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MIN-MAX EMBEDDED GEODESIC LINES IN
ASYMPTOTICALLY CONICAL SURFACES

Alessandro Carlotto & Camillo De Lellis

Abstract

We employ min-max methods to construct uncountably many,
geometrically distinct, properly embedded geodesic lines in any
asymptotically conical surface of non-negative scalar curvature,
a setting where minimization schemes are doomed to fail. Our
construction provides control of the Morse index of the geodesic
lines we produce, which will be always less or equal than one (with
equality under suitable curvature or genericity assumptions), as
well as of their precise asymptotic behavior. In fact, we can prove
that in any such surface for every couple of opposite half-lines there
exists an embedded geodesic line whose two ends are asymptotic,
in a suitable sense, to those half-lines.

1. Introduction

The quest for closed geodesics in compact Riemannian manifolds has
been one of the main themes in the modern history of differential geom-
etry. This problem, dating back at least to H. Poincaré [40], has been
approached by a variety of methods, whose development turned out to
be remarkably useful in a wide range of fields. Among these, special
importance is deserved by the curve-shortening scheme proposed by G.
Birkhoff [9] in order to construct simple closed geodesics on manifolds
whose fundamental group is trivial, so that minimization methods are
not successfully applicable. The ideas behind this approach turned out
to be crucial in the development of min-max methods for the area func-
tional, which allowed Almgren and Pitts [39] to show existence of at
least one closed embedded minimal hypersurface in any compact man-
ifold of dimension less than six (which was later extended to higher
dimensions by Schoen and Simon [42]). In turn, these methods proved
to be extremely powerful in tackling a number of fundamental questions
in geometry, like the Willmore conjecture [33], the Freedman conjecture
on the energy of links [1], the Yau conjecture on minimal hypersurfaces
in manifolds of positive Ricci curvature [34] and (most recently) the
problem of constructing new classes of (higher genus) solitons for the
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mean curvature flow [29], just to name a few. We refer the reader to
the beautiful ICM lectures by F. Marques [32] and A. Neves [38] for a
broader overview and contextualization of these methods.

A somehow analogous question, also of global nature, is that of ex-
istence of embedded geodesic lines: given a (non-compact) Riemannian
manifold (M, g) we wonder about the existence of (proper) geodesic em-
beddings γ : R→M . In general, the answer to such a question depends,
in a dramatic fashion, on the topology and on the asymptotic structure
of (M, g). Simple existence theorems are only at disposal when the prob-
lem is approachable by minimization methods, that is to say by taking
limits of length-minimizing geodesic segments for endpoints escaping at
infinity in some appropriate fashion. This approach does, indeed, work,
for instance, if (M, g) has suitable convexity properties at infinity. When
these sorts of assumptions are not made, trying to construct geodesic
lines by solving a sequence of minimization problems will not work as
there are in general no geometric reasons for the sequence of geodesic
segments one may construct not to escape from any given compact sub-
set of the manifold in question. In fact, this is the typical behavior
on positively curved manifolds for in that case the formula for the sec-
ond variation of the length functional ensures that no stable geodesic
lines can actually exist. An important class of surfaces that exhibit this
phenomenon is provided by asymptotically conical ones, which arise as
asymptotically flat models in 2+1 gravity (see, e.g., [7, 11, 23, 24] and
[12]). In that context the non-negativity of the scalar curvature is just
a reflex of the dominant energy condition (DEC) and the non-existence
of embedded, stable geodesic lines is the two-dimensional counterpart
of a well-known obstruction disclosed by Schoen–Yau in their proof of
the Positive Mass Theorem [41] and recently widely investigated in its
connections to the large-scale structure of isolated gravitational systems
[25, 26, 13, 14, 15].

In spite of the fact that minimization methods are doomed to fail, we
shall prove here that every asymptotically conical surface does, in fact,
contain lots of (properly) embedded geodesic lines, whose Morse index
equals one under natural curvature conditions.

Theorem 1. An asymptotically conical surface of non-negative scalar
curvature contains infinitely many, geometrically distinct, properly em-
bedded geodesic lines of Morse index less or equal than one. If the scalar
curvature is assumed to be positive equality holds.

We refer the reader to Subsection 2.2 for a precise definition of asymp-
totically conical surface and for the recollection of a few basic facts. A
brief discussion of the positive mass theorem in two spatial dimensions
is provided in Subsection 2.3.

In order to avoid dangerous misunderstandings, let us remark here
that the geodesic lines we construct are never length-minimizing (in
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other terms: they are not straight lines) for otherwise the ambient man-
ifold (S, g) would of course split as a Riemannian product (by virtue
of the well-known theorem by S. Cohn-Vossen [21], later extended by
Cheeger–Gromoll [18]). In fact, our result ensures that complete, em-
bedded geodesics that are not length-minimizing exist in abundance
under very natural assumptions on the asymptotic behavior of the am-
bient manifold.

Remark 2. In the statement of Theorem 1 the assumption that the
scalar curvature be non-negative forces the surface in question to be
a complete plane (namely: to have only one end and genus zero), see
Theorem 13. However, this is not restrictive (as far as one is concerned
with the existence problem) for in the presence of at least two ends one
can just obtain properly embedded geodesic lines by taking a limit of
minimizing segments whose endpoints diverge on different ends of the
surface in question. In fact, a similar strategy allows to deal with the
case when the surface contains a non-separating closed curve and, thus,
solves the problem when the genus is not zero (see, e.g., [4] pg. 64).

It is important to contextualize our result with respect to the rich his-
tory concerning the quest for escaping rays. For a broad overview, with
several remarkable contributions, of the study of maximal geodesics on
complete surfaces we refer the reader to [45, 44] and references therein.
The question of existence of proper geodesic embeddings γ : R→M for
M a Riemannian manifold homeomorphic to the plane was explicitly
posed by S. Cohn-Vossen in 1936. After various sorts of partial con-
tributions, it was then, finally, solved by V. Bangert in 1981 (see [4],
as well as [5, 6] and references therein for related and ancillary results;
see also Proposition 6.1 in [10] for a refined existence result for planes
of finite positive total curvature). Yet, the arguments employed to an-
swer such a question in full generality are rather indirect and provide
little information on the geodesic line whose existence is proven and,
in particular, do not provide any information at all about the Morse
index of the line itself. The author needs to distinguish various cases,
depending on whether the surface does contain a closed geodesic or
not. In this respect, Bangert states (in [4], p. 59): We have not been
able to find a general method to construct escaping geodesics without
self-intersection. In this paper, we present an effective geometric con-
struction in the category of asymptotically conical surfaces, a category
naturally arising in the physical setting described above. Perhaps more
importantly, Bangert concluded his article with the following question:

Are there infinitely many escaping geodesics on every complete plane S?

While very exhaustive results have been achieved in the case of neg-
atively curved planes (see [27]), the problem is still far from being com-
pletely understood for what concerns positively curved metrics on R2.
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Our work provides a novel contribution in this direction, since, in fact,
the argument we describe in Section 5 shows that for every couple of
opposite rays on our surface we can exhibit an embedded geodesic line
whose two ends are asymptotic, in a suitable sense which we shall de-
scribe later, to those half-lines.

The proof of Theorem 1 naturally splits into two parts, the full con-
clusion following at once by combining Proposition 22 (for the existence
part) and Proposition 25 (for the multiplicity part). In the next two
paragraphs we shall briefly outline them.

The geodesic lines we construct are obtained by min-max methods.
More precisely, we exploit the information on the asymptotic behav-
ior of our ambient surface to set-up a sequence of Plateau min-max
problems (for geodesics) and then check that the sequence of geodesics
with boundary we obtain cannot drift off to infinity together with their
boundary points. Let us now describe the structure of our proof in
more detail. For the first step (which is done in Section 3), we prove
that whenever one can join two points on a surface by means of two
embedded geodesics that bound a disk and the standard mountain-pass
condition holds then there is a third embedded1 geodesic joining the
two points in question (Proposition 14). Of course, such a condition is
automatically satisfied when the two geodesics that are given are strictly
stable. This result, of independent interest and potentially wide appli-
cability, relies on the combined use of the one-dimensional H1-gradient
flow and, perhaps more importantly, on the clever resolution of singu-
larities procedure proposed by G. Chambers and Y. Liokumovich [16]
in order to effectively convert homotopies into isotopies. For the scope
of controlling the index, we have found it convenient to work with the
energy functional (rather than the length functional), somehow in the
spirit of the parametric approach to the min-max Plateau problem pro-
posed long time ago by Shiffman [43] and Morse–Tompkins [37]. The
fact that the embedded geodesic segments that we produce do not es-
cape from any given compact set is proven by using the Gauss–Bonnet
theorem and a blow-down procedure (since all geodesics connecting two
antipodal points at the same height on a cone are known). This no-drift
argument, which lies at the core of this construction, is presented in Sec-
tion 4.

At that stage, we prove that this method does, in fact, produce
uncountably many distinct geodesic lines. Roughly speaking, this is
achieved as follows. The min-max geodesic segments we produce con-
nect (by construction) couple of antipodal points in the asymptotic re-
gion, where one has coordinates (r, ϕ) ∈ (0,+∞)×S1 and each geodesic

1The emphasis here is on the word embedded both in the assumption and in the
conclusion of our assertion, for otherwise the result would just be a routine application
of one-dimensional min-max schemes.
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line is obtained as a (subsequential) geometric limit as the first coordi-
nate of such points goes to infinity, with the second coordinate fixed to
values ϕ0 and ϕ0 + π. In principle, one expects that as we vary ϕ0 we
should, indeed, obtain distinct geodesic lines, but this is not obvious as
twisting phenomena may occur without leading to any contradiction by
means of a direct blow-down procedure. The relevant argument, which
proves Proposition 25, is described in Section 5.

When considering our work in the context of min-max techniques,
one direction we should mention is the development of methods for con-
structing closed (or, more generally, finite area) minimal hypersurfaces
in non-compact Riemannian manifolds, due to Bangert [3] and Thor-
bergsson [46] for the special case of finite length geodesics on certain
non-compact surfaces (of finite area) and, much more recently, remark-
ably extended by Montezuma [36] (resp. Chambers–Liokumovich [17])
to handle closed (resp. finite area) minimal hypersurfaces in classes of
manifolds satisfying various types of asymptotic geometric conditions.
Our scope here is rather different: while our setting is also non-compact,
we aim at constructing variational objects which are themselves non-
compact and for which the relevant functional (in our case: the energy
functional) attains infinite value, thereby providing an obstacle of new
and peculiar nature. In fact, the next step in our programme is pre-
cisely the extension of the methods presented here in the special case of
geodesics to the construction of complete (non-compact) minimal hy-
persurfaces in suitable classes of non-compact Riemannian manifolds.
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2. Setting and recollections

2.1. Cones and their geodesics. Let us consider on R2\{0} the local
parameterizations obtained by restrictions of the smooth covering map
F : (0,+∞)× S1 → R2 \ {0} defined by

F (r, ϕ) = (r cosϕ, r sinϕ).
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For α ∈ (0, π/2] we consider on R2 \ {0} the incomplete Riemannian
metric

gα = dr ⊗ dr + r2 sin2(α)dϕ⊗ dϕ,
and we let Cα denote the corresponding Riemannian manifold (R2 \
{0} , gα). We shall also consider the (metric) closure Cα, a complete
(singular) cone of opening angle2 α. We let d denote the (path)-distance
on Cα and v ∈ Cα \ Cα the vertex of the cone.

In order to perform our min-max construction, we need to recall a
few facts, whose proofs are straightforward consequences of the charac-
terization of geodesics in flat R2.

Definition 3. We will say that two points p, q ∈ Cα are antipodal if
in the coordinate charts above one has r(p) = r(q) and |ϕ(p)−ϕ(q)| = π.

Lemma 4. In the setting above, when α ∈ (0, π/2) for every couple of
antipodal points p, q (set r := r(p) = r(q)) there are exactly two smooth,
distinct geodesics connecting them (whose length equals 2r sin

(
π
2 sinα

)
)

and one singular geodesic (whose length equals 2r). In particular,

d(p, q) = 2d(p, v) sin
(π

2
sinα

)
= 2d(q, v) sin

(π
2

sinα
)
.

We shall also remind the reader of the following important conse-
quence of the Clairaut equation expressing the conservation of angular
momentum for geodesics on surfaces of revolution.

Lemma 5. A (smooth) geodesic on Cα that intersects every neigh-
borhood of the vertex v ∈ Cα \ Cα must be radial. In other words, if
a geodesic path γ : (0, 1) → Cα, parametrized by arc-length, satisfies
−1 < gα(γ̇, ∂r) < 1 at some point, then there exists d0 > 0 such that
γ(0, 1), the support of γ, is disjoint from the metric ball Bd0(v) on Cα.

For a fixed couple of antipodal points at unit distance from the vertex
(namely: d = 1) we shall denote by Γ′,Γ′′ the geometric support of the
two smooth connecting geodesics and by Γ′′′ the geometric support of
the singular geodesic passing through the vertex of the cone.

Remark 6. Let l be a linear ray in Cα, that is to say a subset of the
form {ϕ = ϕ} for some fixed ϕ ∈ S1. One can then consider on Cα \ {l}
the standard planar polar coordinates (ρ, ϑ) ∈ (0,+∞) × (0, 2π sinα)
which are obtained by unfolding Cα\{l} on a (flat) plane. In particular,
the associated map G : (0,+∞) × (0, 2π sinα) → Cα is, in fact, an
isometry. Furthermore, we can identify the whole Cα with the Euclidean
wedge (0,+∞)× [0, 2π sinα] after pointwise identifying the two edges.

2In order to avoid ambiguities, let us remark that α is the angle between the axis
and the generatrix of the cone Cα when this is isometrically embedded in R3 in the
standard fashion.
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2.2. Asymptotically conical surfaces.

Definition 7. A complete (non-compact) surface (S, g) is called
asymptotically conical if there exists a compact set Z ⊂ S, and a dif-
feomorphism Φ : S \ Z → R2 \ {0} such that (endowed R2 \ {0} with
coordinates (r, ϕ) as above)

(Φ−1)∗g = (1 + err(r, ϕ)) dr ⊗ dr + (1 + eϕϕ(r, ϕ)) r2 sin2(α)dϕ⊗ dϕ
+ 2erϕ(r, ϕ)rdr ⊗ dϕ,

for a symmetric (0, 2)-tensor e satisfying

err(r, ϕ) = O2(r−µ), eϕϕ(r, ϕ) = O2(r−µ), erϕ(r, ϕ) = O2(r−µ),

as we let r → +∞. We call α ∈ (0, π/2] the asymptotic angle and µ > 0
the asymptotic decay rate of the surface (S, g).

Remark 8. When writing e(r, ϕ) = O2(r−µ) we mean that

∂βe(r, ϕ) = O(r−µ−|β|r), r → +∞,

for any multi-index β such that 0 ≤ |β| ≤ 2 and for |β|r equal to the
number of differentiations in the variable r.

Definition 9. In the setting of the above definition we will call the
couple (r, ϕ) asymptotically conical coordinates for (S, g). Fixing such
a structure at infinity, we shall say that two points p, q ∈ S \ Z are
antipodal if there exist (r0, ϕ0) such that

(r, ϕ)(p) = (r0, ϕ0) and (r, ϕ)(q) = (r0, ϕ0 + π).

Remark 10. In Section 5, it will be convenient to work with wedge
coordinates for an asymptotically conical surface (S, g). These are de-
fined in analogy with Remark 6 and are uniquely determined, once
a structure at infinity (r, ϕ) is assigned, by means of the equations
ρ = r, ϑ = ϕ sinα.

The following assertion is a straightforward consequence of Defini-
tion 7.

Lemma 11. Given an asymptotically conical surface (S, g) of asymp-
totic angle α and fixed a structure at infinity (r, ϕ) we consider for a
positive parameter λ the rescaled metric

g(λ)(r, ϕ) = λ−2Dil∗λg (r, ϕ) ,

where Dilλ : R2 \ {0} → R2 \ {0} is the diffeomorphism defined by
Dilλ(r, ϕ) = (λr, ϕ). Then: given any sequence {λn} such that λn ↑
+∞ the sequence of Riemannian manifolds

(
R2 \ {0} , g(λn)

)
converges

(locally uniformly in the C2-topology) to the cone Cα.
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This lemma characterizes the blow-down limits of minimizing geo-
desics connecting antipodal points on asymptotically conical surfaces.
The relevant notion of convergence is presented in Appendix A: note
that, although such notion of convergence allows for multiplicities higher
than one in the limit, in our particular case the latter phenomenon is
ruled out by Lemma 28.

Lemma 12. (Notations as above). Let (S, g) be an asymptotically
conical surface of asymptotic angle α ∈ (0, π/2).

1) For any couple of antipodal points p, q ∈ S\Z there exists a length-
minimizing geodesic Γ connecting them.

2) Given a sequence of antipodal points p(k), q(k) with

rk := r(p(k)) = r(q(k))→ +∞
and denoted by Γk the support of a length-minimizing geodesic
connecting them, then {Γk} converges geometrically to either Γ′ or
Γ′′ as we rescale by the sequence {rk}. As a result, the sequence
of lengths of rescaled Γk converges to 2 sin

(
π
2 sinα

)
.

Proof. To prove the first assertion, let us start by observing that there
exists a connecting path of length equal half of the circle of coordinate
equation r = r(p) = r(q) as we let the variable ϕ vary in an interval
of size π: thus, such path has length bounded from above by a fixed
constant C > 1 (depending on the part e of the metric g) times πr sinα.
It follows that any sequence of paths connecting p to q and minimizing
length has to be contained inside the coordinate ball of radius 2Cπr.
Hence, direct methods ensure the existence of such a minimizer. Fur-
thermore, let us explicitly notice that a trivial length comparison argu-
ment ensures that the support of Γ must be disjoint from the coordinate
ball of radius rin =

(
1− δ sin

(
π
2 sinα

))
r, at least for r large enough,

for δ > 1 chosen once and for all so that
(
1− δ sin

(
π
2 sinα

))
> 0.

For the second part: as we rescale and take the limit, thanks to the
last remark, a standard variation3 of Lemma 28 ensures that the se-
quence {Γk} will geometrically subconverge to a geodesic on Cα, hence,
(by virtue of Lemma 4) either to Γ′ or to Γ′′, which completes the proof.

q.e.d.

2.3. Positive mass theorem in 2+1 gravity. As anticipated in the
introduction, it is customary in 2 + 1 gravity to call mass of an asymp-
totically conical4 surface (S, g) the angle defect for parallel transport

3For the sake of clarity, we stated the convergence results in Appendix A with
respect to a fixed background metric, but the same conclusion does hold true if
the manifold N is endowed with a sequence {gk} of Riemannian metrics that are
smoothly converging, uniformly on compact sets of the ambient manifold.

4Notice that we could legitimately call this class of spaces asymptotically flat,
coherently with the higher-dimensional terminology.
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around the limit cone to which (S, g) asymptotes at infinity, namely we
shall set

m = 2π(1− sinα),

if α is the asymptotic angle of (S, g) in the sense of Definition 7. This
can be fully justified in the context of the Hamiltonian formulation of
General Relativity in 2 + 1-dimensions, following the same conceptual
scheme described by Arnowitt–Deser–Misner [2] when dealing with at
least three spatial dimensions (see [8] for a mathematical discussion of
the well-posedness of this notion). We refer the reader to Chapter 1 of
the lectures by P. Chruściel [20] for a modern, broad treatment of these
topics. In that context, we remind the reader that the assumption that
the scalar curvature be non-negative is nothing but the aforementioned
dominant energy condition (see, e.g., [47]).

Theorem 13. Let (S, g) be an asymptotically conical surface of non-
negative scalar curvature. Then S is diffeomorphic to R2 and, further-
more, m = 0 if and only if (S, g) is isometric to the Euclidean plane.

We present the (easy) proof of this result both for the sake of com-
pleteness and due to the absence (to our knowledge) of a standard refer-
ence. Yet, we shall remark that the first assertion follows at once from
Theorem 1 in [19] (such assertion for surfaces being, in fact, due to S.
Cohn-Vossen).

Proof. For a given, large r0 we let Dr0 be the bounded domain whose
boundary is given by the circle r = r0 in our usual coordinate notation.
The Gauss–Bonnet theorem, applied to Dr0 reads∫

Dr0

Kg +

∫
∂Dr0

κg = 2πχ(Dr0),

where χ(Dr0) stands for the Euler characteristic of the domain in ques-
tion. Now, it is straightforward to check that our decay assumptions on
the metric g imply ∫

∂Dr0

κg = 2π sin(α)(1 + o(1)),

which is strictly positive for r0 large enough (since by definition α ∈
(0, π/2]). Hence, due to the fact that of course

∫
Dr0

Kg ≥ 0 we deduce

that χ(Dr0) = 1 for all sufficiently large r0 and, thus, S is diffeomorphic
to a plane. Concerning the second assertion: if m = 0 then letting
r0 → +∞ in the equation above implies that for any given (large) r0∫

Dr0

Kg = 0,

and, thus, the assumption Kg ≥ 0 forces the Gauss curvature of (S, g)
to vanish at every point. The conclusion follows at once. q.e.d.
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The theorem above ensures that, whenever assuming non-negative
scalar curvature, the (a priori restrictive) assumption α < π/2 only rules
out Euclidean R2, in which case the conclusion of our main theorem is
trivial. Also, notice that for α 6= π/2 the conclusions of Lemma 12
apply, which will turn to be extremely relevant for the arguments we
are about to present.

3. Min-max embedded geodesic segments

As described in the introduction, we shall present here a general exis-
tence theorem for min-max embedded geodesic segments. To state our
results, we need to introduce some notation.

Throughout this section, we let (N, g) be a complete Riemannian
manifold of dimension two, without boundary. Given two points p, q
with p 6= q we assume the existence of two embedded geodesics con-
necting them: let us denote by γ1 : [0, 1] → N (resp. γ2 : [0, 1] → N)
a parametrization of the first (resp. the second) of them by a con-
stant multiple of the corresponding arc-length parameter. We fur-
ther assume that the closed domain Ω bounded by Γ1 := spt(γ1) and
Γ2 := spt(γ2) is C1-diffeomorphic to the upper half-disk in R2 ' C:
namely there is a map Φ : D+ → Ω which is a proper diffeomorphism
of class C1 (the regularity of the map being understood in the sense
of restriction of a C1 map on open neighborhoods of D+ and Ω) for
D+ = {z ∈ C : |z| ≤ 1, Im(z) ≥ 0}. Let then

X :=
{
γ ∈W 1,2([0, 1], N) : γ(0) = p, γ(1) = q

}
,

and
Σ := {H ∈ C([0, 1], X) : H(0) = γ1, H(1) = γ2} .

The previous assumption concerning the region Ω ensures that the class
Σ is not empty.

Thus, we shall introduce the min-max value

Λ := inf
H∈Σ

max
s∈[0,1]

E(H(s)),

where for an element γ ∈ X

E(γ) =

∫ 1

0
g(γ̇(t), γ̇(t)) dt

is the standard energy functional on curves (see Appendix A for further
details and a recollection of some basic facts). In the setting above,
we let Crit(E) ⊂ X denote the set of critical points for E (geodesics
parametrized by a constant multiple of the arc-length). Throughout
this section we set I = [0, 1].

Proposition 14. Let (N, g) be a complete Riemannian manifold of
dimension two, without boundary, and for given distinct points p, q as-
sume that there exist two parametrized embedded geodesics γ1, γ2 : I →
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N bounding a half-disk-type region (in the sense explained above), satis-
fying γ1(0) = γ2(0) = p, γ1(1) = γ2(1) = q, and such that the mountain-
pass condition

Λ > max {E(γ1), E(γ2)}
holds. Suppose that there is no geodesic starting at p (resp. q) and
ending with a self-intersection point at q (resp. p). Then there exists
a parametrized embedded geodesic γ3 : I → N , whose endpoints are p, q
and whose energy equals the value Λ. Furthermore, γ3 has Morse index
less or equal than one (as a critical point of the energy functional).

This result would be standard if we removed the word embedded from
the conclusion of our statement. Instead, the requirement that the third
geodesic segment that we produce has no self-intersections imposes some
non-trivial work, for which we shall mostly rely on the methods recently
introduced in [16]. Proposition 14 will, in fact, easily follow given the
two ancillary lemmata that we are about to state.

Following standard terminology in min-max theory (see, e.g., [22])
we shall remind the reader that a sequence {Hn} ∈ Seq(Σ) is called
minimizing if

sup
s∈[0,1]

E(Hn(s))→ Λ, as n→∞,

and that, in such case, a sequence {γn} ∈ Seq(X) for γn := Hn(sn) is
called min-max if

E(γn)→ Λ, as n→∞.
The first result is fairly basic and ensures that given a minimizing

sequence one can always extract an associated min-max sequence con-
verging (in X and, hence, smoothly) to a stationary point (in other
words: that there exists a stationary element among its limit points).

Lemma 15. (Setting as above). Given a minimizing sequence {Hn}∈
Seq(Σ), there exist an associated min-max sequence {Hn(sn)} and γ∞ ∈
Crit(E) ⊂ X such that Hn(sn)→ γ∞ in X.

Of course, we remark that the claim that every min-max sequence
should converge to an element in Crit(E) is patently false, as is dis-
cussed in [39] and [22]. To overcome such issue, one needs to perform
a pull-tight procedure, which is then needed when discussing the regu-
larity of min-max minimal surfaces. That step is not really necessary
here.

Roughly speaking, we can identify the tangent space of X at γ with
the space of W 1,2 sections of the tangent bundle of N restricted to (the
support of) γ and vanishing at the endpoints:

TγX =
{
V ∈W 1,2([0, 1], TN) : π(V (t)) = γ(t)

∀t ∈ [0, 1], V (0) = V (1) = 0
}
,
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where π : TN → N is the standard projection of the tangent bundle
onto its base manifold. Notice also that we can then naturally endow X
with the structure of a Riemannian Hilbert manifold (X, gX) by simply
setting

gX : TγX × TγX → R, gX(V1, V2) =

∫ 1

0

(
g(V1, V2) + g(V̇1, V̇2)

)
dt.

We refer the reader to Chapter 1 of [30] for an ample discussion and
contextualization of these notions.5 We can now proceed with the proof
of Lemma 15.

Proof. Let us start by describing the basic idea behind the argument
we are about to present. Arguing by contradiction, we shall see that
if a minimizing sequence did not have the property above (namely: if
all converging min-max sequences clustered to non-stationary points)
then one could, indeed, perform an unobstructed deformation of the
minimizing sequence {Hn} thereby obtaining a new sequence

{
Hn

}
∈

Seq(Σ) for which

lim sup
n→∞

sup
s∈[0,1]

E(Hn(s)) < Λ,

that is impossible, by the very definition of Λ as min-max value. In
the one-dimensional setting we are dealing with, the aforementioned
deformation is performed by means of the so-called H1-gradient flow
(in fact: steepest descent flow) for the functional E on X.

Let us preliminarily observe that, under the contradiction assumption
above, we can assume (without loss of generality) that for any min-max
sequence {Hn(sn)} ∈ Seq(X)

lim inf
n→∞

||∇E(Hn(sn))||X = δ > 0,

for, if not, the fact that the energy functional satisfies the Palais–Smale
condition would imply sub-convergence of such sequence to a stationary
critical point of E. That being said, fix any τ∗ > 0 and consider for each
γ ∈ X the τ∗-image γ̃ of γ under the gradient flow of E (with respect
to the Riemannian structure defined above), namely we set γ̃ = Φτ∗(γ)
where Φτ is the flow associated to the ODE{

d
dτ γτ = −∇E(γτ ),

γ(0) = γ,

and ∇E is defined by the equation gX(∇E(γ), V ) = dE(γ)[V ] to hold

for all V ∈ TγX (it is easily checked that dE(γ)[V ] = 2
∫ 1

0 g(γ̇, V̇ ) dt).

5While [30] is mostly focused on the case of closed geodesics, modifying the basic
definitions and constructions to deal with the case of curves with fixed endpoints
only requires minimal effort.
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Recall that
d

dτ
E(γτ ) = −‖∇E(γτ )‖2X ,

so that for any τ ′ < τ ′′

E(γτ ′′)− E(γτ ′) = −
∫ τ ′′

τ ′
‖∇E(γs)‖2X ds,

which we shall repeatedly use in the sequel of this proof. In particular,
it is convenient for any n ≥ 1 to set H̃n(s) = Φτ∗(Hn(s)) and, thus,

consider {H̃n} ∈ Seq(Σ) which is still (patently) a minimizing sequence6

due to the monotonicity of the flow in question. Hence, for any n ≥ 1
pick s̃n ∈ arg maxE(H̃n(s)) and consider the associated sequence of
(pre-flow) curves {Hn(s̃n)} ∈ Seq(X). It follows that it must be

lim inf
n→∞

E(Hn(s̃n)) = Λ,

for otherwise

Λ = lim inf
n→∞

E(H̃n(s̃n)) ≤ lim inf
n→∞

E(Hn(s̃n)) < Λ,

which is impossible. This is to say that {Hn(s̃n)} ∈ Seq(X) is itself
a min-max sequence. Also, the preliminary remark specifies to such
sequence to ensure that, indeed, lim infn→∞ ||∇E(Hn(s̃n))||X = δ for
some number δ > 0. Pick then an intermediate threshold δ′ ∈ (0, δ) and
set

τn := inf
{
τ ∈ (0, τ∗] : ||∇E(Φτ (Hn(s̃n)))||X < δ′

}
,

where we agree to define τn = τ∗ if the set in question is empty.
The following dichotomy holds: either we can extract a subsequence

of indices {nk} such that {τnk} has a positive bound τ∗ ∈ (0, τ∗) (in

which case it is immediately checked that lim infk→∞E(H̃nk(s̃nk)) ≤
Λ − δ′τ∗, which is impossible, as we have already observed) or instead
such condition is violated for all δ′ > 0 and, thus, we can find

1) a sequence {δk} with δk ↘ 0;
2) a sequence {nk} with nk ↗∞;
3) a sequence {τnk} with τnk ↘ 0;

such that

‖∇E(Φτnk
(Hnk(s̃nk)))||X < δk.

But, if this were the case, again by Palais–Smale the min-max sequence{
Φτnk

(Hnk(s̃nk))
}

would subconverge to a stationary point of E on X,

6Let us remark that the fact that γ1, γ2 are geodesics is implicitly used in this step,
as it implies that the class Σ is, indeed, stable under the flow Φ and, in particular,
{H̃n} ∈ Seq(Σ) since it was assumed that {Hn} ∈ Seq(Σ).
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say γ̃∞. Recall next the following elementary estimate for solutions γs
of the gradient flow of E:

dX(γτ , γτ0) ≤
∫ τ

τ0

‖ ddsγs‖X ds =

∫ τ

τ0

‖∇E(γs)‖X ds

≤
(∫ τ

τ0

‖∇E(γs)‖2X ds
)1/2

|τ − τ0|1/2 ,

where dX(·, ·) : X ×X → R denotes the (Riemannian) path-distance in
the Hilbert manifold X. We apply it with τ0 = 0 and τ = τnk to bound
the distance between Hnk(s̃nk) and Φτnk

(Hnk(s̃nk)). Since∫ τnk

0
‖∇E (Φτ (Hnk(s̃nk))) ‖2X dτ = E(Hnk(s̃nk))− E(Φτnk

(Hnk(s̃nk)))

≤ E(Hnk(s̃nk))

is uniformly bounded in k and τnk ↓ 0, we conclude that {Hnk(s̃nk)}
and

{
Φτnk

(Hnk(s̃nk))
}

have the same limit, namely the stationary point

γ̃∞. Once again, this contradicts our initial assumption, namely that
all converging min-max sequences cluster to non-stationary points, and
thereby our proof is complete. q.e.d.

Now, before describing the resolution of singularities procedure we
need to reduce to generic homotopies, in the sense made precise by this
statement.

Lemma 16. (Setting as above). Given ε > 0 the following holds: for

every H ∈ Σ there exists H̃ ∈ Σ, in fact, H̃ ∈ C∞([0, 1] × [0, 1];N),
such that all of these assertions are true:

1) ∀ s ∈ [0, 1] one has ‖H(s)− H̃(s)‖X < ε;
2) there are finitely many singular times s1 < s2 < . . . < sk−1 < sk

and if s ∈ [0, 1] \ ∪ki=1 {si} the map H̃(s) is an immersion with
only transverse self-intersections and no triple points;

3) for s = si the singular events7 correspond to one of the standard
three Reidemeister moves and, furthermore, singular events do not
happen concurrently;

4) there exist δ > 0 such that ∀s ∈ [0, 1] the curve H̃(s) has no self-
intersections in Bδ(p)tBδ(q), and is an immersion when restricted
to these balls.

Proof. First of all, let us see why (4) is, indeed, a generic condition: in
other words, given ε > 0 and H ∈ Σ as per the statement above, let us
show that we can find H̃ ∈ Σ so that both (1) and (4) are satisfied. This

7The reader is referred to Section 2 of [16] for relevant definitions, see, in par-
ticular, Figure 1 therein for a clear illustration of the three possible Reidemeister
moves.
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is intuitively clear, but let us discuss it for the sake of completeness. We
shall refer to the first claim (no self-intersections) and leave the second
one to the reader. For our fixed p ∈ N (the argument will then be
applied to the point q as well) consider

Q(2) = {(t1, t2) ∈ [0, 1]× [0, 1] : t1 6= t2} ,

as well as the twofold 0-jet bundle

J0
2 ([0, 1], N) = Q(2) ×N2,

and its subset Nd = {(t1, t2, p, p)} ⊂ J0
2 ([0, 1], N). Let us observe that

Nd is a 2-dimensional closed submanifold in J0
2 which, in turn, is a

smooth (open) manifold of dimension 6. Given s ∈ [0, 1] one has the

induced map j0
2H(s) : Q(2) → J0

2 ([0, 1], N) defined by the equation

j0
2H(s)(t1, t2) = (t1, t2, H(s)(t1), H(s)(t2)),

so that clearly

H(s)(t1) = H(s)(t2) = p ⇐⇒ j0
2H(s)(t1, t2) ∈ Nd.

Hence, one can observe that for a generic homotopy H the map

f : [0, 1]×Q(2) → J0
2 ([0, 1], N), f(s, t1, t2) = j0

2H(s)(t1, t2)

will intersect the submanifold Nd transversely which implies (by dimen-
sional counting) that the intersection f t Nd in question will, in fact,

be empty. Thus, we can find H̃ ∈ Σ which is ε-close to H and in a
way that self-intersections do not happen at p or q so that, by com-
pactness we can, indeed, find δ > 0 (depending on H and ε) so that

all self-intersections of H̃(s) as s varies in [0, 1] happen outside of the
balls of center p (resp. q) and radius 3δ. Similarly, one proves that the

map H̃ can be chosen, generically, so that H̃(s) is an immersion near
p and q for all s ∈ [0, 1]. At that stage, one can follow verbatim the
(analogous) transversality arguments presented in [16], pg. 1083–1084

to ensure that by further perturbing H̃ the other conditions (2) and (3)
can be accommodated as well. q.e.d.

At this stage, we are ready to use the machinery of [16] to our scopes.

Lemma 17. (Setting as above). Given ε > 0 the following holds: for

every H̃ ∈ Σ generic homotopy (in the sense specified by Lemma 16)
there exists H ∈ Σ, in fact, H ∈ C∞([0, 1] × [0, 1], N), such that these
assertions are true:

1) ∀ s ∈ [0, 1] one has E(H(s)) ≤ E(H̃(s)) + ε;
2) the map H is an isotopy, namely ∀ s ∈ [0, 1] the map H(s) is an

embedding.
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Proof. Given condition (4) of Lemma 16, we know that for a generic
homotopy all self-intersections (and singularities) happen away from
Bδ(p) t Bδ(q). Hence, one can perform a finite chain of Reidemeister
moves according to the general algorithm described in [16], pg. 1088–
89, with the only constraint that (while resolving the singularities) no
modifications should be made to the support of the homotopy inside
Bδ/2(p) tBδ/2(q). q.e.d.

We shall then proceed with the proof of Proposition 14.

Proof. Let {Hn} ∈ Seq(Σ) be a minimizing sequence for the min-max
problem defined above. By applying, one after the other, Lemma 16 and
Lemma 17 (taking in both cases ε = 1/2n when dealing with Hn) we
can produce a new sequence

{
Hn

}
∈ Seq(Σ) which is also minimizing

(for, indeed, E(Hn(s)) ≤ E(Hn(s)) + 1/n) and consists of isotopies.
Now, Lemma 15 ensures the existence of an associated min-max se-
quence

{
Hn(sn)

}
∈ Seq(X) converging in X to a geodesic γ∞ : I → N

attaining energy Λ. The curve γ∞ is an embedding by a direct applica-
tion of Lemma 28. Lastly, the fact that the geodesic γ3 ∈ X, regarded
as a critical point of the energy functional E(·), has Morse index less or
equal than one is a general fact about one-dimensional mountain-pass
schemes. In particular, denote by A∞ the subset of X consisting of the
cluster points of any min-max sequence {Hn(sn)} and let KΛ be the
set of critical points γ of E with E(γ) = Λ. Observe that the argument
above implies that any element of A∞ ∩KΛ is embedded. We can then
apply Theorem 4 of page 53 in [28] to conclude the existence of at least
one element in A∞∩KΛ whose Morse index is at most 1 (with reference
to the notation of [28], note that such theorem can be applied because
the group G is in our case the trivial group and the G-invariant set F is
the whole space X; in particular, KΛ ∩F = KΛ is trivially an “isolated
critical set in itself” in the sense of [28]). q.e.d.

4. The construction of embedded geodesic lines

Given the above preliminaries, we shall prove here a multiplicity the-
orem for geodesics with fixed endpoints: given two antipodal points p, q
on an asymptotically conical surface we want to show the existence of
(at least) three geometrically distinct embedded geodesics connecting
them. Let us start by reminding the reader that, by virtue of Lemma
12 we already know the existence of one such geodesic (namely: the
absolute length-minimizer) and the next step we are about to present is
the construction of a second one by means of a localized minimization
argument.

Lemma 18. Let (S, g) be a non-flat asymptotically conical surface
of non-negative scalar curvature and (in asymptotic coordinates (r, ϕ))
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let p, q be a couple of antipodal points. Let us denote the value of their
first coordinate by r0. Then there exists a constant r0 (only depending
on (S, g)) such that for every r0 ≥ r0 there are two distinct, simple
geodesics Γ1,Γ2 connecting p, q, they are disjoint and geometrically con-
verge, under rescaling by a factor r−1

0 respectively to Γ′,Γ′′ (modulo
renaming of the latter ones).

Proof. Let us denote by Γ1 the length-minimizing (hence, necessar-
ily simple) geodesic between p and q, whose existence is guaranteed by
Lemma 12. Possibly by renaming, the same result implies that Γ1 will
converge, upon rescaling, to Γ′. In order to construct the second geo-
desic, it is convenient to identify the domain covered by our (r, ϕ) charts
with (a suitable subset of) a planar wedge of angle 2π sinα, namely
with the wedge described in polar coordinates (ρ, ϑ) by the equations
0 < ρ, 0 ≤ ϑ ≤ 2π sinα, with pointwise identification of the two edges
at ϑ = 0, ϑ = 2π sinα (see also Remark 10). In this model, we can then
assume that the points p, q have coordinates given by

ρ(p) = ρ(q) = r0, ϑ(p) =
π

2
sinα, ϑ(q) =

3π

2
sinα,

and in turn we let Γ̃2 be identified with the straight segment con-
necting them (assuming that Γ′′ is the straight segment gotten from

Γ̃2 by rescaling via a factor r0). For δ > 0 small, to be fixed later,
let us consider the ellipse centered at the midpoint m of p, q (that
is to say ρ(m) = r0 cos

(
π
2 sinα

)
, ϑ(m) = π sinα) and axes of length

(1+δ)r0 sin
(
π
2 sinα

)
(parallel to Γ̃2) and (1−δ)r0 cos

(
π
2 sinα

)
(orthog-

onal to Γ̃2 ): such ellipse has positive geodesic curvature in the flat
metric the wedge is endowed with and, since this model is isometric to
the (limit) cone Cα, we can just pick D ⊂ S to be the image of the
interior of this ellipse under the identification map above. The decay
assumptions on e (the error terms of the metric g) ensure that this do-
main will, indeed, be mean-convex for r ≥ r0 sufficiently large and of
course we can pick δ > 0 small enough that D does not cover the whole
Γ1, but just small neighborhoods of the common vertices of Γ1 and Γ̃2,
cf. Figure 1.

That being said, standard direct methods ensure the existence of a
smooth geodesic Γ2 connecting p to q and having shortest length among
those contained in D. Being locally length-minimizing, Γ2 cannot have
self-intersections which means it has to be a simple geodesic. By con-
struction (specifically: by the choice of δ) the rescalings of those Γ2 (as
we let r0 → +∞ and rescale by r0) must locally converge to a geodesic
of Cα which cannot be either Γ′ or Γ′′′ and, hence, must be Γ′′, as we
had claimed. Lastly: Γ1 and Γ2 cannot intersect for, if they did, we
could shorten the length of either of them by means of local cut-and-
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Γ̃1

Γ1

Γ̃1

Γ1

Γ̃2

Figure 1. The shadowed region is D in the coordinates
(ρ, ϑ). The lines Γ̃1 and Γ̃2 rescaled by a factor r0 coin-
cide with Γ′ and Γ′′, respectively.

paste operations, thereby violating their minimizing properties. This
completes the proof. q.e.d.

We can now employ the result obtained in Section 3 to produce a
third geodesic segment connecting any two fixed antipodal points p, q
on (S, g). From now onwards, due to the limit arguments we will have
to perform, it is useful to make the dependence on (r0, ϕ0) explicit for

all objects we deal with: in particular, we shall write p(r0,ϕ0), q(r0,ϕ0)

and denote by Γ
(r0,ϕ0)
1 , Γ

(r0,ϕ0)
2 the (supports of the) geodesic segments

constructed above. Let us further denote by γ
(r0,ϕ0)
1 : [0, 1] → S (resp.

γ
(r0,ϕ0)
2 : [0, 1] → S) a parametrization of Γ

(r0,ϕ0)
1 (resp. Γ

(r0,ϕ0)
2 ) by

a constant multiple of the corresponding arc-length parameter. Let
then the spaces X(r0, ϕ0),Σ(r0, ϕ0) and the min-max value Λ(r0, ϕ0)
be defined as above.

A crucial remark is that, due to the fact that S is diffeomorphic to
R2 (by virtue of Theorem 13) the class Σ(r0, ϕ0) is not empty.

Proposition 19. In the setting described above, we have

lim inf
r0→+∞

Λ(r0, ϕ0)

r2
0

≥ 4.
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As a result, for every r0 ≥ r0 there exists a third simple geodesic

Γ
(r0,ϕ0)
3 connecting p(r0,ϕ0) to q(r0,ϕ0) whose parametrization γ3 : [0, 1]→
S has constant speed (a constant multiple of the arc-length parameter)

and attains the min-max value Λ(r0, ϕ0), namely γ
(r0,ϕ0)
3 ∈ X(r0, ϕ0)

and
E(γ

(r0,ϕ0)
3 ) = Λ(r0, ϕ0).

Furthermore, γ
(r0,ϕ0)
3 has Morse index less or equal than one for the

functional E.

Proof. We need to start by checking that the mountain-pass condition
holds, at least when the antipodal points serving as boundary are far
away in the asymptotic region.

Given ε > 0, it follows from Lemma 18 that one can find a possibly
larger r0 such that

E
(
γ

(r0,ϕ0)
i

)
r2

0

≤ 4(1 + ε) sin2
(π

2
sinα

)
, i = 1, 2,

for every r0 ≥ r0. On the other hand, we claim that necessarily

Λ(r0, ϕ0)

r2
0

≥ 4(1− ε).

To see this, let us start by observing that due to the natural embedding
W 1,2([0, 1], S) ↪→ C([0, 1], S) the set Σ(r0, ϕ0) is included in the class of

(continuous) homotopies connecting γ
(r0,ϕ0)
1 with γ

(r0,ϕ0)
2 : given H ∈ Σ

we can simply set H̃ : [0, 1] × [0, 1] → S, H̃(s, t) = H(s)(t). Thus,
considered for any fixed large r0 the region Ω = Ω(r0, ϕ0) bounded by
Γ1 and Γ2 (which, let us recall, is homeomorphic to a topological disk),
and fixed o ∈ ∩r0≥r0Ω(r0, ϕ0) for any H ∈ Σ one can find a couple

(s0, t0) ∈ (0, 1)× (0, 1) such that H(s0, t0) = o. Said γ
(r0,ϕ0)
s0 : [0, 1]→ S

the corresponding path (namely: γ
(r0,ϕ0)
s0 = H(s0)) we claim that

E(γ
(r0,ϕ0)
s0 )

r2
0

≥ 4(1− ε),

which would of course imply the claim given the fact that H is an ar-
bitrary element in the class Σ. This is shown as follows: said γ̃(r0,ϕ0) :
[0, 1] → S the broken geodesic gotten by taking a length-minimizing
curve connecting p to o concatenated to a length-minimizing curve con-
necting o to q we have (by Cauchy–Schwarz)

E(γ
(r0,ϕ0)
s0 )

r2
0

≥ L2(γ
(r0,ϕ0)
s0 )

r2
0

≥ L2(γ̃(r0,ϕ0))

r2
0

≥ 4(1− ε),

where the last inequality follows from the observation that as we rescale
by a factor r0 the support Γ̃ (which must locally converge to a geo-
desic) can only converge to Γ′′′ by Lemma 5 together with the fact that
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the choice of o is independent of r0. That being gained, let us choose
once and for all ε > 0 (depending only on (S, g), in fact, just on the
asymptotic opening angle α) such that

1− ε
1 + ε

> sin2
(π

2
sinα

)
.

This ensures that the mountain-pass gap condition required by Propo-
sition 14 is satisfied8 and so we immediately derive the existence of a

critical point γ
(r0,ϕ0)
3 ∈ X attaining the min-max value Λ(r0, ϕ0). Lastly,

we notice that γ
(r0,ϕ0)
3 being a critical-point of E(·) is also a critical point

of L(·), parametrized by constant speed. It follows from our argument
above that

lim inf
r0→+∞

Λ(r0, ϕ0)

r2
0

≥ 4(1− ε),

but of course this applies to any ε as small as we wish, so the last
assertion follows at once. q.e.d.

In order to rule out concentration phenomena when taking limits of
min-max geodesic segments (as the endpoints drift off to infinity), we
need the following lemma, which concerns the explicit description of
effective sweepouts and thereby provides an upper bound on the min-
max value.

Lemma 20. (Setting as above.) For every ϕ0 ∈ S1 one has that the
min-max values satisfy

lim sup
r0→+∞

Λ(r0, ϕ0)

r2
0

≤ 4.

Remark 21. For the following proof, it turns out to be more con-
venient to work with the coordinates {ρ, ϑ} defined in Remark 10 and
to treat (S, g) (minus a compact set) as an Euclidean wedge of angle
2π sinα with pointwise identification of the two sides.

Proof. Given ε > 0 fix (once and for all) a large scale ρ− such that
the metrics g and δ differ on the domain of (S, g) defined in coordinates
by ρ ≥ ρ−/2 for an amount less than ε2 in C2 norm. Consider the
two linear segments joining p− to q− (where ρ(p−) = ρ(q−) = ρ− and
ϑ(p−) = π sinα while ϑ(q−) ∈ {0, 2π sinα} since the latter is represented
by two points that are geometrically identified): such paths can be
parametrized by means of the coordinate equations given by

γ−1 (t) =

(
ρ−

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1 + t)π sinα

)
,

8Notice that the requirement that there are no geodesics starting at p (resp. q)
and ending with a self-intersection point at q (resp. p) is also satisfied since our
surface is foliated, outside of a compact set, by closed curves of positive curvature.
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and

γ−2 (t) =

(
ρ−

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1− t)π sinα

)
,

as can be checked by means of some elementary trigonometry. Fur-
thermore, let H− ∈ Σ be a homotopy connecting γ−1 to γ−2 (whose
existence is a consequence of Theorem 13). We shall now define a ho-
motopy H connecting γ+

1 to γ+
2 , (parameterizations of) the two sta-

ble geodesics constructed above (see Lemma 18) for endpoints p+, q+

having coordinates ρ(p+) = ρ(q+) = ρ+ and ϑ(p+) = π sinα while
ϑ(q+) ∈ {0, 2π sinα} where ρ+ is a free large scale, much larger than
ρ− (so that we will then take ρ+ → +∞). To that aim, let us recall
that Γ1,Γ2 converge geometrically, when rescaled as explained above,
respectively to Γ′,Γ′′ so that (for large ρ+ but uniformly in ϑ) we can
find constant speed parameterizations of Γ1,Γ2 (which we shall, indeed,
call γ+

1 , γ+
2 ) such that

∥∥γ+
i − γ̌

+
i

∥∥
X
< ρ+ε

2 for i = 1, 2 where

γ̌+
1 (t) =

(
ρ+

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1 + t)π sinα

)
,

and

γ̌+
2 (t) =

(
ρ+

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1− t)π sinα

)
.

Precisely, we let H : [0, 1]× [0, 1]→ S be defined by

H(s, t) =



(1− 8s)γ+
1 (t) + 8sγ̌+

1 (t) for 0 ≤ s ≤ 1
8 ,

γ
8(s−1/8),down
1 ∗ γ8(s−1/8),tan

1 ∗ γ8(s−1/8),up
1 (t) for 1

8 ≤ s ≤
1
4 ,

γ1,down
1 ∗H−

(
2
(
s− 1

4

)
, t
)
∗ γ1,up

1 (t) for 1
4 ≤ s ≤

3
4 ,

γ
8(s−3/4),down
2 ∗ γ8(s−3/4),tan

2 ∗ γ8(s−3/4),up
2 (t) for 3

4 ≤ s ≤
7
8 ,

8(1− s)γ̌−2 (t) + 8
(
s− 7

8

)
γ+

2 (t) for 7
8 ≤ s ≤ 1,

where ∗ denotes the standard concatenation of paths, and we have set
(once again in coordinates {ρ, ϑ})

γs,down1 (t) = (t((1− s)ρ+ + sρ−) + (1− t)ρ+, π sinα) ,

γs,down2 (t) = (t((1− s)ρ+ + sρ−) + (1− t)ρ+, π sinα) ,

γs,up1 (t) = ((1− t) ((1− s) ρ+ + sρ−) + tρ+, 2π sinα) ,

γs,up2 (t) = ((1− t) ((1− s) ρ+ + sρ−) + tρ+, 0) ,
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and

γs,tan1 (t)

=

(
((1− s)ρ+ + sρ−)

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1 + t)π sinα

)
,

γs,tan2 (t)

=

(
((1− s)ρ+ + sρ−)

sin
{
π
2 (1− sinα)

}
sin
{
π
2 (1 + (1− 2t) sinα)

} , (1− t)π sinα

)
.

For the reader’s convenience Figure 2 gives a brief description of the five
stages of the homotopy in the (ρ, ϑ) coordinates.

Now, straight from the definitions one has, for ε small enough, the
trivial length estimates9

L(H(s, ·))

≤


2(1 + ε)ρ+ sin

(
π
2 sinα

)
for s ∈

[
0, 1

8

]
t
[

7
8 , 1
]
,

2(1 + ε)
(
(ρ+ − ρs) + ρs sin

(
π
2 sinα

))
for s ∈

[
1
8 ,

1
4

]
t
[

3
4 ,

7
8

]
,

2(1 + ε)(ρ+ − ρ−) + C for s ∈
[

1
4 ,

3
4

]
,

where ρs stands for (1−s)ρ+ +sρ− evaluated at 8(s−1/8) (respectively,
at 8(s−3/4)) if 1/8 ≤ s ≤ 1/4 (respectively, 3/4 ≤ s ≤ 7/8), and C is a
constant which does not depend on ρ+. Modifying the definition of H by
reparametrization in the variable t so that the curves H(s, ·), s ∈ [0, 1])
all have constant speed, one can conclude

ρ−2
+ max

s∈[0,1]
E (H (s, ·)) ≤ 4(1 + ε)2 + ρ−2

+ C,

so that letting ρ+ → +∞ one obtains (getting back to the notation of
the statement)

lim sup
r0→+∞

Λ(r0, ϕ0)

r2
0

≤ 4(1 + ε)2,

and the arbitrariness of ε allows to complete the proof. q.e.d.

We can now proceed with the proof of the following statement, ensur-
ing the convergence of the sequences of solutions to the fixed-endpoints
min-max problem studied above.

Proposition 22. Let (S, g) be a non-flat asymptotically conical sur-
face of non-negative scalar curvature and, given a sequence {rk} with

9While the curves H(s, ·) are not always C1 we still have a natural notion of
length, gotten by means of piecewise linear approximations, which coincides with the
usual one presented for C1 curves.
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q

q

p

γ+
1

ρ = ρ+

γ̌+
1

q

γ−1

γs,up1

γs,tan1

q

p
γs,down1γ−2

Figure 2. On the left, for 0 ≤ s ≤ 1
8 the homotopy H

is a linear interpolation of the two curves γ+
1 and γ̌+

1 .
On the right, the thick piecewise linear line is H(s, ·) for

some (intermediate) s ∈ [1
8 ,

1
4 ]. At s = 1

4 the curve γ1,tan
1

coincides with γ−1 . For s ∈ [1
4 ,

3
4 ] the homotopy keeps

γ1,down
1 and γ1,up

1 fixed and “swaps” gradually γ−1 with
γ−2 . The fourth and fifth phases of the homotopy are
then analogous, respectively, to the second and first.

rk ↗ +∞, let p(rk,ϕ0), q(rk,ϕ0) be a couple of antipodal points such that

p(rk,ϕ0) = q(rk,ϕ0) = rk, ϕ(p(rk,ϕ0)) = ϕ(q(rk,ϕ0))− π = ϕ0.

Then, possibly extracting a subsequence, the geodesic segments Γ
(rk,ϕ0)
3

connecting p(rk,ϕ0) to q(rk,ϕ0) converge to a properly embedded geodesic

line Γ
(ϕ0)
∞ of Morse index less or equal than one. If (S, g) has positive

scalar curvature, then equality holds.

Proof. Let (S, g) be the asymptotically conical surface in question,
and let Cα be the corresponding asymptotic cone: by Theorem 13 we
can assume, without loss of generality, that α < π/2 (otherwise the
surface is flat R2 and the conclusion is trivial).

For antipodal points p(rk,ϕ0), q(rk,ϕ0) as in the statement above, let

γ
(rk,ϕ0)
i : [0, 1] → S be constant speed parameterizations of the three

geodesic constructed above (as per Lemma 18 and Proposition 19).

Key claim 1. there exists an open, bounded set U ⊂ S such that

U ∩ Γ
(rk,ϕ0)
3 6= ∅ for a sequence of sufficiently large values of k.

Once this is proven the first conclusion of Proposition 22 is straight-

forward, for the family of geodesics Γ
(rk,ϕ0)
3 for rk ≥ r0, having (patently)
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local curvature estimates and length estimates (for the latter see the ar-
gument below, Key Claim 2), will converge to some embedded geodesic

line Γ
(ϕ0)
∞ by Lemma 27.

Therefore, we need to prove Key Claim 1. Arguing by contradiction,
suppose it were false. That is to say, set for rk ≥ r0

r̃k = sup
{
r > 0 : Br(o) ∩ Γ

(rk,ϕ0)
i = ∅ for i = 1, 2, 3

}
,

and assume that

sup
k≥1

r̃k = +∞

(here o is the reference point defined in the previous proof). It fol-
lows that given any value r̃ for k large enough either the closed region

bounded by Γ
(rk,ϕ0)
1 ,Γ

(rk,ϕ0)
3 is disjoint from Br̃(o) or the closed region

bounded by Γ
(rk,ϕ0)
2 ,Γ

(rk,ϕ0)
3 is disjoint from Br̃(o). The argument is, in

fact, identical in the two cases, so let us assume for the sake of definite-
ness to have to deal with the first one. Notice that we are not claiming

that Γ
(rk,ϕ0)
1 and Γ

(rk,ϕ0)
3 only intersect at the endpoints, so that, in

particular, the interior Ḋk of the region Dk in question could consist
of multiple connected components: in order to introduce a convenient
notation let us set Ḋk = tdi=0Ḋ

k
i for some d ≥ 0 (this is well-defined

for ODE uniqueness ensures that two distinct geodesics can only meet
transversely, and at finitely many points). Let us first consider the case
d = 0: applying the Gauss–Bonnet theorem to the domain Dk gives∫

Dk
Kg + νext

p(rk,ϕ0)
+ νext

q(rk,ϕ0)
= 2π,

where νext
p(rk,ϕ0)

(resp. νext
q(rk,ϕ0)

) is the exterior angle between γ̇1 and γ̇3 at

p(rk,ϕ0) (resp. at q(rk,ϕ0)). The decay assumption on the metric implies
that |Kg|(r, ϕ) ≤ Cr−2−µ (where µ > 0 is the asymptotic decay rate of
(S, g) as per Definition 7) and, thus, necessarily

lim
k→∞

∫
Dk
Kg = 0,

because∫
Dk
|Kg| ≤ C

∫ rk

r̃k

r−2−µr dr ≤ C
∫ +∞

r̃k

r−2−µr dr =
C

µ
r̃−µk ,

and thanks to the fact that r̃k → +∞ as one lets k →∞, as remarked
above.

Hence, we deduce that

lim
k→∞

νext
p(rk,ϕ0)

+ νext
q(rk,ϕ0)

= 2π
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and since patently νext
p(rk,ϕ0)

, νext
q(rk,ϕ0)

∈ [0, π] we conclude that, in fact,

lim
k→∞

νext
p(rk,ϕ0)

= lim
k→∞

νext
q(rk,ϕ0)

= π.

This equation implies that when we rescale by a factor rk (and let

k →∞), the geodesic Γ
(rk,ϕ0)
3 must subsequentially converge to Γ′ (recall

that this operation is conformal). On the other hand, we know (from

the proof of Proposition 19 where we constructed γ
(rk,ϕ0)
3 as geodesic

attaining the min-max value) that

lim inf
k→∞

L(γ
(rk,ϕ0)
3 )

rk
≥ 2,

which is only possible if Γ
(rk,ϕ0)
3 converged locally to the radial geodesic

Γ′′′. These two facts determine the contradiction which completes the
proof.

The general case d ≥ 1 follows along similar lines:
if we let mk

1,m
k
2, . . . ,m

k
d be the points of (transverse) interior intersec-

tion of Γ
(rk,ϕ0)
1 and Γ

(rk,ϕ0)
3 , as we move from p(rk,ϕ0) to q(rk,ϕ0), applying

Gauss–Bonnet to the domain Dk
i gives

∫
Dki

Kg =


2π − νext

p(rk,ϕ0)
− νext

mk1
if i = 0,

2π − νext
mki
− νext

mki+1
if i = 1, . . . , d− 1,

2π − νext
mkd
− νext

q(rk,ϕ0)
if i = d,

so that, adding these equation we get to∫
Dk
Kg = 2π(d+ 1)− 2

d∑
i=1

νext
mki
− νext

p(rk,ϕ0)
− νext

q(rk,ϕ0)
.

Arguing as above, we know that the integral on the left-hand side must
converge to zero as we let k → ∞ and, hence, once again each of the
angles on the right-hand side must converge to π. In particular, this will

force Γ
(rk,ϕ0)
3 to subconverge to Γ′ as we rescale by rk, which violates

the gap condition above.
Such claim being proven, we need to gain local length estimates for

the sequence of geodesics Γ
(rk,ϕ0)
3 .

Key claim 2. for every v ∈ S there exists a metric ball Bδ(v) and a

constant C > 0 such that H 1(Γ
(rk,ϕ0)
3 ∩Bδ(v)) ≤ C for all k ≥ 1.

If the claim were false, we would have concentration of length in
some bounded region of S. In particular, we could find (without loss of
generality):

1) a geodesic segment Γ and a tubular neighborhood thereof having
the form Γ× (−δ, δ);



436 A. CARLOTTO & C. DE LELLIS

2) a set of suitable coordinates {x} on such tubular neighborhood,
so that Γ is defined by −η < x1 < η, x2 = 0;

3) for a subsequence of large radii rk (at least) two smooth functions
fk1 , f

k
2 : (−η, η) → (−δ, δ) such that fk1 < fk2 and graph(fk1 ) ∪

graph(fk2 ) ⊂ Γ
(rk,ϕ0)
3 , furthermore, both fk1 and fk2 converge

smoothly to zero as we let k →∞.

In such case consider the compact region Ωk bounded by a short geodesic
segment connecting (almost orthogonally) fk1 (0) with fk2 (0) together

with a segment of Γ
(rk,ϕ0)
3 , see Figure 3. By the Gauss–Bonnet Theorem

we then must have

lim
k→∞

∫
Ωk

Kg = π .

Next, since the rescalings of Γ
(rk,ϕ0)
3 by a factor rk are converging to Γ′′′

(the convergence being smooth and uniform in the coordinate annulus

of radii 1/3 and 1), we conclude that Γ
(rk,ϕ0)
3 meets the circle {r =

rk/2} at two almost antipodal points at almost square (exterior) angles

ν
′
k, ν

′′
k , cf. again Figure 3. Denoted Σ+

k ,Σ
−
k the two resulting connected

components of {r = rk/2}, we easily conclude that

lim
k→∞

∫
Σ+
k

κg = lim
k→∞

∫
Σ−k

κg = π sinα

as well as

lim
k→∞

ν
′
k = lim

k→∞
ν
′′
k =

π

2
.

Thus, applying the Gauss–Bonnet theorem to the two regions Ω+
k ,Ω

−
k

bounded by Σ+
k in lieu of Σ+ (resp. Σ−k ) together with γ

(rk,ϕ0)
3 we get

at once

lim
k→∞

∫
Ω+
k

Kg = lim
k→∞

∫
Ω−k

Kg = π(1− sinα).

But on the other hand, the region Ωk is contained in either Ω+
k or

Ω−k , which leads to a contradiction because Kg is non-negative. Thus,
we conclude that the local concentration of min-max geodesics cannot
occur.

Lastly, let us discuss the index of the properly embedded geodesic

Γ∞. Now, it is a direct, straightforward check that, in fact, γ
(r0,ϕ0)
3

has also index less or equal than one as a critical point of the length
functional L(·) (for if not we could reparametrize two W 1,2-orthogonal
variations that decrease the length into variations by constant speed
in which category E = L2 and so those would be two variations that

decrease the energy, contradiction). Hence, Γ
(ϕ0)
∞ does also have Morse

index less or equal than one due to locally graphical, smooth (geometric)

convergence of Γ
(r0,ϕ0)
3 to Γ

(ϕ0)
∞ with multiplicity one.
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Ω+
k

Ω−k
Ωk

Σ+
k

Figure 3. The regions Ω±k and Ωk. The thick line rep-

resents the geodesic Γ
(rk,ϕ0)
3 .

Let us, finally, concern ourselves with the rigidity part of our theorem.

If γ
(ϕ0)
∞ : R→ S, an arclength parametrization for Γ

(ϕ0)
∞ , had index zero

then the stability inequality for geodesics∫ +∞

−∞
|u̇(t)|2 dt ≥

∫ +∞

−∞
K(γ∞(t))u2(t) dt,

applied to a cutoff function

u(σ)(t) =

{
1 if |t| ≤ σ,
0 if |t| ≥ 2σ,

and satisfying |u̇(σ)| ≤ 2/σ, implies∫ +σ

−σ
K(γ(ϕ0)

∞ (t)) dt ≤ 16

σ
,

so that letting σ → +∞ we conclude that the Gauss curvature must

vanish identically along Γ
(ϕ0)
∞ . q.e.d.

5. Back to the question of Bangert

In this section, we shall complete the proof of Theorem 1 by showing

that, indeed, the map [ϕ0]→ Γ
(ϕ0)
∞ is injective (for [ϕ] ∈ RP1 the equiv-

alence class of ϕ0 ∈ S1 modulo antipodality), so that we will, in fact,
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obtain uncountably many embedded geodesic lines. Such conclusion fol-
lows at once from a non-twisting statement we are about to present. To
that aim we need a definition and a simple lemma.

Definition 23. Given a properly embedded line Γ ⊂ S, we call ray
a closed, unbounded connected component of Γ.

In particular, it follows that a ray can be parametrized by means of
a map γ : [0,+∞)→ S.

Lemma 24. Let (S, g) be an asymptotically conical surface (in the
sense of Definition 7) and let γ : [0,+∞) → S be a properly embed-
ded geodesic ray. Then, one can find an identification of S minus a
suitable compact set with the outer portion of an Euclidean wedge of an-
gle 2π sinα (with pointwise identification of the sides, see Remark 10),
a large constant ρ0 > 0 and a defining function f ∈ C2([ρ0,+∞);R)
whose Cartesian graph10 coincides with the image γ[0,+∞)∩{ρ ≥ ρ0}
and such that |f(ρ)|+ρ|f ′(ρ)| ≤ Cρ1−µ (for µ > 0 the asymptotic decay
rate of the surface in question).

This assertion can be proved by observing that the geometric as-
sumption of vanishing geodesic curvature, namely κg = 0, implies κδ =
O(ρ−1−µ) and noticing that such decay rate (by integrability of ρ 7→
ρ−1−µ when µ > 0) ensures uniqueness of the tangent cone at infinity
of spt(γ) and the indefinite extension of a local graphical description of
such support, with the claimed expansion. This is a (simpler) variation
of well-known arguments for complete minimal surfaces, cf. [13], so we
omit the details.

In case the conclusion of Lemma 24 holds we shall say that the curve
γ is asymptotic to the coordinate half-line ϑ = 0 (obviously, this is to
be understood in a suitably weak sense if 0 < µ ≤ 1). Now, the claimed
non-twisting phenomenon can be phrased as follows:

Proposition 25. Let (S, g) be an asymptotically conical surface (in
the sense of Definition 7) and let γ : [0,+∞) → S be a properly
embedded geodesic ray, asymptotic to the half-line ϑ = 0. For any
fixed 0 < ϑ < π sinα one cannot find two diverging sequences of radii
{ρk} and {ρ′k} with ρ′k < ρk for all k ≥ 1 and a sequence of so-
lutions {Γk} to the min-max Plateau problems with endpoints pk, qk
with ρ(pk) = ρ(qk) = ρk, ϑ(qk) = ϑ, ϑ(pk) = ϑ − π sin(α) such that
Γk ⊃ graph(fk) with supρ′k/2≤ρ≤2ρ′k

(|fk(ρ)|+ ρ′k|f ′k(ρ)|) < ρ′kk
−1.

Proof. Let us argue by contradiction, assuming the existences of scales
and min-max geodesics as in the statement above. For each k ≥ 1

10The wedge W in question has natural Euclidean coordinates (x1, x2), where of
course x1 = ρ cosϑ, x2 = ρ sinϑ, and so the Cartesian graph of a function f : I → R
is meant to be the set

{
(x1, x2) ∈W,x2 = f(x1) for x1 ∈ I

}
.
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consider an arc-length parametrization γk : [s−k , s
+
k ] of Γk such that

mk := γk(0) ∈ graph(fk) ∩ {ρ = ρ′k} and dρ(γk)
ds s=0

> 0. Basic Morse-
theory (which amounts, in the special case of curves, to a direct curva-
ture comparison using large coordinate circles) ensures that, in fact,

dρ(γk)

ds
≥ 0 ∀ s ∈ [0, s+

k ],

which means that the radius function (when restricted to Γk) is mono-
tone non-decreasing from mk to qk. Set Γωk = γk[0, s

+
k ] and Γλk =

Γ∩{ρ′k ≤ ρ ≤ ρk}. Notice that (possibly neglecting finitely many terms

in the sequence and renaming indices) we can assume that Γλk is the
(Cartesian) graph of a defining function f restricted to [ρ′k, ρk] and sat-
isfying the bounds described in Lemma 24.

Let us then consider the (possibly multiply-connected) domain Dk

whose piecewise smooth boundary consists of Γωk ,Γ
λ
k and the arcs of

coordinate circles at radii ρ′k and ρk, which we shall call ∆′k and ∆k,

respectively. Set Ḋk = tdi=0Ḋ
k
i where mk ∈ Dk

0 and qk ∈ Dk
d (as shown

in Figure 4).

Figure 4. The twisting phenomenon: we rule out the
existence of min-max geodesic segments that behave like
the orange line (by courtesy of Mario B. Schulz).
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At this stage, let us simply apply the Gauss–Bonnet theorem to each
domain Dk

i for i = 0, 1, . . . , d. Let νk1 , . . . , ν
k
d the exterior angles at the

intersection points of Γωk and Γλk (if there is no such intersection point
the proof is identical and, in fact, simpler). One has that∫

Dki

Kg = o(1) ∀ i = 0, 1, . . . , d as one lets k →∞

by virtue of the integrability of the Gauss-curvature function Kg (which,
in turn, is implied by the bound |Kg| ≤ Cρ−2−µ). Furthermore, for what
concerns the integral of the geodesic curvature along the boundary∫

∂Dki

κg


≤ C((ρ′k)

−µ + k−1) if i = 0,

= 0 if 0 < i < d,

= ϑ(1 + o(1)) if i = d.

Lastly, the exterior angles at the four intersection points Γλk ∩∆′k,Γ
ω
k ∩

∆′k,Γ
λ
k ∩∆k,Γ

ω
k ∩∆k are all π/2 + o(1) as we let k →∞. (Notice that,

in the case of the angle at Γωk ∩ ∆k this is a consequence of the blow-
down characterization of the min-max segments we construct, which in
turn is directly implied by Proposition 19. Thus, possibly at the cost of
extracting a subsequence we can always ensure that this angle converges
to π/2 as well). As a result, proceeding inductively for i = 0, 1, . . . , d−1
the Gauss–Bonnet theorem provides νki → π for i = 1, 2, . . . , d as k → 0
and, hence, for i = d

2π =

∫
Dkd

Kg +

∫
∂Dkd

κg + exterior angles = o(1) + 2π +

∫
∆k

κg,

so that one should conclude ϑ(1+o(1)) =
∫

∆k
κg = o(1) which gives the

desired contradiction as soon as one lets k →∞. q.e.d.

Appendix A. Geodesics, 1-currents and convergence results

A.1. Geodesics. Let (N, g) be a complete, Riemannian manifold of
dimension greater or equal than two. We will say that a C2-curve γ :
I → N is a parametrized geodesic if Dγ̇ γ̇ = 0 where D denotes the Levi-
Civita connection on (N, g), the apex ˙ denotes ordinary differentiation
with respect to the parameter and I ⊂ R is an interval. If I = [a, b], a
compact interval, it is well-known that γ (as above) is a geodesic if and
only if it is a critical point of the length functional

L(γ) =

∫
I

√
g(γ̇(t), γ̇(t)) dt.

The same characterization also holds true in general (hence, for instance,
when I = R) for variations that are supported on relatively compact
subdomains of I. A posteriori, a geodesic is, in fact, a smooth curve,
namely γ ∈ C∞(I,N).



MIN-MAX EMBEDDED GEODESIC LINES 441

It is often convenient to work with the energy functional

E(γ) =

∫
I
g(γ̇(t), γ̇(t)) dt,

for which the Cauchy–Schwarz inequality gives L2 ≤ E|I|. In particular,
if I = [0, 1] and γ is parametrized by a constant multiple of the arc-
length then L2 = E. Hence, it is easily seen that a critical point of E
is also a critical point of L and, viceversa, a critical point of L can be
re-parametrized so to become a critical point of E.

If we set Γ := γ(I) then one can canonically associate to Γ an inte-
gral 1-current T (with unit multiplicity and orientation induced by the
parametrization itself) and of course spt(T ) = Γ while spt(∂T ) consist
of the endpoints of Γ. Notice that (assuming, say, compactness of I)
one has L(γ) = H 1(Γ). If γ : I → N is a parametrized geodesic, we
shall say (with slight abuse of terminology) that Γ is a geodesic (rather
than the support of a geodesic). This choice, which we adopt for the
sake of brevity, is justified by the basic fact that for every diffeomor-
phism λ : I1 → I one has that γ : I → N is a geodesic if and only if
γ · λ : I1 → N is.

A.2. Convergence. Geodesics could also, obviously, be regarded as
the one-dimensional, degenerate counterpart of minimal surfaces and
this analogy suggests the effectiveness of dealing with convergence of
supports, rather than parameterizations. Notice that, in fact, geodesics
are the one-dimensional counterpart of totally geodesic surfaces so that
the corresponding curvature estimates come (tautologically) for free.

Definition 26. Let (N, g) be a Riemannian manifold of dimension
two and let {Γk}k≥1 be a sequence of smooth, connected 1-dimensional

submanifolds (possibly with boundary). We shall say that such sequence
converges geometrically with multiplicity m ≥ 1 if there exists a smooth
1-dimensional submanifold Γ such that:

• for every point p of Γ \ ∂Γ one can find an open tubular neigh-
borhood U and local coordinates {x} such that Γ∩U is described
by the equation x2 = 0 and for k ≥ k0 the support Γk, when
restricted to U , consists of exactly m smooth graphs, namely if
U = (−δ1, δ1) × (−δ2, δ2) there exist fi ∈ C∞((−δ1, δ1),R) with
f1 < f2 < . . . < fm so that

Γk = {(x1, x2) ∈ (−δ1, δ1)× (−δ2, δ2) : x2 = fi(x1), i = 1, 2, . . . ,m} ,
and each function fi converges to zero in C∞ as we let k →∞;
• if ∂Γ is not empty, then ∂Γk = ∂Γ (at least for k ≥ k0) and

the above condition holds with m = 1 both for interior and, with
straightforward modifications, for boundary points.

We mention here two simple compactness results that are frequently
used in this paper.
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Lemma 27. Let (N, g) be a Riemannian manifold of dimension two
and let {Γk}k≥1 be a sequence of (smooth, simple) geodesics that are
either closed or with diverging endpoints, and satisfy locally uniform
length bounds.11 If {Γk} does not escape from every bounded domain of
N , then there exists a smooth geodesic Γ such that, possibly extracting a
subsequence (which we will not rename), {Γk} converges geometrically
to Γ.

In presence of a non-empty boundary, one can gain sub-convergence
with unit multiplicity.

Lemma 28. Let (N, g) be a Riemannian manifold of dimension two
and let {Γk}k≥1 be a sequence of (smooth, simple) geodesic segments
all sharing the endpoints p, q and with uniformly bounded length. Sup-
pose that there is no geodesic starting at p (resp. q) and ending with
a self-intersection point at q (resp. p).12 Then there exists a smooth
geodesic Γ such that, possibly extracting a subsequence (which we will
not rename), {Γk} converges geometrically to a geodesic segment Γ with
multiplicity one.
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