiltonian identities, existence and decay properties of 1-D
solutions, etc.

In [40], Savin and one of the authors study the Γ-convergence of the
energy functional Eσ. In particular, they prove that when σ ∈ [1/2, 1),
after a suitable rescaling, Eσ Γ-converges to the classical perimeter func-
tional. On the other hand, when σ ∈ (0, 1/2) the functional ε−2σEσ Γ-
converges to the nonlocal s-perimeter with s = 2σ. Note that ε−2σEσ =
Kσ + ε−2σ

∫
ΩW (u) and, thus, in this renormalization, there is no small

coefficients in front of the Dirichlet energy.
Analogously, we could consider more energy functionals of the form

EK(u) =
1

2

∫
Ω

∫
Ω
|u(x)− u(x̄)|2K(x− x̄)dxdx̄

+

∫
Ω

∫
CΩ
|u(x)− u(x̄)|2K(x− x̄)dxdx̄+M

∫
Ω
W (u),

where M � 1 is a large real number.
Heuristically, similarly to the result of [40], minimizers of EK should

“converge” to minimizers of the K-perimeter PK as M →∞.

1.3. Statement of the main results. From now on, we will assume
that K satisfies assumptions (1.3)–(1.7).

We state our main results in the two following subsections. In the first
one we give the uniform BV -estimates for stable sets, and their conse-
quence on existence and compactness of minimizers of theK-perimeter –
see [24, 28, 32]. In the second one we state our quantitative flatness
results and we comment on some corollaries and some applications for
specific choices of the kernels that are of independent interest.
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1.3.1. Uniform BV -estimates. We recall the (classical) notion of
BV -space and of sets of finite perimeter. Let Ω be an open set of
Rn. Given a function u in L1(Ω), the total variation of u in Ω is defined
as follows:

|∇u|(Ω) := sup

{∫
Ω
udivφ with φ ∈ C1

c (Ω,Rn), |φ| 6 1

}
.

Here, and throughout the paper, we denote C1
c (U ;A) the C1 vector

fields compactly supported in U and taking values in A.
The space BV (Ω) is defined as the space of functions which belong

to L1(Ω) and have |∇u|(Ω) finite. Moreover, we say that a set E ⊂
Rn has finite perimeter in Ω, when the distributional gradient ∇χE of
its characteristic function is a Rn-valued Radon measure on Rn and
|∇χE |(Ω) <∞. In this case, we define the perimeter of E in Ω as:

PerΩ(E) = |∇χE |(Ω).

Finally, we define the reduced boundary ∂∗E of a set of finite perimeter
E as follows: ∂∗E is the set of all points x such that |∇χE |(Br(x)) > 0
for any r > 0 and

(1.15) lim
r→0+

∇χE(Br(x))

|∇χE(Br(x))|
exists and belongs to Sn−1.

For any x ∈ ∂∗E, we denote by −νE(x) the limit in (1.15) and we call
the Borel vector field νE : ∂∗E → Sn−1 the measure theoretic outer unit
normal to E.

The following are our main results:

Theorem 1.7 (BV -estimates for stable sets). Let n > 2. Let E
be a stable set of the K-perimeter in B4, with K in L2(s, λ,Λ), that is,
with K satisfying (1.4), (1.9), and (1.10).

Then, the classical perimeter of E in B1 is finite. Namely χE belongs
to BV (B1) with the following universal estimate

PerB1(E) = |∇χE |(B1) 6 C(n, s, λ,Λ).

Rescaling Theorem 1.7, and using an interpolation inequality that
relates PK and Per, we obtain

Corollary 1.8. Let n > 2. Let E be stable set of the K-perimeter
in B4R, with K in L2(s, λ,Λ), i.e., satisfying condition (1.4), (1.9) and
(1.10). Then,

(1.16) PerBR(E) 6 C(n, s, λ,Λ)Rn−1.

As a consequence

(1.17) PK,BR(E) 6 C(n, s, λ,Λ)Rn−s.
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We observe that the exponent n − s in (1.17) is optimal since it is
achieved when E is a halfspace. To prove (1.17) when E is minimizer,
it is enough to compare the K-perimeter of E with the K-perimeter
of E ∪ BR. However, for stable stationary sets this simple comparison
argument cannot be done and the proof is much more involved – we
need to prove our (stronger) uniform BV -estimates and deduce (1.17)
as a byproduct.

Theorem 1.7 follows from the following result for general kernels com-
bined with an appropriate scaling and covering argument.

Theorem 1.9. Let n > 2. Let E be a stable set of the K-perimeter in
B4, with K satisfying (1.3)–(1.7). If PK∗,B4(E) <∞, then the classical
perimeter of E in B1 is finite. Namely χE belongs to BV (B1) with the
following estimate

PerB1(E) = |∇χE |(B1) 6
√

2n
√
PK∗,B4(E) + |Sn−1|.

Here, |Sn−1| denotes the (n−1)-dimensional measure of the sphere Sn−1.

Theorem 1.9 can be applied to several particular cases. We state
below the ones which we consider more relevant.

Corollary 1.10. Let n > 2. Let E be a stable set of the K-perimeter
in B4, with K satisfying (1.3)–(1.7) and K∗ ∈ L1(Rn). Then,

PerB1(E) = |∇χE |(B1) 6
√

2n |B4|1/2 ||K∗||1/2L1(Rn)
+ |Sn−1|.

Recall that we denote the K-perimeter of a ball BR (relative to Rn)
as

(1.18) PK(BR) =

∫
BR

∫
CBR

K(x̄− x) dx̄ dx.

We remark that for kernels as in (1.11) we have that PK(BR) = CRn−s.
Notice also that, by a simple comparison argument,

sup
{
PK,BR(E) : E minimizer of the K-perimeter in BR

}
6 PK(BR).

Indeed, if E is a minimizer in BR, then

PK,BR(E) 6 PK,BR(E ∪BR) 6 PK(BR).

When E is a minimizer and K∗ = C1(K+χ|z|<R0
), then PK∗,BR(E) can

be bounded by above by CPK(BR). This is the content of the following
proposition (which is proven later on in Section 5).

Proposition 1.11. Let E be a minimizer of the K-perimeter in BR
with R > 1 and K satisfying (1.3)–(1.7), and K∗ = C1(K+χ|z|<R0

) for
some R0 > 2.

Then,
PK∗,BR(E) 6 CC1PK(BR),

where C is a constant depending only on n and R0.
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As a consequence of Theorem 1.9 and Proposition 1.11, we deduce
the following

Corollary 1.12 (BV -estimates for minimizers). Let E be a min-
imizer of the K-perimeter in B4, with K satisfying (1.3)–(1.7), and
K∗ = C1(K + χ|z|<R0

) for some R0 > 2.
Then,

PerB1(E) = |∇χE |(B1) 6 C
√
C1PK(B4),

where C is a constant depending only on n and R0.

Figure 3. A minimizer of the K-perimeter in BR has
finite classical perimeter in B1.

As explained in the beginning of the introduction, the “a priori” BV -
estimate established in Corollary 1.12 allows us to prove a very general
existence result for minimizers of PK,Ω. We state it next.

Theorem 1.13 (Existence of minimizers). Let Ω be a bounded
Lipschitz domain, and E0 ⊂ CΩ a given measurable set. Suppose that
K satisfies assumptions (1.3)–(1.7). Then, there exists a set E, with
E∩CΩ = E0 that is a minimizer for PK,Ω – in particular, PK,Ω(E) <∞.

Notice that when K belongs to L1(Rn), then PK,Ω(F ) < |Ω|
∫
Rn K <

∞ for all measurable sets F . Thus, in principle, we do not have com-
pactness for sequences of sets with uniformly bounded K-perimeter.

The idea of the proof of Theorem 1.13 (which will be given in Section
4) consists in considering the “singularized” kernel

Kε(z) := K(z) +
ε

|z|n+ 1
2

,
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which, for every fixed ε, admits a minimizer Eε by the standard com-

pactness of H
1
4 in L1. All the new kernels Kε satisfy assumptions (1.3)–

(1.7) with constants that are uniform in ε. Thus, Theorem 1.12 gives
uniform BV -bounds for the characteristic functions of the minimizers
Eε. These bounds give the necessary compactness in L1 to prove the ex-
istence of a limiting set as ε→ 0. In order to prove that the limiting set
is a minimizer of PK,Ω, we use some other important ingredients (such
as a nonlocal coarea formula and a density result for smooth sets into
sets of finite K-perimeter) that will be established later on in Section 6.

1.3.2. Quantitative flatness results. Our quantitative flatness re-
sults in low dimensions n = 2, 3 state that (under appropriate assump-
tions on the kernel K) a stable set E of the K-perimeter in a very large
ball BR is close to being a flat graph in B1. Namely, for some ε = ε(R)
that decreases to 0 when R increases to ∞, and after a rotation of
coordinates, the following three properties hold.

(F1) For some t ∈ [−1, 1],

|(E4{xn 6 t}) ∩B1| 6 ε,

where 4 denotes the symmetric difference.

(F2) There is a set B ⊂ B
(n−1)
1 = {x′ ∈ Rn−1 : |x′| 6 1} with |B| 6 ε

such that

(E ∩B1) \ (B × R) =
{

(y, xn) ∈ B1 : xn 6 g(y), y ∈ (B
(n−1)
1 \ B)

}
,

for some measurable function g : B
(n−1)
1 → [−1, 1].

(F3) Denoting F ε = {(x′, xn/ε) : (x′, xn) ∈ F}, we have

PerBε1(Eε) 6 C(n),

where C(n) is a constant depending only on the dimension n ∈
{2, 3}.

Point (F1) says that the set E is close in the L1-sense to being a
half-plane while point (F2) says that ∂E∩B1 is a graph after removing
“vertical” cylinders of small measure (see Figure 4). Moreover, (F3)
gives a uniform bound for the classical perimeter of rescalings of E in
the vertical direction by a large factor 1/ε.

We give below our quantitative flatness result for stable sets in di-
mension n = 2.

Theorem 1.14 (Flatness for stable sets in dimension two).
Let n = 2. Let K be a kernel belonging to the class L2(s, λ,Λ), i.e.,
satisfying conditions (1.4), (1.9), and (1.10). Let E be a stable set of
the K-perimeter in BR with R > 4.

Then, after a rotation, E satisfies (F1), (F2), and (F3) with

ε = CR−s/2,

where C is a constant depending only on s, n, λ, Λ.
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Figure 4. A minimizer or stable set of the K-perimeter
in BR is “almost” a flat graph in B1.

Remark 1.15. We recall that Theorem 1.14 applies, in particular, to
the fractional anisotropic perimeter introduced in [31], where

K(z) =
a(z/|z|)
|z|n+s

,

with a ∈ C2(Sn−1) positive.

For the sake of clarity, let us rephrase the first conclusion of Theorem
1.14 in the following way: Let K ∈ L2 and let E be a stable set of PK,BR .
Then, there exists a halfplane h such that

|(E4h) ∩B1| 6 CR−s/2.

Sending R→∞ in Theorem 1.14, we deduce the following

Corollary 1.16. For K ∈ L2, half-planes are the only stable sets in
every compact set of R2.

The local analogue of Corollary 1.16 was established in [21, 27], where
the following statement is proved: Any complete stable surfaces in R3

is a plane. As said above in the Introduction, this classification result
for classical stable surfaces is still open in dimensions n > 4.

As explained previously in the Introduction, our quantitative flat-
ness result for stable sets in Theorem 1.14 generalizes the classification
theorem of [38], that we recall next.

Theorem 1.17. (Theorem 1 in [38]) Let E be a cone that is a min-
imizer of Ps in every compact set of R2. Then E is a half-plane.

Using a blow-down argument and a monotonicity formula – see Re-
mark 1.18 –, Theorem 1.17 implies that halfplanes are the only mini-
mizers of the s-perimeter in every compact set of R2.

Moreover, similarly as in the theory of classical minimal surfaces, this
classification result has important consequences in the regularity theory
for nonlocal s-minimal surfaces. In particular, combining Theorem 1.17
and the results contained in [5, 12], one can deduce that any minimizer
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of the s-perimeter is smooth outside of a singular set with Hausdorff
dimension at most n− 3.

Our Theorem 1.14 generalizes Theorem 1.17 in three directions. First,
our result applies to the more general class of stable sets (we recall that
any minimizer is a stable set). Second, we can consider more general
kernels in L2. Third, our result is a quantitative version of Theorem
1.17 in the following sense: instead of assuming that E is a minimizer
in every compact set of R2, we assume that E is a stable set for PK,BR
with some large R and we obtain a quantitative control on the flatness
of E in B1, depending on R.

We point out that, using the C2 estimates for minimizers of the s-
perimeter, and scaling invariance, the distance of ∂E and some plane
in B1 is bounded by CR−1, when E is a minimizer of the s-perimeter
in BR. However, since the C2 estimates are proved by compactness,
we have no explicit estimates for this constant C. Moreover, such an
approach clearly fails in case the problem is not scaling invariant or does
not have a regularity theory. Note that with the techniques of this paper
we can obtain results for general kernels that are not scaling invariant
and for which the existence of some regularity theory is unclear – see,
for instance, Corollary 1.20.

Remark 1.18. We emphasize that for the specific case of K(z) =
|z|−n−s, Caffarelli, Roquejoffre and Savin proved a monotonicity formula
for the local energy functional associated to the s-perimeter via the so
called Caffarelli–Silvestre extension. This monotonicity formula allows
them to use a blow-up argument to prove regularity results once one
knows that the only nonlocal minimal cones are halfplanes.

On the other hand, as explained above, using the monotonicity for-
mula and Theorem 1.17 one proves that halfplanes are the only mini-
mizers of the s-perimeter in every compact set of R2 – thus, extending
the classification result from cones to all minimizers.

In our setting, monotonicity formulas are not available but still we
can obtain the same type of classification result as a consequence of our
quantitative flatness estimates.

We will deduce Theorem 1.14 from the following more general result.

Theorem 1.19. Assume that E is a stable set for the K-perimeter
in BR ⊂ Rn with R > 4 and K satisfying (1.3)–(1.7).

Then, after some rotation, E satisfies (F1), (F2), and (F3) with
(1.19)

ε = ε(R) = C min


√
PK∗,BR(E)

R2
,

1√
logR

sup
ρ∈[1,R]

√
PK∗,Bρ(E)

ρ2

 ,

where C is a constant depending only on n.
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The result contained in Theorem 1.19 is very general and it can be
applied to several choices of kernels (especially in low dimension, where
the hypothesis in (1.19) becomes less restrictive). Below, we list some
particular cases that are of independent interest.

For kernels with K∗ ∈ L1(Rn), we have the following two-dimensional
result:

Corollary 1.20. Let E be a stable set of the K-perimeter in BR ⊂ R2

with R > 4 and K satisfying (1.3)–(1.7) with K∗ ∈ L1(R2).
Then, after some rotation, E satisfies (F1), (F2), and (F3) with

ε = ε(R) =
C√

logR
|B1|1/2| |K∗||1/2L1(R2)

,

where C is a constant.

Moreover, if E is a minimizer for the K-perimeter, combining Theo-
rem 1.19 and Proposition 1.11, we deduce

Corollary 1.21 (Flatness for minimizers in low dimensions).
Let n = 2, 3. Let E be a minimizer of the K-perimeter in BR with
R > 4 and K satisfying (1.3)–(1.7) with K∗ = C1(K + χ|z|<R0

) for
some R0 > 2.

Then, after some rotation, E satisfies (F1), (F2), and (F3) with

ε = ε(R) = C min

{√
C1
PK(BR)

R2
,

1

logR
sup

ρ∈[1,R]

√
C1PK(Bρ)

ρ2

}
,

where C is a constant depending only on n and R0.

Finally, as a particular case of Corollary 1.21, we consider the case of
kernels with compact support.

Corollary 1.22 (Quantitative flatness for truncated kernels).
Let K satisfy (1.3)–(1.7)and suppose that K has compact support. Let
E be a minimizer of the K-perimeter in BR with R > 4.

Then, after some rotation, E satisfies (F1), (F2), and (F3) with

(1.20) ε =

{
CR−

1
2 if n = 2,

C√
logR

if n = 3,

where C is a constant depending only on n and K.

This result comes easily applying Corollary 1.21 and by the following
energy estimate which holds for the case of a compactly supported kernel
K:

PK(BR) 6 CRn−1.

As a consequence of Corollaries 1.20 and 1.22, we obtain the following

Corollary 1.23. For kernels K satisfying (1.3)–(1.7), halfspaces are
the only minimizers in every compact set of Rn in the following cases:
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• n = 2 and K∗ ∈ L1(Rn);
• n = 2, 3 and K with compact support.

The paper is organized as follows:

• In section 2, we establish some preliminary results that we will use
in the proof of our main theorems;
• In section 3, we prove Theorems 1.7 and 1.9 establishing the uni-

form BV -bounds for stable sets and for minimizers;
• In section 4, we prove our quantitative rigidity result (Theorems

1.14 and 1.19);
• Section 5 is dedicated to some technical lemmas that we need in

the proofs of the main results;
• In section 6, we give the proof of the existence result (Theorem

1.13).
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2. Preliminary results

Following an idea in [38], we want to consider perturbations of the
minimizer E which are translations of E in some direction v in BR/2 and
coincide with E outside BR. To build these perturbations, we consider
the two following radial compactly supported functions:

(2.1) ϕR(x) = ϕ(|x|/R) =


1 |x|/R < 1/2,

2− 2|x|/R 1/2 6 |x|/R < 1,

0 |x|/R > 1,

and

(2.2) ϕ̃R(x) = ϕ̃R(|x|) =


1 |x| <

√
R,

2− 2 log(|x|)
logR

√
R 6 |x| < R,

0 |x| > R.

For v ∈ Sn−1 and t ∈ [−1, 1] we define

(2.3) ΨR,t(x) := x+ tϕR(x)v.
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We set

(2.4) ER,t = ΨR,t(E).

Throughout the paper, we denote

(2.5) u = χE and uR,t(x) = χER,t = u
(
Ψ−1
R,t(x)

)
.

Note that these definitions depend upon a fixed unit vector v.
Likewise we define Ψ̃R,t, ẼR,t, ũR,t, with ϕ̃R replacing ϕR.
We prove now the following lemma, which is the appropriate analogue

for the nonlocal functional PK,BR of Lemma 1 in [38].

Lemma 2.1. Let n > 2, R > 4, and K be a kernel satisfying (1.3)–
(1.7). For every measurable E ⊂ Rn with PK,BR(E) <∞ we have:

(a) For all t ∈ (−1, 1)

(2.6) PK,BR(ER,t) + PK,BR(ER,−t)− 2PK,BR(E) 6 32
t2

R2
PK∗,BR(E),

where K∗ is the kernel appearing in (1.7).
(b) For all t ∈ (−1, 1)

PK,BR(ẼR,t) + PK,BR(ẼR,−t)− 2PK,BR(E)

6
(32πt)2

logR
sup

ρ∈[1,R]

PK∗,Bρ(E)

ρ2
,

(2.7)

where K∗ is as above.

Proof. We set AR := R2n \ (CBR × CBR).
Let us prove first point (a). We have

PK,BR(ER,±t) =
1

2

∫∫
AR

|u(Ψ−1
R,±t(x))− u(Ψ−1

R,±t(x̄))|2K(x− x̄) dx dx̄ .

Changing variables y = Ψ−1
R,±t(x), ȳ = Ψ−1

R,±t(x̄) in the integral we
obtain

PK,BR(ER,±t)

=
1

2

∫∫
AR

|u(y)− u(ȳ)|2K
(
ΨR,±t(y)−ΨR,±t(ȳ)

)
J±t(y) dy J±t(ȳ) dȳ ,

(2.8)

where J±t are the Jacobians which, as proven in Lemma 1 in [38], are

J±t(y) = det(DΨR,±t(y)) = 1± t∂vϕR(y).

We call

ε = ε(y, ȳ, R) :=
ϕ(y/R)− ϕ(ȳ/R)

|y − ȳ|
.

Note that, since ‖ϕ‖C0,1(Rn) = 2, we have

(2.9) |ε| 6 2/R and |∂vϕR| 6 2/R.
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Let

z = y − ȳ.
By taking R > 4 we may assume |ε| ∈ (0, 1/2]. Then, by the assumption
(1.7) on the second derivatives of the kernel we have

K
(
z ± tε|z|v

)
= K(z)± t∂vK(z)ε|z|+ e±(y, ȳ, r),

where

(2.10)
∣∣e±∣∣ 6 1

2
t2K∗(z)ε2.

Therefore,

K
(
ΨR,t(y)−ΨR,t(ȳ)

)
Jt(y)Jt(ȳ)

+K
(
ΨR,−t(y)−ΨR,−t(ȳ)

)
J−t(y)J−t(ȳ)

=
(
K(z) + t∂vK(z)ε|z|+ e+

)(
1 + t∂vϕR(y)

)(
1 + t∂vϕR(ȳ)

)
+
(
K(z)− t∂vK(z)ε|z|+ e−

)(
1− t∂vϕR(y)

)(
1− t∂vϕR(ȳ)

)
= 2K(z) + e(y, ȳ, r),

(2.11)

where

∣∣e∣∣ =
∣∣2t2∂vK(z)ε|z|

(
∂vϕR(y) + ∂vϕR(ȳ)

)
+ e+ + e−

+ t(e+ − e−)
(
∂vϕR(y) + ∂vϕR(ȳ)

)∣∣
+ t2∂vϕR(y)∂vϕR(ȳ)

[
2K(z) + e+ + e−

]
6 t2

(
2K∗(z)|ε| 4

R
+K∗(z)ε2 +K∗(z)ε2 4

R
+

4

R2
K∗(z)

(
2 + t2ε2

))
6 t2K∗(z)

(
16

R2
+

4

R2
+

16

R3
+

3

R2

)
6

32t2

R2
K∗(z).

(2.12)

Here we have used again the assumption (1.7) to estimate terms in-
volving first order derivatives of K. In addition, we have used the
estimate (2.10) for e±, and that R−3 6 R−2/4 since R > 4.

Thus, using (2.8), (2.11) and (2.12), we have

PK,BR(ER,t) + PK,BR(ER−t)− 2PK,BR(E)

6
16t2

R2

∫∫
AR

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ

=
32t2

R2
PK∗,BR(E).

This finishes the proof of (a).
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The proof of (b) – i.e., of (2.7) – is almost identical with the difference
that we use the function ϕ̃R instead of ϕR. More precisely, we consider
Ψ̃R,±t, ũR,±t, ẼR±t instead of ΨR,±t, uR,±t, ER,±t. The only important
difference is that now (2.9) does not hold since

|∇ϕ̃R(x)| =
2χ{
√
R6|x|6R}

logR |x|
.

Instead we use

ε(y, ȳ, R) 6 π
2

logR max{
√
R, ρ}

whenever (y, ȳ) ∈ R2n \Aρ, 1 6 ρ 6 R.

Note that R2n \Aρ = {(y, ȳ) : y > ρ and ȳ > ρ}. The factor π appears
because we need to apply the mean value theorem connecting y and ȳ
by a circular arc contained in Rn \Bρ.

Similarly,

max
{
|∂vϕR(y)| , |∂vϕR(ȳ)|

}
6

2

logR max{
√
R, ρ}

for (y, ȳ) ∈ R2n \Aρ, ρ > 1.

Hence, in place of (2.12) we obtain∣∣e(y, ȳ, R)
∣∣ 6 32π2t2

(logR)2 max{R2, ρ2}
K∗(z)

for (y, ȳ) ∈ R2n \Aρ, ρ > 1.

(2.13)

Now, we decompose the domain AR in (2.8) as

AR = A√R ∪
2k⋃

i=k+1

Ãi,

where

k ∈ N, log2R 6 2k < log2R+ 2, θ2k = R, and Ãi = Aθi \Aθi−1 .

Note that θ ∈ (1, 2]. Using (2.13) and (2.8) with the previous domain
decomposition we obtain

PK,BR(ẼR,t) + PK,BR(ẼR,−t)− 2PK,BR(E)

6
32π2t2

(logR)2

(
1

R

∫∫
A√R

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ

+

2k∑
i=k+1

1

θ2(i−1)

∫∫
Ãi

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ

)

6
32π2t2

(logR)2

(
1

R
PK∗,B√R(E) +

2k∑
i=k+1

1

θ2(i−1)
PK∗,Bθi (E)

)
.
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Thus, denoting S := supρ∈[1,R]
PK∗,Bρ (E)

ρ2
,

PK,BR(ẼtR) + PK,BR(Ẽ−tR )− 2PK,BR(E)

6
32π2t2

(logR)2

(
S +

2k∑
i=k+1

θ2i

θ2(i−1)
S

)

6
32π2t2

(logR)2
θ2(k + 1)S

6
32π2t2

(logR)2
4
(
log2(4R) + 1

)
S

6
(32πt)2

logR
S.

This finishes the proof of (2.7) – and, thus, of (b). q.e.d.

The following lemma is a key step in the proof of our main results:
given a minimizer E and any possible competitor F , it allows to “mea-
sure” the interaction between points in E\F and points in F \E in terms
of the difference between the K-perimeter of F and the K-perimeter of
E. Here we see that the nonlocality of the functional plays a crucial
role.

Lemma 2.2. Let E, F ⊂ Rn. Assume that E is a minimizer for
PK,BR and that F coincides with E outside of BR, that is, E \ BR =
F \BR. Assume, moreover, that

(2.14) PK,BR(F ) 6 PK,BR(E) + δ,

for some δ > 0.
Then,

2LK(F \ E,E \ F ) 6 δ.

Proof. Let C = E ∪ F and D = E ∩ F . Note that both C and D
coincides with E and F outside of BR. By a direct computation we find
that
(2.15)
PK,BR(C) + PK,BR(D) + 2LK(F \ E,E \ F ) = PK,BR(E) + PK,BR(F ).

Using (2.14) and the minimality of E, we deduce

PK,BR(E) + PK,BR(F ) 6 2PK,BR(E) + δ 6 PK,BR(C) + PK,BR(D) + δ,

which, together with (2.15), concludes the proof of the Lemma. q.e.d.

It is worth to observe that, in spite of its simplicity, the identity
in (2.15) has consequences that seem to be interesting in themselves,
such as the fact that minimizers are included one in the other, as stated
in the following result:
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Lemma 2.3 (Mutual inclusion of minimizers). Assume that E
and F are minimizers for PK,Ω, with E \ Ω = F \ Ω. Suppose that
K(y) > 0 for |y| < diam(Ω). Then, either E ⊆ F or F ⊆ E.

Proof. The minimality of the sets give that

PK,Ω(E) 6 PK,Ω(E ∪ F ) and PK,Ω(F ) 6 PK,Ω(E ∩ F ).

Then, using (2.15),

2LK(F \E,E\F ) = PK,Ω(E)+PK,Ω(F )−PK,Ω(E∪F )−PK,Ω(E∩F ) 6 0,

which implies that one between F \ E and E \ F has necessarily zero
measure. q.e.d.

The following lemma is the analogue of Lemma 2.2 but under the
assumption that E is a stable set (not necessarily a minimizer) for the
K-perimeter.

Lemma 2.4. Let E ⊂ Rn. Assume that E is a stable set for PK,BR
and that Ft = Ψt(E), where Ψt is the integral flow of some vector field
X ∈ C2

c (BR;Rn). Assume, moreover, that

(2.16) PK,BR(Ft) + PK,BR(F−t) 6 2PK,BR(E) + ηt2, for t ∈ (−1, 1),

for some η > 0.
Then, for any ε > 0 there exists t0 > 0 such that for t ∈ (−t0, t0)

min
{
LK(Ft \ E,E \ Ft) , LK(F−t \ E,E \ F−t)

}
6 (η/4 + ε)t2.

Proof. Let Ct = E ∪ Ft and Dt = E ∩ Ft. Note that both Ct and Dt

coincides with E and Ft outside of BR. We have

PK,BR(Ct) + PK,BR(Dt) + 2LK(Ft \ E,E \ Ft)
= PK,BR(E) + PK,BR(Ft),

and

PK,BR(C−t) + PK,BR(D−t) + 2LK(F−t \ E,E \ F−t)
= PK,BR(E) + PK,BR(F−t).

Using (2.16) and the stability of E, we deduce that

PK,BR(Ct) + PK,BR(Dt) + PK,BR(C−t) + PK,BR(D−t)

+ 2LK(Ft \ E,E \ Ft) + 2LK(F−t \ E,E \ F−t)
6 4PK,BR(E) + ηt2

6 PK,BR(Ct) + PK,BR(Dt) + PK,BR(C−t)

+ PK,BR(D−t) + (η + 4ε)t2,

for t ∈ (−t0, t0) with t0 > 0 small enough (depending on E and X).
q.e.d.
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We remind that the definition of ER,t depends on the choice of the
vector v ∈ Sn−1 along which we are translating the set E – see (2.3) and
(2.4). In the sequel, we will use the notion of directional derivative of a
BV -function in the distributional sense. Let u ∈ BV (Ω) and v ∈ Sn−1;
we define:

(2.17) |∂vu|(Ω) := sup

{
−
∫

Ω
u(x)∂vφ(x)dx : φ ∈ C1

c (Ω, [−1, 1])

}
,

and

(2.18) (∂vu)±(Ω) := sup

{
∓
∫

Ω
u(x)∂vφ(x)dx : φ ∈ C1

c (Ω, [0, 1])

}
.

The following lemma will allow us to obtain geometric informations
from the conclusion of Lemma 2.4.

Lemma 2.5. Let n > 2, η > 0, E ⊂ Rn be measurable. Assume that
for all v ∈ Sn−1, there exists a sequence tk → 0, tk ∈ (−1, 1) such that

(2.19) lim
k→∞

1

t2k

∣∣{(E + tkv) \ E} ∩B1

∣∣ · ∣∣{E \ (E + tkv)} ∩B1

∣∣ 6 η

4
.

Then,
(a) The characteristic function u = χE has finite total variation in

B1, that is, u ∈ BV(B1).
(b) For all v ∈ Sn−1, the distributional derivative ∂vu is a signed

measure on B1 of the form

∂vu = (∂vu)+ − (∂vu)−,

with

(∂vu)± := (−νE · v)±H
n−1|∂∗E∩B1

,

where ∂∗E is the reduced boundary of E.
(c) For all v ∈ Sn−1

min

{∫
B1

(∂vu)+dx ,

∫
B1

(∂vu)−dx

}
6
√
η

2
,

and

max

{∫
B1

(∂vu)+dx ,

∫
B1

(∂vu)−dx

}
6 2|B(n−1)

1 |+
√
η

2
,

where |B(n−1)
1 | denotes the (n− 1)-dimensional volume of the ball B1 ⊂

Rn−1.

(d) PerB1(E) = Hn−1(∂∗E ∩B1) 6 |Sn−1|
(

1 +
√
η

2|B(n−1)
1 |

)
.

We next give the
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Proof of Lemma 2.5. We have

(2.20)
1

|tk|
min

{∣∣{(E+ tkv)\E}∩B1

∣∣ , ∣∣{E \(E+ tkv)}∩B1

∣∣} 6
√
η

2
.

Denoting u = χE , formula (2.20) becomes

1

|tk|
min

{∫
B1

(
u(x− tkv)− u(x)

)
+
dx ,

∫
B1

(
u(x− tkv)− u(x)

)
− dx

}
6
√
η

2
.

(2.21)

Let us now denote the measures

µk,±(dx) =

(
u(x− tkv)− u(x)

−tk

)
±
dx,

and µk = µk,+ − µk,−. Note that

µk(B1) =

∫
B1

u(x− tkv)− u(x)

−tk
dx =

∫
B1+tkv

udx−
∫
B1
udx

tk
.

Hence, since u is a characteristic function,∣∣µk(B1)
∣∣ 6 2

∣∣(B1 + tkv) \B1

∣∣
|tk|

6 2|B(n−1)
1 |,

where |B(n−1)
1 | denotes the (n− 1)-dimensional volume of the unit ball

B
(n−1)
1 ⊂ Rn−1.
Now, by (2.21) we have

(2.22) min
{
µk,+(B1) , µk,−(B1)

}
6
√
η

2
.

But then, since µk = µk,+ − µk,− we must have

(2.23) max
{
µk,+(B1) , µk,−(B1)

}
6 2|B(n−1)

1 |+
√
η

2
.

This implies that both the (nonnegative) measures µk,+, µk,− are bounded
in B1 independently of k. Thus, up to extracting a subsequence, we
have µk,+ ⇀ µ+ and µk,− ⇀ µ− (weak convergence) for some bounded
nonnegative measures µ+, µ−.

We have clearly that µk ⇀ µ+ − µ−. Moreover, it is immediate to
check that, for every η ∈ C∞c (B1)∫

B1

η(x)µk(dx) =

∫
B1

η(x+ tkv)− η(x)

−tk
u(x) dx,

if tk is smaller than dist (spt η, ∂B1), where spt η denotes the support of
η and dist (A,B) the distance between the sets A and B. It follows that

(2.24) lim
k→∞

∫
B1

η(x)µk(dx) = −
∫
B1

∂vη(x)u(x)dx,
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and, thus, µ+ − µ− is the distributional derivative of u in the direction
v restricted to B1, which we denote ∂vu.

Moreover, from (2.22) and (2.23) it follows that

min
{
µ+(B1) , µ−(B1)

}
6
√
η

2
,

and

max
{
µ+(B1) , µ−(B1)

}
6 2|B(n−1)

1 |+
√
η

2
.

The above inequalities hold for translations in any direction v ∈ Sn−1,
and, hence, we can choose v to be the coordinate unit vectors. We then
obtain that there are n signed measures µ = (µ1, µ2, . . . , µn) in B1 such
that

|µi|(B1) 6 2|B(n−1)
1 |+

√
2η, for i = 1, . . . , n.

Moreover, since by definition µi is the distributional derivative ∂iu
we have ∑

i

∫
B1

Tiµi(dx) = −
∫
B1

(divT )u dx,

for every vector field T ∈ C1
c (B1;Rn), where u = χE . This proves (a).

Namely, u ∈ BV(B1).
We next prove (b). Using that ∂vu is the distributional derivative of

u = χE and applying the divergence theorem for sets of finite perime-
ter – see [24] – we have, for all ϕ ∈ C1

c (B1),∫
B1

ϕ∂vu dx = −
∫
B1

∂vϕudx

= −
∫
B1∩E

div(ϕv)ϕ

= −
∫
∂∗E

ϕ(νE · v) dHn−1,

(2.25)

where ∂∗E denotes the reduced boundary of E (in B1).
The identity (2.25) gives the decomposition∂vu = (∂vu)+ − (∂vu)−.

for
(∂vu)± = −(νE · v)±H

n−1|∂∗E∩B1
.

Note that the previous decomposition is the Hahn–Jordan decomposi-
tion of ∂vu since (∂vu)+ and (∂vu)− are concentrated on disjoint subsets
of ∂∗E. In particular, we deduce that (∂vu)± 6 µ±. Thus, (b) and (c)
follow. Namely, with the above definitions we have

min

{∫
B1

(∂vu)+dx ,

∫
B1

(∂vu)−dx

}
6
√
η

2
,

and

max

{∫
B1

(∂vu)+dx ,

∫
B1

(∂vu)−dx

}
6 2|B(n−1)

1 |+
√
η

2
,
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where |B(n−1)
1 | denotes the (n− 1)-dimensional volume of the ball B1 ⊂

Rn−1.
To prove (d) we integrate with respect to all directions v ∈ Sn−1 the

inequality ∫
∂∗E
|νE(x) · v| dHn−1(x) 6 2 |B(n−1)

1 |+√η,

which follows from the previous steps. Using Fubini we find

Hn−1(∂∗E) 2|B(n−1)
1 | =

∫
∂∗E

dHn−1(x)

∫
Sn−1

dHn−1(v)|νE · v|

=

∫
Sn−1

dHn−1(v)

∫
∂∗E

dHn−1(x)|νE(x) · v|

6 |Sn−1|
(

2|B(n−1)
1 |+√η

)
,

concluding the proof of (d). q.e.d.

3. Proof of Theorems 1.7 and 1.9

In this section, we give the proof of our uniform BV -estimates.
We start with the proof of our general result Theorem 1.9.

Proof of Theorem 1.9. For the proof we just need to combine Lemma
2.1 (a), Lemma 2.4, and Lemma 2.5. More precisely, by Lemma 2.1 (a)
(applied with R = 4), we have that

PK,B4(E4,t) + PK,B4(E4,−t)− 2PK,B4(E) 6 2t2PK∗,B4(E).(3.1)

Hence, E satisfies the assumption in Lemma 2.4 and, therefore, for any
ε > 0 there exists t0 such that for any t ∈ (0, t0)

(3.2) min{LK(Ft \ E,E \ Ft), LK(F−t \ E,E \ F−t)} 6 (η/4 + ε)t2,

with
η = 2PK∗,B4(E).

Now using the assumption (1.6), namely that K > 1 in B2 and the
definition of LK we prove that there is a some sequence tk ∈ (−1, 1)
with tk ↓ 0 such that

lim
k→∞

1

t2k

∣∣{(E + tkv) \ E} ∩B1

∣∣ · ∣∣{E \ (E + tkv)} ∩B1

∣∣ 6 η

4
+ ε,

for all ε > 0.
After letting ε → 0, we apply Lemma 2.5 and, in particular, from

point (d) we deduce that

PerB1(E) 6 |Sn−1|

(
1 +

√
2PK∗,B4(E)

2|Bn−1
1 |

)
6
√

2n
√
PK∗,B4(E) + |Sn−1|,

as wanted. q.e.d.



FLATNESS AND BV -ESTIMATES 475

In the proof of Theorem 1.7 we will need the following abstract
Lemma. Although this useful abstract statement is due of L. Simon
[42], the result was previously well-known in concrete situations, such
as in the context of adimensional Hölder norms and their interpolation
inequalities. We include its proof here for completeness.

Lemma 3.1. Let β ∈ R and C0 > 0. Let S : B → [0,+∞], be a
nonnegative function defined on the class B of open balls B ⊂ Rn and
satisfying the following subadditivity property

B ⊂
N⋃
j=1

Bj =⇒ S(B) 6
N∑
j=1

S(Bj).

Assume that
S(B1) <∞.

There is δ = δ(n, β) such that if

(3.3) ρβS
(
Bρ/4(z)

)
6 δρβS

(
Bρ(z)

)
+ C0 whenever Bρ(z) ⊂ B1.

Then
S(B1/2) 6 CC0,

where C = C(n, β).

Proof. Define

Q := sup
Bρ(z)⊂B3/4

ρβS
(
Bρ/4(z)

)
.

We prove first that Q < ∞ since S(B1) < ∞. Take z ∈ B3/4. By

subadditivity S
(
B1/4(z)

)
6 S(B1) <∞. We define

S′(B) =

(
diam(B)

2

)β
S(B).

Clearly, S′
(
B1/4(z)

)
= (1/4)βS

(
B1/4(z)

)
6 4−βS(B1).

On the other hand, by (3.3) we have

S′
(
B2−k−2(z)

)
6 δS′(B2−k(z)) + C0,

and, thus, if δ 6 1/2, iterating we obtain

S′
(
B2−2k−2(z)

)
6 S′(B1/4(z)) + C0 <∞,

for all k > 0. But for r ∈ (2−2(k+1)−2, 2−2k−2) we have

S′
(
Br(z)

)
6 max{1, 4−β}S′

(
B2−2k−2(z)

)
6 max{1, 4−β}

(
S′(B1/4(z)) + C0

)
6 max{1, 4−β}

(
4−βS(B1) + C0

)
.

Thus,

Q 6 max{1, 4−β}
(

4−βS(B1) + C0

)
<∞.
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Let us now fix a finite covering of B1/4 by a universal number M =

M(n) of balls of radius 1/32 centered at points of xi ∈ B1/4, that is

B1/4 ⊂
M⋃
i=1

B1/32(xi).

Now, using the subadditivity of S and assumption (3.3) we have

ρβS
(
Bρ/4(z)

)
6 8β

M∑
i=1

(ρ/8)βS
(
Bρ/32(z + ρxi)

)
6 8β

M∑
i=1

(
δ(ρ/8)βS

(
Bρ/8(z + ρxi)

)
+ C0)

= 2βδ
M∑
i=1

δ(4ρ/8)βS
(
Bρ/8(z + ρxi)

)
+ 8βMC0

6 2βδMQ+ 8βMC0,

where we have used that if Bρ(z) ⊂ B3/4 then also B4ρ/8(z + ρxi) ⊂
B3ρ/4(z) ⊂ B3/4 and the definition of Q. Thus, taking supremum for all
balls Bρ(z) ⊂ B3/4 in the left hand side we obtain

Q 6 2βδMQ+ 8βMC0,

and for δ = 2β−1/M we obtain Q/2 6 8βMC0, which clearly implies
the desired bound on S(B1/2). q.e.d.

We will also use the following standard fact.

Lemma 3.2. Let E ⊂ Rn be measurable and Ω ⊂ Rn be smooth. Let

(3.4) P̃s,B(E) :=

∫
E∩B

∫
B\E

dx dx̄

|x− x̄|n+s
.

Then,

(3.5) P̃s,Ω(E) 6 CPerΩ(E).

Proof. By [22], Proposition 2.2 and applying the Poincaré–Wirtinger
inequality we have that

(3.6) ‖u− uΩ‖W s,1(Ω) 6 C‖u− uΩ‖W 1,1(Ω) 6 C

∫
Ω
|∇u|dx,

where u denotes the average of u in Ω.
By the density of W 1,1(Ω) in BV (Ω) (see Theorem 1.17 in [28]),

(3.6) holds with the right-hand side replaced by |∇u|(Ω). Therefore, for
u = χE , we have

P̃s,Ω(E) =
1

2

∫
Ω

∫
Ω

|u(x)− u(x̄)|
|x− x̄|n+s

dxdx̄

6 ‖u− uΩ‖W s,1(Ω) 6 C|∇u|(Ω) = CPerΩ(E),

as desired. q.e.d.
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Proof of Theorem 1.7. Multiplying the kernel K ∈ L2 by a positive
constant, we may assume that λ > 2n+s and, hence, K satisfies (1.3)–
(1.7) with K∗ = C1K.

Therefore, by Theorem 1.9, we immediately deduce that

(3.7) PerB1(E) 6 C

(
1 +

√
PK,B4(E)

)
< +∞,

where PerB1 denotes the classical perimeter in B1 and C depends only
on n, s, λ and Λ – since C1 depends only on these constants.

Now, since K ∈ L2 and by Lemma 3.2, we deduce that

PK,B4(E) 6 ΛPs,B4(E)

6 Λ

∫
E∩B4

∫
B4\E

dx dx̄

|x− x̄|n+s
+ Λ

∫
B4

∫
Rn\B4

dx dx̄

|x− x̄|n+s

6 ΛP̃s,B4(E) + C

6 C (1 + PerB4(E)) ,

(3.8)

where P̃s,B4(E) is defined as in (3.4).
Hence, (3.7), (3.8) and Young’s inequality imply that

PerB1(E) 6 C
(
1 +

(
1 + PerB4(E)

)1/2)
6 C(1 + δ−1) + δ PerB4(E),

(3.9)

for all δ > 0, where C depends only on n, s, λ, and Λ.
Next, we observe that, since E is a stable minimal set for PK,B1 ,

with K ∈ L2(s, λ,Λ), given Br(z) ⊂ B1 then the rescaled set E′ =
(r/4)−1(E − z) is a stable minimal set for PK′,B4 , where

K ′(y) := (r/4)n+sK(ry/4) belongs again to L2(s, λ,Λ).

Thus, rescaling the estimates (3.9) applied to E′ we obtain, for E,

(3.10) r1−n PerBr/4(z)(E) 6 C(n, s, λ,Λ, δ) + δ r1−n PerBr(z)(E).

Therefore, considering the subadditive function on the class of balls

S(B) := PerB(E),

and taking β := 1−n, and δ = δ(n, β) given by Lemma 3.1 we find that

S(B1/2) 6 C(n, s, λ,Λ),

since S(B1) < +∞ by (3.7) – note since E is a stable minimal set in B4

by definition we have PK,B4(E) < +∞.
Thus, we have shown that

PerB1/4
(E) 6 C(n, s, λ,Λ),

where C(n, s, λ,Λ) is a universal constant depending only on n, s, λ,Λ.
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By scaling and using a standard covering argument, we obtain

(3.11) PerB1(E) 6 C(n, s, λ,Λ),

which finishes the proof. q.e.d.

Proof of Corollary 1.8. We combine the universal perimeter estimate
in B1 of Theorem 1.7 – see (3.11) – with the“interpolation inequality”
PK,B1(E) 6 C

(
1 + PerB1(E)

)
, shown in (3.8), to obtain PK,B1(E) 6 C.

The estimate for the K-perimeter in BR then follows using the scaling
invariance of the class L2(s, λ,Λ). q.e.d.

4. Proof of Theorems 1.14 and 1.19

Before giving the proofs of Theorems 1.14 and 1.19, we give some
preliminary lemmas. We start with the following easy fact, that we
state explicitly since we will use it several times later on.

Remark 4.1. Let Φ be a continuous and odd function defined on the
m-dimensional sphere Sm, with m > 1.

Then, there exists v∗ ∈ Sm such that Φ(v∗) = 0.
The proof of this fact is obvious since Sm is connected when m > 1.

Lemma 4.2. Suppose that Φ+ and Φ− are two continuous functions
defined on Sn−1, which satisfy

(4.1) Φ+(−v) = Φ−(v) for any v ∈ Sn−1.

Assume, moreover, that there exists µ > 0 such that for any v ∈ Sn−1

(4.2) min{Φ+(v),Φ−(v)} 6 µ.

Then, after a rotation of coordinates, we have that

(4.3) max{Φ+(ei),Φ−(ei)} 6 µ for 1 6 i 6 n− 1,

where ei denote the standard basis of Rn.

Proof. For v ∈ Sn−1, we consider the function

Φ(v) = Φ+(v)− Φ−(v).

Using (4.1), it is easy to verify that Φ is odd and, hence, using Remark
4.1, there exists a vector v∗1 ∈ Sn−1 for which

Φ(v∗1) = Φ+(v∗1)− Φ−(v∗1) = 0.

This clearly implies that

Φ+(v∗1) = Φ−(v∗1) = min{Φ+(v∗1),Φ−(v∗1)} = max{Φ+(v∗1),Φ−(v∗1)}.

Hence, by (4.2), we deduce that

(4.4) max{Φ+(v∗1),Φ−(v∗1)} 6 µ.
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Now we define Φ2 to be Φ restricted to the (n− 2)-dimensional sphere
given by Sn−1 ∩ (v∗1)⊥. By Remark 4.1 applied now to Φ2, there exists
a vector v∗2 ∈ Sn−1 ∩ (v∗1)⊥ for which (4.4) holds (with v∗1 replaced by
v∗2). We can iterate this procedure (n− 1) times: at each step we apply
Remark 4.1 to the function Φi, that is the restriction of Φ to the (n− i)-
dimensional sphere Sn−1 ∩ (v∗1)⊥ ∩ · · · ∩ (v∗i−1)⊥. In this way we get
(n− 1) vectors v∗1, . . . ,v

∗
n−1 which are orthonormal and for which (4.4)

holds (with v∗1 replaced by v∗i , 1 6 i 6 n − 1). After some orthogonal
transformation, we may assume v∗i = ei, for i = 1, . . . , n− 1. q.e.d.

To prove Theorems 1.14 and 1.19 we will use an argument with some
flavor of “integral geometry”. The use of an integral geometry approach
for the study of anisotropic nonlocal perimeter functionals turns out to
be useful also in the recent paper of Ludwig [31].

Let us introduce some notation. In the sequel L ⊂ Rn denotes a linear
subspace with dimension m with 1 6 m 6 n− 1. We let {vi}16i6m be
an orthonormal basis of L and denote

L⊥ = {y : vi · y = 0 for all 1 6 i 6 m}.

Let Ω ⊂ Rn be a bounded open set. Given a set E with finite perime-
ter in Ω, let u = χE . Note that the distributional gradient∇u is a vector
valued measure in B1. We will denote∇Lu the projected (vector valued)
measure

∇Lu =

m∑
i=1

(∇u · vi)vi.

For each (almost every) y ∈ L⊥ we denote IE,Ω(L, y) the total varia-
tion of u = χE restricted to (y + L) ∩ Ω. That is, we define

IE,Ω(L, y) := sup

{
−
∫

(y+L)∩Ω
u(z)div φ(z) dHm(z) :

φ ∈ C1
c

(
(y + L) ∩ Ω;L ∩B1

)}
.

(4.5)

Sometimes, when E and Ω are fixed and there is no misunderstanding,
for the sake of simplicity we will also use the notation

I(L, y) := IE,Ω(L, y).

When m = 1 and L = Rv for some v ∈ Sn−1 we will also denote
I(L, y) as I(v, y). In the case m = 1 we define also I(v, y)+ and I(v, y)−
respectively as

I(v, y)± := sup

{
∓
∫

(y+Rv)∩Ω
u(z)φ′(z) dH1(z) :

φ ∈ C1
c

(
(y + Rv) ∩ Ω; [0, 1]

)}
,

(4.6)
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where φ′ = ∂vφ denotes the tangential derivative along the (oriented)
line y + Rv. This auxiliary function I(v, y)± is useful to detect the
monotonicity of χE , as pointed out in the following result:

Lemma 4.3. Let E be a set of finite perimeter in a convex open set
Ω, v ∈ Sn−1 and y ∈ v⊥. Then:

(i) If I(v, y)+ = 0, then χE restricted to (y+Rv)∩Ω is nonincreasing;
(ii) If I(v, y)− = 0, then χE restricted to (y+Rv)∩Ω is nondecreasing;

(iii) If I(v, y) = 0, then (y + Rv) ∩ Ω is contained either in E or in
CE.

Proof. To prove1 (i), we denote (a, b) ⊂ R the open interval {t ∈ R :
y + tv ∈ Ω} – here we use the convexity of Ω. Let us define ũ(t) :=
χE(y+ tv) and we remark that ũ is of bounded variation in [a, b] – see,
e.g., Corollary 6.9 of [1] or Theorem 2 in Section 5.10.2 of [24]. Then,

given any φ ∈ C1
c

(
(y+Rv)∩Ω; [0, 1]

)
, we define φ̃(t) := ϕ(y+ tv) and

we use (4.6) to find that

0 = I(v, y)+ > −
∫ b

a
u(y + tv)φ′(y + tv) dt

= −
∫ b

a
ũ(t) φ̃′(t) dt,

for all φ̃ ∈ C1
c

(
(a, b) ∩ Ω; [0, 1]

)
. As a consequence (see, e.g., Corol-

lary 9.91 in [41]), we have that ũ is nonincreasing, which is (i).
The proof of (ii) is analogous. Now we prove (iii). By taking φ

identically zero in (4.6), we see that I(v, y)± > 0. Therefore, if I(v, y) =
0, then I(v, y)+ = I(v, y)− = 0, and, thus, we can use (i) and (ii) to
deduce that χE restricted to y+Rv is constant, which gives (iii). q.e.d.

The following proposition gives equivalent formulas to compute the
total variation of the projection of onto some linear subspace L of the
measure ∇u, u being the characteristic function of a set of finite perime-
ter.

Proposition 4.4. Let Ω ⊂ Rn be a bounded open set, E be a set of
finite perimeter in Ω, and u = χE. Let L ⊂ Rn be linear subspace with
dimension m with 1 6 m 6 n− 1. We let {vi}16i6m be a orthonormal
basis of L.

1The results of Lemma 4.3 and Proposition 4.4 are classical. The first statement
is basically an equivalent definition of distributional derivative and the second is a
slicing formula for functions of bounded variations. A complete presentation of these
topics can be found in Section 3.11 of [3]. For the sake of completeness and for the
facility of the reader, we enclose here a self-contained proof of the statements needed
for our purposes.
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Then, IE,Ω(L, y) > 0 is measurable in the variable y ∈ L⊥ and the
following identities hold

|∇Lu|(Ω) : = sup

{
−
∫

Ω
u(x)divφ(x) dx : φ ∈ C1

c (Ω;L ∩B1)

}

=

∫
∂∗E∩Ω

√√√√ m∑
i=1

(
vi · νE(x)

)2
dHn−1(x)

=

∫
L⊥

IE,Ω(L, y) dHn−m(y).

(4.7)

Moreover, if m = 1 and L = Rv then

|∂vu|(Ω) =

∫
∂∗E∩Ω

∣∣v · νE(x)
∣∣dHn−1(x)

=

∫
v⊥
IE,Ω(v, y) dHn−1(y),

(4.8)

(∂vu)±(Ω) =

∫
∂∗E∩Ω

(
−v · νE(x)

)
±dH

n−1(x)

=

∫
v⊥
IE,Ω(v, y)± dH

n−1(y),

(4.9)

and for a.e. y ∈ v⊥ we have

(4.10) IE,Ω(v, y) = H0
(
∂∗E ∩ Ω ∩ (y + Rv)

)
,

(4.11) IE,Ω(v, y)± = H0
({
x ∈ ∂∗E∩Ω∩ (y+Rv) : ∓v ·νE(x) > 0

})
.

The proof of Proposition 4.4 relies on standard results from the the-
ory of sets of finite perimeter and functions of bounded variation (see
[32, 24]), and will be sketched in the Appendix. Note that if ∂E has
smooth boundary in B1 then the proof of Proposition 4.4 is rather el-
ementary. For related results for m = 1 in the context of integral
geometry formulae for sets of finite perimeter see also [31, Section 1.1]
and [46, Theorem 1].

The well-known Cauchy–Crofton formula (and, indeed, a generalized
version of it) can be obtained as a corollary of the previous proposition
with m = 1, as pointed out by the next result:

Corollary 4.5. Let E be a set of finite perimeter in B1 and v ∈ Sn−1.
Let v⊥ denote the hyperplane {y : v · y = 0}.

Then

PerΩ(E) = c

∫
Sn−1

dHn−1(v)

∫
v⊥
dHn−1(y)H0

(
∂∗E ∩ Ω ∩ (y + Rv)

)
,

where H0
(
∂∗E∩Ω∩ (y+Rv)

)
counts the number of intersections inside

Ω of the line y + Rv with the reduced boundary of E. The constant
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c = c(n) is given by

c =

(∫
Sn−1

|v ·w|dHn−1(v)

)−1

,

where w ∈ Sn−1 is any fixed unit vector – this value does not depend on
w.

Proof. Using (4.8) and (4.10), we have∫
∂∗E∩Ω

|v · νE(x)|dHn−1(x) =

∫
v⊥
H0
(
∂∗E ∩ Ω ∩ (y + Rv)

)
dHn−1(y).

The corollary follows integrating with respect to v ∈ Sn−1. q.e.d.

The following observation will be crucial in the proof of our Theorems
1.14 and 1.19.

Remark 4.6. When m = 1, for a.e. y ∈ v⊥,

I(v, y), I(v, y)+ and I(v, y)− are nonnegative integers.

Indeed, this follows from (4.10) and (4.11) since H0 is the counting
measure.

In the rest of this section we will consider the functions

(4.12) Φ+(v) := (∂vu)+(B1) and Φ−(v) := (∂vu)−(B1),

where u = χE is the characteristic function of a set E of finite perimeter
in B1. By (4.9), we have

(4.13) Φ±(v) =

∫
v⊥
IE,B1(v, y)±dH

n−1(y).

With this observation, we can reformulate Lemma 4.3 in this way:

Lemma 4.7. Let E be a set of finite perimeter in B1, v ∈ Sn−1

and µ > 0. Then:

(i) If Φ+(v) 6 µ (resp. Φ−(v) 6 µ), then there exists B ⊆ v⊥ with
Hn−1(B) 6 µ and such that for any y ∈ v⊥ \ B we have that χE
restricted to (y+Rv)∩B1 is nonincreasing (resp. nondecreasing);

(ii) If max
{

Φ+(v), Φ−(v)
}

6 µ, then there exists B ⊆ v⊥ with

Hn−1(B) 6 µ and such that for any y ∈ v⊥ \ B we have that (y +
Rv) ∩B1 is contained either in E or in CE.

Proof. Since (ii) follows from (i), we focus on the proof of (i) and we
suppose that Φ+(v) 6 µ (the case Φ−(v) 6 µ is analogous). We set

B := {y ∈ v⊥ : IE,B1(v, y)+ 6= 0}.

By Remark 4.6, we have that

B = {y ∈ v⊥ : IE,B1(v, y)+ > 1},
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and, therefore, by (4.13),

µ > Φ−(v) =

∫
B
IE,B1(v, y)+dH

n−1(y) > Hn−1(B),

which is the desired estimate on B.
Notice that, by construction, if y ∈ v⊥\B, then IE,B1(v, y)+ = 0, and

so Lemma 4.3 gives that χE restricted to (y+Rv)∩Ω is nonincreasing,
as desired. q.e.d.

With this, we obtain the following flatness result:

Lemma 4.8. Let E be a set of finite perimeter in B1, u = χE,
v ∈ Sn−1 and Φ± be as in (4.12).

Suppose that for all v ∈ Sn−1,

(4.14) min
{

Φ+(v),Φ−(v)
}
6 µ,

for some µ > 0. Then, after some rotation the set E satisfies (F1),
(F2), and (F3) on page 461, with

ε = C(n)µ,

where C(n) is a constant depending only on the dimension.

Proof. We first observe that, since E has finite perimeter in B1, for
u = χE , ∇u is a vector valued measure and

Φ±(v) = (∂vu)±(B1) = (∇u · v)±(B1).

Then,
Φ±(−v) = Φ∓(v).

In addition, we have

|Φ+(v)− Φ+(w)| 6 |v −w| |∇u|(B1),

and same holds for Φ−. Hence, in particular, Φ+ and Φ− are continuous
functions on Sn−1 satisfying the assumptions of Lemma 4.2.

Therefore, after some rotation we have

(4.15) max
{

Φ+(ei),Φ−(ei)
}
6 µ, for 1 6 i 6 n− 1.

In addition, by (4.14), and possibly changing en by −en, we may assume
that

(4.16) Φ+(en) 6 µ.

Using (4.15) and Lemma 4.7 we conclude that, for any i ∈ {1, . . . , n−1},
there exists Bi ⊆ e⊥i , with Hn−1(Bi) 6 µ, and such that for any y ∈
e⊥i \ Bi we have that

(4.17) (y + Rei) ∩B1 is contained either in E or in CE .

Similarly, by (4.16) and Lemma 4.7, we see that there exists Bn ⊆ e⊥n ,
with Hn−1(Bn) 6 µ, and such that for any y ∈ e⊥n \ Bn we have that

(4.18) χE restricted to (y + Ren) ∩B1 is nonincreasing.
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Notice that (4.18) implies (F2). Now we complete the proof of the de-
sired result in three steps: first, we establish (F1) in the two-dimensional
case, then in the three-dimensional case, and, finally, we prove (F3).

Step 1. Let us show that (F1) holds for ε = 2µ first in dimension
n = 2. Let us assume that µ < 2 since otherwise 2µ > π12 = |B1| and
there is nothing to prove.

By (4.17), for any t outside the small set B1,

(4.19) the segment {x2 = t} ∩B1 is either contained in E or in CE;

here, we are identifying points y ∈ e⊥1 and points t ∈ (−1, 1) via y =
(0, t).

Therefore, we can define GE (resp., GCE) as the family of t ∈ (−1, 1)
for which {x2 = t}∩B1 is contained in E (resp., in CE), and then (4.19)
says that

(−1, 1) = GE ∪ GCE ∪ B1.

The fact that χE is nonincreasing along the vertical direction for a
(nonvoid) set of vertical segments (as warranted by (4.18)), implies that
the sets GE and GCE are ordered with respect to the vertical direction.
More precisely, there exist t∗, t

∗ ∈ [−1, 1], such that

ess supGE = t∗ 6 t∗ = ess inf GCE .

This implies that, for all t ∈ [t∗, t
∗],

|(E \ {x2 6 t}) ∩B1|+ |({x2 6 t} \ E) ∩B1| 6
∣∣{x2 ∈ B1} ∩B1

∣∣
6 2
∣∣B1

∣∣ 6 2µ,

and, thus, (F1) follows.
In dimension n = 2 we can obtain an even stronger information since

E ∩ {x1 /∈ B2} ∩B1 ⊃ {x2 6 t∗} ∩ {x1 /∈ B2} ∩B1,

and

CE ∩ {x1 /∈ B2} ∩B1 ⊃ {x2 > t∗} ∩ {x1 /∈ B2} ∩B1.

Therefore, there exits g : B
(n−1)
1 → [−1, 1] such that

E ∩ {x1 /∈ B2} ∩B1 = {x2 6 g(x1)} ∩ {x1 /∈ B2},

with the oscillation of g bounded by (t∗−t∗) 6 H1(B) 6 µ (see Figure 5).

Step 2. Let us show that (F1) holds for ε = C(n)µ in dimensions
n > 3. For this, we define L = e⊥n and we use (4.7) and (4.8) in
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Figure 5. The two-dimensional picture.

Proposition 4.4 to estimate

|∇Lu|(B1) =

∫
∂∗E∩B1

√√√√n−1∑
i=1

(
ei · νE(x)

)2
dHn−1(x)

6
1√
n− 1

n−1∑
i=1

∫
∂∗E∩B1

∣∣ei · νE(x)
∣∣dHn−1(x)

=
1√
n− 1

n−1∑
i=1

|∂eiu|(B1).

(4.20)

Now we observe that, by (4.12) and (4.15),

|∂eiu|(B1) = (∂eiu)+(B1) + (∂eiu)−(B1) = Φ+(ei) + Φ−(ei) 6 2µ,

which, together with (4.20), gives that

(4.21) |∇Lu|(B1) 6 2
√
n− 1µ.

Moreover, we note that there exists a small constant µ̄ = µ̄(n) > 0 –

depending only on n – such that for µ ∈ (0, µ̄) and r = µ
1

n+1 we have

(4.22) µ 6 cµ
n−1
n+1 6

1

4
Hn−1

(
B(n−1)
r

)
.

We now use that IE,B1(L, y) is the relative perimeter of (y+L)∩E in
the (n− 1)-dimensional ball (y+L)∩B1 – recall (4.5). Thus, using the
relative isoperimetric inequality at each horizontal slice B1 ∩ {xn = t}
we find that

min

{
Hn−1

(
E ∩B1 ∩ {xn = t}

)
, Hn−1

(
CE ∩B1 ∩ {xn = t}

)}
6 C min

{
1, IE,B1(L, y)

n−1
n−2
}
6 C̄IE,B1(L, y),

(4.23)

where C̄ > 0 is a suitable constant (depending only on n) and the last
coordinate of y equals to t.
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Let us define the “horizontal bad set” as

B := B′ ∪ B′′,
where

B′ :=
{
t ∈ (−1, 1) : |t| >

√
1− r2

}
,

and B′′ :=
{
t ∈ (−1, 1) : |t| <

√
1− r2 and C̄IE,B1(L, y) > µ̄

}
.

We also define GE as the family of t ∈ (−1, 1) for which |t| <
√

1− r2

and

(4.24) Hn−1
(
{xn = t} ∩B1 ∩ CE

)
6 µ.

Similarly, we define GCE as the family of t ∈ (−1, 1) for which |t| <√
1− r2 and

(4.25) Hn−1
(
{xn = t} ∩B1 ∩ E

)
6 µ.

By (4.23), it follows that

(4.26) (−1, 1) \ B ⊆ GE ∪ GCE .
In addition, by (4.7) and (4.21),

2
√
n− 1µ > |∇Lu|(B1) >

∫
B′′
IE,Ω(L, y) dH1(y) >

µ̄

C̄
H1(B′′).

Therefore, H1(B′′) 6 C0 µ and then

(4.27) Hn
(
{(x′, t) ∈ B1 : t ∈ B′′}

)
6 C1H

1(B′′) 6 C2 µ,

for some constants C0, C1, C2 > 0.
Furthermore, if (x′, t) ∈ B1 and t ∈ B′, then

|x′|2 = |x′|2 + t2 − t2 6 1− (1− r2) = r2,

which implies that x′ ∈ B(n−1)
r , and so that

Hn
(
{(x′, t) ∈ B1 : t ∈ B′}

)
6 C3 r

n−1
(
1−

√
1− r2

)
6 C4 r

n+1 = C4 µ,

for some C3, C4 > 0. This and (4.27) give that

Hn
(
{(x′, t) ∈ B1 : t ∈ B}

)
6 C5 µ,

for some C5 > 0.
Now we claim that the sets GE and GCE are ordered with respect to

the vertical direction, namely there exist t∗, t
∗ ∈ [−1, 1], such that

(4.28) ess supGE = t∗ 6 t∗ = ess inf GCE .
For this, let t1 < t2 ∈ (−1, 1) \ B. We show that

(4.29) if t1 ∈ GCE then t2 ∈ GCE .

We argue by contradiction, assuming that t2 6∈ GCE . Then, by (4.26), we
obtain that t2 ∈ GE . Consequently, by (4.24), we have that t22 < 1− r2

and
Hn−1

(
{xn = t2} ∩B1 ∩ CE

)
6 µ.
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We can write this as χE(x′, t2) = 1 for any x′ in the ball B
(n−1)√

1−t22
outside

a set of (n − 1)-dimensional measure less than µ (so, in particular, for

any x′ in the smaller ball B
(n−1)
r outside a set of (n − 1)-dimensional

measure less than µ).
Also, the condition t1 ∈ GCE and (4.25) give that t21 < 1− r2 and

Hn−1
(
{xn = t1} ∩B1 ∩ E

)
6 µ.

We can write this as χE(x′, t1) = 0 for any x′ ∈ B
(n−1)√

1−t21
outside a

set of (n − 1)-dimensional measure less than µ (so, in particular, for

any x′ ∈ B(n−1)
r outside a set of (n−1)-dimensional measure less than µ).

By (4.18), we also know that χE(x′, t) is nonincreasing in t outside Bn,
which is another set of (n− 1)-dimensional measure less than µ.

This means that, for x′ ∈ B(n−1)
r outside a set of (n− 1)-dimensional

measure less than 3µ, we have that

(4.30) 1 = χE(x′, t2) 6 χE(x′, t1) = 0.

We stress the fact that this set to which x′ belongs is nonvoid, since

(Hn−1B
(n−1)
r ) is strictly bigger than 3µ, thanks to (4.22). Therefore,

the inequality in (4.30) provides a contradiction. This proves (4.29).
Similarly, one proves that

(4.31) if t2 ∈ GE then t1 ∈ GE .

By putting together (4.29) and (4.31), one obtains (4.28).
Then it readily follows that (F1) is satisfied with ε = C(n)µ.

Step 3. We show that (F3) with ε = µ in any dimension n > 2.
Recall that we denote F ε = {(x′, xn/ε) : (x′, xn) ∈ F}. Using

Proposition 4.4 we estimate

PerBε1(Eε)

= sup

{
−
∫
Bε1

χEε div φdx : φ ∈ C1
c (Bε

1;Rn), |φ| 6 1

}

6
n−1∑
i=1

sup

{
−
∫
Bε1

χEε∂iψ dx : ψ ∈ C1
c (Bε

1), |ψ| 6 1

}
+ sup

{
−
∫
Bε1

χEε∂nψ dx : ψ ∈ C1
c (B1), |ψ| 6 1

}
.

Then, using the change of variables y′ = x′ and yn = εxn, we have

PerBε1(Eε) 6
n−1∑
i=1

sup

{
−
∫
B1

χE ∂iψ̄
dx

ε
: ψ̄ ∈ C1

c (B1), ‖ψ̄| 6 1

}
+ sup

{
−
∫
B1

χE ε∂nψ̄
dx

ε
: ψ̄ ∈ C1

c (B1), ‖ψ̄| 6 1

}
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6
2

ε

n−1∑
i=1

max
{

Φ+(ei),Φ−(ei)
}

+ min
{

Φ+(en),Φ−(en)
}

+ 2
∣∣Φ+(en)− Φ−(en)

∣∣.
Now we use that

Φ+(en)− Φ−(en) =

∫
B1

∂enu =

∫
∂B1

u(x)νn(x)dHn−1(x).

Hence,

|Φ+(en)− Φ−(en)| 6
∫
∂B1

|νn(x)|dHn−1(x) = 2|B(n−1)
1 |.

Thus, taking ε = µ and using (4.15) and (4.16), we obtain

PerBε1(Eε) 6 2(n− 1) + ε+ 4 |B(n−1)
1 | 6 c(n),

and (F3) follows. q.e.d.

We now give the

Proof of Theorem 1.19. For the proof we need to combine Lemmas
2.1, 2.4, 2.5 and 4.8.

More precisely, using Lemma 2.1, point (a), and Lemma 2.4, we find
that for any ε > 0 there exists t0 such that for t ∈ (0, t0)

min
{
LK(ER,t \ E,E \ ER,t) , LK(ER,−t \ E,E \ ER,−t)

}
6 (η/4 + ε)t2,

where ER,t is defined as in (2.4) and

η =
32

R2
PK∗,BR(E).

This implies that for all v there is some sequence tk → 0, tk ∈ (−1, 1)
such that

lim
k→∞

t−2
k LK(ER,tk \ E,E \ ER,tk) 6 η/4.

Now, by definition of ER,t we have

ER,t ∩B1 = (E + tv) ∩B1,

and, thus, using the assumption (1.6) – i.e., K > 1 in B2 – we obtain

lim
k→∞

t−2
k |(E + tkv) \ E| · |E \ (E + tkv)| 6 η/4.

Therefore, applying Lemma 2.5 we obtain

min{Φ+(v),Φ−(v)} 6 √η/2,
where Φ±(v) = (−∂vu)±(B1).

Then, applying Lemma 4.8 we obtain that E satisfies (F1), (F2), and
(F3) with

ε = C(n)
√
η = C(n)

√
PK∗,BR(E)

R2
.
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The same inequality for ε = C(n)√
logR

supρ∈[1,R]

√
PK∗,Bρ (E)

ρ2
is proved

likewise using ẼR,t instead of ER,t and part (b) of Lemma 2.1 instead
of part (a). q.e.d.

Theorem 1.14 and Corollaries 1.20, 1.21, 1.22 all follow by Theorem 1.19
and estimate for the quantity PK∗,BR(E).

Proof of Theorem 1.14. Multiplying the kernel K ∈ L2 by a positive
constant, we may assume that λ > 2n+s and, hence, K satisfies (1.3)–
(1.7) with K∗ = C1K. Applying Corollary 1.8, we deduce that

(4.32) PK∗,BR(E) = C1PK,BR(E) 6 CRn−s.

Thus, Theorem 1.14 follows by Theorem 1.19 and estimate (4.32) above.
q.e.d.

Proof of Corollary 1.20. Observing that if K∗ ∈ L1(Rn) and E is a
minimizer, by Theorem 1.19 we have that

PK∗,Bρ(E) 6 |Bρ|
∫
R2

K∗ = ρ2|B1|
∫
R2

K∗,

which gives the desired result. q.e.d.

Proof of Corollary 1.21. The proof follows by Theorem 1.19 and by
Proposition 1.11. q.e.d.

Proof of Corollary 1.22. For compactly supported kernels K, we have

PK(BR) ∼ Rn−1,

see Corollary 1.21, thus, obtaining the desired result. q.e.d.

5. Energy estimates with perturbed kernels

Lemma 5.1. Let R0 > 1. Assume that K > 1 in B1. Let Q =
(−3R0/2, 3R0/2)n and E ⊂ Rn be measurable. Then,

LK(E ∩Q, CE ∩Q) > c(n,R0) min{|E ∩Q|, |CE ∩Q|}.

Proof. Since the statement is invariant when we swap E and CE we
may assume |E ∩Q| 6 |Q|/2 6 |CE ∩Q|.

Split Q into a regular grid composed by kn open cubes of side r =
3R0/k with r ∈ (n−1/2/8, n−1/2/4]. We call these small cubes Qi, i ∈ I.

Let Ĩ = {i : |Qi ∩ E| > 1
2 |Qi|}.

We have Ĩ 6= I since |E ∩ Q| 6 |Q|/2. There are now two cases Ĩ
nonempty or empty.

On the one hand, if Ĩ is nonempty then there are i1 ∈ Ĩ and i2 ∈ I \ Ĩ
such that Qi1 and Qi2 are adjacent cubes. Then, since r 6 n−1/2/4 we
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have diam (Qi) 6 1/2 for all i and, thus, diam (Qi1 ∪ Qi2) 6 1. Since
K > 1 in B1 we then have

LK(E ∩Q, CE ∩Q) > LK(E ∩Qi1 , CE ∩Qi2) >
∣∣E ∩Qi1∣∣ · ∣∣CE ∩Qi2∣∣

>
1

2
|Qi1 | ·

1

2
|Qi2 | > c(n).

On this case the estimate of the lemma follows since |E ∩Q| 6 (3R0)n.

On the other hand, if Ĩ is empty then |Qi ∩ E| 6 1
2 |Qi| for all i and

LK(E ∩Q, CE ∩Q) >
∑
i

LK(E ∩Qi, CE ∩Qi) >
∑
i

|E ∩Qi| ·
1

2
|Qi|

> c(n)|E ∩Q|,

as desired. q.e.d.

Lemma 5.2. Let R0 > 1. Let K be some kernel satisfying K > 1 in
B1. Let E ⊂ Rn be measurable and R ∈ 3R0N and QR = (−R/2, R/2)n.
Denote K0(z) = χ{|z|6R0}(z). Then,

LK0(E ∩QR, CE ∩QR) 6 C(n,R0)LK(E ∩QR, CE ∩QR).

Proof. Let us cover the full measure of QR by cubes belonging to
the grid of disjoint open cubes of size R0 given by {Qi} ⊂ R0

(
Zn +

(−1/2, 1/2)n
)
. Let us consider also the covering of QR by cubes in the

overlapping grid of side 3R0 given by {Q̄i} ⊂ R0

(
Zn + 3(−1/2, 1/2)n

)
.

Note that (up to sets of measure zero) each point of QR belongs to
exactly one cube in {Qi} and 3n cubes in {Q̄i}.

Notice that for every pair of points x, x̄ ∈ QR such that |x− x̄| 6 R0

there is some large cube Q̄i containing at the same time both points.
Indeed, x will belong to some small cube Qi but then if Q̄i is the large
cube with the same center it will also be y ∈ Q̄i. Hence,

{(x, x̄) ∈ QR ×QR : |x− x̄| 6 R0} ⊂
⋃
i

Q̄i × Q̄i.

This implies that

LK0(E ∩QR, CE ∩QR) =

∫∫
(E∩QR)×(CE∩QR)

χ{|x̄−x|6R0} dx dx̄

=

∫∫
⋃
i(E∩Q̄i)×(CE∩Q̄i)

χ{|x̄−x|6R0} dx dx̄

6
∑
i

∫∫
(E∩Q̄i)×(CE∩Q̄i)

χ{|x̄−x|6R0} dx dx̄

=
∑
i

LK0(E ∩ Q̄i, CE ∩ Q̄i).
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Now, using Lemma 5.1 we obtain that, for all i,

LK0(E ∩ Q̄i, CE ∩ Q̄i) 6 |E ∩ Q̄i| · |CE ∩ Q̄i|
6 (3R0)n min

{
|E ∩ Q̄i| · |CE ∩ Q̄i|

}
6 C(n,R0)LK(E ∩ Q̄i, CE ∩ Q̄i).

But then, using that each point of BR belongs to at most 3n cubes
Q̄i we can estimate

LK0(E ∩QR, CE ∩QR) 6
∑
i

LK0(E ∩ Q̄i, CE ∩ Q̄i)

6
∑
i

C(n,R0)LK(E ∩ Q̄i, CE ∩ Q̄i)

6 C(n,R0)3nLK(E ∩QR, CE ∩QR),

as stated in the Lemma. q.e.d.

We, finally, give the

Proof of Proposition 1.11. Note first that all R> 1 we have PK(BR)>
c(n)Rn−1 since K > 1 in B2 by (1.6). On the other hand, it is clear
that by definition PK(BR) is monotone in R.

Thus, if k is the smallest integer such that 3R0k/2 > R, denoting
R̄ = 3R0k/2, ER = E ∩ BR. Denote K0(z) = χ{|z|6R0}(z). Using
Lemma 5.2 we obtain

PK0(E,BR)

6 LK0(E ∩BR, CE ∩BR) + LK0(BR, CBR)

6 LK0(ER ∩QR̄, CER ∩QR̄) +

∫
BR

∫
CBR

χ{|x̄−x|6R0} dx̄ dx

6 C(n,R0)LK(ER ∩QR̄, CER ∩QR̄) + C(n,R0)Rn−1

6 C(n,R0)
(
LK(E ∩BR, CE ∩BR) + LK(BR, CBR) +Rn−1

)
6 C(n,R0)

(
PK,BR(E) + PK(BR) +Rn−1

)
,

6 C(n,R0)PK(BR),

where we have used that E is a minimizer PK,BR and, hence, PK,BR(E) 6
PK(BR). Then the proposition follows. q.e.d.

6. Existence and compactness of minimizers

To prove Theorem 1.13 we need some preliminary results. First we
prove existence of minimizers among “nice” sets (more precisely among
sets with finite 1/2-perimeter); this is done in Proposition 6.6, where a
crucial ingredient in the proof is given by the uniform BV -bound estab-
lished in Theorem 1.12 which provides the necessary compactness in L1.
Second, we establish a density result (see Proposition 6.4) which allows
to approximate any set of finite K-perimeter, with sets that has also
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finite 1/2-perimeter; the proof of this density result uses a generalized
coarea formula that we establish in Lemma 6.2.

We start with a simple remark which will be useful in the sequel.

Proposition 6.1 (Lower semicontinuity of K-perimeter). Let
χEk → χE in L1

loc(Rn), then

lim inf
k→∞

PK,Ω(Ek) > PK,Ω(E).

Proof. The result follows, exactly as in Proposition 3.1 in [12], by
Fatou Lemma. Indeed, recall that

LK(A,B) =

∫
Rn

∫
Rn
χA(x)χB(x̄)K(x− x̄)dxdx̄.

If χAk → χA, χBk → χB in L1
loc(Rn), then for each sequence there exists

a subsequence kj , such that for a.e. (x, x̄)

χAkjχBkj → χAχB.

Therefore, by Fatou Lemma, we have

lim inf
j→∞

LK(Akj , Bkj ) > LK(A,B). q.e.d.

In the next lemma we establish a generalized coarea formula for the
K-perimeter. The analogue result for the fractional s-perimeter is con-
tained in [44]. For the sake of completeness, we reproduce here the
simple proof, which does not dependent on the choice of the kernel. For
a measurable function u, we set:

FK,Ω(u) :=
1

2

∫
Ω

∫
Ω
|u(x)− u(x̄)|K(x− x̄)dxdx̄

+

∫
Ω

∫
CΩ
|u(x)− u(x̄)|K(x− x̄)dxdx̄.

Lemma 6.2 (Coarea formula). Let u : Ω→ [0, 1] be a measurable
function. Then, we have

FK,Ω(u) =

∫ 1

0
PK,Ω(Et)dt,

where Et = {u > t}.

Proof. We start by observing that the function t 7→ χEt(x)− χEt(x̄)
takes values in {−1, 0, 1} and it is different from zero in the interval
having u(x) and u(x̄) as extreme points, therefore,

|u(x)− u(x̄)| =
∫ 1

0
|χEt(x)− χEt(x̄)|dt.
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Hence, by Fubini Theorem, we deduce

FK,Ω(u)

=

∫ 1

0

[
1

2

∫
Ω

∫
Ω
|χEt(x)− χEt(x̄)|K(x− x̄)dxdx̄

]
dt

+

∫ 1

0

[∫
Ω

∫
CΩ
|χEt(x)− χEt(x̄)|K(x− x̄)dxdx̄

]
dt

=

∫ 1

0

[∫
Et∩Ω

∫
CEt∩Ω

K(x− x̄)dxdx̄+

∫
Et∩Ω

∫
CEt∩CΩ

K(x− x̄)dxdx̄

+

∫
CEt∩Ω

∫
Et∩CΩ

K(x− x̄)dxdx̄

]
dt

=

∫ 1

0
[LK(Et ∩ Ω, CEt ∩ Ω) + LK(Et ∩ Ω, CEt \ Ω)

+LK(Et \ Ω, CEt ∩ Ω)]dt

=

∫ 1

0
PK,Ω(Et)dt,

as desired. q.e.d.

In the following lemma we establish a density result for smooth func-
tions in the space of functions with finite FK,Ω. For the sake of com-
pleteness we reproduce here the simple proof, which follows the one in
[26], Lemma 11, for the case of the all space.

Lemma 6.3. Let Ω be a bounded Lipschitz domain and u be a func-
tion defined on Rn with u ∈ L1(Ω) and FK,Ω(u) < ∞. Then, for any
fixed sufficiently small δ > 0, there exists a family (uε) of smooth func-
tions such that:

i) ‖u− uε‖L1(Ωδ) → 0 as ε→ 0,

ii) FK,Ωδ(u− uε)→ 0 as ε→ 0.

Proof. For any 0 < ε < δ, we consider the convolution kernel

ηε(x) := ε−nη
(x
ε

)
,

where η ∈ C∞0 (B1), η > 0,
∫
Rn η = 1, and we set

uε(x) := (u ∗ ηε)(x).

Since u ∈ L1(Ω) we immediately have ||u− uε||L1(Ωδ) → 0 as ε→ 0. It

remains to prove ii).
Using the definition of uε and the triangle inequality, we have that

2FK,Ωδ(uε − u)

=

∫∫
R2n\(CΩδ×CΩδ)

|uε(x)− u(x) + u(x̄)− uε(x̄)|K(x− x̄)dxdx̄
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=

∫∫
R2n\(CΩδ×CΩδ)

K(x− x̄)

·
∣∣∣∣∫
B1

(u(x− εz)− u(x̄− εz)− u(x) + u(x̄))η(z)dz

∣∣∣∣ dxdy
6

∫
B1

∫∫
R2n\(CΩδ×CΩδ)

K(x− x̄)

·|u(x− εz)− u(x̄− εz)− u(x) + u(x̄)|η(z)dxdydz.

Now, by the continuity of translations in L1(R2n \ (CΩδ×CΩδ)) applied
to the function

v(x, x̄) = (u(x)− u(x̄))K(x− x̄)

(which is in L1(R2n \ (CΩδ × CΩδ)), since FK,Ω(u) < ∞), we deduce
that for every fixed z ∈ B1,∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)|u(x− εz)−u(x̄− εz)−u(x) +u(x̄)|dxdy → 0,

as ε→ 0. Moreover, for a.e. z ∈ B1, we have

η(z)

∫∫
R2n\(CΩδ×CΩδ)

K(x− x̄)

· |u(x− εz)− u(x̄− εz)− u(x) + u(x̄)|dxdy

6 2 max η

∫∫
R2n\(CΩδ×CΩδ)

K(x− x̄)|u(x)− u(x̄)|dxdy <∞.

Hence, the conclusion follows by the dominated convergence Theorem.
q.e.d.

The following density result will be useful in the proof of existence of
minimizers. The proof follows the one for the classical approximation
result for sets of finite perimeter by smooth sets, and uses the generalized
coarea formula of Lemma 6.2.

Proposition 6.4 (Density of sets with finite 1/2-perimeter).
Let Ω be a bounded Lipschitz domain. Let F be a set with finite K-
perimeter in Ω. Then, there exists a sequence (Fj) of open sets satisfying
the following properties:

1) P1/2,Ω(Fj) <∞,
2) Fj \ Ω = F \ Ω,
3) limj→∞ |Fj4F | = 0,
4) limj→∞ PK,Ω(Fj) = PK,Ω(F ).

To prove Proposition 6.4, we need the following preliminary result.
Let Ω be a Lipschitz domain and let d(x, ∂Ω) denote the distance of
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the point x from the boundary ∂Ω. We define

(6.1) Ωt := {x ∈ Ω : d(x, ∂Ω) > t}.

Note that for a sufficiently small δ0 > 0, where t ∈ (0, δ0) all the domains
Ωt are Lipschitz with uniform constants depending only on Ω. We will
need the following lemma.

Lemma 6.5. Let Ω ⊂ Rn be a Lipschitz domain and suppose that
K > 0 satisfies assumption (1.5). There exists δ0 > 0 depending only
on Ω such that for any t ∈ (0, δ0) we have

(6.2) LK(Ω \ Ωt,Ωt) 6 C

∫
Rn

min{t, |z|}K(z)dz,

and

(6.3) LK(Ω \ Ωt, CΩ) 6 C

∫
Rn

min{t, |z|}K(z)dz,

where the constants C and δ depend only on Ω.

Proof. Performing the change of variables z = x̄−x and using Fubini
Theorem, we have

LK(Ω \ Ωt,Ωt)

=

∫
Ωt
dx

∫
Ω\Ωt

dx̄K(x̄− x) =

∫
Rn
dzK(z)

∫
Ωt∩
(

(Ω\Ωt)−z
) dx

6 C

∫
Rn

min{t, |z|}K(z)dz,

since for a Lipschitz set Ω, we have

|Ωt ∩
(
(Ω \ Ωt)− z

)
| 6 min

{
|Ω \ Ωt| , |Ωt \ (Ωt − z)|

}
6 min{t, |z|}.

The proof of (6.3) follows likewise. q.e.d.

Proof of Proposition 6.4. As it will become clear in the proof, actually
we prove more than property (1): we will show that for any j, on the

one hand ∂Fj is smooth in Ω
1
j (and up to the boundary of Ω

1
j ), and,

on the other hand, Fj ∩ Ω \ Ω
1
j . Recall that Ω

1
j was defined in (6.1).

Since Ω is Lipschitz, these two properties imply that Fj satisfies (1), for
j large enough.

For a fixed sufficiently small δ, we consider Ωδ – as in (6.1). Let
εk ∈ (0, δ) be a sequence such that εk ↓ 0, and let uk be the mollified
functions

uk := χF ∗ ηεk .
By Lemma 6.3 we know that

(6.4) ‖uk − χF ‖L1(Ωδ) → 0, as k →∞,
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and

lim
k→∞

FK,Ωδ(uk) = FK,Ωδ(χF ) = PK,Ωδ(F ).

We define now the sets

F kt := {uk > t}.
By the coarea formula of Lemma 6.2, we have that

PK,Ωδ(F ) = lim
k→∞

FK,Ωδ(uk)

>
∫ 1

0
lim inf
k→∞

PK,Ωδ(F
k
t )dt.

Sard’s Theorem implies that for L1-a.e. t ∈ (0, 1), all the sets F kt have
smooth boundary, therefore, we can choose t with this property and
such that

L := lim inf
k→∞

PK,Ωδ(F
k
t ) 6 PK,Ωδ(F ).

Let now (Fh) = (F
k(h)
t ) be a subsequence with finite K-Perimeter in Ωδ

converging to L. By Chebyshev inequality and (6.4) we deduce that

(6.5) |(Fh4F ) ∩ Ωδ| → 0, as h→∞.

Moreover, by the lower semicontinuity of the K-Perimeter, we deduce
that

(6.6) lim
h→∞

PK,Ωδ(Fh) = PK,Ωδ(F ).

We define now the sequence of sets

(6.7) F δh := (Fh ∩ Ωδ) ∪Aδ ∪ (F \ Ω).

We start by observing that, by definition, F δh satisfies

(6.8) F δh \ Ω = F \ Ω, and F δh is smooth in Ωδ.

Moreover, using Lemma 6.3 and that |Aδ| = Cδ, we see that

(6.9) lim
h→∞

|F δh4F | = Cδ.

Here and in the sequel C denotes possibly different positive constant
(uniform in h and δ). We estimate now how much the K-perimeters of
F and F δh differs. By the triangle inequality, we have that

|PK,Ω(F δh)− PK,Ω(F )|

6 |PK,Ω(F δh)− PK,Ωδ(F δh)|+ |PK,Ωδ(F δh)− PK,Ωδ(Fh)|
+ |PK,Ωδ(Fh)− PK,Ωδ(F )|+ |PK,Ωδ(F )− PK,Ω(F )|

= I1 + I2 + I3 + I4.

(6.10)

Now we show that, for i = 1, 2, 4,

(6.11) Ii 6 LK(Ω \ Ωδ,Ωδ) + LK(Ω \ Ωδ, CΩδ).
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Using Lemma 6.5 we deduce that

Ii 6 C

∫
Rn
K(z) min{δ, |z|}dz,

where C depends only on Ω. Finally, by point (4) in Proposition 6.4,
we have that for any fixed δ,

(6.12) I3 → 0 as h→∞.

Let now j be given. We choose δ = δ(j) such that Ii 6 1/(4j), for
i = 1, 2, 4. Moreover, by (6.12), we can choose h = h(j) such that

I3 6 1/(4j). Finally, we set Fj := F
δ(j)
h(j) . With this choices, plugging

(6.11), (6.12) in (6.10) we deduce that

|PK,Ω(Fj)− PK,Ω(F )| 6 1

j
.

In addition, by (6.8) and (6.9), we have that F j has smooth boundary

in Ω
1
j and is such that

Fj \ Ω = F \ Ω, |Fj4F | 6
1

j
.

To conclude the proof, it remains, therefore, to show (1). This is

an easy consequence of the fact that Fj has smooth boundary in Ω
1
j .

Indeed, given any set F̃ with smooth boundary in Ω
1
j , and using again

Lemma 6.5, we have

P1/2,Ω(F̃ ) = P
1/2,Ω

1
j
(F̃ ) + C

∫
Rn
K(z) min

{
1

j
, |z|
}
dz

=

∫
F̃∩Ω

1
j

∫
CF̃∩Ω

1
j

1

|x− x̄|n+s
dxdx̄

+ 2

∫
Ω

1
j

∫
CΩ

1
j

1

|x− x̄|n+s
dxdx̄+ C <∞,

as desired. q.e.d.

Proposition 6.6 (Existence of minimizers among “nice” sets).
Let Ω be a bounded Lipschitz domain, and E0 ⊂ CΩ a given set. Then,
there exists a set E, with E ∩ CΩ = E0 that is a minimizer for PK,Ω
among all sets F with P1/2,Ω(F ) < +∞.

Proof. Let ε > 0. We introduce the following regularized kernel:

Kε(z) := K(z) +
ε

|z|n+ 1
2

.

For any ε fixed, the associated perimeter PKε,Ω admits a minimizer Eε
with Eε ∩ CΩ = E0. This follows as in the proof of Theorem 3.2 in [12]

by the compact embedding of H
1
4 in L1 and the lower semicontinuity
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of PKε,Ω (that follows by Proposition 6.1 applied to PKε,Ω in place of
PK,Ω). Indeed, given Fε,k a sequence of sets such that

PKε,Ω(Fε,k) −→
k→∞

inf
F∩CΩ=E0

PKε,Ω(F ),

then the H
1
4 -norm of the characteristic functions of Fε,k∩Ω are bounded

(by a constant depending on ε), thus, by compactness, there exists a
subsequence which converges to a set Eε ∩ Ω in L1(Rn), which is a
minimizer of PKε,Ω by lower semicontinuity.

Now we observe that the new kernelKε satisfies all assumptions (1.3)–
(1.6) and (1.7), therefore, by Theorem 1.12 and a standard covering
argument, we have a uniform BV -bound (uniform in ε!) for the char-
acteristic functions of the minimizers Eε in any subdomains Ω′, with
Ω′ ⊂ Ω. We set, as above, Ωδ = {x ∈ Ω : d(x, ∂Ω) > δ}.

Using that BV is compact in L1 and the standard diagonal argument,
we can extract a subsequence εj such that

χEεj , → χE in L1(Ωδ) for all δ > 0.

It remains to prove that E is a minimizer for PK,Ω. On one hand, by
definition of Kε and by the lower semicontinuity of PK,Ω, we have

(6.13) lim inf
ε→0

PKε,Ωδ(Eε) > lim inf
ε→0

PK,Ωδ(Eε) > PK,Ωδ(E).

On the other hand, by minimality of Eε, we have that

(6.14) PKε,Ω(Eε) 6 PKε,Ω(F ),

for any measurable set F with F ∩ CΩ = E0.
Hence, we deduce that

PK,Ωδ(E) 6 lim inf
ε→0

PKε,Ωδ(Eε)

6 PKε,Ω(F )

= PK,Ω(F ) + εP1/2,Ω(Fδ).

When a P1/2,Ω(F ) < ∞, the conclusion then follows by sending first
ε to zero and then δ to zero. q.e.d.

We can now give the proof of our existence result.

Proof of Theorem 1.13. The theorem follows combining Propositions
6.6 and 6.4. q.e.d.

Lemma 6.7 (Compactness). Let Ω be a Lipschitz domain in Rn.
Assume that K satisfies (1.3), (1.4), (1.5) and (1.6). Let {En} be a
minimizing sequence for PK,Ω and

χEk → χE in L1
loc(Rn).

Then, E is a minimizer for PK,Ω and

lim
k→∞

PK,Ω(Ek) = PK,Ω(E).
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Proof. We follow the proof of Theorem 3.3 in [12].
Assume that F = E outside Ω. We set

Fk := (F ∩ Ω) ∪ (Ek \ Ω),

then, by minimality of Ek, we have

PK,Ω(Fk) > PK,Ω(Ek).

Moreover, by definition of Fk

|PK,Ω(F )− PK,Ω(Fk)| 6 LK(Ω, (Ek4E) \ Ω).

We denote:

bk := LK(Ω, (Ek4E) \ Ω),

and we get

PK,Ω(F ) + bk > PK,Ω(Ek).

To conclude we just need to prove that bk → 0 as k → ∞, indeed, by
lower semicontinuity, we would deduce that

PK,Ω(F ) > lim sup
k→∞

PK,Ω(Ek) > lim inf
k→∞

PK,Ω(Ek) > PK,Ω(E).

Finally, we observe that, by Remark 1.4, we have that the function

φ(x̄) :=

∫
Ω
K(x− x̄)dx

belongs to L1(CΩ). Then, using that χEk → χE in L1
loc as k →∞, the

dominated convergence theorem implies

bk =

∫
(Ek4E)\Ω

∫
Ω
K(x− x̄)dx→ 0, as k →∞,

which concludes the proof. q.e.d.

Appendix: Integral formulas for sets of finite perimeter

We sketch here the

Proof of Proposition 4.4. We follow Section 5.10.2 in the book of
Evans and Gariepy [24].

Step 1. We show that the map L⊥ → R

y 7→ IE,Ω(L, y)

is Hn−m measurable. This follows exactly as in the proof of [24, Lemma
1 §5.10.2] using that the supremum in the definition of IE,Ω(L, y) in
(4.5) is actually the supremum φ belonging to a countable dense subset
of C1

c

(
(y + L) ∩ Ω;L ∩B1

)
.

Step 2. We prove that

(6.15)

∫
L⊥

IE,Ω(L, y) dHn−m(y) 6 |∇Lu|(Ω),
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where we recall that u = χE is a function in BV(Ω) and

|∇Lu|(Ω) := sup

{∫
Ω
u(x) div φ(x) dx : φ ∈ C1

c (Ω;L ∩B1)

}
is the total variation of the projection of the (vector valued) measure
∇u onto L.

Let Ω′ ⊂⊂ Ω. Define given r > 0 define ur = u ∗ ηr where ηr =
r−n

( ·
r

)
> 0 is a standard smooth mollifier. Note that for r small

enough (depending on Ω′) we have∫
Ω′
|∇Lur| dx 6 |∇Lu|(Ω),

where ∇L denotes the projection of the gradient onto L.
Similarly, as in the proof of [24, Theorem 2 §5.10.2], for Hn−m a.e.

y ∈ L⊥, we have ur → u in L1 when the two functions are restricted to
the cap Ω ∩ (y + L). Hence, for Hn−m a.e. y we have

IE,Ω′(L, y) 6 lim inf
r→0

∫
Ω′∩(y+L)

|∇Lur| dz.

Thus, Fatou’s Lemma implies∫
L⊥

IE,Ω′(L, y) dy 6 lim inf
r→0

∫
L⊥

dy

∫
Ω′∩(y+L)

dz |∇Lur|(z)

=

∫
Ω′
|∇Lur| dx 6 |∇Lu|(Ω).

Then, (6.15) follows by monotone convergence letting Ω′ ↑ Ω.

Step 3. We prove that

(6.16) |∇Lu|(Ω) 6
∫
L⊥

IE,Ω(L, y) dHn−m(y).

Indeed, using the definition of IE,Ω(L, y) we find that for every given
φ ∈ C1

c (Ω;L ∩B1) we have∫
Ω
u(x) div φ(x) dx 6

∫
L⊥

IE,Ω(L, y) dHn−m(y).

Taking the supremum in φ we obtain (6.16).

Step 4. We show that

(6.17) |∇Lu|(Ω) =

∫
∂∗E∩Ω

√√√√ m∑
i=1

(
vi · νE(z)

)2
dHn−1(z).
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To prove (6.17) we use the divergence theorem for the set of finite
perimeter E and with a vector field φ ∈ C1

c (Ω;L ∩B1). We obtain∫
Ω
u(x)div φ(x) dx =

∫
∂∗E∩Ω

φ(z) · νE(z) dHn−1(z)

6
∫
∂∗E∩Ω

√√√√ m∑
i=1

(
vi · νE(z)

)2
dHn−1(z).

(6.18)

From this, taking supremums in the left hand side, it easily follows that
(6.17) is satisfied with the equality sign replaced by 6. To prove the
equality we may use the structure theorem for sets of finite perimeter
to build a sequence φk that attain, in the limit, the equality case in
(6.18). More precisely, this follows in a rather straightforward way from
the fact that ∂∗E is Hn−1 rectifiable – see statements (i) and (ii) of
Theorem 2 in Section 5.7.3 of [24].

Step 5. In the case m = 1 the formulas for IE,Ω(L, y) and IE,Ω(L, y)±
follow by inspection using the fact that a set of finite perimeter in di-
mension one is (up to negligible sets) a finite union of disjoint closed
intervals. q.e.d.
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