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DECORATED SUPER-TEICHMÜLLER SPACE

R. C. Penner & Anton M. Zeitlin

Abstract

We introduce coordinates for a principal bundle ST̃ (F ) over
the super Teichmüller space ST (F ) of a surface F with s ≥ 1
punctures that extend the lambda length coordinates on the dec-
orated bundle T̃ (F ) = T (F )×Rs

+ over the usual Teichmüller space
T (F ). In effect, the action of a Fuchsian subgroup of PSL(2,R)
on Minkowski space R2,1 is replaced by the action of a super Fuch-
sian subgroup of OSp(1|2) on the super Minkowski space R2,1|2,
where OSp(1|2) denotes the orthosymplectic Lie supergroup, and
the lambda lengths are extended by fermionic invariants of suit-
able triples of isotropic vectors in R2,1|2. As in the bosonic case,
there is the analogue of the Ptolemy transformation now on both
even and odd coordinates as well as an invariant even two-form on
ST̃ (F ) generalizing the Weil–Petersson Kähler form. This, finally,
solves a problem posed in Yuri Ivanovitch Manin’s Moscow semi-
nar some thirty years ago to find the super analogue of decorated
Teichmüller theory and provides a natural geometric interpreta-
tion in R2,1|2 for the super moduli of ST̃ (F ).

Introduction

Let F = F sg be a connected orientable surface of genus g ≥ 0 with s ≥
1 punctures and negative Euler characteristic 2−2g−s < 0 in order that
F = U/Γ is uniformized by a Fuchsian group Γ. Namely, let U = {z =
x+ iy ∈ C : y > 0} denote the upper half plane with its Poincaré metric

ds2 = dx2+dy2

y2
and projective matrix group PSL(2,R) = SL(2,R)/± I

of oriented isometries, where I denotes the identity matrix; there is
then an injective representation ρ : π1 → PSL(2,R) of the fundamental
group π1 = π1(F ), which is a free group of rank 2g+s−1, onto a discrete
subgroup Γ < PSL(2,R) so that non-trivial loops about punctures are
represented by parabolic transformations, namely, those with absolute
trace equal to two. See [1, 13, 23] for example.

The Teichmüller space of F is

T (F ) = Hom′(π1, PSL(2,R))/PSL(2,R),
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where the prime indicates Fuchsian representations as just defined and
the action of PSL(2,R) on Hom′ is by conjugation. The super-Teichmü-
ller space of F as already formulated in the context of representation
theory and moduli spaces by Bryant and Hodgkin [5, 14] (see also [9])
is

ST (F ) = Hom′(π1, OSp(1|2))/OSp(1|2),

where the corresponding super Fuchsian representations comprising
Hom′ are defined to be those whose projection π1 → OSp(1|2) →
SL(2,R) → PSL(2,R) are Fuchsian, where OSp(1|2) denotes the or-
thosymplectic group of (2|1)-by-(2|1) dimensional super matrices with
its canonical projection OSp(1|2) → SL(2,R), cf. [17] or Appendix I,
and the action on Hom′ is again by conjugation. The similarities are
evident. In particular, the mapping class group MC(F ) of homotopy
classes of orientation-preserving homeomorphisms of F acts on T (F )
and ST (F ) in the natural way.

Consider a graph τ ⊂ F embedded in F as a deformation retract
also called a spine of F . The valence of a vertex of τ is the number of
half-edges incident upon it, where a half-edge is defined as a comple-
mentary component to an interior point of the edge, and τ is said to be
trivalent if each vertex has valence exactly three. An orientation on F
induces the counter clockwise ordering on the half edges of τ incident
on each fixed vertex, thus, giving the abstract graph τ the structure of a
fatgraph sometimes also called a ribbon graph. There is a combinatorial
move on trivalent fatgraph spines τ ⊂ F called a flip as illustrated in
Figure 1, where one contracts an edge of τ with distinct endpoints and
then expands the resulting 4-valent vertex in the unique distinct manner
in order to produce another trivalent fatgraph spine. This leads to the
so-called Ptolemy groupoid (see, e.g., [23]) of F whose objects are ho-
motopy classes of trivalent fatgraph spines in F and whose morphisms
are compositions of flips.
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Figure 1. A flip on a trivalent fatgraph with notation
subsequently explained.

As we shall recall in the next introductory section dedicated to the
bosonic case, finite compositions of flips act transitively on homotopy
classes of trivalent fatgraph spines. It follows that flips generate MC(F )
in the sense that if τ ⊂ F is a trivalent fatgraph spine and ϕ ∈MC(F ),
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then there is a sequence ϕ(τ) = τ1−τ2−· · ·−τn = τ of trivalent fatgraph
spines of F where any consecutive pair differ by a flip.

In fact, [26], the components of ST (F ) are naturally indexed by the
set Ω(F ) of spin structures on F , and here is a basic difference from
the bosonic case: the super-Teichmüller space is disconnected with the
MC(F )-action permuting components. There are a number of equiv-
alent formulations of spin structure, and we shall rely upon several of
them at various junctures. Milnor’s elegant formulation of a spin struc-
ture on F is a class in the mod two first cohomology of the unit tangent
bundle of F which is non-zero on the fiber class; see [18, 15]. More
combinatorial formulations from the literature which we shall require
are as follows:

• The description [15] due to Johnson in terms of quadratic forms
Q(F ) on H1 = H1(F ;Z2), i.e., functions q : H1 → Z2 which are
quadratic for the intersection pairing · : H1⊗H1 → Z2 in the sense
that q(a+ b) = q(a) + q(b) + a · b if a, b ∈ H1.
• Cimasoni and Reshetikhin [7, 8] formulate spin structures using

[15] in terms of so-called Kastelyn orientations and dimer config-
urations on the one-skeleton of a suitable CW decomposition of F
as we shall explain in detail later.
• A spin structure on a uniformized surface F = U/Γ is determined

by a lift ρ̃ : π1 → SL(2,R) of ρ : π1 → PSL2(R), and Natanzon
[20] computes in terms of the quadratic form q that trace ρ̃(γ) > 0
if and only if q([γ]) 6= 0, where [γ] ∈ H1 here and in the sequel is
the image of γ ∈ π1 under the mod two Hurewicz map.

Our first main result gives yet another combinatorial formulation of
spin structures on F in terms of the equivalence classes O(τ) of all
orientations on a trivalent fatgraph spine τ ⊂ F , where the equivalence
relation is generated by reversing the orientation of each edge incident
on some fixed vertex, with the added bonus of a computable evolution
under flips.

Theorem A. Fix any trivalent fatgraph spine τ ⊂ F = F sg . Then

O(τ) and Q(F ) are isomorphic as affine H1(F ;Z2)-spaces. Moreover,
the action of MC(F ) on Ω(F ) lifts to the action of the Ptolemy groupoid
on O(τ), so that under the flip transformations the orientations of the
edges change as illustrated in Figure 2.

A spin structure on F manifest, for instance, as a quadratic form
q ∈ Q(F ) distinguishes two types of punctures as follows. If γp is
a simple loop about the puncture p of F , then p is called a Neveu–
Schwarz (NS) puncture if q([γp]) = 0 and is otherwise called a Ramond
(R) puncture. The dimension of a component of ST (F ) depends on the
types of punctures, and each component of ST (F sg ) is, in fact, [9], [10],
[26], [11] a superball of dimension (6g−6+2s|4g−4+2nNS+nR), where
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Figure 2. Flip transformation for oriented fatgraphs.

nNS and nR are the respective numbers ofNS and R punctures. It is not
hard to see that nR must be even since the sum of the Z2-monodromies
about the punctures must agree with the trivial monodromy about a
small inessential curve in the surface, and we, furthermore, evidently
have s = nNS + nR.

In the bosonic case [21, 23], there is a principal Rs+-bundle

T̃ (F ) = T (F )× Rs+ → T (F )

called the decorated Teichmüller space of F = F sg recalled in some detail

in the next introductory section. Letting Rp|q+ here and in the sequel

denote the subspace of Rp|q whose even coordinates have positive body,

there is likewise a principal Rs|nR+ -bundle over each component of ST (F )
with nR Ramond punctures called the decorated super-Teichmüller space
and written simply

ST̃ (F )→ ST (F ),

and the action of MC(F ) lifts to ST̃ (F ) as we shall see. Here we
combine the main results from Sections 8 and 9 into one result:

Omnibus Theorem B. Fix a surface F = F sg of genus g ≥ 0 with
s ≥ 1 punctures, where 2g − 2 + s > 0, let τ ⊂ F be some trivalent
fatgraph spine and suppose that ω is an orientation on the edges of
τ whose class in O(τ) determines the component C of ST̃ (F ). Then
there are global affine coordinates on C, one even coordinate called a
λ-length for each edge and one odd coordinate called a µ-invariant for
each vertex of τ , the latter of which are taken modulo an overall change
of sign denoted by Z2; that is, λ-lengths and µ-invariants establish a
real-analytic homeomorphism

C → R6g−6+3s|4g−4+2s
+ /Z2.

These coordinates are natural in the sense that if ϕ ∈ MC(F ) has in-

duced action ϕ̃ on Γ̃ ∈ ST̃ (F ), then ϕ̃(Γ̃) is determined by the orien-
tation and coordinates on edges and vertices of ϕ(τ) induced by ϕ from
the orientation ω, the λ-lengths and µ-invariants on τ .

Orientations on fatgraph spines evolve under flips in accordance with
the previous theorem, and the following super Ptolemy transformation
further describes the evolution of λ-lengths and µ-invariants in the no-
tation of Figure 1 where nearby Roman letters denote λ-lengths, nearby



DECORATED SUPER-TEICHMÜLLER SPACE 531

Greek letters denote µ-invariants and Z = ac
bd denotes the cross-ratio

ef = (ac+ bd)
(

1 +
σθ
√
Z

1 + Z

)
,

ν =
σ + θ

√
Z√

1 + Z
, µ =

σ
√
Z − θ√

1 + Z
.

Finally, there is an even 2-form on ST̃ (F ) which is invariant under
super Ptolemy transformations, namely,

ω =
∑
v

d log a ∧ d log b+ d log b ∧ d log c+ d log c ∧ d log a− (dθ)2,

where the sum is over all vertices v of τ where the consecutive half edges
incident on v in clockwise order have induced λ-lengths a, b, c and θ is
the µ-invariant of v.

In order to further explain the coordinates and give an intrinsic mean-
ing to the decorated spaces, we shall recall and extend the bosonic case
in the next section.

The super-Teichmüller space is of interest on its own as one of the
higher Teichmüller theories associated with the simplest supergroup
extension of PSL(2,R), namely, the orthosymplectic group OSp(1|2)
which is, however, special among supergroups in that its invariant bi-
linear form is non-degenerate. Nevertheless, this should be the first
step in a general approach to higher super Teichmüller theory as well as
its quantization. Notice that the symplectic or corresponding Poisson
structure of Theorem B has constant coefficients opening the possibility
of canonical quantization as in the bosonic case [6, 16].

Furthermore, just as for λ-lengths in the bosonic case, our coordi-
nates on decorated super-Teichmüller space provide a computationally
effective description of super moduli geometry. Another key reason for
interest in the super-Teichmüller space is that it is a cornerstone of
superstring perturbation theory, and the geometry of the supersymmet-
ric moduli uncovered here is evidently more involved than its bosonic
counterpart. Moreover, the well-known relationship [25] of Teichmüller
theory with (2 + 1)-dimensional gravity may suggest that the super-
Teichmüller theory as probed here may play an analogous role for (2+1)-
dimensional supergravity.

We, finally, mention that prior to our work, there was a PhD thesis
[3], to be continued in [4], where the author provided other coordinates
on a version of super-Teichmüller space. The author used a different
combinatorial description of spin structures, by marking sectors in the
triangulation, and his construction is based upon quite a different ap-
proach (known as path-ordered method, see, e.g., [23]) effectively using
so-called shear coordinates instead of λ-lengths without our connection
to super Minkowski geometry described in the next several sections.
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Bosonic background and beyond

The decorated Teichmüller space T̃ (F ) is intimately connected to
the geometry of Minkowski space R2,1, namely, R3 imbued with the
quadratic form z2 − x2 − y2 and its corresponding bilinear pairing <
(x, y, z), (x′, y′, z′) >= zz′−xx′−yy′ or equivalently the quadratic form
x1x2 − y2 in the variables x1 = z − x and x2 = z + x. The upper sheet
H = {(x, y, z) ∈ R3 : z2 − x2 − y2 = 1 and z > 0} of the hyperboloid
with the induced metric gives a model for the hyperbolic plane [1].
Furthermore, [21, 23], the positive light cone L+ = {(x, y, z) ∈ R3 :
z2 − x2 − y2 = 0 and z > 0} parametrizes horocycles (that is, those
curves with geodesic curvature unity) in the sense that h(u) = {w ∈
H :< u,w >= 1} establishes a bijection1 between all u ∈ L+ and the
collection of all horocycles h(u) ⊂ H, and, moreover, this identification
is geometrically natural in the sense that 1

2 log< u, v > is the signed
hyperbolic distance between h(u) and h(v). This invariant

√
< u, v >

of a pair {h(u), h(v)} of horocycles is called the lambda length, and these

are the basic coordinates on T̃ (F ).
It is convenient both here and in the sequel to consider not only

trivalent fatgraph spines of F = F sg but also their duals: an ideal tri-
angulation ∆ of F is a maximal family of arcs embedded in F with
endpoints at the punctures, which are here regarded as distinguished
points of F , where no two arcs in ∆ are properly homotopic or intersect
except perhaps at their endpoints. By maximality, each complementary
region to ∆ in F is an ideal triangle, and these meet along their fron-
tiers in F . Construct a trivalent fatgraph spine τ = τ(∆) of F with one
vertex for each complementary region and one edge for each arc in ∆
required to connect the vertices corresponding to regions on either side
of the arc. This construction evidently establishes a bijection between
homotopy classes of trivalent fatgraph spines and homotopy classes of
ideal triangulations of F together with a natural identification between
their edges. The dual of a flip, also called a flip, is the removal of an edge

1In fact, any positive constant will suffice here, and 2−
1
2 is the more natural choice;

cf. [21, 23].
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from ∆ with distinct triangles on either side followed by its replacement
by the other diagonal of the quadrilateral formed by their union.

A key point of the decorated space in the bosonic case is that the
fiber Rs+ of T̃ (F ) = T (F )×Rs+ is identified with all s-tuples of (lengths
of) horocycles in F with one horocycle about each puncture; this is
precisely the sense in which a usual hyperbolic structure in T (F ) is

decorated with a horocycle at each puncture in T̃ (F ). TheMC(F )-action

on T (F ), thus, lifts to T̃ (F ) by permuting lengths. An arc connecting
punctures in a decorated hyperbolic surface has a well-defined lambda
length computable in the surface itself or equivalently in R2,1 as just
discussed.

Omnibus Theorem C ([21, 22, 23]). Fix a surface F = F sg of
genus g ≥ 0 with s ≥ 1 punctures, where 2g − 2 + s > 0, and let ∆
be a homotopy class of ideal triangulation or equivalently of a trivalent
fatgraph spine of F . Then the assignment of lambda lengths to the arcs
in ∆ establishes a real-analytic homeomorphism T̃ (F )→ R∆

+. Moreover,

the lambda length λ(α; Γ̃) of a (homotopy class of) arc α in F connecting

punctures for Γ̃ ∈ T̃ (F ) is natural in the sense that if ϕ ∈ MC(F ) has

induced action ϕ̃ on T̃ (F ), then λ(α; Γ̃) = λ(ϕ(α); ϕ̃(Γ̃)).
The Ptolemy transformation ef = ac + bd describes the evolution of

lambda lengths under flips in the notation of Figure 1.
The Weil–Petersson Kähler form on M(F ) pulls back to the Ptolemy-

invariant form

ω = 2
∑
v

d log a ∧ d log b+ d log b ∧ d log c+ d log c ∧ d log a,

where the sum is over all complementary triangles to ∆ with consecutive
half edges in clockwise order having induced lambda lengths a, b, c.

A convex hull construction in R2|1 gives rise to a real-analytic MC(F )-

invariant ideal cell decomposition of T̃ (F )/R+ itself where there is one
open simplex together with certain of its faces for each homotopy class
of decompositions of F into ideal polygons and the face relation is gen-
erated by removal of arcs.

Thus, in the equivalent formalism of trivalent fatgraph spines as op-
posed to ideal triangulations, Theorem B extends all but the last para-
graph of Theorem C from T̃ (F ) to ST̃ (F ), and the proof of the former
provides a paradigm for the proof of the latter. Notice that by this last
paragraph of Theorem C, we may connect interior points of simplices
for any two ideal triangulations of F by a path in T̃ (F )/R+, which can
be perturbed to general position with respect to the codimension-one
faces of the cell decomposition. Since crossing these faces corresponds
to flips, it follows that any two (homotopy classes of) ideal triangula-
tions of F are related by a finite sequence of flips, and dually we recover
Whitehead’s result [12]:
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Corollary D. For any surface F = F sg with 2g−2 + s > 0, finite se-
quences of flips act transitively on homotopy classes of trivalent fatgraph
spines in F .

Moreover, the codimension-two faces analogously give rise to a pre-
sentation of the Ptolemy groupoid of F , cf. [21, 23].

We next discuss the proof of the first part of Theorem C, namely, the
construction of lambda length coordinates on T̃ (F ) which brings us more

deeply into Minkowski space. The topological universal cover F̃ of F
may be identified with upper half space U or equivalently via the Cayley
transform z 7→ z−i

z+1 with the unit disk D supporting its Poincaré metric

and ideal boundary the circle S1 at infinity. Central projection of H from
(0, 0,−1) ∈ R2,1 to the disk at height zero establishes an isometry of H
and D which continuously extends to the projection L+ → S1 mapping
u ∈ L+ to the center of the horocycle h(u).

An ideal triangulation ∆ of F lifts to an ideal triangulation ∆̃ of
F̃ , and the collection of ideal points of ∆̃∞ ⊂ S1 is invariant under
homotopy of ∆ in F . In order to define a point of T̃ (F ), we must de-
termine a Fuchsian representation ρ : π1 → SO+(2, 1) ≈ PSL(2,R)
in the component SO+(2, 1) of the identity of the Minkowski isom-
etry group SO(2, 1), corresponding to the underlying point in T (F ),

together with a lift ` : ∆̃∞ → L+, corresponding via affine duality to
the decoration and realizing the lambda lengths in the obvious sense,
which is π1-equivariant with respect to our constructed representation
ρ : π1 → SO+(1, 2), namely, we have `(γ(p)) = ρ(γ)(`(p)), for all

p ∈ ∆̃∞ and γ ∈ π1. This construction of ` and ρ from lambda
lengths is performed recursively as we shall recall in proving Theo-
rem B.

In our current case, there is an embedding of OSp(1|2) into the super

Lorentz group of the super Minkowski space R2,1|2 with pairing x1x2 −
y2 +2φθ as described in the next section. There is again a positive light
cone L̂+ comprised of isotropic vectors so that the bodies of x1 and
x2 are non-negative. However, here is another fundamental distinction
between the bosonic case and the general case treated here: whereas the
action of SO+(2, 1) on L+ is transitive, an OSp(1|2)-orbit of positive
isotropic vectors is determined by a fermionic invariant ±ξ up to sign.
Though most of the computations of this paper can be completed in the
general setting, the super Teichmüller theory seems to require taking
this fermion label±ξ = 0. It is the special light cone L̂+

0 ⊂ L̂+ consisting
of those positive isotropic vectors with vanishing fermion label ξ = 0
that provide the analogue of L+ for us here. Again, we define the λ-
length of a pair of points in L̂+

0 to be the square root of their inner
product and prove that this is the unique invariant of the OSp(1|2)-

orbit of a pair of linearly independent points in L̂+
0 .
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We shall again recursively define a mapping ` : ∆̃∞ → L̂+
0 which

realizes λ-lengths in the obvious sense and is π1-equivariant with re-
spect to the representation ρ̂ : π1 → OSp(1|2) that we construct. Here
is yet another fundamental distinction between the bosonic case and
the general case: whereas SO+(2, 1) acts transitively on triples of rays
in L+ which are consistent with the positive orientation on R2,1, an
OSp(1|2) orbit of a triple in L̂+

0 whose underlying bosonic vectors in
L+ have this property is again determined by a fermion invariant ±µ
up to sign. Manin [17] had already observed this basic phenomenon,
hence, our term µ-invariant for the odd invariants associated to vertices
of a fatgraph spine in Theorem B which come from consistent choices of
signs and are, like λ-lengths, realized by the mapping ` in the obvious
sense. Consistency here is given by an explicit relationship on signs of
µ-invariants for adjacent triangles in ∆̃.

There are, thus, three basic differences here from the bosonic case: the
failure of transitivity of the OSp(1|2)-action on points and on triples in

L̂+
0 already mentioned and the further fact that the identification of L+

with the space of horocycles in H has no known analogue in the general
case. Thus, the decorated super-Teichmüller space ST̃ (F ) can only be

defined here as the space of OSp(1|2) orbits of those maps ` : ∆̃∞ → L̂+
0

that are π1-equivariant for some super Fuchsian representation with no
intrinsic interpretation of super horocycle for the decoration beyond the
analogous but un-illuminating affine dual in R2,1|2 of a point in L̂+

0 .
Indeed, in addition to the research frontiers discussed at the end of the
previous section that the current work presumably illuminates, so also
first glimpses of super hyperbolic geometry are hopefully to be gleaned
here.

1. The hyperboloid, light cone and OSp(1|2)-action

The supergroup OSp(1|2) is defined as follows. The group elements
are square (2|1) × (2|1) supermatrices with superdeterminant equal to
1 which satisfy the relation

gstJg = J,(1)

where the superscript st denotes the super transpose and J =
( 0 1 0
−1 0 0

0 0 1

)
.

We refer the reader to Appendix I for more information about OSp(1|2)
including the definition of super transpose (or see (13) below) and our
sign conventions for products of supermatrices. The useful property

gst = Jg−1J−1(2)

is of course a direct consequence of (1). We are interested in the adjoint
action of OSp(1|2) and to this end consider its even element

N0 = −yh+ x1X− − x2X+ + φv− − θv+.(3)
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We claim that the adjoint action N0 7→ g−1N0g of g ∈ OSp(1|2) on N0

leaves invariant x1x2−y2 + 2φθ since it is proportional to the quadratic
form arising from the Killing form of OSp(1|2) applied to N0.

We shall prove this differently as follows. Observe that in the 3-
dimensional representation of OSp(1|2) owing to the property (2), the
element Mc = JNc, where Nc = N0 + cI for any fixed constant c,
transforms as

Nc 7→ g−1Ncg ⇒ Mc 7→ gstMcg,(4)

under the adjoint action. In particular, when c is invertible, this implies
that the superdeterminant of

Mc =

 x1 y − c φ
y + c x2 θ
−φ −θ c

(5)

is preserved under the action of OSp(1|2) sending Mc to gstMcg. It is
not hard to calculate that

sdet(Mc) =
1

c
(x1x2 − y2 + 2φθ + c2),(6)

and so x1x2− y2 + 2φθ is invariant under the action of OSp(1|2) as was
claimed. The following proposition, therefore, holds.

Proposition 1.1. The formula Mc 7→ gstMcg, for fixed but arbitrary
c, gives the action of the OSp(1|2) subgroup of the full Lorentz super-

group of the superspace R2,1|2 with the Minkowski pairing defined by the
quadratic form x1x2 − y2 + 2φθ.

To be entirely explicit, the pairing of two vectors A = (x1, x2, y, φ, θ)

and A′ = (x′1, x
′
2, y
′, φ′, θ′) in R2,1|2 is given by

〈A,A′〉 =
1

2
(x1x

′
2 + x′1x2)− yy′ + φθ′ + φ′θ.(7)

In keeping with [21, 23], we shall, henceforth, refer to the square root
of such an inner product as a λ-length.

Two surfaces of special importance for us in the following are the (su-

per) hyperboloid Ĥ consisting of points A ∈ R2,1|2 satisfying the condi-
tion 〈A,A〉 = 1 corresponding to c = 1 in equation (5), where the bodies
of the x1- and x2-coordinates of A are non-negative, and most especially
the (positive super) light cone L̂+ consisting of points B ∈ R2,1|2 satis-
fying 〈B,B〉 = 0 and corresponding to c = 0, where again the bodies of
x1- and x2-coordinates are non-negative.

A standard superspace which, however, plays a subsidiary role for us,
the complex superplane C1|1 consists of pairs (z, η), and its subspace the

super upper half-plane Û is comprised of those points (z, η) such that the
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body of the real part of z is non-negative. It is well known [9, 10, 26]

that OSp(1|2) acts on Û by means of superconformal transformations

z → az + b

cz + d
+ η

γz + δ

(cz + d)2
,

η → γz + δ

cz + d
+ η

1 + 1
2δγ

cz + d
.(8)

Another direct analogue of the standard bosonic case, we have

Theorem 1.2. The expressions

η =
θ

x2
(1 + iy)− iφ, z =

i− y − iφθ
x2

(9)

define an OSp(1|2)-equivariant monomorphism from the hyperboloid Ĥ
onto the super half-plane Û .

Proof. The easiest way to prove this statement is to consider the in-
finitesimal actions of the corresponding generators described in Appen-
dix I. For example, the transformation Mc 7→ (exp(αv+))stMc exp(αv+)
amounts to the infinitesimal

δαy = −αφ, δαφ = αx1, δαx1 = 0,

δαx2 = −2αθ, δαθ = αy,(10)

and, therefore,

δαz = α

(
2θ

x2
2

(i− y) +
1

x2
(φ− ix1θ + iφy)

)
.(11)

Meanwhile, we have

ηz = iφ
i− y
x2
− iθ (y − i)2

x2
2

=
iφ

x2
+

φ

x2
− iθy2

x2
2

− 2θy

x2
2

+
iθ

x2
2

=
iφy

x2
+

φ

x2
− ix1

x2
− 2θy

x2
2

+
2iθ

x2
2

,(12)

where we have used the relation x1x2 − y2 + 2φθ = 1 in the last line. It
follows that δαz = αηz as required, and one can, similarly, show that
δαη = −αz. Thus, this corresponds to the superconformal transforma-
tion. We leave it for the reader to complete the proof for the other four
infinitesimal transformations corresponding to the generators discussed
in Appendix I. q.e.d.

Again just to be entirely explicit in the context of relevant subsequent
calculations, the light cone is described by

L̂+ =

{( x1 y φ
y x2 θ
−φ −θ 0

)
: x1x2 − y2 + 2φθ = 0

and x1, x2 have non− negative bodies

}
,
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and the action of the supermatrix g =
( a b α
c d β
γ δ f

)
∈ OSp(1|2) on A ∈ L̂+

is given by

g ·A = gstAg(13)

=

( a c γ
b d δ
−α −β f

) ( x1 y φ
y x2 θ
−φ −θ 0

) ( a b α
c d β
γ δ f

)
,

where these products of supermatrices have the signs2 explained in
Appendix I. This is entirely analogous to the bosonic action [21, 23] of
PSL(2,R) ≈ SO+(2, 1) on the light cone in R2,1 given by the change of
basis for binary symmetric bilinear forms.

There is the particular element of OSp(1|2) given by gr =
(−1 0 0

0 −1 0
0 0 1

)
that is of special significance. The supermatrix gr generates the center
of OSp(1|2), and its explicit action on any A = (x1, x2, y, φ, θ) is given
by gr ·A = (x1, x2, y,−φ,−θ). Thus, gr simply changes the signs of the
fermions and will, henceforth, be referred to as (fermionic) reflection.

2. Orbits of OSp(1|2) in the light cone

We next show that OSp(1|2) does not act transitively on the light

cone L̂+, and, in fact, the moduli space of orbits is homeomorphic to
the space R0|1/Z2, where Z2 acts by the change of sign of fermions. To
begin, we normalize with respect to the subgroup SL(2,R) < OSp(1|2).

Lemma 2.1. For each vector A ∈ L̂+, there is some g ∈ SL(2,R) <
OSp(1|2) so that g ·A = t(1, 1, 1 + φψ, φ, ψ), where t has positive body.

Proof. Consider an arbitrary vector (x1, x2, y, ρ, λ) ∈ L̂+. Since one
of x1 or x2 is invertible, we can apply an element of the SL(2,R) sub-
group to transform to a vector (x′1, x

′
2, y
′, ρ′, λ′) where both of x′1, x

′
2 are

invertible and the body of y′ is positive. We can subsequently apply a
diagonal matrix from the SL(2,R) subgroup in order that the resulting
vector (x′′1, x

′′
2, y
′′, ρ′′, λ′′) satisfies x′′1 = x′′2 and, hence, has the required

form. q.e.d.

The next result provides the classification of orbits, namely, we can
reduce all degrees of freedom to a single fermion modulo sign via the
action of OSp(1|2).

Proposition 2.2. Every vector in the light cone can be put into the
form

eθ = (1, 0, 0, 0, θ) ∈ L̂+,

2Namely,

(
a1 b1 α1
c1 d1 β1
γ1 δ1 f1

)(
a2 b2 α2
c2 d2 β2
γ2 δ2 f2

)
=(

a1a2+b1c2−α1γ2 a1b2+b1d2−α1δ2 a1α2+b1β2+α1f2
c1a2+d1c2−β1γ2 c1b2+d1d2−β1δ2 c1α2+d1β2+β1f2
γ1a2+δ1c2+δ1γ2 γ1b2+δ1d2+f1δ2 −γ1α2−δ1β2+f1f2

)
.
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via an OSp(1|2) transformation. The only solutions to the equation
eθ′ = g · eθ, where g ∈ OSp(1|2), are given by θ′ = ±θ.

Proof. According to the previous lemma, in order to prove the first
part, we may assume that our specified vector is of the form Atφψ =

t(1, 1, 1 + φψ, φ, ψ), where t has positive body. A direct computation
then shows that the matrix

gtφ,ψ =

 0 −
√
t 0

1√
t

√
t(1 + φψ) −ψ

0
√
tψ 1

(14)

achieves the required expression gtφ,ψ · Atφψ = eθ, where, in fact, θ =

t
√
t(ψ − φ) and

√
t is likewise taken with positive body.

The second part is proven by explicitly solving the equation eθ′ = g·eθ
as follows. Consider an arbitrary element

g =

 a b α
c d β
γ δ f

 ∈ OSp(1|2).(15)

The vector g · eθ = (x1, x2, y, ρ, λ) is characterized by the identities

x1 = a2 + 2γθc, ρ = aα+ γθβ + cθf,

x2 = b2 + 2δθd, λ = bα+ δθβ + dθf,

y = ab+ γθd− cθδ.(16)

Thus, if g · eθ = eθ′ , then using y = 0 as well as the constraints on the
entries of g given in Appendix I, we find that ρ = 0, λ = θ′ imply

α = − c
a
θ, aθ′ = θ,(17)

and then x1 = 1, x2 = 0 imply

a = ±(1∓ cβθ), b = ±θβ.(18)

It follows that θ′ = ±θ as was claimed. q.e.d.

The next result follows immediately.

Corollary 2.3. The moduli space of orbits of the OSp(1|2) action

on the light cone is given by R0|1/Z2, where Z2 reflects the sign of the
fermion.

The explicit solution to the equation eθ = g · eθ given in Proposi-
tion 2.2 yields the following Corollary which will be of utility in the
sequel.
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Corollary 2.4. For θ 6= 0, an element gs of the stabilizer subgroup
of eθ in OSp(1|2) necessarily has the form

gs =

 1 + cθβ θβ −cθ
c 1 + cθβ β

β + c2θ cθ 1 + cβθ

 ,(19)

where c, β are free parameters with c even and β odd. Moreover, for θ =
0, the stabilizer of e0 has one component for Ramond punctures given

by the expression gs =

(
1 0 0
c 1 β
β 0 1

)
above as well as a second component for

Neveu–Schwarz punctures given by its composition grgs =

(
−1 0 0
−c −1 −β
β 0 1

)
with the fermionic reflection gr.

Given a point A ∈ L̂+, the fermion ±θ (defined up to an overall sign)
so that A and eθ lie in the same OSp(1|2)-orbit is called the fermion label
of A, and it admits the following simple expression.

Proposition 2.5. If A = (x1, x2, y, ρ, λ) ∈ L̂+, then the fermion
label of A is given by ±θ =

√
x1λ − y√

x1
ρ if x1 is invertible and by

±θ =
√
x2ρ− y√

x2
λ if x2 is invertible.

Here and throughout since x1- and x2-coordinates have non-negative
body on the positive light cone, there are well-defined square roots

√
x1

and
√
x2 also with non-negative body. The fermionic reflection on λ, ρ,

thus, changes the sign of θ here.

Proof. The result follows from direct calculation starting from the
formulas (16) using the constraints on entries of OSp(1|2) in Appendix
I as we explicate in the case where x1 is invertible. We have

√
x1λ = (a+

γθc

a
)(bα+ δθβ + dθf)

= abα− adαθβ + adθf + cbθαβ.(20)

At the same time, we have

y√
x1

= (ab+ γθd− cθδ)1

a
(1− γθc

a2
) = b+

γθ

a2
− cθδ

a
,(21)

and, therefore,

y
√
x1
ρ = (b+

γθ

a2
− cθδ

a
)(aα+ γθβ + cθf)

= abα− cbαθβ + bcθf − adθβα.(22)

It follows that
√
x1λ−

y
√
x1
ρ = (ad− bc)θf = θ,(23)



DECORATED SUPER-TEICHMÜLLER SPACE 541

where we again use the constraints on elements of OSp(1|2) from Ap-
pendix I. q.e.d.

The OSp(1|2)-orbit of e0 ∈ L̂+ will play a special role for us here. We

shall denote it L̂+
0 = OSp(1, 2) · e0 ⊂ L̂+ and refer to it as the special

light cone.

Corollary 2.6. The special light cone L̂+
0 is isomorphic to superpro-

jective space RP 1|1 with the action of OSp(1|2) given by superconformal
transformations. Provided x2 6= 0, the natural correspondence between
(x1, x2, y, φ, ψ) ∈ L̂+

0 and (z, η) ∈ RP 1|1 is given by:

z =
−y
x2
, η =

ψ

x2
.(24)

The proof follows along the lines of Theorem 1.2.

3. Orbits of isotropic independent pairs and positive triples

This section provides abstract identifications for the spaces of
OSp(1|2)-orbits of linearly independent ordered pairs and certain triples

of points in the special light cone L̂+
0 . Specifically, we shall say that an

ordered triple ABC of points in L̂+
0 is positive provided A,B,C are lin-

early independent and the underlying triple of bosonic vectors in the
usual light cone L+ ⊂ R2,1 in this order provides a positively oriented
basis for R3 with its usual orientation. In fact, the latter moduli space
of positive triples in the light cone plays a key role in the sequel, and
several further parametrizations of it are derived in the next section.

The moduli space of all ordered pairs of linearly independent vec-
tors (i.e., with non-vanishing Minkowski inner product or equivalently
vectors lying in distinct rays) in the special light cone is described by

Lemma 3.1. There is a unique OSp(1|2)-invariant of two linearly

independent vectors A,B ∈ L̂+
0 , and it is given by the pairing 〈A,B〉.

Proof. According to Proposition 2.2, by applying an appropriate el-
ement of OSp(1|2) to both points, we may assume A = (1, 0, 0, 0, 0)

and B = (x1, x2, y, φ, η) ∈ L̂+
0 . Note that x2 must be invertible, for

otherwise the vectors are not linearly independent in the super-sense,
namely, there exist a, b with non-zero bodies so that aA + bB has zero
body.

We may apply a transformation gs of the form (19), thus, stabilizing

A and mapping B to gs ·B = (x̃1, x̃2, ỹ, φ̃, η̃) ∈ L̂+
0 , where

ỹ = y + cx2 + βη, x̃2 = x2,

η̃ = βx2 + η, φ̃ = βy + cβx2 + cη + φ.(25)

We wish to normalize so that this vector takes the form s(0, 1, 0, 0, 0)
and, thus, impose the two further conditions η̃ = 0 and ỹ = 0. This
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implies

β = −x−1
2 η and c = − y

x2
,(26)

which gives s = x2 = 〈A,B〉 as required. q.e.d.

Corollary 3.2. The moduli space of OSp(1|2)-orbits of ordered pairs
of vectors in the special light cone lying in distinct rays is given by R+.

Turning now to ordered triples of linearly independent vectors in L̂+
0 ,

the underlying bosonic triple may provide either a positively or a nega-
tively oriented basis of R2,1, and we have already christened the former
case a positive triple. The well-known three-effectiveness of the action
of PSL(2,R) on positively oriented (i.e., correctly cyclically ordered)
triples of points in the circle at infinity of hyperbolic space fails in our
current context of R2,1|2 because there is one additional odd degree of
freedom which cannot be fixed. We next compute the moduli space of

orbits of positive triples to be R3|1
+ modulo the fermionic reflection and

postpone the further discussion of this interesting additional parameter
to the next section.

Lemma 3.3. Let ζbζeζa be a positive triple in the special light cone.
Then there is g ∈ OSp(1|2), which is unique up to composition with the
fermionic reflection, and unique even r, s, t, which have positive bodies,
and odd φ so that

g · ζe = t(1, 1, 1, φ, φ), g · ζb = r(0, 1, 0, 0, 0), g · ζa = s(1, 0, 0, 0, 0).

Proof. First, one can put ζa into the form (1, 0, 0, 0) by means of
OSp(1|2) according to Lemma 2.2. Second, ζb can be put in the form
(0, f, 0, 0, 0) using the stabilizer of (1, 0, 0, 0, 0) as in the proof of
Lemma 3.1. Finally, by a diagonal matrix whose entries have positive
bodies, one can put ζe into the form where its x1- and x2-coordinates
agree. Since ζbζeζa is a positive triple, the y-coordinate of ζe after these
transformations has positive body, and so ζe, indeed, transforms to a
vector with the required form t(1, 1, 1, φ, φ) while the other two trans-
formed vectors evidently also have the desired forms ζb = r(0, 1, 0, 0, 0),
ζa = s(1, 0, 0, 0, 0). The asserted uniqueness up to reflection of the trans-
formation g ∈ OSp(1|2), thus, constructed follows from Corollary 2.4.

q.e.d.

Just to be clear, let us note that there are, thus, precisely two lifts to

L̂+
0 of a positive triple T with abstract coordinates (r, s, t, θ) ∈ R3|1

+ given
by g ·T (where the y-coordinate of ζe has positive body in the notation
of the lemma) and its image grg ·T under the fermionic reflection gr. In
any case, the invariants r, s, t have positive body and only the signs of
the fermions change. As a parenthetical point of notation, we mention
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that the labeling abe is used here rather than the more natural abc in
order to accommodate later conventions.

Corollary 3.4. The moduli space of OSp(1|2)-orbits of positive triples

in the light cone is given by (r, s, t, φ) ∈ R3|1
+ /Z2, where Z2 acts by

fermionic reflection.

In fact, the even invariants r, s, t of a triple, which we shall call
normalization coefficients, are the direct analogues of the reciprocal h-
lengths from [21, 23], and they can be nicely computed in terms of the
λ-lengths

a2 = < ζb, ζe >, b2 = < ζa, ζe >, e2 = < ζa, ζb > .

Lemma 3.5. The normalization coefficients r, s, t in Lemma 3.3 are
given by

r =
√

2
ea

b
, s =

√
2
be

a
, t =

√
2
ab

e
.(27)

We have found that a positive triple of points in the special light cone
naturally determines three even and one odd invariant, namely, the λ-
lengths a, b, e or the normalization coefficients r, s, t and the fermion
label φ given in the previous lemma. It appears that the definition of
the odd parameter φ depends on a choice of member of the positive
triple, and we next discuss how to eliminate this dependence.

In fact, given a positive triple ABC, there is a canonical cube root of
unity in OSp(1|2) called the ABC prime transformation which cyclically
permutes its members (A,B,C) 7→ (B,C,A), and we shall compute this
transformation on the coordinates of Lemma 3.3 explicitly and denote
it (r, s, t, φ) 7→ (r′, s′, t′, φ′) where the λ-lengths are of course also cycli-
cally permuted in the natural way. The choice-free way to express the
additional odd degree of freedom is to average our ansatz φ over this
prime transformation and define the Manin invariant3 or simply the
µ-invariant to be

θ = 1
3(φ+ φ′ + φ′′).(28)

In practice, µ-invariants and λ-lengths give a parametrization of deco-
rated super-Teichmüller space as we shall see.

To complete our definition of the µ-invariant, it, therefore, remains
to compute the prime transformation. To this end, we alter notation
slightly setting A = ζb, B = ζe, C = ζa as illustrated in Figure 3.

3In fact, Manin [17] introduced the odd “pseudo-invariant” ±θ of a triple of

points in R1|1 capturing the basic non-transitivity of the OSp(1|2) action there, and
by making choices (of spin structure among other conventions) one can [3] lift this
to a signed expression θ, namely, our Manin invariant.
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ζ

θ

ba

eA= ζ C= ζab

B = 
e

Figure 3. Parametrization of a positive triple in the
special light cone by three λ-lengths a, b, e on edges and
one µ-invariant θ.

Given three points

A = r(0, 1, 0, 0, 0),

B = t(1, 1, 1, φ, φ),

C = s(1, 0, 0, 0, 0),(29)

in the special light cone L̂+
0 , where r, s, t have positive body, we claim

there exists a group element gA
′,B′,C′

A,B,C from OSp(1|2) respectively trans-
forming the points A,B,C into

A′ = t′(1, 1, 1, φ′, φ′),

B′ = s′(1, 0, 0, 0, 0),

C ′ = r′(0, 1, 0, 0, 0),(30)

and, in fact, there are two possible ways to construct such a transfor-
mation (again unique up to fermionic reflection). However, there is a
unique transformation whose third power

gA
′′′,B′′′,C′′′

A′′,B′′,C′′ g
A′′,B′′,C′′

A′,B′,C′ g
A′,B′,C′

A,B,C = 1(31)

is equal to identity, and it turns out that its action on φ is rather simple.

Proposition 3.6. The group element gA
′,B′,C′

A,B,C acts so that φ′′ = φ′ =

φ, and this is the unique group element gA
′,B′,C′

A,B,C ∈ OSp(1|2) satisfying

the identity (31).

Proof. We first use the group element gtφψ in (14) in order to transform

B into (1, 0, 0, 0, 0). The effects of this transformation on the other
points produces

gtφφ : C 7→ st(0, 1, 0, 0, 0),

gtφφ : A 7→ r(t−1, t, 1,− φ√
t
,−
√
tφ).(32)
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Finally, acting by the diagonal matrix gd =

(√
t 0 0

0
√
t−1 0

0 0 1

)
we obtain the

desired result by composing with the fermionic reflection gf

gA
′,B′,C′

A,B,C = gtφ,φg
dgf =

(
0 1 0
−1 −1 −φ

0 −φ 1

)
,(33)

so that t′ = r, r′ = s, s′ = t. q.e.d.

Corollary 3.7. The µ-invariant θ ≡ φ of a positive triple ABC is
invariant under the ABC prime transformation.

As follows directly from this plus the discussion of the previous sec-
tion, we have

Theorem 3.8. The moduli space of OSp(1|2)-orbits of positive triples
in the light cone is given by equivalence classes under fermionic re-
flection of three even λ-lengths a, b, e with positive bodies plus the µ-
invariant θ defined up to fermionic reflection.

4. Basic calculation and Ptolemy transformations

This section is dedicated to a computation called the “basic calcula-
tion” giving a parametrization of the moduli space of OSp(1|2)-orbits

of four-tuples ABCD in the special light cone L̂+
0 comprised of two pos-

itive triples CBA and DCA of points in terms of five λ-lengths and two
µ-invariants. In effect, one positive triple CBA is put into the canonical
position of Lemma 3.3 using certain of the putative parameters, and the
remaining ones are then used to completely and uniquely determine the
fourth point D = (x1, x2,−y, ρ, λ), where y has non-negative body; it is
precisely here that compatibility of signs of adjacent µ-invariants arises.
This basic calculation is the critical ingredient both for our global coor-
dinates and for the Ptolemy transformation just as in [21, 23]. In fact,
provided only that the triple CBA is in standard position, the standard
position of DCA is easily calculated in terms of the coordinates of its
vertices as follows.

Lemma 4.1. The triple

A = r(0, 1, 0, 0, 0), C = s(1, 0, 0, 0, 0), D = (x1, x2,−y, ρ, λ),

for y ≥ 0 can be transformed by an element of OSp(1|2), which is itself
uniquely determined up to fermionic reflection, into the triple

Â = ŝ(1, 0, 0, 0, 0), Ĉ = r̂(0, 1, 0, 0, 0), D̂ = t̂(1, 1, 1, σ, σ),

where

ŝ =

√
x1

x2
r, r̂ =

√
x2

x1
s, t̂ =

√
x1x2,

σ = − 4

√
x1

x2

λ
√
x1x2

= 4

√
x2

x1

ρ
√
x1x2

.(34)
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Proof. Act first by
(

0 1 0
−1 0 0

0 0 1

)
to interchange the roles of A and C while

mapping D to a point with non-negative y-coordinate and then act

by

(
4
√
x1/x2 0 0

0 4
√
x2/x1 0

0 0 1

)
to realize equality of the first two coordinates.

The composition of these two elements of OSp(1|2) achieves the desired
result in accordance with Lemma 3.3. q.e.d.

Note that the normalization factors admit the uniform expressions

t =
√

2
ab

e
, r =

√
2
ea

b
, s =

√
2
be

a
,

t̂ =
√

2
cd

e
, r̂ =

√
2
ec

d
, ŝ =

√
2
de

c
.(35)

This transformation in OSp(1|2) which maps DCA to standard position
if BAC is in standard position is called the switch transformation of the
quadruple ABCD though, in fact, it depends only upon DCA according
to the formula for it given above.

B

A C

B

σ

A

DD

C

θ

a b

cd

e

fa b

cd

flip
μ ν

Figure 4. Standard notation for λ-lengths and µ-
invariants near an edge before (left) and after (right)
a flip.

Now turning to the basic calculation itself, let A = ζb, B = ζe, C = ζa

be points in the light cone as in Lemma 3.3 with λ-lengths a, b, e and
µ-invariant θ. Up to fermionic reflection, the OSp(1|2)-orbit of the
positive triple CBA is then uniquely determined by these parameters
according to Lemma 3.3. The basic calculation aims to compute D =
(x1, x2,−y, ρ, λ) ∈ L̂+

0 , where y has non-negative body, from the data

σ = − 4

√
x1

x2

λ
√
x1x2

= 4

√
x2

x1

ρ
√
x1x2

, 〈A,D〉 = d2, 〈D,C〉 = c2(36)

depicted in Figure 4, and the following arises directly from equations
(27) and (36).
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Proposition 4.2. We have the expressions

x1 =
t̂ŝ

r
=
√

2
d2b

ea
, x2 =

r̂t̂

s
=
√

2
c2a

eb
,

y =
√
x1x2 =

√
2
cd

e
,

λ = −
√

2
cd

e

√
ac

db
σ, ρ =

√
2
cd

e

√
db

ac
σ(37)

solving the basic calculation.

Introducing the cross-ratio Z = ac
db , this expression of the basic cal-

culation can be concisely written

x1 =
√

2
cd

e
Z−1, x2 =

√
2
cd

e
Z, y =

√
2
cd

e
,

λ = −
√

2
cd

e

√
Z σ, ρ =

√
2
cd

e

√
Z−1 σ.(38)

The utility of this version of the basic calculation for computing the
Ptolemy transformation is already evident from the following proposi-
tion.

Proposition 4.3. In the notation above with f2 = 〈A,D〉, we have

ef = (ac+ bd)
(

1 +
σθ

Z
1
2 + Z−

1
2

)
.(39)

Proof. Simply expand the expression

f2 =
t

2
(x1 + x2) + ty + tρθ + tθλ

=
d2b2

e2
+
a2c2

e2
+ 2

abcd

e2
+ 2

abcd

e2

(√db

ac
+

√
ac

db

)
σθ(40)

in λ-lengths. This is equivalent to

e2f2 = (ac+ bd)2 + 2abcd(Z
1
2 + Z−

1
2 )σθ,(41)

and the desired formula for f follows upon taking square roots. q.e.d.

Now let us reproduce the same four points A,B,C,D ∈ L̂+
0 using the

parameters of adjacent positive triples CBD and ADB. To do so, let
us move the positive triple CBD to standard position

B = s̃(1, 0, 0, 0, 0), C = r̃(0, 1, 0, 0, 0),

D = t̃(1, 1, 1, φ̃, φ̃).(42)

To this end, we first apply the stabilizer of s(1, 0, 0, 0, 0), namely, the
matrix

g =

 1 0 0
c 1 ζ
ζ 0 1

 ,(43)
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as in Corollary 2.4, in order to transform t(1, 1, 1, θ, θ)→ r̄(0, 1, 0, 0, 0),
where the corresponding c and ζ are given by c = −1 and ζ = −θ
yielding r̄ = t. Applying this transformation to D = (x1, x2,−y, ρ, λ) ∈
L̂+

0 , we obtain a new vector (x̂1, x̂2,−ŷ, ρ̂, λ̂) ∈ L̂+
0 , where

x̂1 = x1 + x2 + 2y − 2θ(ρ− λ),

x̂2 = x2,

ρ̂ = θy + θx2 − λ+ ρ,

λ̂ = −θx2 + λ.(44)

Applying
( 0 1 0
−1 0 0

0 0 1

)
followed by the diagonal matrix

( 4
√
x̂1
x̂2

0 0

0 4
√
x̂2
x̂1

0

0 0 1

)
to

each of B,C,D yields:

t̃ =
√
x̂1x̂2, r̃ = t

√
x̂1

x̂2
, s̃ = s

√
x̂2

x̂1
,

φ̃ = − λ̂√
x̂1x̂2

(
4

√
x̂1

x̂2

)
=

ρ̂√
x̂1x̂2

(
4

√
x̂2

x̂1

)
(45)

for the parameters in equation (42). Thus, the µ-invariant of the positive

triple BDC is given by φ̃ as this is invariant under the BDC prime
transformation.

Theorem 4.4. The µ-invariants for the positive triples BDC and
DBA depend only on the µ-invariants θ, σ and the cross-ratio Z and
are given by

ν =
θ
√
Z + σ√
1 + Z

,(46)

µ =
σ
√
Z − θ√

1 + Z
.(47)

Proof. Equation (46) follows from the direct calculation

ν = − λ̂√
x̂1x̂2

(
4

√
x̂1

x̂2

)
(48)

=
θx2 − λ

Z
3
4 (
√

2 cde )

√√
Z +
√
Z
−1

=
θ
√
Z + σ√
1 + Z

.

In order to write µ in terms of the same function fBDC , we must trans-
form D,A,B ∈ L̂+

0 as follows

D 7→ ť(1, 1, 1, φ̌, φ̌), A 7→ š(1, 0, 0, 0, 0), B 7→ (x̌1, x̌2,−y̌, ρ̌, λ̌),
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and this can be achieved by first applying the matrices given in Lemma
4.1 so that

ρ̌ = −t 4

√
x1

x2
θ, λ̌ = t 4

√
x2

x1
θ,

φ̌ = − 4

√
x1

x2

λ
√
x1x2

= 4

√
x2

x1

ρ
√
x1x2

.

It follows that

µ = fBDC(Ž, θ̌, σ̌),(49)

where the checked arguments of µ are related to checked variables
from (49) as before and Ž = Z, θ̌ = σ, σ̌ = −θ. It follows that
µ = fDBA(Z, θ, σ) = fBDC(Z, σ,−θ) as required. q.e.d.

As a direct corollary to the proof, we have

Corollary 4.5. Consider the odd Ptolemy transformation on ordered
pairs (θ, σ) 7→ (ν, µ) together with the corresponding action on λ-lengths
and apply it twice to the quadrilateral ABCD, with BAC in standard
position. Then the effect is the switch transformation of ABCD de-
scribed in Lemma 4.1. Specifically after this transformation, DCA is
in standard position with D 7→ t̂(1, 1, 1, σ, σ) while the image of B is
determined not by θ but rather by −θ.

5. Spin surfaces and orientations on fatgraphs

In this section, we relate the collection of spin structures on a punc-
tured surface to orientations on any trivalent fatgraph spine of the sur-
face. To begin, we recall results of Cimasoni–Reshetikhin from [7, 8].

The boundary of a one-dimensional CW complex G is its set ∂G of
vertices of valence one. G is a surface graph with boundary for some
compact oriented surface Σ with boundary ∂Σ if G is embedded in Σ
with G ∩ ∂Σ = ∂G so that Ḡ = G ∪ ∂Σ is the 1-skeleton of a cellular
decomposition of Σ. A dimer configuration on G is a choice of certain of
its edges called dimers such that each vertex not in ∂G has exactly one
incident dimer while vertices in ∂G may or may not have an incident
dimer, the specification of which is regarded as an a priori boundary
condition on the dimer configuration.

Given an orientation K on the edges of Ḡ and a closed oriented edge
curve C in it, we denote by nKC the number of edges counted with
multiplicity where the orientation of C disagrees with that of K. A
Kasteleyn orientation on Ḡ is an orientation K on the edges of the
1-skeleton Ḡ so that nK∂f = 1(mod 2) for each face f of Σ. Define
an equivalence relation K1 ∼ K2 between two Kasteleyn orientations
K1,K2 on G generated by altering the orientation on every edge incident
on some fixed vertex, which is called a Kastelyn reflection, and let K(G)
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denote the set of equivalence classes. There is, furthermore, a cochain
θK1,K2 ∈ C1(Σ;Z2) defined by setting θK1,K2(e) = 1 if and only if K1

and K2 disagree on e, for e an edge of G.

Theorem 5.1 (Corollary 1 of [7]). In fact, θK1,K2 ∈ Z1(Σ;Z2) is
a cocycle which is a coboundary if and only if K1 ∼ K2. Further-
more, the set of equivalence classes of Kasteleyn orientations is an affine
H1(Σ;Z2)-space.

Seminal work of Dennis Johnson [15] mentioned before identifies
as affine H1(Σ;Z2)-spaces the collection Ω(F ) of all spin structures
on a surface Σ with the collection Q(Σ) of all quadratic forms q :
H1(Σ;Z2) → Z2 satisfying q(a + b) = q(a) + q(b) + a · b with respect
to the homology intersection pairing a · b of a, b ∈ H1(Σ;Z2). In fact,
Kasteleyn orientations on a surface graph for Σ and quadratic functions
on H1(Σ;Z2) are also isomorphic as affine H1(Σ;Z2)-spaces, and the
correspondence is given via an explicit construction relative to a fixed
dimer D as follows.

Theorem 5.2 (Theorem 2.2 of [8]). Fix a dimer configuration D on a
surface graph with boundary G for the surface Σ and let α ∈ H1(Σ;Z2)
be represented by oriented closed curves C1, . . . , Cm ∈ Ḡ. If K is a
Kasteleyn orientation on G, then the function qKD : H1(Σ;Z2) → Z2

given by

qKD (α) =
∑
i<j

Ci · Cj +
m∑
n=1

(1 + nKCi + `DCi) (mod 2)(50)

is a well-defined quadratic form, where `DC is the number of edges of D
sticking out to the left of C, and nKC as before is the number of edges
counted with multiplicity where the orientation of C disagrees with that
of K. Moreover, for each fixed dimer D, this establishes an isomorphism
K(G) ≈ Q(Σ) as affine H1(Σ;Z2)-spaces.

Together with [15], this establishes an isomorphism of affine
H1(Σ;Z2)-spaces between the collection Ω(Σ) of spin structures on Σ
and K(G) for any surface graph G with boundary for Σ with respect to
a fixed dimer configuration.

Now, given a trivalent fatgraph spine τ for F = F sg , we shall build
an appropriate surface graph with boundary for a surface embedded
in F as a deformation retract. Construct a CW decomposition of this
compact so-called skinny surface Σ = Σ(τ) ⊂ F with boundary taking
one hexagon Hv for each vertex v and one rectangle Re for each edge
e of τ glued together in the natural way in F as in Figure 5. There
is a canonical surface graph G = Gτ for Σ comprised of the common
boundaries of these hexagonal and rectangular regions as also illustrated
in the figure by bold line segments, two such segments for each edge of
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Figure 5. Cellular decomposition via fatgraphs.

τ . There is also a canonical dimer D = G given by exactly this same set
of segments, so each vertex in ∂G has an incident dimer.

A hexagon has the two special Kastelyn orientations that are either
outgoing or incoming at each vertex, and these are related by reversal of
orientation of each edge. Furthermore, identifying Hv with this abstract
hexagon, for some vertex v of τ , there is a unique such orientation which
agrees with the one induced from the counter-clockwise orientation of
G with Hv on the left as illustrated on the top of Figure 6. Thus,
any Kastelyn orientation on Ḡ can be modified by Kastelyn reflections
to agree with this one on Hv for each vertex v of τ , i.e., the special
Kastelyn orientations saturate the equivalence classes.

Figure 6. Extension of special Kastelyn orientations on
hexagons to special ones on Ḡ on the top and orientation
on fatgraph τ from special Kasteleyn orientations on Ḡ
on the bottom.

Suppose that K is such a special Kastelyn orientation on Ḡ that, thus,
agrees with the special hexagonal ones near each vertex of τ oriented as
already discussed. There are exactly two methods that K can extend
as a Kastelyn orientation to a rectangle Re as illustrated on the top
in Figure 6, and these are naturally in bijective correspondence with
orientations on the edges of τ themselves insofar as they are parallel as
illustrated on the bottom of Figure 6.
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Conversely, suppose that ω is an orientation on τ and let Kω denote
the associated special Kastelyn orientation on Ḡ defined to be parallel
on each Re and special on each Hv as before. In the same spirit as
Kastelyn reflection, we define a fatgraph reflection at a vertex v of τ to
reverse the orientations of ω on every edge of τ incident on v, consider
the equivalence relation ω1 ∼ ω2, thus, generated on the set of all orien-
tations on τ and let O(τ) denote the set of all equivalence classes. One
easily checks that the fatgraph reflection at v is given precisely by the
composition of Kastelyn reflections at the six vertices of Hv, so ω1 ∼ ω2

implies Kω1 ∼ Kω2 . Conversely, in order that the orientation on an edge
of some Hv is invariant, we must perform Kastelyn reflection either at
both or neither of its endpoints, and it follows that Kω1 ∼ Kω2 also
implies ω1 ∼ ω2. Furthermore, given orientations ω1, ω2 on τ , there is
the analogous cochain θω1,ω2 ∈ C1(Σ;Z2) taking a non-zero value on an
edge of τ if and only if ω1 and ω2 disagree on the edge, and we clearly
have θω1,ω2 ≡ θKω1 ,Kω2 . Summarizing, we have:

Proposition 5.3. For each orientation ω on the edges of a fatgraph
τ , there exists a unique special Kasteleyn orientation Kω on Ḡτ , and
this induces an isomorphism K(Gτ ) ≈ O(τ) of equivalence classes under
reflection as affine H1(F sg ;Z2)-spaces.

As follows directly from Theorem 5.2 and Proposition 5.3, we have

Theorem 5.4. Let τ be a fatgraph spine in the surface F = F sg with
corresponding surface graph Gτ for Σ ⊂ F . Then the formula (50) with
the canonical dimer configuration D establishes an isomorphism O(τ) ≈
Q(Σ) as affine H1(F ;Z2)-spaces, and, indeed, also Q(Σ) ≈ Q(F ) since
Σ ⊂ F is a homotopy equivalence.

It remains for us here only to compute the effect that flipping a fat-
graph edge has on an orientation class:

Lemma 5.5. Suppose that τ1 is a trivalent fatgraph spine for F and
that τ2 arises by flipping an edge of τ1. There is a unique bijection
O(τ1) → O(τ2) covering the identity map of Q(F ), and it is described
by Figure 2.

Proof. Consider a neighborhood of the edge of τ1 upon which the flip
is performed depicted in Figure 7 where there are illustrated six distinct
oriented paths in F denoted α, β, γ, δ, ε, φ, which may be completed to
closed oriented curves in F and contribute to the value of the quadratic
form. A tedious computation given in Appendix II compares formula
(50) before and after the flip for these six paths and determines that
there is the unique evolution of orientation class from τ1 to τ2 illustrated
in Figure 2 that leaves invariant these contributions. q.e.d.
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ϕ

ε

γδ

β

α

Figure 7. The oriented paths α, β, γ, δ, ε, φ on Ḡτ1 are
indicated by bold lines.

Theorem 5.6. Let τ be a trivalent fatgraph spine of F = F sg . Then
O(τ) is isomorphic to the set Ω(F ) of spin structures on F as affine
H1(F ;Z2)-spaces. Moreover, the action of MC(F ) on Ω(F ) lifts natu-
rally to the action of the Ptolemy groupoid on O(τ) illustrated in Fig-
ure 2.

By naturality here, we mean that if ϕ ∈MC(F ), then there is a finite
sequence F ⊃ ϕ(τ) = τ1 → τ2 → · · · → τn = τ where τi+1 arises from
τi by a flip, for i = 1, . . . , n− 1. Suppose that ω is an orientation on τ
inducing via the identification ϕ the orientation ω1 on τ1 and, moreover,
that the evolution of orientation illustrated in Figure 2 serially induces
from ω1 the orientation ω′ = ωn+1 on τn+1 = τ . The spin structure on
F associated to ω maps to that of ω′ under the action of ϕ on Ω(F ) by
construction.

6. Coordinates on decorated super-Teichmüller space

Equivalent to the choice of trivalent fatgraph spine τ ⊂ F is the
specification of its dual ideal triangulation ∆ of F . An orientation ω
on τ induces an orientation on ∆ by requiring that the oriented edge
of ∆ occurs clockwise from its dual oriented edge in τ near their point
of intersection here using an orientation of the surface F . Dual to the
fatgraph reflection at a vertex is the change of orientation on each edge
in the frontier of a triangle complementary to ∆. We consider the lift
of ∆ to an ideal triangulation ∆̃ of the universal cover F̃ → F . Fixing
a base point in F , the fundamental group π1 = π1(F ) acts as deck
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transformations on F̃ leaving invariant ∆̃. Of course F̃ is topologically
equivalent to D, and a hyperbolic metric on F further determines a
metric equivalence. In any case, we may consider the collection of ideal
vertices ∆̃∞ ⊂ S1 of all the arcs in ∆̃ as an abstract set.

Theorem 6.1. Fix a surface F = F sg of genus g ≥ 0 with s ≥ 1
punctures, where 2g − 2 + s > 0, and let ∆ be some ideal triangulation
of F whose lift ∆̃ to the universal cover π : F̃ → F has ideal vertices
∆̃∞. Suppose that ω is an orientation class on the arcs in ∆ corre-
sponding to a specified spin structure, and assign to each edge of ∆ an
even coordinate and to each triangle complementary to ∆ an odd coor-
dinate where the latter are taken modulo an overall sign. Then there is
a function

` : ∆̃∞ → L̂+
0 ,

uniquely determined up to post-composition with an element of OSp(1|2)
so that

i) if a, b ∈ ∆̃∞ span an edge in ∆̃, then the coordinate on this edge

is given by the λ-length
√
< `(a), `(b) >;

ii) if c, b, a ∈ ∆̃∞ span a triangle complementary to ∆̃ and occur in
the positive order in S1, then up to a sign the coordinate of this tri-
angle is given by the µ-invariant of the positive triple `(c)`(b)`(a);

moreover, if d, c, a ∈ ∆̃∞ likewise occur in the positive order and
span a triangle, then the coordinates of these respective triangles
are given up to an overall sign by the µ-invariants of the positive
triples `(c)`(b)`(a) and `(d)`(c)`(a) as related by Proposition 4.2.

Furthermore, there is a representation ρ̂ : π1 = π1(F ) → OSp(1|2)
with respect to which ` is π1-equivariant in the sense that ρ̂(γ)(`(a)) =

`(γ(a)) for each γ ∈ π1 and a ∈ ∆̃∞ so that π1
ρ̂
→OSp(1|2) → SL(2,R) →

PSL(2,R) is a Fuchsian representation whose lift π1
ρ̂
→OSp(1|2) →

SL(2,R) agrees with the specified spin structure. Moreover, ρ̂ is uniquely
determined up to conjugacy by an element of OSp(1|2).

Proof. The argument closely follows the bosonic case [21, 23] using
the putative coordinates to recursively construct the mapping ` and,
finally, the representation ρ̂. Let us first consider the case that the
trivalent fatgraph spine τ ⊂ F dual to ∆ is bipartite, namely, there is
a two-coloring of the vertices of τ so that the endpoints of any edge
of τ have different colors. An example of a bipartite fatgraph spine is
illustrated in Figure 8 for each topological type of punctured surface.

Dually letting T denote the collection of triangles complementary
to ∆ in F , there is a function δ : T → {±1} so that for any two
triangles t1, t2 ∈ T sharing an edge, we must have δ(t1) · δ(t2) = −1.
Notice that in this bipartite case there are exactly two distinct such
functions differing by an overall sign. The coordinates on ∆ lift to
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g

s-1

Figure 8. A bipartite fatgraph spine in F sg for any g ≥ 0
and s ≥ 1.

coordinates on ∆̃ in the natural way assigning to each edge e ∈ ∆̃
the even coordinate of π(e) and to each complementary triangle t ∈
T̃ = {complementary triangles to ∆̃} the odd coordinate θt of π(t).

The function δ likewise lifts to the eponymous function δ : T̃ → {±1}
satisfying δ(t) = δ(π(t)).

Choose a distinguished triangle-edge pair or equivalently a distin-
guished oriented edge of ∆̃ which determines the triangle t ∈ T̃ lying
to its left in the oriented surface F̃ . According to Lemma 3.3, there
is a positive triple ABC in the special light cone realizing the putative
λ-lengths and µ-invariant θt so that the point B is opposite to the distin-
guished oriented edge, and ABC is, furthermore, uniquely determined
up to fermionic reflection gr. Choosing a particular representative ABC
or grABC at this stage gauge fixes the Z2-action and, thus, determines
well-defined signs on all of the fermionic coordinates θt̄ for t̄ ∈ T̃ . (In
the special case when the fermionic coordinate on t vanishes, we have
grABC = ABC and can still gauge fix at this point to determine the
signs on all of the non-vanishing fermionic coordinates.) This lift to a

positive triple in L̂+
0 of the vertices of t constitutes the basis step of our

recursive construction of the mapping `.
In order to lift the triangle t′ ∈ T̃ to the right of the distinguished

oriented edge with its specified fermionic coordinate θt′ , we shall rely
on the basic calculation formulated as Proposition 4.2 to lift the vertex
of t′ distinct from those of t to a point D ∈ L̂+

0 , however, the coor-
dinates employed to determine D are the specified putative λ-lengths
and the δ-modified µ-invariant δ(t′) ·θt′ rather than θt′ itself. Conjugat-
ing by the ABC prime transformation and its square, we can likewise
uniquely lift to L̂+

0 the vertices of the other two triangles in T̃ adjacent
to t.

Continue recursively in this way moving each triangle in T̃ already
lifted into standard position with its specified µ-invariant usingOSp(1|2)
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and then employing the putative λ-lengths and δ-modified µ-invariants
to lift the next adjacent triangle in T̃ using Proposition 4.2 in order to,
finally, uniquely lift all of ∆̃∞ and completely define ` : ∆̃∞ → L̂+

0 in
keeping with requirements i) and ii) in the statement of the theorem.
There are actually only finitely many values of coordinates employed in
this construction since there are only finitely many arcs in ∆ and trian-
gles in T . In particular, the bodies of λ-lengths are uniformly bounded
above and below. As in the pure even case [21, 23], it follows from this

bounded geometry that the bosonic projection ∆̃∞
`
→ L̂+

0
→ L+ induces

a mapping from the ideal triangulation of F̃ onto a tessellation of all
of D.

We claim that changing the distinguished oriented edge of ∆̃ used
to initiate this construction merely modifies the function ` by post-
composition with a group element in OSp(1|2). To see this, first notice
that if we change orientation of the distinguished oriented edge, then t′

will be in standard position with its µ-invariant θt′ , and the triangle t is
then produced using the δ-modified µ-invariant δ(t) · θt. Applying the
switch transformation (and possibly overall fermionic reflection for the
Z2 gauge group), based on the fact that δ(t) · δ(t′) = −1 together with
Proposition 4.5, we recover the image of the previous construction un-
der the switch transformation, which lies in OSp(1|2), with the correct
signs for fermionic parameters. Moreover, any change in the distin-
guished oriented edge can be achieved by means of a finite composition
of prime transformations and at most one reversal of orientation. Since
prime transformations are again group elements of OSp(1|2), we con-
clude that our equivalence class of lifts under the action of OSp(1|2) is
independent of the distinguished oriented edge as required. Uniqueness
of the mapping ` up to post-composition with an element of OSp(1|2)
follows by construction from the uniqueness statements in Lemma 3.3
and Proposition 4.2 completing the proof of the first part under the
bipartite assumption.

From the lift ∆̃∞
`
→ L̂+

0 , we shall presently construct the required rep-

resentation ρ̂ : π1 → Γ̂ < OSp(1|2). To this end, choose a connected

fundamental domain D ⊂ F̃ for the action of π1 comprised of a col-
lection of triangles in T̃ which contains the base triangle t specified
earlier which began the recursive construction of `. The frontier edges
of D in F̃ arise in pairs c, c′ together with an abstract identification
c′ = γ(c) induced by some γ ∈ π1, and we let c′i = γi(ci) enumerate
the collection of these edge pairings, for i = 1, . . . , 4g + 2s, where the
γi, thus, freely generate π1. To determine the image ρ̂(γi) ∈ OSp(1|2)
of γi ∈ π1 in order to define the representation ρ̂, let us further enu-
merate two triangles for each edge pairing, namely, the unique tri-
angles ti ⊃ ci and t′i ⊃ c′i in T̃ where ti ⊂ D and t′i 6⊂ D. No-
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tice as before that the coordinates for ti or t′i have gauge-fixed signs
from the basis step of the construction of `, and the parameters on ti
lifted from F agree with those on t′i since γi(ti) = t′i implies π(ti) =
π(t′i).

Let Ti = `(ti) be the corresponding positive triple in L̂+
0 . Accord-

ing to Lemma 3.3 again, there is a unique hi ∈ OSp(1|2) such that
Ti · hi = T̄i, where OSp(1|2) acts on the right and T̄i indicates the
triple of points in standard position realizing the λ-lengths and signed
µ-invariant of Ti so that the fermion-dependent vertex is opposite to
ci. Let h′i ∈ OSp(1|2) be the analogous group element for T ′i . We
must, furthermore, take account of the spin structure in accordance
with [19, 20] relating the sign of the trace of the bosonic reduction of
ρ̂(γ) with the value of the corresponding quadratic form on the un-
derlying mod two homology class [γ] ∈ H1(F ;Z2), for γ ∈ π1. In
particular, notice that the fermionic reflection gr has the central ele-
ment −I ∈ SL(2,R) as its bosonic reduction. Given the quadratic form
q ∈ Q(F ) corresponding via Theorem 5.4 to our specified orientation ω,
we define

ρ̂(γi) =



h−1
i · gr · h′i,

if trace(h−1
i · h′i) > 0 & q([γi]) = 0,

or trace(h−1
i · h′i) < 0 & q([γi]) = 1;

h−1
i · h′i,

if trace(h−1
i · h′i) < 0 & q([γi]) = 0,

or trace(h−1
i · h′i) > 0 & q([γi]) = 1.

By construction, these group elements compose correctly so as to
produce a representation, and since π1 is a free group, there are no rela-
tions to confirm whence ρ̂ is, indeed, a representation of π1 in OSp(1|2)

onto a subgroup Γ̂ = ρ̂(π1) < OSp(1|2). Also by construction, the pro-
jectivized bosonic reduction Γ = ρ(π1) < PSL(2,R) leaves invariant
the tessellation of D discussed before, and an argument in [21, 23]
going back to Poincaré, thus, proves that Γ is, indeed, a Fuchsian
group uniformizing the punctured surface. Finally, the bosonic reduc-
tion Γ̃ = ρ̃(π1) < SL(2,R) itself as a lift of Γ < PSL(2,R) gives the
correct spin structure on the underlying Riemann surface in keeping
with [19, 20] by construction since multiplication by gr alters the sign
of the trace of the bosonic reduction.

This completes the required construction of a representation from
the asserted parameters including the spin structure. The procedure
described is clearly equivariant for the fermionic reflection under the
initial choice of sign on the µ-invariant in the base triangle, and the
distinction between pairs ti ⊂ D and t′i 6⊂ D amounts only to replacing
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a generator by its inverse. There are, thus, two essential choices: the
choice of base triangle t to begin the inductive construction as well as
the fundamental domain D containing it. We must show that these
choices are resolved by the overall conjugacy in the definition of the
decorated super-Teichmüller space.

To this end, consider two such fundamental domains containing spec-
ified base triangles ti ⊂ Di with corresponding mappings `i : ∆̃∞ → L̂+

0
and representations ρ̂i : π1 → OSp(1|2), for i = 1, 2. There is a unique
triangle t′1 ⊂ D2 whose projection to F agrees with that of t1 since
D2 is a fundamental domain for the action of π1, whence t1 and t̄′1,
thus, share the same invariants. By Lemma 3.3 again Z2 gauge-fixed as
before, there is a unique g ∈ OSp(1|2) so that g(t1) = t′1. By unique-
ness in Lemma 3.3 and Proposition 4.2, we must then have `1 = `2 ◦ g,
and so g, furthermore, conjugates ρ̂1 to ρ̂2 as required. Notice that the
trace of the bosonic reduction of an element of OSp(1|2) is invariant
under conjugacy, so the spin structure is left invariant by conjugation
of representations.

We must, finally, extend the construction from bipartite to gen-
eral trivalent fatgraph spines τ ⊂ F . To this end according Corol-
lary D, there is a finite sequence of flips starting from τ and end-
ing with a bipartite fatgraph spine τ ′ ⊂ F such as the one depicted
in Figure 8 to which we may apply the construction just described
based upon the coordinates on τ ′ induced from those on τ via su-
per Ptolemy transformations in Proposition 4.3 and Theorem 4.4 as
well as the orientation class on τ ′ induced from that on τ in Theo-
rem 5.6 determining the spin structure. Since these super Ptolemy
transformations are computed relative to a fixed configuration of points
in L̂+

0 , this gives a well-defined lift ` : ∆̃∞ → L̂+
0 for any trivalent

fatgraph spine and, hence, a corresponding representation ρ̂ : π1 →
OSp(1|2) which is determined up to conjugacy since the mapping `
is determined up to post-composition with an element of OSp(1|2).

q.e.d.

Corollary 6.2. Fix a trivalent fatgraph spine τ ⊂ F for a surface
F = F sg of negative Euler characteristic and specify an orientation on

the edges of τ determining the component C of ST̃ (F ). Then λ-lengths
on the edges together with µ-invariants on the vertices of τ , the latter
taken modulo an overall sign, provide global coordinates on C. More-
over, these coordinates are natural in the sense that if ϕ ∈MC(F ) and
ϕ(τ) = τ1 − τ2 − · · · − τn = τ is a sequence of trivalent fatgraph spines
of F with consecutive ones related by a flip, then we identically induce
coordinates and orientation class on ϕ(τ) from these data on τ using ϕ
and perform the corresponding sequence of super Ptolemy transforma-
tions in Proposition 4.3 and Theorem 4.4 and evolution of orientation
in Theorem 5.6 to induce new coordinates and orientation on τ itself.
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Then these induced coordinates and orientation class on τ describe the
action of ϕ on ST̃ (F ).

Proof. This follows directly from the previous result and Theorem 5.6
together with the observation that λ-lengths and µ-invariants are de-
fined intrinsically in R2,1|2. q.e.d.

7. Shear coordinates and Ptolemy-invariant 2-form

First, let us recall in some detail the Ptolemy transformations studied
in Section 4. There were two aspects to the calculation corresponding
to even and odd, namely, the even Ptolemy transformation is a simple
modification

ef = (ac+ bd)
(

1 +
σθ
√
Z

1 + Z

)
,(51)

of the standard pure even case ef = ac + bd, and the odd Ptolemy
transformation again in the notation of Section 4 is given by

ν =
σ + θ

√
Z√

1 + Z
, µ =

σ
√
Z − θ√

1 + Z
.(52)

Taken together (51) and (52) give expression to the super Ptolemy trans-
formation.

These formulas, in particular, specialize to those of [3] where shear
coordinates on the super-Teichmüller space are introduced. Namely as
in the classical case, given an ideal triangulation ∆ of the surface F , to
each edge AC as in Figure 4 is associated its cross ratio Ze = Z = ac

bd ,
written again in terms of λ-lengths. Given the two positive triples CBA
and DCA in the special light cone L̂+

0 , denote by Za, Zb, Zc, Zd these
cross ratios associated to each respective edge a, b, c, d also illustrated in
Figure 4 identifying an edge with its λ-length here for convenience; of
course, each of these depends in turn on the λ-lengths of other nearby
edges, for instance, Zb = eg

ah , where g, h are λ-lengths on the frontier
edges of the other complementary triangle to ∆ than CBA that contains
CB. Nevertheless, under the even Ptolemy transformation, we find that
Zb = eg

ah transforms to

Zb
ac

ef
= Zb(1 + Z−1)−1

(
1 + σθ(Z

1
2 + Z−

1
2 )−1

)−1
=

Zb(1 + Z−1 + σθ
√
Z−1)−1,

and one, similarly, computes

Za 7→ Za(1 + Z + σθ
√
Z), Zc 7→ Zc(1 + Z + σθ

√
Z),

Zd 7→ Zd(1 + Z−1 + σθ
√
Z−1)−1.(53)
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In fact, these transformations together with equation (52) coincide with
those in [3] up to a conventional inversion of the cross ratio coordinate
(see Figure 2 in [3]).

In the pure even case [22, 23], the Kähler 2-form of the Weil–Petersson
Hermitian metric on the Teichmüller space T (F ) or moduli space M(F )
of a punctured surface F was computed relative to the λ-lengths on any
convenient triangulation ∆ of F . Namely, it is given by

ω∆ = 2
∑

d log a ∧ d log b(54)

+ d log b ∧ d log c+ d log c ∧ d log a,

where the sum is over all complementary triangles T to ∆ in F with
frontier edges of T occurring in the cyclic order a, b, c compatibly with
the clockwise orientation on T ⊂ F . It is not difficult to check directly
that this expression is invariant under the pure even Ptolemy transfor-
mation ef = ac+ bd, and, indeed, in the 1980’s before it was recognized
as this particular 2-form, it was, nevertheless, already confirmed to be
invariant under Ptolemy transformations and, hence, arise from some
2-form on the quotient moduli space T (F )/MC(F ). Much this same
computation applies in the current case.

Theorem 7.1. If ∆ is an ideal triangulation of the punctured surface

F , then consider the even 2-form on ST̃ (F ) given by

ω̂∆ =
∑

d log a ∧ d log b+ d log b ∧ d log c+ d log c ∧ d log a− (dθ)2,

where the sum is over all triangles whose consecutive edges in the clock-
wise ordering have λ-lengths a, b, c and µ-invariant θ. Then this 2-form
is invariant under super Ptolemy transformations.

Notice that ω̂∆ is manifestly invariant under the fermionic reflection
changing the signs of all fermions, and we have dropped the pre factor 2
here compared to the Kähler form so that if one converts the expression
ω̂∆ from λ-lengths to shear coordinates as described before, then the
resulting 2-form is associated with the Poisson bracket given in [3].

Proof. Let us remind [2] the reader that on supermanifolds the de
Rham operator anticommutes with odd constants, and in local coor-
dinates ({xi}, {θj}) is given by d = dxi∂xi + dθi∂θi , where the odd
derivative acts from the left and the dθi are even.

Adopt the notation x̃ = d log x = dx
x for any invertible expression

x and compute as in the pure even case [22, 23] for a pair CBA and
DCB of positive triples that the contribution to ω̂∆ before the flip on
AC in the notation of Figure 1 is given by

ãb̃+ b̃ẽ+ ẽã+ ẽd̃+ d̃c̃+ c̃ã− (dθ)2 − (dσ)2,(55)

and after the flip is given by

b̃c̃+ c̃f̃ + f̃ b̃+ f̃ d̃+ d̃ã+ ãf̃ − (dν)2 − (dµ)2.(56)
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We must show that these two expressions coincide.

To this end, notice that if U = σθ
√
Z

1+Z = σθ

Z
1
2 +Z−

1
2

, then

ẽ+ f̃ =
1

ac+ bd
(ac(ã+ c̃) + bd(b̃+ d̃)) + dU,(57)

and we find

b̃c̃+ c̃f̃ + f̃ b̃+ f̃ d̃+ d̃ã+ ãf̃ = b̃c̃+ d̃ã+ f̃(b̃+ d̃− ã− c̃)

= b̃c̃+ d̃ã− ẽ(b̃+ d̃− ã− c̃)

+
ac

ac+ bd
(ã+ c̃)(b̃+ d̃)+

bd

ac+ bd
(ã+ c̃)(b̃+ d̃)− dUZ̃,

where

dUZ̃ =
d(σθ)dZ

(1 + Z)
√
Z
.(58)

Meanwhile, the super Ptolemy transformation gives

(dµ)2 + (dν)2 = dσ2 + dθ2 + 2
dσ√
1 + Z

d
( √

Z√
1 + Z

)
θ +

+2

√
Zdθ√

1 + Z
d
( 1√

1 + Z

)
σ − 2

dσ
√
Z√

1 + Z
d
( 1√

1 + Z

)
θ −

2
dθ√

1 + Z
d
( √

Z√
1 + Z

)
σ = dσ2 + dθ2 +

d(θσ)dZ

(1 + Z)
√
Z
,

which coincides with equation (58) as required. q.e.d.

Appendix I. OSp(1|2): Notation and conventions

In this appendix, we provide basic information concerning the Lie
supergroup OSp(1|2) and its Lie superalgebra. Our cursory treatment
here is presumably sufficient for the purposes of the text, and we refer
the interested reader to [2, 17] for further details about general Lie
superalgebras and supergroups.

Let us first introduce certain conventions (which differ from those
in [3]). Given a Lie superalgebra g, one can consider its Grassmann
envelope, namely, the Lie superalgebra g(S) = S⊗g for some Grassmann
algebra S with decomposition S = S0⊕S1 into even and odd elements.
It follows that g(S) is both a right and left S-module, i.e., s ⊗ T =

(−1)|s||T |(1 ⊗ T )(s ⊗ 1) if s ∈ S and T ∈ g are homogeneous elements
of respective degrees |s| and |T |. This rule allows one to construct a
representation of the corresponding Lie superalgebra g(S) in the space

S⊗Rm|n from a given representation of g in Rm|n. One can then produce
a representation of the corresponding Lie group G(S) by exponentiating

pure even elements from g(S) in S ⊗ Rm|n.
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When writing a super matrix

(
A B
C D

)
representing the action of

G(S) or g(S) as elements of S ⊗ End(Rm|n) on S × Rm|n, notice that
for pure even supermatrices, the composition rule is given by(

A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ −BC ′ AB′ +BD′

CA′ +DC ′ DD′ − CB′
)
,(59)

where the products on the right hand side are the usual products of
(super)matrices.

The usual (super)matrix multiplication (without the minus signs
above) is recovered upon replacing B with −B. This difference in sign
is related to the fact that one typically considers the action of group

elements on Rm|nS = S0
×m × S1

×n, which can be identified with the

space of even elements in S ⊗ Rm|n, and the extra minus sign in front
of B comes from that isomorphism. However, throughout this paper we
keep the above convention for multiplication of superalgebras (with the
extra signs) since it gives a cleaner relationship with the representation
of the original Lie superalgebra.

Another essential ingredient is the superdeterminant or Berezinian of
an even supermatrix M =

(
A B
C D

)
with D invertible which is defined as

sdet(M) = (detD)−1(A+BD−1C),(60)

where the products of matrices are standard matrix products, and we
have the nonstandard plus sign A+BD−1C in the definition reflecting
our conventions.

Now, the Lie superalgebra OSp(1|2) has three even h,X± and two
odd generators v± satisfying the commutation relations

[h, v±] = ±v±, [v±, v±] = ∓2X±, [v+, v−] = h.(61)

The corresponding realization via (2|1) × (2|1) supermatrices is given
by

v+ =

 0 0 1
0 0 0
0 −1 0

 , v− =

 0 0 0
0 0 1
1 0 0

 , h =

 1 0 0
0 −1 0
0 0 0

 ,

and the corresponding supergroup OSp(1|2) can be faithfully realized as
(2|1)×(2|1) supermatrices g with sdet equal to one obeying the relation

gstJg = J,(62)

where

J =

 0 1 0
−1 0 0
0 0 −1

 ,(63)
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and where the supertranspose gst of g is given by

g =

 a b α
c d β
γ δ f

 implies gst =

 a c γ
b d δ
−α −β f

 .(64)

This leads to the following system of constraints on the entries of g:

f = 1 + αβ, ad− bc = f−1, dγ − cδ = β,

δ = bβ − dα, γ = aβ − cα, α = bγ − aδ.(65)

In particular, ( a bc d ) 7→ (
a b 0
c d 0
0 0 1

) describes the canonical inclusion

SL(2,R) < OSp(1|2), and the body of the upper-left 2 × 2 block con-
versely gives the bosonic reduction in SL(2,R) of a matrix in OSp(1|2).

Appendix II. Flip action on oriented fatgraphs

In this appendix, we prove the last part of Theorem 5.6 and compute
the evolution of orientations under flips illustrated in Figure 2. We
must verify that the contributions of the arcs α, β, γ, δ, ε, ϕ illustrated
in Figure 7 to a quadratic form via Theorem 5.2 with the canonical
dimer D for the specified orientations of edges is the same before and
after the flip. To that end for the purpose of explicit computation, let
us fix the representative arcs ϕ, ε as edge-paths before and after the flip
as illustrated in Figure 9. Representatives edge-paths of the other arcs
α, β, γ, δ are taken to lie entirely in the boundary.

ϕ

ϕ

ε

ε

Figure 9. Arcs ϕ and ε before and after the flip.

Now in the notation of Theorem 5.2 for the canonical dimer D, we
find `Dα = `Dβ = `Dγ = `Dδ = 0 (mod 2) both before and after the flip, `Dϕ =
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`Dε = 1 (mod 2) before the flip and `Dϕ = 1 (mod 2), `Dε = 0 (mod 2) after

the flip. The numbers nKC of Theorem 5.2 are tabulated in Figure 10
in the eight cases where the interior edge runs from left to right with
the northwest leaf pointing towards it as may always be arranged by
fatgraph reflections on the two vertices.

Uniqueness of this solution for the orientations after the flip is obvious
since changing orientation on anything other than all leaves simultane-
ously evidently changes certain of the numbers nKC . Moreover, changing
the orientation on each leaf is a composition of the fatgraph reflections
at the two interior vertices.

Finally, enumerating the eight cases in Figure 10 in the manner
1 2
3 4
5 6
7 8

,

one finds by inspection that cases 1, 3, 4, 8 are identical as are cases 2,
5, 6, 7, thus, leading to the two cases illustrated in Figure 2. q.e.d.

(0,1,0,0,0,0)  

(0,1,0,0,1,0)

(1,1,0,1,0,1)

(1,1,0,1,1,1)

(0,0,0,1,1,0)

(0,0,0,1,0,0)

(1,0,0,0,1,1)

(1,0,0,0,0,1)

(1,1,1,0,1,0)

(1,1,1,0,0,0)

(0,1,1,1,1,1)

(1,0,1,1,0,0)

(1,0,1,1,1,0)

(0,0,1,0,0,1)

(0,0,1,0,1,1)

(0,1,1,1,0,1)

Figure 10. All possible salient cases of orientation be-
fore the flip together with resulting orientation after.
The numbers nKC of Theorem 5.2 are tabulated as a vec-
tor (nKα , n

K
β , n

K
γ , n

K
δ , n

K
ε , n

K
ϕ ) in each case.
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[3] F. Bouschbacher, Shear coordinates on the super-Teichmüller space, PhD the-
sis, Strasbourg, 2014, https://tel.archives-ouvertes.fr/tel-00835500v1/

document.

[4] F. Bouschbacher, V. Fock, F. Costantino, Shear coordinates on the super-
Teichmüller space, in progress.

[5] P. Bryant, L. Hodgkin, Nielsen’s theorem and super-Teichmüllerspace, Ann. Inst.
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