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DEHN FILLING AND THE THURSTON NORM

Kenneth L. Baker∗ & Scott A. Taylor∗

Abstract

For a compact, orientable, irreducible 3–manifold with toroidal
boundary that is not the product of a torus and an interval or a
cable space, each boundary torus has a finite set of slopes such
that, if avoided, the Thurston norm of a Dehn filling behaves
predictably. More precisely, for all but finitely many slopes, the
Thurston norm of a class in the second homology of the filled man-
ifold plus the so-called winding norm of the class will be equal to
the Thurston norm of the corresponding class in the second ho-
mology of the unfilled manifold. This generalizes a result of Sela
and is used to answer a question of Baker-Motegi concerning the
Seifert genus of knots obtained by twisting a given initial knot
along an unknot which links it.

1. Introduction

How does the Thurston norm behave under Dehn filling?
Let N be a compact, orientable 3–manifold with toroidal boundary

and let T ⊂ ∂N be a particular component. Consider the Dehn fillings
NT (b) along slopes b in T . For each slope b in T , the Dehn filling induces
a natural inclusion of N into NT (b) that induces the monomorphism

ιb : H2(N, ∂N − T )→ H2(NT (b), ∂NT (b))

defined as follows. If z ∈ H2(N, ∂N − T ) is represented by a properly
embedded surface S in N with ∂S ∩ T = ∅, then ιb(z) = ẑ is also
represented by S under the inclusion. Consequently,

(∗) x(z) ≥ x(ẑ)

on the Thurston norms of classes z ∈ H2(N, ∂N − T ) and ιb(z) = ẑ ∈
H2(NT (b), ∂NT (b)).

Gabai and Sela both address when Inequality (∗) is an equality. Gabai
shows that for a fixed class z ∈ H2(N, ∂N−T ), x(z) = x(ẑ) for all except
at most one slope b in T [Gab87a, Corollary 2.4]. Sela extends this
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result showing that the equality x(z) = x(ẑ) holds for every class z ∈
H2(N, ∂N − T ) and induced class ẑ ∈ H2(NT (b), ∂NT (b)) for all Dehn
fillings except along a finite number of slopes b in T [Sel90, Theorem 3].1

In this article we extend consideration to all classes in H2(N, ∂N).
To do so, for each slope b in T we consider the restriction of the Dehn
filling NT (b) to N rather than the inclusion of N into NT (b). Restriction
gives a monomorphism

ρb : H2(NT (b), ∂NT (b))→ H2(N, ∂N)

defined as follows. If ẑ ∈ H2(NT (b), ∂NT (b)) is represented by a prop-

erly embedded surface Ŝ that is transverse to Kb, then ρb(ẑ) = z is

represented by S = Ŝ ∩N . Here, and throughout, we take Kb ⊂ NT (b)
to be the core of the filling with tubular neighborhood N (Kb) so that
N = NT (b)−N (Kb), and we orient Kb and its meridian b so that b links
Kb positively. The algebraic intersection number with the core Kb is a
linear form on homology, so its absolute value is a pseudo-norm. That
is, the pseudo-norm winding number of Kb about a homology class
ẑ ∈ H2(NT (b), ∂NT (b)) is defined to be

windKb
(ẑ) = |[Kb] · ẑ|.

The winding number enables the following extension of Inequality
(∗), whose proof is given in Section 2.2.

Lemma 1.1. Let N be a compact, orientable, irreducible 3–manifold
whose boundary is a union of tori. Let T be a component of ∂N and let
b be a slope in T . If NT (b) has no S1×D2 or S1×S2 summands, then
for all classes ẑ ∈ H2(NT (b), ∂NT (b)),

(†) x(z) ≥ x(ẑ) + windKb
(ẑ)

where ρb(ẑ) = z.

Our main goal in this paper is to address when Inequality (†) is an
equality, i.e. when

(‡) x(z) = x(ẑ) + windKb
(ẑ).

For convenience, if there exists a class ẑ ∈ H2(NT (b), ∂NT (b)) for
which Equality (‡) fails, then we say the slope b is a norm-reducing
slope, the class z = ρb(ẑ) ∈ H2(N, ∂N) is a norm-reducing class
with respect to the norm-reducing slope b, and the class ẑ ∈ H2(NT (b),
∂NT (b)) is a norm-reducing class with respect to the knot Kb.

Theorem 4.6. Let N be a compact, connected, orientable, irreducible
3–manifold whose boundary is a union of tori. Then either

1) N is a product of a torus and an interval,

1Sela uses [Gab87a, Theorem 1.8] which required an atoroidality hypothesis. How-
ever, [Gab87a, Corollary 2.4] can be used instead to avoid such an additional hypoth-
esis. Lackenby discusses such atoroidality hypotheses in the Appendix to [Lac97a].



DEHN FILLING AND THE THURSTON NORM 393

2) N is a cable space, or
3) for each torus component T ⊂ ∂N there is a finite set of slopes
R = R(N,T ) in T such that if b 6∈ R then b is not norm-reducing.

In Corollary 4.4 we obtain a bound on the size of R(N,T ) in terms of
the Thurston norms of two integral classes of two different fillings and
the distance between the two filling slopes. Since windKb

(ẑ) = 0 when
ρb(ẑ) ∈ H2(N, ∂N − T ), Theorem 4.6 generalizes Sela’s result (with
the additional assumption that N is irreducible). Sela also explicitly
bounds, by the number of faces of the Thurston norm ball ofH2(N, ∂N−
T ), the number of slopes b for which Equation (‡) may fail for classes
z = ρb(ẑ) ∈ H2(N, ∂N − T ) when windKb

(ẑ) = 0. We appeal to his
result to handle the classes in H2(N, ∂N − T ).

In the same vein as Gabai’s and Sela’s results, Lackenby [Lac97b,
Theorem 1.4b] (under additional hypotheses and a change of notation2)

showed that if Q̂ is a compact connected surface in M ′ = NT (a) which
cannot be isotoped to be disjoint fromKa and if there is a norm-reducing

class under a filling of slope b with ∆ = ∆(a, b) ≥ 2, then Q̂ can be
isotoped so that

|Ka ∩ Q̂|(∆− 1) ≤ −χ(Q̂).

If, in Lackenby’s setup, Q̂ is taken to be a taut representative of a
non-zero class ŷ ∈ H2(M

′, ∂M ′), then we have (after rearranging the
inequality):

∆ ≤ 1 +
x(ŷ)

|Ka ∩ Q̂|
.

Our Corollary 4.3, gives a version of this result for the situation when
H2(N, ∂N), and not just H2(N, ∂N − T ), has a norm-reducing class
with respect to the slope b.

In addition to considering a fixed component T of ∂N and studying
the dependency of the Thurston norm on the filling slope, we can also
consider a 3-manifold M and consider how the Thurston norm of man-
ifolds M ′ obtained by surgery on an oriented knot K in M depends on
the dual Thurston norm x∗([K]) of the class α = [K] ∈ H1(M ;Z).

Theorem 4.7. Let M be a compact, orientable 3–manifold whose
boundary is a union of tori, ∆ ∈ N, and α ∈ H1(M ;Z). Assume that
every sphere, disk, annulus, and torus in M separates. If

(∆− 1)x∗(α) > 1,

2In Lackenby’s paper, see Assumptions 1.1 and Remark 1.3. To convert the nota-
tion from ours to Lackenby’s make the following changes: γ = ∅, M ′ →M , Ka → L,

N → M − int(N(L)), Q̂ → F . The class whose norm is reduced is called z1 by
Lackenby.
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then every irreducible, ∂–irreducible 3–manifold obtained by a Dehn
surgery of distance ∆ on a knot K representing α has no norm-reducing
classes with respect to the knot which is surgery dual to K.

The contrapositive is also a useful formulation, as it shows that knots
resulting from non-longitudinal surgery on a knot with a norm-reducing
class have bounded dual norm.

Finally, we give an application to the genus of knots in twist fam-
ilies. A twist family of knots {Kn} is obtained by performing −1/n–
Dehn surgery on an unknot c that links a given knot K = K0. When
`k(K, c) = 0, it is a fundamental consequence of [Gab87a, Corollary 2.4]
that g(Kn) is constant for all integers n except at most one where the
genus decreases. Using the multivariable Alexander polynomial, the
first author and Motegi showed that if |`k(K, c)| ≥ 2, then g(Kn)→∞
as n→∞ [BM15]. When |`k(K, c)| = 1, this fails if c is a meridian of
K since Kn = K for all K. Here we answer [BM15, Question 2.2] by
showing this is the only exception.

Theorem 5.1. If ω = |`k(K, c)| > 0, then limn→∞ g(Kn) = ∞
unless c is a meridian of K.

Acknowledgments. The authors would like to thank Colby College
and University of Miami for their hospitality during this project and
K. Motegi for inspiring conversations.

2. Preliminaries

2.1. Notation and conventions. The following notation is used
throughout the article. We take N to be a compact, connected, ir-
reducible oriented 3–manifold where ∂N is a non-empty union of tori
and focus upon a particular component T ⊂ ∂N . Given two slopes
a, b ⊂ T , we set the results of Dehn filling N along these slopes to be
the two 3–manifolds M = NT (b) and M ′ = NT (a). Furthermore, we
let K = Kb ⊂ M and K ′ = Ka ⊂ M ′ denote the core knots of the two
filling solid tori.

The distance ∆ = ∆(a, b) between two slopes a, b ⊂ T is the mini-
mal number of points of intersection between simple closed curves in T
representing a and b.

Given a surface S properly embedded in N , the union of the boundary
components of S in T is ∂TS = ∂S ∩ T . If the slope of each component

of ∂TS in T is b (as an unoriented curve), then we set Ŝ ⊂ M to
be the surface obtained by capping off the components of ∂TS with
meridian disks of the filling solid torus. Observe that by construction,

|K ∩ Ŝ| = |∂TS|.
In this article, a lens space is a closed 3–manifold with a genus 1

Heegaard splitting other than S3 and S1 × S2. In particular, the fun-
damental group of a lens space is a non-trivial, finite, cyclic group.
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2.2. Thurston norm. Thurston introduced two norms on the homol-
ogy groups of a compact, orientable 3–manifold W [Thu86], now com-
monly known as the Thurston norm and the dual Thurston norm:

x : H2(W,∂W ;R)→ [0,∞) and x∗ : H1(W ;R)→ [0,∞),

which we may write as xW and x∗W to emphasize the 3–manifold W .
On an integral class σ ∈ H2(W,∂W ;Z), the Thurston norm is defined

by

x(σ) = min
S

n∑
i=1

max{0,−χ(Si)},

where the minimum is taken over all embedded surfaces S representing
σ with connected components S1, . . . , Sn. The function x is linear on
rays and convex. These properties enable it to be extended first to
rational homology classes and then to real homology classes.

In general, the function x is only a pseudo-norm; x is a norm if W
contains no non-separating sphere, disk, torus, or annulus. Nevertheless,
x is reasonably well behaved even in the presence of non-separating tori
and annuli, it is non-separating spheres and disks that complicate the
norm:

If an integral class σ ∈ H2(W,∂W ;Z) cannot be rep-
resented by a surface with a non-separating sphere or
disk component, then x(σ) is just the minimum of −χ(S)
among surfaces representing σ.

It is for such integral classes that Inequality (†) holds. Assuming W has
no S1 × S2 or S1 ×D2 summand ensures this is the case for all classes,
as does the more heavy-handed assumption that W is irreducible and
∂–irreducible. In particular, we can now prove Lemma 1.1.

Proof of Lemma 1.1. Recall that N is a compact, orientable, irreducible
3–manifold with ∂N the union of tori and T ⊂ ∂N a component. Let
b be a slope in T and assume that NT (b) has no S1 × D2 or S1 ×
S2 summands. Let ∂T : H2(N, ∂N) → H1(T ) be the boundary map
restricted to T . We will show that for all classes ẑ ∈ H2(NT (b), ∂NT (b)),

(†) x(z) ≥ x(ẑ) + windKb
(ẑ).

As usual, it suffices to prove the inequality for integral classes. In
which case, there exists a properly embedded oriented surface S ⊂ N
such that S has no separating component, [S] = z, and all components
of ∂TS are coherently oriented curves, each of slope b, and x(S) = x(z).
If some component of S is a sphere or disk, then it would persist into
NT (b) as a non-separating sphere or disk, contrary to our hypotheses.
Hence S has no sphere or disk component and x(S) = −χ(S).
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Cap off the components of ∂T (S) in NT (b) with disks to obtain the

surface Ŝ. Observe that

|∂TS| = |Ŝ ∩Kb| = windKb
(ẑ)

since the components of ∂TS are coherently oriented. Since M contains

no non-separating sphere or disk, −χ(Ŝ) ≥ x(ẑ). Consequently,

x(z) = −χ(S) = −χ(Ŝ) + windKb
(ẑ) ≥ x(ẑ) + windKb

(ẑ).

q.e.d.

Finally, on a class α ∈ H1(W ;R), the dual Thurston norm is defined
by

x∗(α) = sup
x(σ)≤1

|α · σ|,

where · denotes the intersection product. The function x∗ : H1(W ;R)→
[0,∞) is continuous.

2.3. Wrapping numbers. Having defined the winding number, we
now turn to wrapping number. A compact, oriented, properly em-
bedded surface S in a 3–manifold W is taut (or ∅–taut) if it is in-
compressible (i.e. does not admit a compressing disk), and minimizes
the Thurston norm among embedded surfaces representing the class
[S, ∂S] ∈ H2(W,∂S) [Sch89, Def. 1.2]. Observe that if a surface S ⊂ N
is taut and has the property that x(S) = x([S]), then the surface S′

obtained by discarding all separating components of S (which are neces-
sarily spheres, disks, annuli, and tori) is also taut and has the properties
that [S] = [S′] ∈ H2(N, ∂N) and x(S′) = x([S]) = x([S′]).

We define the wrapping number of K about an integral homology
class ẑ ∈ H2(M,∂M ;Z) to be

wrapK(ẑ) = min
Ŝ
|K ∩ Ŝ|,

where the minimum is taken over all taut representatives Ŝ of ẑ.

Since discarding separating components of Ŝ will not in-

crease |K ∩ Ŝ|, we will henceforth assume that whenever
we discuss a taut surface realizing the Thurston norm of
a homology class in the second homology group of a 3-
manifold relative to the boundary of that 3-manifold, we
have discarded all separating components.

We may extend the wrapping number to H2(M,∂M ;Q). Assume Ŝ is
a taut surface realizing wrapK(ẑ) for an integral class ẑ ∈H2(M,∂M ;Z).

Then, following [Thu86, Lemma 1], n parallel copies of Ŝ is a taut sur-
face realizing wrapK(n ẑ) = nwrapK(ẑ) for positive integers n. Thus
for a rational class q̂ we define wrapK(q̂) = 1

nwrapK(n q̂) where n is a
positive integer such that nq̂ is an integral class. Since algebraic inter-
section numbers give lower bounds for geometric intersection numbers,
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wrapK(q̂) ≥ windK(q̂) for all q̂ ∈ H2(M,∂M ;Q). Observe that if M
has no norm-reducing classes with respect to K, then wrapK = windK
is a pseudo-norm. However, we believe that, in general, the triangle
inequality will not hold for wrapK .

Question 2.1. Must the wrapping number satisfy the triangle in-
equality?

A class ẑ ∈ H2(M,∂M) is exceptional with respect to a knot K
[Tay14] if the winding number and wrapping number are not equal;
that is ẑ is exceptional with respect to K if

windK(ẑ) < wrapK(ẑ).

This definition takes root in the practical difference between the
Thurston norm and Scharlemann’s β–norm. As discussed in [Tay14],
a class ẑ is exceptional with respect to K if and only if no representative
of ẑ is both ∅–taut and K–taut. (Here, K is playing the role of β. See
[Sch89] for the definitions of the β–norm and β–taut surfaces.)

For our present purposes, we observe that norm-reducing classes and
exceptional classes are equivalent in the absence of non-separating
spheres and disks. This allows us to parlay technical results about
exceptional classes into results about norm-reduction.

Lemma 2.2. Suppose that M contains no non-separating sphere or
disk. Then, with respect to a knot K in M , a class ẑ ∈ H2(M,∂M) is
exceptional if and only if it is norm-reducing.

Proof. Assume M = NT (b) where K = Kb. For a class ẑ ∈ H2(M,
∂M), let z = ρb(ẑ) ∈ H2(N, ∂N).

First, we claim that if S is a taut representative of a class [S] ∈ im ρb,
then

x([S]) = x(S) = −χ(S).

To see this, let S ⊂ N be taut and have each component of ∂TS of
slope b. By definition, x([S]) = x(S). Suppose that x(S) 6= −χ(S).
Then S contains a component P which is a sphere or disk. Since S is
taut, P is non-separating. Capping off ∂TP in M , if necessary, creates
a non-separating sphere or disk in M , contrary to hypothesis.

We now embark on the proof. The claim is trivially satisfied for the
0 class, so assume that 0 6= ẑ ∈ H2(M,∂M ;Z) is not an exceptional

class for K. Then there is a taut representative Ŝ ⊂ M of ẑ for which

wrapK(Ŝ) = windK(Ŝ). Thus

xN (z) ≤ xN (S)

= −χ(S)

= −χ(Ŝ) + windK(Ŝ)
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= xM (ẑ) + windK(ẑ)

≤ xN (z),

where the last inequality is due to Inequality (†). Consequently xM (ẑ)+
windK(ẑ) = xN (z), and thus ẑ is not norm-reducing with respect to K.

Conversely, assume that ẑ ∈ H2(M,∂M) is exceptional with respect
to K so that wrapK(ẑ) > windK(ẑ). Let S be a taut surface in N

representing z, and let Ŝ ⊂ M be the result of capping off ∂TS with

disks so that [Ŝ] = ẑ. Then

xN (z) = −χ(S) = −χ(Ŝ) + |Ŝ ∩K| > xM (ẑ) + windK(ẑ),

because |Ŝ ∩K| ≥ |Ŝ ·K| = windK(ẑ) and −χ(Ŝ) ≥ xM (ẑ). Thus, ẑ is
norm-reducing with respect to K. q.e.d.

2.4. Multi-∂-compressing disks. As is often the case in studies of

Dehn filling, we will want use a surface Q̂ in one filling M ′ = NT (a)
of N to say something useful about a different filling M = NT (b). For

us, the surface Q̂ will be most useful if it has no “multi-∂-compressing
disk.”

Suppose that Ŝ ⊂M ′ = NT (a) is a surface transversally intersecting

K ′ ⊂ M ′ non-trivially. A multi-∂-compressing disk for Ŝ (with
respect to K ′) is a disk D ⊂ N such that there is a component A ⊂ T−S
such that:

• The interior of D is disjoint from ∂N ∪ S.
• The boundary of D is a simple closed curve lying in S ∪A.
• After orienting ∂D, ∂D ∩ A is a non-empty, coherently oriented

collection of spanning arcs of A.

Given a multi-∂-compressing disk D for Ŝ, then we may create a new

surface Ŝ′ that is homologous to Ŝ but intersects K ′ in two fewer points:

that is, [Ŝ] = [Ŝ′] ∈ H2(M
′, ∂M ′) and |Ŝ′∩K ′| = |Ŝ∩K ′|−2. We create

Ŝ′ by removing the open regular neighborhood of two points of K ′ ∩ Ŝ,
attaching the annulus A (from the definition of “multi-∂-compressing
disk”) and then compressing using D.

The next lemma allows us to know when we have a surface without
a multi-∂-compressing disk.

Lemma 2.3.

• Suppose that Ŝ ⊂ M ′ is a sphere transverse to K ′ such that S =

Ŝ ∩ N is incompressible and not ∂–parallel. Then either M ′ has

a lens space summand or Ŝ does not have a multi-∂-compressing
disk with respect to K ′.

• Suppose that Ŝ ⊂M ′ is a disk transverse to K ′ such that S = Ŝ∩N
is incompressible. Then either M ′ has a lens space summand or

Ŝ does not have a multi-∂-compressing disk with respect to K ′.
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• Suppose that Ŝ ⊂ M ′ is a taut representative of some non-zero
class in H2(M

′, ∂M ′;Z) and that, out of all such taut surfaces

representing that class, Ŝ minimizes |Ŝ ∩ K ′|. Then either M ′

contains a non-separating sphere or disk or Ŝ does not have a
multi-∂-compressing disk with respect to K ′.

Proof. Suppose that Ŝ ⊂M ′ is a surface transverse to K ′, such that

S is incompressible and not ∂-parallel. If K ′ is disjoint from Ŝ, then
trivially there is no multi-∂-compressing disk. Hence we further assume

K ′ transversally intersects Ŝ non-trivially.

Suppose that D is an oriented multi-∂-compressing disk for Ŝ. Then
there is an annulus component A ⊂ T \S such ∂D∩A is a non-empty col-

lection of coherently oriented spanning arcs of A. Let R̂ be the surface in
M ′ obtained from isotoping S ∪A ⊂ N with support in a neighborhood
of A to be properly embedded in N and then capping off the boundary

components in T with meridional disks of the filling solid torus; i.e. R̂ is

the result of tubing Ŝ along a particular arc of K ′ \ Ŝ. A further slight

isotopy makes R̂ disjoint from Ŝ.

Now let Ŝ′ be the result of compressing R̂ using D, and slightly

isotoping to be disjoint from R̂. Observe that −χ(Ŝ′) = −χ(Ŝ) and

that there is a natural bijection between the components of Ŝ and Ŝ′.

First assume Ŝ is a sphere. Then Ŝ′ must also be a sphere. If ∂D
runs just a single time across A, then D provides a ∂–compression for
S in N . Since N is irreducible, either S is compressible or S is a
∂-parallel annulus contrary to hypothesis. If ∂D runs multiple times

across A, then Ŝ and Ŝ′ cobound a 3–manifold W in which R̂ is a

genus 1 Heegaard surface. Because Ŝ and Ŝ′ are both spheres, W is a
twice-punctured lens space of finite order |∂D ∩ A| > 1. The comple-
ment of a neighborhood of an embedded arc in W that connects both
components of ∂W is therefore a non-trivial lens space summand of
M ′.

When Ŝ is a disk, we similarly obtain that Ŝ′ is also a disk. Along

with an annulus in ∂M ′, the disks Ŝ and Ŝ′ bound a punctured lens

space W in which R̂ is a punctured Heegaard torus. Again, this lens

space has finite order |∂D ∩ A| which is non-trivial since Ŝ is incom-
pressible. Hence W is a lens space summand of M ′.

Now assume that Ŝ is a taut representative of a class in H2(M
′, ∂M ′;

Z). If Ŝ has a sphere, then the component must be non-separating since

Ŝ is taut. So we may further assume Ŝ is not a sphere. By construction,

the surface Ŝ′ represents the same class, has the same euler characteris-

tic, and intersects K ′ two fewer times than does Ŝ. Furthermore, since

every component of Ŝ is non-separating, every component of Ŝ′ is also

non separating. If Ŝ′ is not taut, then since it is homologous to the taut
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surface Ŝ and is also Thurston norm minimizing for this homology class,
it must have a compressible component that is a non-separating torus
or annulus. Compressing this torus or annulus creates a non-separating
sphere or disk in M ′. q.e.d.

3. A key theorem of Taylor

In [Tay14], the second author develops some classical results ([Sch89,
Application III] and [Sch90]) from Scharlemann’s combinatorial version
[Sch89] of Gabai’s sutured manifold theory [Gab83,Gab87a,Gab87b] in
terms of surgeries on knots with exceptional classes. Here we adapt a
key technical theorem for our purposes.

Theorem 3.1 (Cf. [Tay14, Theorem 3.14]). Assume that N is irre-
ducible and ∂–irreducible. Let a, b be two distinct slopes in T ⊂ ∂N .
Suppose that M = NT (b) is not a solid torus, has no proper summand
which is a rational homology sphere, and H2(M,∂M) 6= 0. Suppose that
M ′ = NT (a) contains a properly embedded, compact, orientable surface

Q̂ ⊂ M ′ that transversally intersects K ′ non-trivially, does not have
a multi-∂-compressing disk for K ′, and restricts to an incompressible

surface3 Q = Q̂ ∩N in N .
If

−χ(Q̂) < |Q̂ ∩K ′|(∆(a, b)− 1),

then M is irreducible and H2(M,∂M) has no exceptional classes with
respect to K.

For the proof, we content ourselves with explaining how the statement
follows from [Tay14, Theorem 3.14]. We assume familiarity with the
basic definitions regarding β–taut sutured manifold technology from
[Sch89] (see also [Tay14]).

Proof. Our notation is very similar to that of [Tay14], except that we
are using K as the core knot of the filling M = N(b) instead of β and
we consider classes ŷ ∈ H2(M,∂M) rather than classes y.

Our hypotheses immediately imply Conditions (1) and (3) of [Tay14,
Theorem 3.14]. Since N is irreducible and ∂–irreducible, we may con-
sider it as a taut sutured manifold (N,∅,∅), considering ∂N as toroidal
sutures. The filling M = NT (b) induces a sutured manifold (M,∅,K)
that is then a K–taut sutured manifold, providing Condition (2).

Since Q̂∩K ′ 6= ∅ and the curves of ∂TQ have slope a, the boundary

of Q is not disjoint from the slope b in T . Sphere components of Q̂ that
are disjoint from K ′ are the sphere components of Q; however, since
the irreducibility of N implies that any sphere component of Q must

3We use the convention that any sphere component of an incompressible surface
does not bound a ball, and any disk component is not ∂–parallel.



DEHN FILLING AND THE THURSTON NORM 401

bound a ball in N , the incompressibility of Q prohibits the existence
of such sphere components. Furthermore, no component of Q is a disk
with essential boundary since N is ∂–irreducible and no component of
Q is a disk with inessential boundary due to the incompressibility of Q
and irreducibility of N . Thus Condition (4) is satisfied.

We may now apply [Tay14, Theorem 3.14]. Our hypothesis that M
has no proper summand that is a rational homology sphere immediately
rules out Conclusion (4) of [Tay14, Theorem 3.14]. We proceed to show
that Conclusions (3) and (2) also fail and that Conclusion (1) implies
our stated result.

In the terminology of [Sch89, Section 7] and [Tay14, Section 2.2], the
surfaceQ is a parameterizing surface for the sutured manifold (M,∅,K).
By definition (again, see [Sch89, Definition 7.4] and [Tay14, Section 2.2]),
its index I(Q) is given by

I(Q) = −2χ(Q)

since (i) there are no annular sutures on ∂M and (ii) K is a knot (rather
than a collection of properly embedded arcs). Without loss of generality,
we may assume that the slope b has been isotoped in T to intersect ∂Q

minimally. Thus, |∂Q ∩ b| is equal to ∆(a, b)|Q̂ ∩ K ′|. Our assumed

inequality on the Euler characteristic of Q̂ can then be rearranged to
yield

I(Q) < 2|∂Q ∩ b|.

Hence, Conclusion (3) of [Tay14, Theorem 3.14] does not hold.
A Gabai disk for Q is a disk D embedded in M that K non-trivially

and coherently intersects, such that its restriction to N is transverse to
Q and |Q∩∂D| < ∆(a, b)|∂TQ|. It is shown in [CGLS87] (though with-
out the language of Gabai disks), and further explained in [Sch90] and
[Tay14], that a Gabai disk will contain a Scharlemann cycle. As Q is in-
compressible and N is irreducible, the interior of the Scharlemann cycle

can be isotoped to be a multi-∂-compressing disk for Q̂. See [Tay14, Sec-
tion 4] for more details. (Although observe that [Tay14, Lemma 4.3] ne-
glected to consider possible circles of intersection between the interior
of the Scharlemann cycle and Q. We have added the incompressibility

hypotheses to Q to deal with this.) Since we are assuming that Q̂ has
no multi-∂-compressing disk, Conclusion (2) of [Tay14, Theorem 3.14]
does not hold.

Consequently, the Conclusion (1) of [Tay14, Theorem 3.14] holds.
Hence, given any non-zero class ŷ ∈ H2(M,∂M ;Z), there is a K–taut
hierarchy of (M,∅,K) which is also ∅–taut such that the first decom-

posing surface Ŝ ⊂M represents ŷ. In particular, since sutured manifold
decompositions yields a taut sutured manifold only if the decomposing
surface is taut, the K–tautness and ∅–tautness of the hierarchy implies
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the surface Ŝ must be both K–taut and ∅–taut (see e.g. [Sch89, Def-
inition 4.18], [Sch90, Section 2], [Gab83, Lemma 3.5 and Section 4]).
Since (M,∅,∅) is ∅–taut, M is irreducible. By the definition of K–

taut, the knot K always intersects Ŝ with the same sign. That is,

windK(Ŝ) = wrapK(Ŝ). Since Ŝ is ∅–taut, this implies that ŷ is not
an exceptional class. Since this holds true for all non-zero classes in
H2(M,∂M ;Z), so there are no exceptional classes inH2(M,∂M ;Z) with
respect to K. q.e.d.

4. The Thurston norm and dual norm under Dehn filling

4.1. The Thurston norm.

Theorem 4.1. Suppose that N is irreducible and ∂–irreducible. Also
assume that M = NT (b) is not a solid torus and has no proper ratio-
nal homology sphere summand and that either M is reducible or that
H2(M,∂M) has an exceptional class with respect to K. Then all of the
following hold for M ′ = NT (a):

• Either M ′ has a lens space summand or
– M ′ is irreducible and ∂–irreducible, and
– K ′ ⊂ M ′ is mp-small; that is, there is no essential, con-

nected, properly embedded planar surface Q ⊂ N such that
∂Q = ∂TQ 6= ∅ and each component of ∂Q has slope b in T .

• For every ŷ ∈ H2(M
′, ∂M ′),

x(ŷ) ≥ wrapK′(ŷ)(∆(a, b)− 1).

Remark 4.2. The first conclusion of Theorem 4.1, that M ′ is irre-
ducible and ∂–irreducible, essentially follows from [Sch90].

Proof. Assume, for the moment, that either M ′ is reducible or ∂–
reducible or that K ′ is not mp-small. Then there exists an essential,
connected, properly embedded planar surface Q ⊂ N such that ∂Q
has at most one component not in T , ∂TQ is non-empty (because N is
irreducible and ∂–irreducible), and every component of ∂TQ has slope b.

Let Q̂ ⊂ M ′ be the sphere or disk that results from capping off ∂TQ
with disks. Lemma 2.3 shows that there is no multi-∂-compressing disk

for Q̂. Then by Theorem 3.1, since either M is reducible or H2(M,∂M)
has an exceptional class with respect to K, we have

0 > −χ(Q̂) ≥ |Q̂ ∩K ′|(∆(a, b)− 1) ≥ 0,

which is a contradiction. Thus, M ′ is irreducible, ∂–irreducible, and K ′

is mp-small.
Because M ′ is irreducible and ∂–irreducible, every sphere and disk

in M ′ separates. So consider a class ŷ ∈ H2(M
′, ∂M ′). Among the

taut surfaces in M ′ representing ŷ, let Q̂ ⊂ M ′ be chosen to minimize

|Q̂ ∩K ′|. Tautness implies that no component of Q̂ is a sphere or disk,
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that x(ŷ) = −χ(Q̂), and that there is no compressing disk for Q̂ in M ′.

The minimality gives wrapK′(ŷ) = |Q̂ ∩ K ′| while also implying that

there can be no compressing disk for Q = Q̂ ∩ N in N . Since every
sphere and disk in M ′ separates, Lemma 2.3 implies there are also no
multi-∂-compressing disks for Q with respect to K.

If Q̂ ∩ K ′ = ∅, then wrapK′(ŷ) = 0 and the desired inequality is

trivially true. Thus, assume that Q̂ ∩ K ′ 6= ∅. Using Theorem 3.1
again, we then have

x(ŷ) = −χ(Q̂) ≥ |Q̂ ∩K ′|(∆(a, b)− 1) = wrapK′(ŷ)(∆(a, b)− 1)

as desired. q.e.d.

The next corollary is a useful specialization.

Corollary 4.3. Let N be a compact, orientable, irreducible, ∂–irredu-
cible 3–manifold such that ∂N is a union of tori. Given distinct slopes
a and b in a component T of ∂N , let M = NT (b) and M ′ = NT (a) be
the results of Dehn filling along these slopes, and let K and K ′ be the
core knots of these fillings respectively.

Assume M and M ′ are irreducible, ∂–irreducible and K ′ has non-
zero wrapping number with respect to a class ŷ ∈ H2(M

′, ∂M ′). If there
exists a class of H2(M,∂M) that is norm-degenerate with respect to K,
then

∆(a, b) ≤ 1 + x(ŷ)/wrapK′(ŷ) ≤ 1 + x(ŷ).

Proof. Since we may assume that both H2(M,∂M) and H2(M
′, ∂M ′)

are non-trivial, N is not a solid torus. By the irreducibility and ∂–
irreduciblity of M and M ′, every sphere and disk in M and M ′ must
separate. Thus, according to Lemma 2.2 any class in H2(M,∂M) that
is norm-degenerate with respect to K is also exceptional with respect
to K. Then, due to Theorem 4.1, for every non-zero ŷ ∈ H2(M

′, ∂M ′)
we have x(ŷ) ≥ wrapK′(ŷ)(∆(a, b)− 1). When the wrapping number is
non-zero, we may obtain the stated inequalities. q.e.d.

We can now bound the number of slopes producing filled manifolds
with norm-reducing classes (with respect to the filling).

Corollary 4.4. Let N be a compact, orientable, irreducible, and ∂–
irreducible 3–manifold such that ∂N is a union of tori. Assume for
i = 1, 2, there is a slope ai in the component T of ∂N such that the
manifold M ′i = NT (ai) is irreducible and ∂–irreducible and the core K ′i
of the Dehn filling has non-zero wrapping number with respect to a class
ŷi ∈ H2(M

′
i , ∂M

′
i). If ∆(a1, a2) > 0, then there are at most

(1 + x(ŷ1))(1 + x(ŷ2)) + (∆(a1, a2)− 1)(1 + x(ŷ1))
2
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slopes b ⊂ T distinct from a1 and a2 such that the 3–manifold NT (b)
obtained by filling T along b is irreducible, ∂–irreducible, and has a
norm-reducing class with respect to the filling.

Proof. By Corollary 4.3, if b is a slope in T such that NT (b) is ir-
reducible, ∂–irreducible, and has a norm-reducing slope for the core of
the filling, then

∆(a1, b) ≤ 1 + x(ŷ1) and ∆(a2, b) ≤ 1 + x(ŷ2).

Then Lemma 4.5 below gives that the number of slopes b satisfying
these constraints is at most

(1 + x(ŷ1))(1 + x(ŷ2)) + (∆(a1, a2)− 1)(1 + x(ŷ1))
2.

q.e.d.

Lemma 4.5. Given slopes b, c in T with ∆(b, c) ≥ 1 and positive
numbers B,C, then the number of slopes a in T such that ∆(a, b) ≤ B
and ∆(a, c) ≤ C is at most BC + (∆(b, c)− 1)B2.

Proof. Let us regard slopes as being represented by oriented simple
closed curves. We may choose a basis for H1(T ) in which [b] = (1, 0)
and [c] = (r, s) for coprime integers 0 ≤ r < s. Then ∆(b, c) = s. For
any slope a in T , we may choose an orientation of the curve so that the
constraints ∆(a, b) ≤ B and ∆(a, c) ≤ C and the orientation restrict
its representatives in this homology basis to an element of the set Λ of
integer lattice point in the trapezoid {(x, y) : |y| ≤ B, |ry−sx| ≤ C, x ≥
0}. For points (x, y) ∈ Λ, one deduces that

0 ≤ x
≤ s|x|
≤ |ry − sx|+ r|y|
≤ C + rB

≤ C + (s− 1)B

= C + (∆(b, c)− 1)B.

Thus |Λ| ≤ B · (C+sB) = BC+(∆(b, c)−1)B2, giving an upper bound
on the number of slopes a in T satisfying the constraints. q.e.d.

Theorem 4.6. Let N be a compact, connected, orientable, irre-
ducible, and ∂–irreducible 3–manifold whose boundary is a union of tori.
Then either

1) N is a product of a torus and an interval,
2) N is a cable space, or
3) for each torus component T ⊂ ∂N there is a finite set of slopes
R = R(N,T ) in T such that if b 6∈ R then b is not norm-reducing.
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Proof. Let T be a particular component of ∂N . By [HM02, GL96],
NT (a) is a reducible for at most three slopes a. By [CGLS87, Corollary
2.4.4], unless N ∼= T × [0, 1] or N is a cable space, NT (a) is ∂–reducible
for at most three slopes a. Hence, we now assume N is neither home-
omorphic to T × [0, 1] nor a cable space, so that there are at most 6
slopes in T for which NT (a) is reducible or ∂–reducible.

Let (∂T )∗ : H2(N, ∂N)→ H1(T ) be the composition of the boundary
map on H2(N, ∂N) with the projection from H1(∂N) to H1(T ). For
every slope a in T that generates a rank 1 subspace of the image of
(∂T )∗ in H1(T ), there is some class ŷ ∈ H2(NT (a), ∂NT (a)) such that
winda(ŷ) > 0. Since winda gives a lower bound on wrapa, the core of the
Dehn filling NT (a) has non-zero wrapping number with respect to the
class ŷ. Therefore, if (∂T )∗ surjects onto H1(T ), the core of any Dehn
filling of N along T will have non-zero wrapping number with respect
to some class in the filled manifold. In this case we may find a pair of
slopes satisfying the hypotheses of Corollary 4.4 so that the number of
norm-reducing, but irreducible, and ∂–irreducible slopes is finite. Since
the number of reducible or ∂–reducible slopes in T is also finite, we have
our conclusion.

On the other hand, if (∂T )∗ does not surject onto H1(T ), its image
must be a rank 1 subspace generated by a single slope, say b. For every
other slope a 6= b, winda = 0. Hence for all a 6= b, ρa gives an iso-
morphism H2(NT (a), ∂NT (a)) ∼= H2(N, ∂N − T ). Then it follows from
[Sel90] (but using [Gab87a, Corollary 2.4] instead of just [Gab87a, The-
orem 1.8] to avoid hypotheses of atoroidality, see also [Lac97a, Theorem
A.21]) that there are finitely many norm reducing fillings. q.e.d.

4.2. The dual norm. As we observed in the introduction, Theorem 4.7
shows that, in general, there are no norm-reducing classes with respect
to a knot that is surgery dual to a knot with “large” dual Thurston
norm, quantified in terms of the distance of the surgery.

Theorem 4.7. Assume that every sphere, disk, annulus, and torus
in M ′ separates. Given a class α ∈ H1(M

′;Z) and an integer ∆, if

(∆− 1)x∗(α) > 1,

then no Dehn surgery of distance ∆ on a knot representing α produces
an irreducible, ∂–irreducible 3–manifold M which has a norm-reducing
class with respect to the core of the surgery.

Proof. Assume (∆− 1)x∗(α) > 1 so that ∆ ≥ 2 and x∗(α)− 1/(∆−
1) > 0.

Since M ′ contains no non-separating sphere, disk, annulus, or torus,
the Thurston norm on M ′ is actually a norm and not just a pseudo-
norm. Thus, the unit norm ball in H2(M

′, ∂M ′) is compact and x∗(α) =
supx(τ)=1 |α · τ |. Since x∗ is continuous, there exists a class σ ∈ H2(M

′,
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∂M ′;R) realizing this supremum, i.e. such that x(σ) = 1 and x∗(α) =
|α · σ|. For any ε > 0, there is a rational class ẑ′ ∈ H2(M

′, ∂M ′;Q)
approximating σ such that x(ẑ′) = 1 and

|α · σ| ≥ |α · ẑ′| > |α · σ| − ε.
In particular, since (∆ − 1)x∗(α) > 1, let us choose ε so that x∗(α) −
1/(∆− 1) > ε > 0.

Since |α · τ |/x(τ) is constant for non-zero multiples of any non-zero
class τ ∈ H2(M,∂M ;R), there exists an integral class ẑ ∈ H2(M,∂M ;Z)
that is a positive multiple of the rational class ẑ′ for which

|α · σ| ≥ |α · ẑ|
x(ẑ)

> |α · σ| − ε.

Being an integral class, ẑ is represented by a surface. For any taut

surface Q̂ representing ẑ we have x(ẑ) = −χ(Q̂) and |α · ẑ| = windα(Q̂).
Now let K ′ be any knot representing α. Among the taut surfaces

representing ẑ, choose Q̂ to be one that minimizes |Q̂ ∩ K ′|. Thus

wrapK′(Q̂) ≥ windK′(Q̂) = |K ′ · Q̂| = |α · ẑ|.
Hence by the choice of σ,

(~) x∗(α) ≥ windα(Q̂)

−χ(Q̂)
> x∗(α)− ε.

Since x∗(α)− 1/(∆− 1) ≥ ε > 0, we have (∆− 1)(x∗(α)− ε) ≥ 1 and
thus the right hand inequality of (~) gives

(∆− 1)
windα(Q̂)

−χ(Q̂)
> (∆− 1)(x∗(α)− ε) ≥ 1.

Consequently,

(∆− 1)|K ′ ∩ Q̂| = (∆− 1)wrapK′(Q̂) ≥ (∆− 1)windα(Q̂) > −χ(Q̂).

By the choice of Q̂ and Lemma 2.3, there is no multi-∂-compressing disk

for Q̂. Thus, by Theorem 3.1, if M is obtained by a distance ∆ Dehn
surgery on K ′, then H2(M,∂M) cannot contain a norm-reducing class
with respect to the core of the surgery. q.e.d.

5. Genus growth in twist families.

Let Y be a closed, compact, connected, oriented, irreducible, 3–
manifold with H2(Y ) = 0. Let {Kn} be a twist family of null-homolo-
gous knots in Y obtained by twisting a null-homologous knot K = K0

along an unknot c. That is, Kn is the knot in Y = Yc(−1/n) obtained
by −1/n–surgery on c for each integer n. Let g(Kn) be the Seifert genus
of Kn and set ω = |`k(K, c)|.

Theorem 5.1. If |`k(K, c)| > 0, then lim
n→∞

g(Kn) =∞ unless c is a

meridian of K.
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Proof. This follows as a corollary of the more precise Theorem 5.3
below which implies the limit is finite only if ωx([D]) = 0. Here x is the
Thurston norm on the exterior of the link K∪c and [D] is the homology
class of a disk bounded by c, intersected by K, and restricted to this
exterior. Since ω = |`k(K, c)| > 0, the limit is finite only if x([D]) = 0.
This, however, implies that D is an annulus and hence c is a meridian
of K. q.e.d.

Let N = Y −N (K∪c) be the exterior of the link K∪c with boundary
components TK and Tc corresponding to K and c respectively, and use
the standard associated meridian-longitude bases relative to K and c
for these tori. Then the exterior of Kn is the manifold Y − N (Kn) =
NTc(−1/n) which results from Dehn filling N along the slope −1/n in
Tc; let cn be the core of this filling, setting c = c0.

Let D̂ be a disk bounded by c that is transverse to K and set D =

D̂ ∩N . Let F̂n be a Seifert surface for Kn that is transverse to cn and
set Fn = F̂n ∩N .

Lemma 5.2. [Fn+1] = [Fn] + ω[D] for all integers n.

Proof. Since Y is a rational homology sphere by assumption, each
knot Kn (and c) has a unique homology class of Seifert surface up to
sign. The formula then follows since ω = |`k(K, c)| and the surfaces Fn
and D are the restrictions of Seifert surfaces for Kn and c to N . Indeed,
∂[Fn] is homologous to one longitude of slope −nω2 in TK and ω parallel
curves of slope −1/n in Tc while ∂[D] is homologous to ω meridians
in TK and one longitude of slope 0 in Tc. It follows that (heeding
orientations) [Fn] +ω[D] is represented by a properly embedded surface
in N that is the Haken sum of Fn and ω parallel copies of D which has
boundary homologous to that of ∂[Fn+1]. If [Fn+1]− [Fn]−ω[D] were a
non-zero class, it would be represented by a boundaryless surface in N
and thus represent a non-zero class in H2(Y ) — a contradiction. Hence
[Fn+1] = [Fn] + ω[D]. q.e.d.

Theorem 5.3. There is a constant G = G(K, c) such that 2g(Kn) =
2G+ nωx([D]) for sufficiently large n > 0.

Proof. Among disks bounded by c in Y , let D̂ be one for which |K ∩
D̂| = p > 0 is minimized and set D = D̂ ∩N . Note that the minimality
implies the punctured disk D is incompressible and ∂–incompressible.
Moreover ∂D consists of one longitude of c and p meridional curves of
K. In particular, if p = 1 then D is an annulus so that x([D]) = 0 and
c is a meridian of K. Hence K = Kn for all integers n so the genus is
constant and the theorem holds. Thus we assume p ≥ 2. This further
implies that N is not the product of a torus and an interval.

If N is a cable space, since D is not an annulus but is a properly em-
bedded, non-separating, incompressible and ∂–incompressible surface, it
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must be a fiber in a fibration of N over S1. (All classes in H2(N, ∂N ;Z)
other than multiples of the class of the cabling annulus are represented
by fibers.) Therefore because ∂D consists of a longitude of c and merid-
ians of K, it follows that Y ∼= S3 and K is a torus knot in the solid
torus exterior of the unknot c. In particular, this means that for some

integer q coprime to p = |K ∩ D̂|, the knot Kn is the (p, q + np)–torus
knot and the theorem holds. Therefore we may assume that N is not a
cable space.

If N is reducible, then there is a sphere in N that does not bound a
ball in N and yet must bound a ball in Y that contains either K or c.
If this sphere separates the two components of ∂N then it separates K
and c in Y implying that `k(K, c) = 0, contrary to assumption. Thus
K ∪ c must be contained in a ball in Y and may be viewed as being
contained in an S3 summand of Y . Thus N = N ′#Y where N ′ is the
irreducible exterior of K ∪ c in S3. Since the summand will not affect
the genera of the knots Kn, we may run the argument for K ∪ c in S3.
Thus we may assume N is irreducible.

Let ẑn be the homology class of an oriented Seifert surface for Kn in
Y − N (Kn) for which x(ẑn) = 2g(Kn) − 1. Then set zn = ρ−1/n(ẑn)
to be the homology class of the restriction of the Seifert surface to
N = Y −N (K ∪ c). By Theorem 4.6, there is a finite set of integers R
such that

x(zn) = x(ẑn) + windKn(ẑn),

if n 6∈ R. Since ω = windKn(ẑn) for all integers n and 2g(Kn) − 1 =
x(ẑn), then when n� 0 we have

2(g(Kn+1)− g(Kn)) = x(zn+1)− x(zn) = x(zn+1 − zn).

By Lemma 5.2, zn+1 − zn = ω[D] for all integers n. Hence for n � 0,
2(g(Kn+1) − g(Kn)) = ωx([D]). Therefore when n is sufficiently large,
2g(Kn) = 2G+ nωx([D]) for some constant G as desired. q.e.d.

Remark 5.4. At the expense of having to reckon with multiple ho-
mology classes of Seifert surfaces, one should be able to prove Theo-
rem 5.3 without the hypothesis that Y is a rational homology sphere.

Remark 5.5. One ought to be able to prove Theorem 4.6 and The-
orem 5.3 using link Floer Homology.
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