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UNIQUE ASYMPTOTICS OF ANCIENT CONVEX
MEAN CURVATURE FLOW SOLUTIONS

Sigurd Angenent, Panagiota Daskalopoulos∗

& Natasa Sesum†

Abstract

We study compact noncollapsed ancient convex solutions to
Mean Curvature Flow in Rn+1 with O(1) × O(n) symmetry. We
show they all have unique asymptotics as t→ −∞ and we give a
precise asymptotic description of these solutions. The asymptotics
apply, in particular, to the solutions constructed by White [22],
and Haslhofer and Hershkovits [12] (in the case of those particular
solutions the asymptotics were predicted and formally computed
by Angenent [2]).

1. Introduction

1.1. Ancient solutions. A solution to a geometric evolution equation
such as the MCF, the Ricci flow, or the Yamabe flow is called ancient if it
exists for all t ∈ (−∞, T ), for some number T . While solutions starting
from arbitrary smooth initial data can be constructed on a short enough
time interval for all these flows, the requirement that a solution should
exist for all time t ≤ t0, combined with some sort of positive curvature
condition, turns out to be very restrictive. In a number of cases there
are results which state that the list of possible ancient solutions to some
given geometric flow consists of self similar solutions (“solitons”) and a
shorter list of non self similar solutions.

For instance, for two dimensional Ricci flow, Daskalopoulos, Hamil-
ton, and Sesum [7] classified all compact ancient solutions. It turns out
the complete list contains only the shrinking sphere solitons and the
King–Rosenau solutions [14, 19]. The latter are not solitons and can
be visualized as two steady solitons, called “cigars”, coming from spatial
infinities and glued together.

Solutions analogous to the King–Rosenau solution exist in a higher
dimensional (n ≥ 3) Yamabe flow as well. Again they are not solitons,
although they are given in an explicit form discovered by King [14] (and
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later independently by Brendle in a private communication with the au-
thors). They can also be visualized as two shrinking solitons, called the
Barenblatt solutions, coming from spatial infinities and glued together.
In [5] Daskalopoulos, del Pino, and Sesum constructed infinitely many
closed ancient solutions (which they called a tower of bubbles), thus,
showing that the classification of closed ancient solutions to the Yam-
abe flow is very difficult, if not impossible. Unlike the above mentioned
closed ancient solutions, the Ricci curvature of the tower of bubbles
solutions changes its sign (they still have nonnegative scalar curvature).

We turn now to the Mean Curvature Flow. Recall that a family
of immersed hypersurfaces X : Mn × [0, T ) → Rn+1 evolves by Mean
Curvature Flow (MCF) if it satisfies

(1.1)

(
∂X

∂t

)⊥
= Hν,

where ν is a unit normal vector of the surface Mt = X(Mn, t), H is

the mean curvature in the direction of the normal ν, and
(
Xt(ξ, t)

)⊥
is

the component of the velocity Xt(ξ, t) that is perpendicular to Mt at
X(ξ, t).

A smooth solution {Mt}0≤t<T to MCF exists on a sufficiently short
time interval 0 ≤ t < T for any prescribed smooth compact initial
immersed hypersurface M0. If the initial hypersurface M0 is convex,
then the solution Mt will also be convex. The simplest possible convex
ancient solution is the shrinking sphere, i.e. if Mt is the sphere of radius√
−2n (T − t) centered at the origin, then {Mt}t<T is a self similar

ancient solution. It is the only compact and convex self-similar solution
to MCF.

Definition 1.1. An ancient oval is any ancient compact convex so-
lution to MCF that is not self similar (i.e. that is not the sphere).

For Curve Shortening Flow, i.e. for MCF for plane curves, Angenent
found ancient ovals (see [3] and also [18]). These solutions, which can be
written in closed form, may be visualized as two “Grim Reapers” with
the same asymptotes that approach each other from opposite ends of
the plane. Daskalopoulos, Hamilton, and Sesum [6] classified all planar
ancient ovals by showing that there are no other ancient ovals for Curve
Shortening.

Natural questions to ask are whether there exists an analog of the An-
cient Curve Shortening Ovals from [3, 18] in higher dimensional Mean
Curvature Flow and whether a classification of ancient ovals similar to
the Daskalopoulos–Hamilton–Sesum [6] result is possible.

The existence question was already settled by White in [22] who gave
a construction of ancient ovals for which

in-radius Mt

out-radius Mt
→ 0 as t→ −∞.
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Haslhofer and Hershkovits [12] provided recently more details on
White’s construction. If one represents Rn+1 as Rn+1 = Rk × Rl with
k+l = n+1, then the White–Haslhofer–Hershkovits construction proves
the existence of an ancient solution Mt with O(k)×O(l) symmetry. In
contrast with the Ancient Curve Shortening Ovals, this solution cannot
be written in closed form. Formal matched asymptotics, as t → −∞,
were given by Angenent in [2].

The classification question is more complicated in higher dimensions.

Conjecture 1.2 (Uniqueness of ancient ovals). For each (k, l) with
k+l = n+1 there is only one noncollapsed (in the sense of definition 1.3
below) ancient oval with O(k)× O(l) symmetry, up to time translation
and parabolic rescaling of space-time.

The conjecture is false without the noncollapsedness condition, as
shown by examples of Xu-Jia Wang [21].

Since the “ancient oval” solutions are not given in closed form and
since they are not solitons, their classification as stated in the above
conjecture poses a difficult question. In fact, up to now the only known
classification results for ancient or eternal solutions involve either soli-
tons or other special solutions that can be written in closed form.

In the present paper we make partial progress towards the above
conjecture by showing that any noncollapsed ancient oval with O(1) ×
O(n) symmetry satisfies the detailed asymptotic expansions described
in [2]. In particular, our results give precise estimates on the extrin-
sic diameter and maximum curvature of all such solutions near t →
−∞.

1.2. Noncollapsedness condition. Instead of an evolving family of
convex hypersurfaces {Mt} we can also think in terms of the evolving
family {Kt} of compact domains enclosed by Mt (thus, Mt = ∂Kt).
Sheng and Wang in [20] introduced the following notion of “noncol-
lapsedness” for any compact mean convex subset K ⊂ Rn+1. Recall
that a domain K ⊂ Rn+1 with smooth boundary is mean convex if
H > 0 on ∂K.

Definition 1.3. If K ⊂ Rn+1 is a smooth, compact, mean convex
domain and if α > 0, then K is α-noncollapsed if for every p ∈ ∂K
there are closed balls B̄int ⊂ K and B̄ext ⊂ Rn+1\Int(K) of radius at
least α

H(p) that are tangent to ∂K at p from the interior and exterior of

K, respectively, (in the limiting case H(p) = 0 this means that K is a
half space).

Every compact, smooth, strictly mean convex domain is α-noncol-
lapsed for some α > 0. Andrews [1] showed that if the initial condition
K0 of a smooth compact mean curvature flow is α-noncollapsed, then
so is the whole flow Kt for all later times t.
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Definition 1.4. We say that an ancient solution {Mt}t∈(−∞,T ) to
MCF is noncollapsed if there exists a constant α > 0 so that the flow
Mt is α-noncollapsed for all t ∈ (−∞, T ), in the sense of Definition 1.3.

Haslhofer and Kleiner showed in [11] that all noncollapsed ancient
compact solutions to the mean curvature flow are convex, hence, the
ancient ovals are convex solutions. On the other hand, the examples by
Xu-Jia Wang in [21, Theorem 1.2] show that there exist ancient ovals
that are collapsed.

In order to say more about the classification of closed ancient noncol-
lapsed solutions to the mean curvature flow, we need to understand first
the geometry of those solutions and their more precise asymptotics.

1.3. MCF for hypersurfaces with O(1)×O(n) symmetry. In this
paper we consider noncollapsed and, therefore, convex ancient solutions
that are O(1) × O(n)-invariant hypersurfaces in Rn+1. Such hypersur-
faces can be represented as

(1.2) Mt =
{

(x, x′) ∈ R× Rn : −d(t) < x < d(t), ‖x′‖ = U(x, t)
}
,

for some function ‖x′‖ = U(x, t). The points (±d(t), 0) are called the
tips of the surface. The function U(x, t), which we call the profile of the
hypersurface Mt, is only defined for x ∈ [−d(t), d(t)].

Any surface Mt defined by (1.2) is automatically invariant under O(n)
acting on R × Rn. The surface will also be invariant under the O(1)
action on R× Rn if U is even, i.e. if U(−x, t) = U(x, t).

Convexity of the surface Mt is equivalent to concavity of the profile
U , i.e. Mt is convex if and only if Uxx ≤ 0.

For a family of surfaces defined by ‖x′‖ = U(x, t), equation (1.1)
for MCF holds if and only if the profile U(x, t) satisfies the evolution
equation

(1.3)
∂U

∂t
=

Uxx
1 + U2

x

− n− 1

U
.

We know by Huisken’s result ([13]) that the surfaces Mt will contract
to a point in finite time.

Self-similar solutions to MCF are of the form Mt =
√
T − t M̄ for

some fixed surface M̄ and some “blow-up time” T . We rewrite a general
ancient solution {Mt : t < t0} as

(1.4) Mt =
√
T − t M̄− log(T−t).

The family of surfaces M̄τ with τ = − log(T − t), is called a type-
I or parabolic blow-up of the original solution Mt. These are again
O(1) × O(n) symmetric, with profile function u, which is related to U
by

(1.5) U(x, t) =
√
T − t u(y, τ), y =

x√
T − t

, τ = − log(T − t).
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If the Mt satisfy MCF, then the hypersurfaces M̄τ evolve by the rescaled
MCF

(1.6) ν · ∂X
∂τ

= H + 1
2X · ν.

For the parabolic blow-up solution u this is equivalent to the equation

(1.7)
∂u

∂τ
=

uyy
1 + u2

y

− y

2
uy −

n− 1

u
+
u

2
.

Regarding notation, we denote by H(·, t), 2d(t), etc., the mean cur-
vature and extrinsic diameter of the surface Mt, respectively, and by
H̄(·, τ), 2d̄(τ), etc., the mean curvature and extrinsic diameter of a cor-
responding parabolic blow-up M̄τ , respectively. In general, we will use
the bar to denote geometric quantities for M̄τ .

The following theorem, which will be shown in section 7, describes
certain geometric properties of the ancient solutions described above.

Theorem 1.5. Let {Mt}−∞<t<T be any smooth noncollapsed ancient
oval with O(1) × O(n) symmetry. Then there exist uniform constants
c, C > 0 so that the extrinsic diameter 2d̄(τ), the n-dimensional Haus-
dorff measure Ā(τ) and the maximum mean curvature H̄max(τ) of the
rescaled mean curvature flow M̄τ satisfy

(1.8) c d̄(τ) ≤ H̄max(τ) ≤ d̄(τ), c d̄(τ) ≤ Ā(τ) ≤ C d̄(τ).

Corollary 6.3 in [21] implies that the dilations {X̄ ∈ Rn+1 | (T −
t)1/2X̄ ∈ Mt}, of hypersurfaces Mt which evolve by (1.1) and which
satisfy conditions of Theorem 1.5 that sweep out the whole space, con-
verge as t→ −∞

(a) to either a sphere of radius
√

2n, or

(b) a cylinder Sn−1 ×R, where Sn−1 is a sphere of radius
√

2(n− 1).

In the present paper we show that any compact convex ancient solu-
tion to (1.1) as in Theorem 1.5 has unique asymptotics as t→ −∞. We
hope to use that to eventually prove Conjecture 1.2. More precisely, we
show that the following holds.

Theorem 1.6. Let {Mt}−∞<t<T be any compact smooth noncol-
lapsed ancient mean curvature flow as in Theorem 1.5. Then, either
Mt is a family of contracting spheres or the solution u(y, τ) to (1.7),
defined on R×R, has the following asymptotics in the parabolic and the
intermediate region:

(i) Parabolic region: For every M > 0,

u(y, τ) =
√

2(n− 1)
(

1− y2 − 2

4|τ |

)
+ o(|τ |−1), |y| ≤M,

as τ → −∞.
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(ii) Intermediate region: Define

z := y/
√
|τ | and ū(z, τ) := u(z

√
|τ |, τ).

Then, ū(z, τ) converges, as τ → −∞ and uniformly on compact

subsets in z, to the function
√
n− 1

√
2− z2.

(iii) Tip region: Denote by pt the tip of Mt ⊂ Rn+1, and for any
t∗ < 0 we define the rescaled flow

M̃t∗(t) = λ(t∗)
(
Mt∗+tλ(t∗)−2 − pt∗

)
,

where λ(t) := H(pt, t) = Hmax(t) satisfies

Hmax(t) =

√
log |t|√
2|t|

(
1 + o(1)

)
(t→∞).

Then, as t∗ → −∞, the family of solutions Mt∗(·) to MCF con-
verges to the unique Bowl soliton, i.e. the unique rotationally sym-
metric translating soliton with velocity one.

As a consequence of Theorem 1.5 and Theorem 1.6 we have the fol-
lowing corollary.

Corollary 1.7. Let {Mt} be any compact smooth noncollapsed an-
cient mean curvature flow as in Theorem 1.5. Then there exist uniform
constants c, C > 0 and τ0 < 0 so that

c
√
|τ | ≤ d̄(τ) ≤ C

√
|τ |, τ ≤ τ0.

1.4. Outline of the paper. In section 2, we give a characterization of
the sphere via backward limits. In section 3, we show a few geometric
properties of ancient solutions, one of which is that the maximum of H
occurs at the tip. In section 4, we first show some a priori derivative
estimates for our solution and then we construct lower barriers for our
solution which turn out to play a crucial role in bounding the diameter
2d̄(τ) from below by C

√
|τ |. In the same section we show the key

estimate that holds for any hypersurface, which on a long piece can be
written as a graph over a cylinder and whose Huisken integral is below
the Huisken integral of the same cylinder. The key estimate is actually
a quantitative version of the closeness statement of that hypersurface
to the cylinder. In section 5, we prove the asymptotics of the parabolic
region. In section 6, we show the asymptotics in the intermediate region.
In section 7, we give a description of the tip region in terms of its blow-
up limit. In section 8, we give a detailed construction of the minimizing
foliation which has been used in the proof of the key estimate and in
the construction of the lower barriers for our solution.

Acknowledgments. The authors are indebted to the referee for many
useful comments.
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2. Characterization of the sphere via backward limits

Let {Mt}t<T be an ancient convex solution of MCF that sweeps out
all of Rn+1, and define the rescaled hypersurfaces M̄τ as in (1.4). Then
X.J. Wang showed in [21, Corollary 6.3] that the blow-ups M̄τ converge
as τ → −∞

(a) either to a sphere of radius
√

2n, or

(b) to a cylinder Sn−1×R, where Sn−1 is a sphere of radius
√

2(n− 1).

Wang’s result includes other possible limits, all of the form Sk×Rn−k ⊂
Rn+1, but none of these are compatible with the O(1)×O(n) symmetry,
which we assume.

Proposition 2.1. If {Mt}t<T is an O(n) × O(1) invariant ancient
convex noncollapsed solution of MCF, then either Mt is the spherical
soliton, or the type-I blow-ups M̄τ converge to the cylinder Sn−1×R as
τ → −∞.

To prove the Proposition, we first recall that Huisken’s functional for
hypersurfaces M ⊂ Rn+1 is given by

H(M) := (4π)−n/2
∫
M
e−‖X‖

2/4 dµ̄,

and

(2.1)
d

dτ
H(M̄τ ) = −(4π)−n/2

∫
M̄τ

e−‖X̄‖
2/4
∥∥H̄ − 1

2〈X̄, µ̄〉
∥∥2

dµ̄.

First we show that H(M̄τ ) is uniformly bounded for all τ ∈ (−∞,∞).
More precisely, we have the following lemma.

Lemma 2.2. There is a universal constant Cn < ∞ such that
H(M) ≤ Cn for every convex hypersurface M ⊂ Rn+1.

Proof. One can cover Sn ⊂ Rn+1 with a finite number of sets ωi ⊂ Sn
such that for each i there is a unit vector ai ∈ Rn+1 for which 〈ai,ν〉 ≥ 1

2
for all ν ∈ ωi. The required number of sets is bounded by some constant
Nn that only depends on the dimension n.

The sets Ui ⊂M defined by Ui = {p ∈M |ν(p) ∈ ωi} form a covering

of M . We estimate
∫
Ui
e−‖X‖

2/4dµ. Without loss of generality we may
assume that ai = en+1, and that Ui is the graph of a function xn+1 =
h(x1, . . . , xn), where h is defined on the projection U ′i of Ui on Rn. Since
〈ai,ν(p)〉 ≥ 1

2 on Ui, and since

ν(p) =
1√

1 + ‖∇h‖2

(
−∇h

1

)
,

we have √
1 + ‖∇h‖2 ≤ 2.
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From X = (x, h(x)) we get ‖X‖2 = ‖x‖2 + h(x)2, and, thus,∫
Ui

e−‖X‖
2/4dµ =

∫
U ′i

e−‖x‖
2/4e−h(x)2/4

√
1 + ‖∇h‖2dx

≤ 2

∫
U ′i

e−‖x‖
2/4dx

≤ 2

∫
Rn
e−‖x‖

2/4dx

= 2(4π)n/2.

Since M is covered by Nn sets Ui, we find that H(M) ≤ 2Nn. q.e.d.

Proof of Proposition 2.1. The monotonicity of the Huisken functional
(2.1) and Lemma 2.2 imply the existence of the limits

H− := lim
τ→−∞

H(M̄τ ), and H+ := lim
τ→∞

H(M̄τ ).

By a result of Wang ([21]), we know the type-I blow-ups M̄τ converge
either to the sphere of radius

√
2n or the cylinder Sn−1×R, as τ → −∞.

Assume the former case occurs. From the earlier work of Huisken we
know that M̄τ converges, as τ → ∞, to a sphere of radius

√
2n as well

and, therefore, H− = H+. Since H(M̄τ ) is monotone along the flow we
have H(τ) = H− = H+ is constant along the flow and, therefore,

H̄ +
1

2
〈X̄,ν〉 = 0.

All these imply M̄τ is the sphere of radius
√

2n for all τ ∈ R. q.e.d.

3. Geometric properties of ancient solutions

Let {Mt}t<0 be an ancient convex O(1) × O(n) symmetric solution

to MCF, and let M̄τ = eτ/2M−e−τ be its parabolic blow-up. Our goal
in this section is to prove the following lemma.

Lemma 3.1. The mean curvature H on Mt attains its maximum at
the tips x = ±d(t).

Corollary 3.2. If the solution is defined for all t < T , then the
maximal mean curvature H and the extrinsic diameter 2d(t) satisfy

(3.1) (T − t)Hmax(t) ≤ d(t).

For the blown-up solution M̄τ this implies

(3.2) H̄max(τ) ≤ d̄(τ).

The rate at which d̄(τ) changes is estimated by

(3.3)
∣∣d̄ ′(τ)

∣∣ ≤ 1

2
d̄(τ).
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Proof of the Corollary. The velocity of the tip is d′(t) = −Hmax(t),
and by Hamilton’s Harnack inequality [10] we know that Hmax(t) is
increasing. Therefore, we have for any t < 0

d(t) ≥
∫ 0

t
Hmax(t′) dt′ ≥ Hmax(t) · (−t),

which proves (3.1).
The growth rate of d̄(τ) follows from (1.6), which tells us that

d̄ ′(τ) = −H̄max(τ) + 1
2 d̄(τ).

The estimate (3.3) now directly follows from (3.2) and H̄max > 0. q.e.d.

To prove Lemma 3.1 we begin by listing a few consequences of the
convexity of the surface. First, recall that by convexity and symmetry
we have

(3.4) uy(·, τ) ≤ 0 and uyy(·, τ) ≤ 0 for y > 0.

Lemma 3.3. Set

P := −(log u)y = −uy/u ≥ 0, on y > 0.

We have

(3.5) Py ≥ 0, on y ≥ 0,

with P = 0 at y = 0.

Proof. By direct calculation we have

Py =
u2
y − uuyy
u2

.

Hence, Py ≥ 0 for y > 0 since uyy ≤ 0. q.e.d.

Lemma 3.4. Set

Q :=
u2
y

u2 (1 + u2
y)
.

We have

Qy = 2 (1 + u2
y)Q

3/2 ≥ 2Q3/2 ≥ 0, for y ≥ 0.

Proof. By direct calculation and (3.4), we have

Qy = −2
uy
(
u2
y + u4

y − uuyy
)

u3(1 + u2
y)

2
≥ −2

u3
y

u3(1 + u2
y)

= 2
√

1 + u2
y Q

3/2 ≥ 2Q3/2.

q.e.d.
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In this rotationally symmetric setting we have the following formulas
for the principal curvatures λi (i = 1, . . . , n) in terms of u,

(3.6) λ1 = · · · = λn−1 =
1

u (1 + u2
y)

1/2
, λn = − uyy

(1 + u2
y)

3/2
.

We consider the quantity

R :=
λn
λ1

= − uuyy
(1 + u2

y)
≥ 0.

At umbilic points one has R = 1.

Lemma 3.5. On an ancient noncollapsed convex solution of MCF
with O(1)×O(n) symmetry one has R ≤ 1.

Proof. We observe first that the tip of the surface is an umbilic point,
so that we have R = 1 at the tips for all τ (here we use that the surface
is smooth and strictly convex and radially symmetric at the tip). Hence,
Rmax(τ) is achieved on the surface for all τ , and is larger or equal than
one. We actually show that it is also not more than one.

Using the scaling invariance of R and the fact that U satisfies (1.7),
we find

R =
−uuyy
1 + u2

y

=
−UUxx
1 + U2

x

= −(n− 1)− UUt.

We then compute

Rt =
Rxx

1 + U2
x

− 2Ux(1−R)

U(1 + U2
x)
Rx

+
2U2

x

U2(1 + U2
x)

(
1−R2

)
+ (n− 2)

2U2
x

U2(1 + U2
x)

(1−R).

Since R is scaling invariant we get in the (y, τ) variables

(3.7) Rτ =
Ryy

1 + u2
y

− y

2
Ry −

2uy(1−R)

u(1 + u2
y)
Ry

+
2u2

y

u2(1 + u2
y)

(
1−R2

)
+ (n− 2)

2u2
y

u2(1 + u2
y)

(1−R).

At a maximum of R we have Ry = 0 and Ryy ≤ 0, so that the maximum
of R(·, τ) on the surface M̄τ , Rmax(τ), satisfies

d

dτ
Rmax(τ) ≤ −2Q(R2

max − 1)− 2(n− 2)Q(Rmax − 1),

where Q is as in Lemma 3.4.
This ODE, in particular, shows that if Rmax(τ0) > 1 for some τ0, then

the same holds for all τ ≤ τ0. In this case, if we denote by ȳτ > 0 any
maximum point of R(·, τ) on [0, d̄(τ)], namely

Rmax(τ) = R(ȳτ , τ),



ANCIENT CONVEX FLOWS 391

we may assume Rmax(τ) > 1 for all τ ≤ τ0 since otherwise the statement
of the Lemma is true. With this assumption the following holds.

Claim 3.6. If R(ȳτ , τ) > 1 for all τ < τ0, then

lim inf
τ→−∞

Q(ȳτ , τ) ≥ c > 0.

Assuming the claim, and setting s = −τ > 0 and R̃max(s) = Rmax(τ),
we obtain that

(3.8)
d

ds
R̃max(s) ≥ 2Q(R̃2

max − 1).

It follows from (3.8) that there exists s0 > 0 for which

d

ds
R̃max(s) ≥ c (R̃2

max − 1),

for s ≥ s0. This readily implies that R̃max(s)↗∞, as s↗ s∗ for some
finite s∗, or equivalently Rmax(τ) blows up at some τ∗ > −∞, which is
a contradiction to the fact that our solution is ancient. q.e.d.

3.1. Proof of Claim 3.6. We know that R(ȳτ , τ) > 1. We also know
that

lim
τ→−∞

u(y, τ) =
√

2(n− 1),

in C∞ for bounded y, because M̄τ converges to the cylinder R× Sn−1.
This implies that

lim
τ→−∞

R(y, τ) = 0,

uniformly for y bounded. We conclude that for all τ ≤ τ0 there exists
at least a point yτ such that

0 < yτ < ȳτ and R(yτ , τ) = 1.

The convergence to the cylinder also implies that

lim
τ→−∞

yτ = +∞.

If we show that

lim inf
τ→−∞

Q(yτ , τ) ≥ c1 > 0,

the claim would follow from Lemma 3.4.
To this end, it is more convenient to work with the original solution

U(x, t) of (1.3). Setting

xt :=
√
−t yτ , τ := − log(−t),

we need to show that

lim inf
t→−∞

|t|U2
x

U2 (1 + U2
x)

(xt, t) ≥ c1 > 0,



392 S. ANGENENT, P. DASKALOPOULOS & N. SESUM

if R(xt, t) = 1. Let us fix such a point (xt0 , t0). We may assume, without
loss of generality that

|t0|U2
x

U2 (1 + U2
x)

(xt0 , t0) < δ2,

with δ a sufficiently small number (to be chosen below). Since U2/|t| ≤
4(n− 1)2, for all t sufficiently close to −∞, (this follows from the con-
vergence to the cylinder) it follows from the above inequality that

U2
x ≤

4δ2

1− 4δ2
:= δ2

1

can also be chosen sufficiently small.
We consider the rescaled solution Ũ to (1.3) given by

Ũ(x, t) = α−1
0 U(x0 + α0 x, t0 + α2

0 t), α0 := U(x0, t0).

The convergence to the cylinder implies that α0 � x0 (otherwise
R(x0, t0) would have been close to zero). In particular, for all −2 ≤
x ≤ 0, we have x0 + α0 x > 0, hence, the concavity Ũxx ≤ 0 implies

(3.9) 0 ≤ −Ũx(x, 0) ≤ −Ũx(0, 0) ≤ δ1,

from which the bound

(3.10) 1 ≤ Ũ(x, 0) ≤ 2

also follows.
We next recall that the solution z = Ũ(x, t) is a rotationally symmet-

ric α-noncollapsed solution to the mean curvature flow (near the chosen
point), for some α > 0. Moreover, at this point we have λ1 = λn and

Ũ(0, 0) = 1 together with Ũ2
x(0, 0) ≤ δ2

1 . Let X0 = (0, 1) ∈ Rn+1 denote

the corresponding point on the surface z = Ũ(x, t). From the curva-
ture estimates in [11] it follows that there exists a number ρ ∈ (0, 1)
depending on α, for which we have

(3.11) |∇A| ≤ C(α)ρ−1,

on all points of the surface z = Ũ(x, t) that intersect the parabolic ball
P (X0, ρ) := Bρ(X0) × (t0 − ρ2, t0]. Here Bρ(X0) denotes a ball in R3.

Let λ̃n := −Ũxx/(1 + Ũ2
x)3/2. The bounds (3.9), (3.10) and (3.11) imply

that
d

dx
λ̃n(x, 0) ≤ C(α), for all x ∈ (−ρ/2, 0).

Since λ̃n(0, 0) ≥ 1/2 (if δ1 in (3.9) is chosen sufficiently small) we con-
clude that

λ̃n(x, 0) ≥ 1/4, for all x ∈ (−ρ1, 0),

for some number ρ1 = ρ1(α). This implies the bound

−Ũxx(x, 0) ≥ 1/4, for all x ∈ (−ρ1, 0)
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and contradicts (3.9) if δ1 is chosen sufficiently small (since ρ1 = ρ1(α)
is independent of δ1), hence, finishing the proof of the Claim.

We have the following two immediate corollaries of Lemma 3.5.

Corollary 3.7. For every τ < τ0 we have that (λi)y ≥ 0, implying
that

λi(y, τ) ≥ λi(0, τ) ≥ c > 0, y ∈ [0, d̄(τ)],

for 1 ≤ i ≤ n− 1.

Proof. Recall that λ−1
i = u

√
1 + u2

y implying that(
1

λi

)
y

=
uy (1 + u2

y + uuyy)√
1 + u2

y

≤ 0, y ∈ [0, d̄(τ)],

since uy ≤ 0 for y ≥ 0, and since 1+u2
y+uuyy ≥ 0 is being equivalent to

R ≤ 1, which we showed to be true in Lemma 3.5. On the other hand,
since the limτ→−∞ λi(0, τ) = 1/

√
2 (n− 1), we immediately obtain the

statement of the Corollary. q.e.d.

Corollary 3.8. For each τ , the rescaled mean curvature H̄(·, τ)
achieves its maximum at the tip d̄(τ) > 0.

Proof. Let λ1, λn be the two principal curvatures. Then, at any point
y < d̄(τ), we have

H̄(y, τ) = (n− 1)λ1(y, τ) + λn(y, τ) ≤ nλ1(y, τ)

≤ nλ1(d̄(τ), τ) = H̄(d̄(τ), τ),

where we used the previous corollary and the fact that λ1 = λn at the
tip. q.e.d.

In the corollary that follows, we give a different proof than the one of
Proposition 2.1, of the fact that if the backward limit as τ → −∞ is a
sphere, then the ancient solution is the contracting sphere solution.

Corollary 3.9. If

lim
τ→−∞

Rmin(τ) = 1,

namely, if the backward limit as τ → −∞ is a sphere, then the ancient
solution is the family of contracting spheres.

Proof. It follows by (3.7) that

d

dτ
Rmin(τ) ≥

2u2
y

u2(1 + u2
y)

(1−R2
min(τ))+(n−2)

2u2
y

u2(1 + u2
y)

(1−Rmin(τ)).

Hence, if Rmin(τ0) ≤ 1 − δ for some τ0, then Rmin(τ) ≤ 1 − δ for all
τ ≤ τ0 and, in particular,

Rmin(−∞) ≤ 1− δ.
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This implies that if the backwards limit is the sphere which means that
Rmin(−∞) = 1, then Rmin ≥ 1 for all τ . Since by Lemma 3.5 we also
have Rmax ≤ 1, we conclude that R ≡ 1 for all τ , hence, the ancient
solution is the family of contracting spheres. q.e.d.

4. A priori estimates

In this section, we show several a priori estimates for our ancient
solutions that will be used afterwards. From now on we adopt the
following convention: we will use symbols C > 0 and τ0 < 0 for uniform
constants that can change from line to line in computations and by δ(τ)
a function such that the limτ→−∞ δ(τ) = 0 and which can also change
from line to line.

4.1. Pointwise estimates. The rescaled surfaces M̄τ converge to the
cylinder with radius

√
2(n− 1) as τ → −∞, so we know that for any

τ0 one has

(4.1) u(0, τ) =
√

2(n− 1) + δ(τ).

From the concavity of u it follows that the graph of u(·, τ) lies above
the line connecting (0, u(0, τ)) with the tip (d̄(τ), 0). Thus, we have

(4.2) u(y, τ) ≥ u(0, τ)
d̄(τ)− y
d̄(τ)

(0 ≤ y ≤ d̄(τ)).

Since u(y, τ) is decreasing in y this implies

0 ≤ u(0, τ)− u(y, τ) ≤ u(0, τ)
y

d̄(τ)
,

and also∣∣∣u(y, τ)−
√

2(n− 1)
∣∣∣ ≤ ∣∣∣u(0, τ)−

√
2(n− 1)

∣∣∣+ u(0, τ)
y

d̄(τ)

= δ(τ) + u(0, τ)
y

d̄(τ)

= δ(τ) +
√

2(n− 1)
y

d̄(τ)
,

where we have used u(0, τ) =
√

2(n− 1) + δ(τ) and y ≤ d̄(τ) in the last
step.

For future reference we note that if ε(τ) ∈ (0, 1)is given, then the
above estimate leads to

(4.3) |u(y, τ)−
√

2(n− 1)| ≤ C ε(τ) + δ(τ), for y ∈ [0, ε(τ)d̄(τ)).

4.2. First derivative estimates. Due to symmetry, with no loss of
generality assume y ≥ 0. The concavity of u also tells us that the graph
of u(·, τ) lies on one side of any tangent line ty (where ty is the tangent
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line to the graph at point y). In particular, if we write

y0(τ) = − u

uy
+ y,

for the location where the tangent line ty intersects the y-axis, then the
concavity of u implies

d̄(τ) ≤ − u

uy
+ y,

or equivalently, for y ∈ (0, d̄(τ)),

(4.4) 0 ≤ −uy
u
≤ 1

d̄(τ)− y
.

This means that for y ∈ (0, a d̄(τ)) and any a < 1 we have

0 ≤ −uy
u
<

1

(1− a)d̄(τ)
,

or equivalently,

(4.5) |uy| ≤
u

d̄(τ)− y
≤ C

(1− a) d̄(τ)
=:

C(a)

d̄(τ)
.

4.3. Higher derivative estimates.

Lemma 4.1. For any α < 1 there exist constants C(α) > 0 and
τ0 = τ0(α) so that

(4.6) |uyy|+ |uyyy| ≤
C(α)

d̄(τ)
, for all y ∈ (0, αd̄(τ)) and τ < τ0.

Proof. To obtain higher order derivative estimates on u we first dif-
ferentiate the evolution equation (1.7) with respect to y. If we write
z := uy then we obtain

∂z

∂τ
=

zyy
1 + z2

−
2zz2

y

(1 + z2)2
− y

2
zy +

(n− 1) z

u2
.

We will localize the proof of our desired estimate (4.6) by introducing
the following change of variables. Given a point (y0, τ0) in space-time
with y0 ≤ αd̄(τ0), we let

z̄(η, τ) := z
(
y0e

τ/2 + η, τ0 + τ
)
.

If we choose τ0 << −1 large enough, depending on α ∈ (0, 1), then this
function is defined on the rectangle

Q := {(η, τ) | |η| ≤ 1,−1 ≤ τ ≤ 0}.
To see this, recall that the diameter 2d(t) for the unrescaled mean cur-
vature flow is monotonically decreasing. Since d(t) is related to d̄(τ) by

d̄(τ) = eτ/2d(−e−τ ), we know that e−τ/2d̄(τ) is a decreasing function of
τ , and, thus,

(4.7) d̄(τ0) ≤ e−τ/2d̄(τ0 + τ) for τ ∈ [−1, 0].
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For any α < 1, we choose some α′ ∈ (α, 1), e.g. α′ = (1 +α)/2. We also
choose τ0 = τ0(α) so that

αd̄(τ ′) + 1 ≤ α′d̄(τ ′), for all τ ′ < τ0.

For any (η, τ) ∈ Q we then get

y0e
τ/2 + η ≤ αd̄(τ0)eτ/2 + 1 ≤ αd̄(τ0 + τ) + 1 ≤ α′d̄(τ0 + τ).

It follows that z̄(η, τ) = z(y0e
τ/2 + η, τ0 + τ) is, indeed, defined on Q.

A computation shows that z̄ satisfies

∂z̄

∂τ
=

z̄ηη
1 + z̄2

−
2z̄z̄2

η

(1 + z2)2
− η

2
z̄η +

(n− 1) z̄

u2
,

which we can write as

(4.8)
∂z̄

∂τ
= a(η, τ, z̄, z̄η) z̄ηη + b(η, τ, z̄, z̄η),

where

a(η, τ, z̄, p) =
1

1 + z̄2
, b(η, τ, z̄, p) =

(n− 1) z̄

u2
− η

2
p− 2z̄p2

(1 + p2)2
.

The estimate (4.4) combined with u(0, τ) =
√

2(n− 1)+δ(τ) (see (4.1))

tell us that on the rectangle Q we can bound z̄ = uy(y0e
τ/2 + η, τ0 + τ)

by

|z̄| ≤ C

d̄(τ0 + τ)− y0eτ/2 + η
≤ C

d̄(τ0 + τ)− y0eτ/2 − 1
.

By (4.7) we have eτ/2d̄(τ0) ≤ d̄(τ0 + τ), which then implies

|z̄| ≤ C

eτ/2d̄(τ0)− y0eτ/2 − 1
≤ C

d̄(τ0)− y0 − e−τ/2
,

for τ ∈ [−1, 0]. Since y0 ≤ αd̄(τ0), we have

y0 + e−τ/2 ≤ y0 + e1/2 ≤ α′d̄(τ0),

with α′ = (1 + α)/2, assuming again that −τ0 is large enough. In the
end we get the following estimate for z on the rectangle Q,

(4.9) |z̄| ≤ C(α)

d̄(τ0)
.

We apply this bound to the coefficients a and b in the equation (4.8) for
z. For the coefficient a we get

κ ≤ a(η, τ, z̄, p) ≤ 1,

where κ = κ(α).
The lower bounds (4.9) for z̄ and (4.2) for u imply,

|b(η, τ, z̄, p)| ≤ C

κ
(1 + p2) a(η, τ, z̄, p).
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As a consequence of these bounds on the coefficients a and b, the classical
interior estimates are available for equation (4.8) (see [16]). We get

|z̄η(0, 0)|+ |z̄ηη(0, 0)| ≤ C0 sup
Q
|z̄(η, τ)| ≤ C(α)

d̄(τ0)
.

Finally, since z̄η(0, 0) = uyy(y0, τ0) and z̄ηη(0, 0) = uyyy(y0, τ0) this com-
pletes the proof of Lemma 4.1. q.e.d.

4.4. Lower barriers. At this point we know nothing about the extrin-
sic diameter 2d̄(τ) beyond the facts that d̄(τ) → ∞, as τ → −∞, and
that the growth of d̄(τ) is bounded by (3.2) and (3.3). In this section,
we will show that the magnitude of d̄(τ) is determined by how much

the solution deviates from the cylinder r =
√

2(n− 1) in the parabolic
region |y| = O(1). We will also find a lower bound for u(y, τ) in the
region y ≥ M in terms of u(M, τ). Our proof of these lower bounds
relies on a foliation of one end of the interior of the cylinder with radius√

2(n− 1) whose leaves are “self-shrinkers,” i.e., stationary surfaces for
the rescaled MCF (1.6), which satisfy

(4.10) H + 1
2X · ν = 0.

For rotationally symmetric surfaces, obtained by rotating the graph of
r = u(y) about the y-axis, this equation is equivalent with

(4.11)
uyy

1 + u2
y

− y

2
uy +

u

2
− n− 1

u
= 0.

The solutions to this ODE are geodesics in the upper half plane for the
metric

(ds)2 = un−1e−(u2+r2)/2 {(du)2 + (dr)2},
and the ODE can be written as

(4.12) k +
y

2
sin θ +

(
u

2
− n− 1

u

)
cos θ = 0,

where k is the curvature of the graph of u and tan θ = uy.

4.4.1. Three lemmas about shrinkers. The following lemmas guar-
antee the existence of self-shrinker segments and establish their asymp-
totic behavior.

Lemma 4.2. (a) For every a > 0, there is a unique solution ua of
(4.11) on the interval 0 ≤ y ≤ a with

lim
y↗a

ua(y) = 0, lim
y↗a

u′a(y) = −∞.

The function ua : [0, a]→ R+ is concave.
(b) For every b > 0 there is a solution ũb : [0,∞)→ R of (4.11) with

lim
y→∞

ũ′b(y) = lim
y→∞

ũb(y)

y
= b.

The function ũb : [0,∞)→ R is convex.
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Figure 1. Some self-shrinkers Σa and Σ̃b, in dimension
n = 2 for various values of a and b. See also [3, 8, 15].

We denote the corresponding surfaces by
(4.13)
Σa =

{
surface of revolution in Rn+1 with profile r=ua(y), 0≤ y≤ a

}
,

Σ̃b =
{

surface of revolution in Rn+1 with profile r= ũb(y), 0≤ y <∞
}
.

The surfaces Σ̃b outside the cylinder were constructed by Kleene and
Møller in [15].

Lemma 4.3. For large values of a the solution ua satisfies

(4.14) ua(y) =

√
2(n− 1)

(
1−

(y
a

)2)
+ o(1) (a→∞),

uniformly in y ≥ 0.

Lemma 4.4. On any bounded interval 0 ≤ y ≤ M one has the
following expansion

(4.15) ua(y) =
√

2(n− 1)
(

1− y2 − 2

2a2

)
+ o(a−2) (a→∞).

We postpone the proofs until section 8.

4.4.2. Lower bounds for u(y, τ) and d̄(τ). As a corollary of the as-
ymptotic behavior of the foliations Σa and the convergence of our solu-
tion to a cylinder of radius

√
2(n− 1) we get the following lower bound

on d̄(τ).

Lemma 4.5. Let u(y, τ) be an ancient solution of rescaled mean
curvature flow that is defined for τ ∈ (−∞, τ0) and 0 < M ≤ y ≤ d̄(τ),
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Figure 2. The foliation by self-shrinkers Σa and Σ̃b con-
structed in Lemma 4.2. The unit normals ν of the foli-
ation provide a calibration for Huisken’s functional (see
§4.5.6).

and that satisfies

(4.16) lim
τ→−∞

u(y, τ) =
√

2(n− 1),

uniformly on any bounded interval M ≤ y ≤ M ′. Suppose also that we
are given ε > 0 and τε ≤ τ0 such that

(4.17) u(M, τ) ≥
√

2(n− 1)− ε for all τ ≤ τε.

Then for any a with ua(M) ≤
√

2(n− 1)− ε one has

u(y, τ) ≥ ua(y) for all τ ≤ τε, M ≤ y ≤ d̄(τ).

In particular,

d̄(τ) ≥ a for all τ ≤ τε.

Proof. This follows directly from the maximum principle. If a is
given then our assumption (4.16) implies that u(y, τ) →

√
2(n− 1) as

τ → −∞ uniformly for M ≤ y ≤ b, so that u(y, τ) ≥ ua(y) as τ → −∞.
The second assumption (4.17) implies u(M, τ) ≥ ua(M), for all τ ≤

τε. The maximum principle then leads to u(y, τ) ≥ ua(y), for all τ ≤ τε.
q.e.d.

By choosing the best a for any given ε and τε and making an assump-
tion about the rate of convergence in limτ→−∞ u(M, τ) =

√
2(n− 1),

one can get time dependent lower bounds for d̄(τ).

Corollary 4.6. Suppose u is an ancient solution of rescaled mean
curvature flow that satisfies (4.16) (i.e. converges to the cylinder in
backward time), and for which we have

(4.18) u(M, τ) ≥
√

2(n− 1)− KM2

−τ
,
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for some K, M . Then there is a constant K1 such that

u(y, τ) ≥ ua(τ)(y), where a(τ) =

√
−τ
2K1

,

and, in particular,

d̄(τ) ≥
√
−τ
2K1

.

Proof. For any given τ1 we let ε = KM2/(−τ1) and use (4.15) to
compute the optimal a for which one has

ua(M) ≤
√

2(n− 1)− KM2

−τ ′
,

for all τ ′ ≤ τ . Lemma 4.5 then implies the lower bound for the diameter
of an ancient solution. q.e.d.

4.5. The inner-outer estimate. The shrinker foliation also allows us
to derive another estimate that will prove to be very useful in Section 5.
This estimate provides an L2 bound for the difference v(y, τ) = u(y, τ)−√

2(n− 1) in the outer region in terms of the L2 norm of v in the
inner region. It is this estimate that helps us deal with the error terms
that arise when we multiply the solution with a cut-off function which
is supported in the parabolic region. In order to prove the estimate
we will rely on the monotonicity of Huisken’s functional H defined in
(4.19). If Σ denotes the cylinder, then the monotonicity implies that
H(M̄τ ) ≤ H(Σ) for all τ .

In the next few subsections we will prove important estimates that
hold for any surface Γ with the property that H(Γ) ≤ H(Σ) and that is
close to a cylinder in the middle. Since H(M̄τ ) ≤ H(Σ) and since our
surfaces M̄τ converge to a cylinder Σ, uniformly on compact sets, those
estimates will hold for hypersurfaces M̄τ as well.

4.5.1. The Huisken functional. For hypersurfaces Γ ⊂ Rn the
Huisken functional is defined by

(4.19) H(Γ) = (4π)−n/2
∫

Γ
e−φdµ,

where µ is n-dimensional surface measure on Γ, and where

φ(X) = 1
4‖X‖

2.

4.5.2. Notation. We choose coordinates (x, y) with x ∈ Rn and y ∈ R,
and consider surfaces which are rotationally symmetric around the y-
axis. The cylinder

Σ =
{

(x, y) ∈ Rn × R : ‖x‖ =
√

2(n− 1)
}

is stationary for the Huisken functional.
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For any a, b with 0 ≤ a < b ≤ ∞ and any hypersurface Γ we define

Γab =
{

(x, y) : a < |y| < b
}
.

4.5.3. Statement of the estimates. We will prove a quantitative
version of the following:

Let L > 0 be large enough. If Γ is a convex hypersurface with
H(Γ) ≤ H(Σ), for which Γ0L “is close to Σ0L”, then ΓL,2L
must also “be close to ΣL,2L.”

More precisely, we let L > 0 be given, and assume that Γ is a convex
hypersurface of revolution for which Γ0,4L can be written as a graph
over the cylinder Σ0,4L: i.e. we assume Γ is given by

(4.20) Γ =
{

(x, y) : ‖x‖ = u(y), |y| ≤ d
}
,

for some concave function r = u(y).
It will be very convenient to abbreviate

v(y) = u(y)−
√

2(n− 1).

We will assume that there is some δ > 0 for which

(4.21) sup
|y|≤4L

|v(y)| = sup
|y|≤4L

∣∣∣u(y)−
√

2(n− 1)
∣∣∣ ≤ δ.

Since u(y) is concave, this implies

(4.22) sup
|y|<3L

|v′(y)| = sup
|y|<3L

|u′(y)| ≤ 2δ

L
.

Lemma 4.7. There exist L0 > 0 and δ0 > 0 such that for any convex
hypersurface Γ with profile r = u(y) which satisfies H(Γ) ≤ H(Σ) as well
as (4.21) for some δ < δ0 and L > L0, one has∫ 2L

0
v2
ye
−y2/4dy ≤ C

∫ L

0
v2 e−y

2/4dy,

where C is a constant that does not depend on L.

The important consequence of the previous Lemma is the following
Corollary.

Corollary 4.8. There are an L0 > 0 and a δ0 > 0 such that for
any convex hypersurface Γ with profile r = u(y) which satisfies H(Γ) ≤
H(Σ), as well as (4.21) for some δ < δ0 and L > L0, one has∫ 2L

L
v2e−y

2/4dy ≤ C

L2

∫ L

0
v2 e−y

2/4dy,

where C is a constant that does not depend on L.

The proofs of Lemma 4.7 and Corollary 4.8 will occupy us during the
following subsections.
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4.5.4. Surfaces with H(Γ) ≤ H(Σ). If Γ is obtained by revolving
the graph of a function r = u(y) around the y axis, then the Huisken
functional is given by

(4.23) H(u) =

∫ d

−d
un−1e−u

2/4
√

1 + u2
y e
−y2/4 dy,

where the integral is taken over the domain (−d, d) of u.
Our hypothesis that Γ has a lower Huisken functional than the cylin-

der Σ implies that

H0L(Γ) +HL∞(Γ) ≤ H0L(Σ) +HL∞(Σ),

or,

(4.24) HL∞(Γ)−HL∞(Σ) ≤ H0L(Σ)−H0L(Γ).

4.5.5. The RHS of (4.24). The terms on the right hand side in (4.24)
represent how much Γ deviates from the cylinder in the bounded region
y ≤ L. In terms of the profile function r = u(y) they are given by

H0L(Σ)−H0L(Γ) =∫ L

0

{(
2(n− 1)/e

)(n−1)/2 − un−1e−u
2/4
√

1 + u2
y

}
e−y

2/4dy.

We observe that
√

1 + u2
y ≥ 1, and also that

un−1e−u
2/4 ≤

(
2(n− 1)/e

)(n−1)/2
for all u ∈ R,

with equality at u =
√

2(n− 1). It follows that there is a constant

C > 0 such that if u(y) =
√

2(n− 1) + v(y), then

un−1e−u
2/4 ≥

(
2(n− 1)

e

)(n−1)/2 {
1− Cv2

}
, when |v| ≤ δ.

In the region 0 ≤ y ≤ 3L we have |uy| ≤ δ, so that there is a constant
C such that √

1 + u2
y ≥ 1 + Cu2

y.

Combining these facts we obtain

H0L(Σ)−H0L(Γ)

=

∫ L

0

{(
2(n− 1)/e

)n−1 − un−1e−u
2/4
√

1 + u2
y

}
e−y

2/4dy

≤
(

2(n− 1)

e

)n−1 ∫ L

0

{
1−

(
1− Cv2

)
(1 + Cu2

y)
}
e−y

2/4dy
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≤
(

2(n− 1)

e

)n−1 ∫ L

0

{
1−

(
1− Cv2

)
− C

(
1− Cv2

)
u2
y

}
e−y

2/4dy

≤
(

2(n− 1)

e

)n−1 ∫ L

0

{
Cv2 − C

(
1− Cδ2

)
u2
y

}
e−y

2/4dy.

Here we have used |v| ≤ δ in the last step. Let us assume that δ is so
small that Cδ2 < 1

2 . Then we can move the term with u2
y to the left,

and we obtain

(4.25) H0L(Σ)−H0L(Γ) + c

∫ L

0
u2
ye
−y2/4dy ≤ C

∫ L

0
v2e−y

2/4dy,

where the constants c, C do not depend on L.
Combined with (4.24) this tells us that

(4.26) HL∞(Γ)−HL∞(Σ) + c

∫ L

0
v2
ye
−y2/4dy ≤ C

∫ L

0
v2e−y

2/4dy.

To complete the proof of Lemma 4.7 we must, therefore, show that

(4.27) c

∫ 2L

L
v2
ye
−y2/4dy ≤ HL∞(Γ)−HL∞(Σ)

holds for some small constant c.

4.5.6. Digression: the minimizing foliation inside the cylinder.
Recall that Σa and Σ̃b are rotationally symmetric self-shrinkers for MCF,
where Σa are cap-shaped surfaces that meet the y-axis at y = a, while
Σ̃b are the Kleene–Møller trumpets [15], which are asymptotic to the
cone with opening slope b. We have used previously the existence and
asymptotic properties of the Σa to find lower bounds for d̄(τ). Here we

will use the fact that Σa, Σ̃b, and the cylinder Σ itself foliate a region
surrounding the cylinder to compare the Huisken functional of different
sections of a convex surface.

Lemma 4.9. There exist δ > 0 and L0 > 0 such that the hypersur-
faces Σa, Σ̃b, and Σ, foliate the region

Ω0 =
{

(y,x) ∈ R× Rn : ‖x‖ ≤
√

2(n− 1) + δ, y ≥ L0

}
.

In particular, Ω0 is a disjoint union of Ω0 ∩ Σ, Ω0 ∩ Σa, and Ω0 ∩ Σ̃b,
while the unit normals ν to the Σ, Σa, and Σ̃b define a C1 vector field
on Ω0.

Proof. We prove this in section 8.7. q.e.d.

The unit normals ν can be written as

(4.28) ν =
(
− sinϕ, cosϕω

)
,

where ϕ is defined by tanϕ = uy (see Figure 3). We regard ϕ as a
function of (y, r).
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Figure 3. The unit normal to the minimizing foliation.
Note that since uy < 0, the angle ϕ always satisfies −π

2 <
ϕ < 0.

Lemma 4.10. The vector field e−φν is divergence free.

Proof. We have ∇ · ν = −H for the unit normals to any foliation.
The leaves Σa all satisfy H + 1

2X · ν = 0 so

∇ ·
(
e−φν

)
= −e−φ(∇φ) · ν + e−φ∇ · ν = −e−φ

(
H + 1

2X · ν
)

= 0.

q.e.d.

Near the cylinder r =
√

2(n− 1) the leaves Σa are almost parallel to

the cylinder, so that ϕ(r, y) is small when r ≈
√

2(n− 1). In our proof
of the inner-outer Lemma 4.7 we will need a more precise estimate of
ϕ(y, r) near the cylinder.

Lemma 4.11. There is a neighborhood of the cylinder r =
√

2(n− 1)
on which one has

tanϕ =
w

2ry
(r2 − 2(n− 1)),

where the quantity w satisfies

(4.29) 2 ≤ w ≤ 2 +
K

y2
,

for some constant K.

Proof of Lemma 4.11. This follows from (8.25) and the estimate
(8.14). Details are given in section 8. q.e.d.

4.5.7. Proof of (4.27). To estimate the difference between HL∞(Σ)
andHL∞(Γ), we consider the region Ω contained in the half space y ≥ L,
and bounded by the cylinder ΣL∞ and the surface ΓL∞. The boundary
of this region is

∂Ω = ΣL∞ ∪ ΓL∞ ∪∆L,

where ΣL∞ is the section of the cylinder on which y ≥ L and ∆L is the
annulus in the plane y = L, between the surface Γ and the cylinder.
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Figure 4. The domain Ω, the unit normals to ∂Ω, and
the vector field ν.

Let ν be the unit normal vector to the minimizing foliation as above
and N the unit normal to ∂Ω: in the portion of Ω contained in the
cylinder r ≤

√
2(n− 1) we choose N to be the inward normal, while

outside of the cylinder we let N be the outward normal (see Figure 4).
By Stokes’ theorem we then have∫

ΓL∞

(N · ν)e−φdµ+

∫
∆L

(N · ν)e−φdµ+

∫
ΣL∞

(N · ν)e−φdµ = 0.

On the cylinder ΣL∞ we have N = −ν, so N · ν = −1. Therefore, we
get

HL∞(Γ)−HL∞(Σ)

=

∫
ΓL∞

e−φdµ−
∫

ΣL∞

e−φdµ

=

∫
ΓL∞

(
1− (N · ν)

)
e−φdµ+

∫
ΓL∞

(N · ν)e−φdµ

+

∫
ΣL∞

(N · ν)e−φdµ

=

∫
ΓL∞

(
1− (N · ν)

)
e−φdµ−

∫
∆L

(N · ν)e−φdµ.
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Figure 5. The normals ν to a leaf of the foliation, and
N to the given hypersurface Γ.

Rearranging terms again, and using (4.24) we find∫
ΓL∞

(
1− (N · ν)

)
e−φdµ = HL∞(Γ)−HL∞(Σ) +

∫
∆L

(N · ν)e−φdµ

≤ H0L(Σ)−H0L(Γ) +

∫
∆L

(N · ν)e−φdµ.

The integrand on the left is nonnegative, so we may restrict the integral
to the smaller region ΓL,2L ⊂ ΓL∞ and conclude

∫
ΓL,2L

(
1− (N · ν)

)
e−φdµ ≤ H0L(Σ)−H0L(Γ) +

∫
∆L

(N · ν)e−φdµ

(4.30)

≤ C
∫ L

0
v2e−y

2/4dy +

∫
∆L

(N · ν)e−φdµ,

in view of (4.25).
We now write out the various quantities in terms of the function u(y),

keeping in mind the assumptions (4.21) and (4.22), i.e.

|v(y)| ≤ δ and |uy| ≤
2δ

L
for |y| ≤ 3L.

4.5.8. The integral over ΓL,2L. We have∫
ΓL,2L

(
1−(N ·ν)

)
e−φdµ =

∫ 2L

L

(
1−cos θ

)
e−u

2/4un−1
√

1 + u2
y e
−y2/4dy.

Here θ is the angle between ν and N . See Figure 5.

We always have
√

1 + u2
y ≥ 1. By assumption, we also have |u −√

2(n− 1)| < δ on the interval L < y < 2L. This leads to a lower
bound

(4.31)

∫
ΓL,2L

(
1− (N · ν)

)
e−φdµ ≥ c

∫ 2L

L

(
1− cos θ

)
e−y

2/4dy.

The constant c does not depend on L. The angle θ is determined by the
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angle ϕ defined in (4.28) and the slope uy of the tangent to the graph
of u. Then

θ = ϕ(y, u(y))− arctanuy(y).

Since |v|+ |uy| = O(δ), we have

|θ| ≥ 1

2
| tanϕ(y, u)− uy|,

if we assume δ is small enough. Combined with 1−cos θ ≥ 1
4θ

2 for small
θ, we get
(4.32)∫

ΓL,2L

(
1− (N · ν)

)
e−φdµ ≥ c

∫ 2L

L

{
uy(y)− tanϕ(y, u(y))

}2
e−y

2/4dy.

4.5.9. The term at y = L. The term at y = L in (4.30) is∫
∆L

(N · ν)e−φdµ =

∫ √2(n−1)

u(L)
(N · ν) e−L

2/4e−η
2/4ηdη

≤
√

2(n− 1)e−L
2/4

∫ √2(n−1)

u(L)
(N · ν) dη.

The unit normal N to ∆L is the unit vector parallel to the y-axis, so∣∣(N · ν)
∣∣ =

∣∣sinϕ(L, u)
∣∣ ≤ |ϕ(L, u)| ≤ C

L
|v|.

It follows that

(4.33)

∫
∆L

(N · ν)e−φdµ ≤ C

L
e−L

2/4|v(L)|2.

Combining (4.33), (4.32), and (4.30), we arrive at

(4.34)

∫ 2L

L

(
uy(y)− tanϕ(y, u(y))

)2
e−y

2/4dy ≤

C

L
e−L

2/4|v(L)|2 + C

∫ L

0
v2 e−y

2/4dy.

4.5.10. Removing tanϕ. We wish to estimate the integral of u2
y di-

rectly instead of the integral of (uy− tanϕ)2 as in (4.34). To do this we
begin with∫ 2L

L
u2
ye
−y2/4dy=

∫ 2L

L

(
uy − tanϕ+ tanϕ

)2
e−y

2/4dy

≤ 2

∫ 2L

L

(
uy − tanϕ

)2
e−y

2/4dy+ 2

∫ 2L

L

(
tanϕ

)2
e−y

2/4dy

≤ 2

∫ 2L

L

(
uy − tanϕ

)2
e−y

2/4dy+C

∫ 2L

L
v2e−y

2/4dy,

where we have used | tanϕ(y, u)| ≤ C
L |v|, which follows from Lemma 4.11.
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For any function v(y) one has∫ b

a
v2e−y

2/4dy =

∫ b

a

2v2

y

y

2
e−y

2/4dy

=

[
−2

y
v2e−y

2/4

]b
a

+

∫ b

a

(4

y
vvy −

2

y2
v2
)
e−y

2/4dy

≤ 2

a
v(a)2e−a

2/4 +

∫ b

a

4

y
vvye

−y2/4dy

≤ 2

a
v(a)2e−a

2/4 +

∫ b

a

(1

2
v2 +

8

y2
v2
y

)
e−y

2/4dy

≤ 4

a
v(a)2e−a

2/4 +
16

a2

∫ b

a
v2
ye
−y2/4dy.

Apply this to v = u−
√

2(n− 1) on the interval (L, 2L):∫ 2L

L
u2
ye
−y2/4dy

≤ 2

∫ 2L

L

(
uy − tanϕ

)2
e−y

2/4dy + C

∫ 2L

L
v2e−y

2/4dy

≤ 2

∫ 2L

L

(
uy − tanϕ

)2
e−y

2/4dy +
C

L
v(L)2e−L

2/4

+
C

L2

∫ 2L

L
u2
ye
−y2/4dy.

Here C does not depend on L, so if we assume that L2 > 2C, then we
can absorb the last integral in the integral on the left:∫ 2L

L
u2
ye
−y2/4dy ≤ 4

∫ 2L

L

(
uy − tanϕ

)2
e−y

2/4dy +
C

L
v(L)2e−L

2/4.

Combine this with (4.34) to find

(4.35)

∫ 2L

L
u2
ye
−y2/4dy ≤ C

L
v(L)2e−L

2/4 + C

∫ L

0
v2e−y

2/4dy.

4.5.11. The final estimate. This inequality remains true if we replace
L by any λ ∈ (3

4L,L):∫ 2λ

λ
uy(y)2 e−y

2/4dy ≤ C

λ
e−λ

2/4v(λ)2 + C

∫ λ

0
v2 e−y

2/4dy.

For λ ∈ (3
4L,L) we can reduce the domain of integration on the left to

L ≤ y ≤ 3
2L, and increase the domain of integration on the right to

0 ≤ y ≤ L. This leads to∫ 3
2
L

L
uy(y)2 e−y

2/4dy ≤ C

λ
e−λ

2/4v(λ)2 + C

∫ L

0
v2 e−y

2/4dy.
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Integrate both sides of this inequality over λ ∈ (3
4L,L):

L

4

∫ 3
2
L

L
u2
y e
−y2/4dy ≤

∫ L

3
4
L

C

λ
e−λ

2/4v(λ)2dλ+
CL

4

∫ L

0
v2 e−y

2/4dy.

Clearing the constants and combining the two integrals on the right, we
find ∫ 3

2
L

L
u2
y e
−y2/4dy ≤ C

∫ L

0
v2 e−y

2/4dy.

We proceed now to proving Corollary 4.8. First we show the following
weighted estimate.

Lemma 4.12. For any function u ∈ C1([0, `]) we have

(4.36)

∫ `

0
u2
y e
−y2/4 dy +

1

4

∫ `

0
u2 e−y

2/4 dy

≥ 1

4
`e−`

2/4u(`)2 +
1

16

∫ `

0
y2 u2 e−y

2/4 dy.

Proof. We begin with

0 ≤
(
uy − y

4u
)2

= u2
y + y2

16u
2 − 1

2yuuy,

and integrate by parts:∫ `

0
e−y

2/4
(
u2
y + y2

16u
2
)
dy ≥

∫ `

0
e−y

2/4 1
2yuuydy

=
[

1
4ye
−y2/4u2

]`
0
−
∫ `

0

(
1
4 −

1
8y

2
)
e−y

2/4u2dy

= 1
4`e
−`2/4u(`)2 +

∫ `

0

1
8y

2u2e−y
2/4 −

∫ `

0

1
4u

2e−y
2/4dy.

Rearranging terms leads to (4.36). q.e.d.

Proof of Corollary 4.8. If we apply Lemma 4.12 to ` = 2L and to
v = u−

√
2(n− 1) we get∫ 2L

0
y2v2e−y

2/4 dy ≤ 16

∫ 2L

0
v2
ye
−y2/4 dy + 4

∫ 2L

0
v2e−y

2/4 dy.

Applying Lemma 4.7 to the first term on the left hand side of the pre-
vious estimate leads to∫ 2L

0
y2v2e−y

2/4 dy ≤ C
∫ L

0
v2e−y

2/4 dy + 4

∫ 2L

L
v2e−y

2/4 dy,

which, since

L2

∫ 2L

L
v2e−y

2/4 dy ≤
∫ 2L

0
y2v2e−y

2/4 dy
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yields the desired estimate∫ 2L

L
v2e−y

2/4 dy ≤ C

L2

∫ L

0
v2e−y

2/4 dy,

for L sufficiently big. q.e.d.

5. Asymptotics of the parabolic region

The goal in this section is to prove part (i) of our Main Theorem 1.6,
as well as Corollary 1.7.

In the following we derive the asymptotics in the parabolic region
|y| = O(1) in a few steps. We first analyze the spectrum of the lin-
ear operator L. Then we project v̄ onto the positive, zero, and nega-
tive eigenspaces of L. Using the a priori estimates from section 4 we
carefully estimate the error terms (5.4) and (5.6) and then, using the
ODE arguments developed in [9] and [17], we are able to prove that, as
τ → −∞, either the projection of v̄ onto the zero subspace dominates or
the projection of v̄ onto the positive subspace of L dominates. We show
the latter can not happen. Once we establish the dominance of the zero
eigenspace projection of v̄ we employ again our a priori estimates and
ODE arguments to show the precise asymptotics as stated in part (i) of
Theorem 1.6.

5.1. Linearization at the cylinder. We are in the case where M̄τ

converges to the cylinder Σ with radius
√

2(n− 1) as τ → −∞, uni-
formly on compact sets, i.e.

lim
τ→−∞

u(y, τ) =
√

2(n− 1),

uniformly on bounded y intervals. As a measure for the difference be-
tween the solution and the cylinder we introduce v(y, τ) defined by

u(·, τ) =
√

2(n− 1)
(
1 + v(y, τ)

)
.

This function satisfies

∂

∂τ
v =

vyy
1 + 2(n− 1)v2

y

− y

2
vy +

2 + v

2 + 2v
v,

which we can rewrite as

(5.1)
∂

∂τ
v = L[v] + E, |y| ≤ d̄(τ),

where, by definition,

(5.2) L[ψ] = ψyy −
y

2
ψy + ψ,

and

E = − v2

2(1 + v)
−

2(n− 1)v2
yvyy

1 + 2(n− 1)v2
y

.
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Figure 6. The cut-off function φ(y, τ) and the interme-

diate length `(τ) = d̄(τ)1/3.

Since v(y, τ) is not defined on all of R we truncate it smoothly outside
the region |y| ≥ 2`(τ), where, by definition,

`(τ) := d̄(τ)1/3.

The choice of the exponent 1/3 is to some extent arbitrary. It will be
mostly important that `(τ)→∞, while `(τ)/d̄(τ)→ 0 as τ → −∞.

We now choose φ̄ ∈ C∞(R) with φ̄(y) = 1 for |y| ≤ 1 and φ̄(y) = 0
for |y| ≥ 2, and define

φ(y, τ) := φ̄

(
y

`(τ)

)
and v̄(y, τ) := v(y, τ)φ(y, τ).

Our truncated function v̄ is now defined for all y ∈ R, simply by setting
v̄(y, τ) = 0 for |y| ≥ 2`. The equation for v̄(y, τ) is as follows:

(5.3)
∂

∂τ
v̄ = L[v̄] + Ẽ, y, τ ∈ R,

where Ẽ = Ẽ1 + Ẽ2 + Ẽ3, with

(5.4) Ẽ1 = − vv̄

2(1 + v)
− φ

2(n− 1)v2
yvyy

1 + 2(n− 1)v2
y

,

and

(5.5) Ẽ2 =
(
φτ − φyy +

y

2
φy

)
v, Ẽ3 = −2φyvy.

The definition φ(y, τ) = φ̄(y/`(τ)) with `(τ) = d̄(τ)1/3 implies that φ
satisfies

φτ = − d̄
′(τ)

3d̄(τ)
yφy,

which lets us rewrite Ẽ2 as

(5.6) Ẽ2 =

{
−φyy +

(
1

2
− d̄′

3d̄

)
yφy

}
v.
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5.2. Estimating the error term Ẽ. It will be useful to have the
following bounds for the derivatives of the cut-off function φ.

Lemma 5.1. The derivatives φy and φyy are supported in the region
`(τ) ≤ y ≤ 2`(τ), where they satisfy

`(τ)|φy|+ |yφy|+ `(τ)2|φyy| ≤ C0,

with C0 = 3 supη |φ̄′(η)|+ |φ̄′′(η)|.

These inequalities are a direct consequence of the definition φ(y, τ) =
φ̄(y/`(τ)). For a function f on R we introduce the weighted L2 norm
‖f‖ given by

‖f‖2 =

∫
R
f(y) e−y

2/4 dy.

Lemma 5.2. For every ε > 0 there exists a τ0 < 0 so that for τ ≤ τ0,

‖Ẽ‖ ≤ ε ‖v̄‖.

Proof. Recall that by (4.4) and Lemma 4.1 we have

|vy|+ |vyy| ≤
C

d̄(τ)
.

Since `(τ) = d̄(τ)1/3, this implies

0 ≤ v(0, τ)− v(y, τ) ≤ C`(τ)−2 for |y| ≤ 2`(τ),

and, therefore,

|v(y, τ)| ≤ |v(y, τ)− v(0, τ)|+ |v(0, τ)|
< C`(τ)−2 + |v(0, τ)|
= δ(τ),

for |y| ≤ 2`(τ), where limτ→−∞ δ(τ) = 0.
To simplify the notation we set from now on ` := `(τ). If we look at

(5.4), (5.5) and (5.6) then we see that

|Ẽ1| ≤ C
(
|vv̄|+ v2

y |vyy|
)
, |Ẽ2| ≤ C|v|, |Ẽ3| ≤

C

`
|vy|,

while we also find that Ẽ2 and Ẽ3 vanish outside of the region ` ≤ y ≤ 2`.
To estimate ‖Ẽ‖ we consider the four terms appearing in our point-

wise bounds for Ẽ1, Ẽ2, and Ẽ3 one by one.
The first term in Ẽ1 is the easiest. Using |v| ≤ δ(τ) we get

‖vv̄‖ ≤ δ(τ)‖v̄‖.

For the next term we use Lemma 4.1, which guarantees |vy| + |vyy| ≤
Cd̄−1 = C`−3, to get

|v2
yvyy| = |vyvyy| · |vy| ≤ C`−6|vy|,
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so that ∫ 2`

0
|v2
yvyy|2e−y

2/4dy ≤ C`−12

∫ 2`

0
|vy|2e−y

2/4dy.

By Lemma 4.7 the L2 norm of vy on the interval (0, 2`) is bounded by
the L2 norm of v on the first half of that interval:∫ 2`

0
|v2
yvyy|2e−y

2/4dy ≤ C`−12

∫ `

0
v2e−y

2/4dy.

Since v = v̄ for 0 ≤ y ≤ ` we get

‖v2
yvyy‖ ≤

C

`6
‖v̄‖.

Hence, ‖Ẽ1‖ ≤
(
δ(τ) + C`(τ)−6

)
‖v̄‖.

Turning to Ẽ2 we recall that Ẽ2 is supported in ` ≤ y ≤ 2`, so that
we have to bound ∫ 2`

`
v2e−y

2/4dy.

By Corollary 4.8 we have∫ 2`

`
v2e−y

2/4dy ≤ C

`2

∫ `

0
v2e−y

2/4dy,

which implies that ‖Ẽ2‖ ≤ C`−2‖v̄‖.
Finally, for Ẽ3 we use Lemma 4.7 to conclude that

‖Ẽ3‖2 ≤
C

`2

∫ 2`

`
v2
ye
−y2/4dy ≤ C

`2

∫ `

0
v2e−y

2/4dy ≤ C

`2
‖v̄‖2,

i.e. we have ‖Ẽ3‖ ≤ C`−1‖v̄‖.
This completes the proof of Lemma 5.2. q.e.d.

5.3. The linear operator L. The operator L is self adjoint in the

Hilbert space H := L2(R, e−y2/4dy). We introduce the norm and the
inner product on H by

‖f‖2 =

∫
R
f(y)2e−y

2/4 dy, 〈f, g〉 =

∫
R
f(y)g(y)e−y

2/4 dy.

The quadratic form associated with L is

(5.7) 〈f,Lf〉 =

∫
R

{
f(y)2 − f ′(y)2

}
e−y

2/4dy,

and the quadratic form domain, i.e. the domain of
√

2− L has norm

(5.8) ‖
√

2− Lf‖2 = 〈f, (2− L)f〉 =

∫
R

{
f(y)2 + f ′(y)2

}
e−y

2/4dy.

The Hilbert space H has a basis of orthogonal polynomials which are
eigenfunctions of L. More precisely,

ψ2m(y) = y2m + cm−1y
2(m−1) + . . . c2y

2 + c0,
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with

L[ψ2m] = (1−m)ψ2m,

and

ck−1 = −2k(2k − 1)

m− k + 1
ck.

The first few eigenfunctions for the eigenvalues λ2m = 1−m are:

ψ0(y) = 1, λ0 = 1,

ψ2(y) = y2 − 2, λ2 = 0,

ψ4(y) = y4 − 12y2 + 12, λ4 = −1.

It easily follows that

ψ2(y)2 = ψ4(y) + 8ψ2(y) + 8ψ0,

so that ψ2 ⊥ ψj for j 6= 2 implies

(5.9) 〈ψ2, (ψ2)2〉 = 8‖ψ2‖2.
To obtain an orthonormal basis for H one could consider the functions

ψ̂2m :=
ψ2m

‖ψ2m‖
.

However, many computations turn out to be algebraically simpler if one
uses the eigenfunctions ψ2m, which are normalized by requiring their
highest order term to be y2m.

5.4. The ODE lemma. It is natural to decompose the Hilbert space
H into positive, negative and neutral eigenspaces

H = H+ ⊕ H0 ⊕ H−,

where H+ is spanned by ψ0, H0 is spanned by ψ2, and H− is spanned
by the remaining eigenfunctions {ψ4, ψ6, . . . }. We let P±, P0 be the
corresponding orthogonal projections, and we define

v̄±(·, τ) = P±
[
v̄(·, τ)

]
, v̄0(·, τ) = P0

[
v̄(·, τ)

]
,

so that

(5.10) v̄(y, τ) = v̄+(y, τ) + v̄0(y, τ) + v̄−(y, τ).

Our arguments involve showing that one of these terms will be much
larger than the other two as τ → −∞, so it will be convenient to
abbreviate
(5.11)
V0(τ) := ‖v̄0(·, τ)‖, V−(τ) := ‖v̄−(·, τ)‖, and V+(τ) := ‖v̄+(·, τ)‖.

Our goal is to show the following proposition.

Proposition 5.3. As τ → −∞, we have

V−(τ) + V+(τ) = o(V0(τ)).
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The key ingredient in proving the Proposition is the ODE Lemma
that was proved in [9] and [17].

Lemma 5.4 (ODE Lemma ([9], [17])). Let X0(τ), X−(τ) and X+(τ)
be absolutely continuous, real-valued functions that are nonnegative and
satisfy

(i) (X0, X−, X+)(τ)→ 0 as τ → −∞, and ∀τ ≤ τ∗, X0(τ)+X−(τ)+
X+(τ) 6= 0, and

(ii) ∀ε > 0, ∃τε ∈ R such that ∀τ ≤ τε,

(5.12)

Ẋ+ ≥ c0X+ − ε(X0 +X−)

|Ẋ0| ≤ ε(X0 +X− +X+)

Ẋ− ≤ −c0X− + ε(X0 +X+)

 .

Then either X0 +X− = o(X+) or X− +X+ = o(X0) as τ → −∞.

In order to apply Lemma 5.4 to our projections V0(τ), V−(τ) and
V+(τ) defined as above, we need to show that V0(τ), V−(τ), V+(τ) satisfy
(5.12).

Lemma 5.5. For every ε > 0, there exists a τε so that for every
τ ≤ τε:

V̇+ ≥ (1− ε)V+ − ε(V0 + V−),

|V̇0| ≤ ε(V0 + V− + V+),

V̇− ≤ −(1− ε)V− + ε(V0 + V+),

where V+(τ), V0(τ) and V−(τ) are defined by (5.11).

Proof. Equation (5.3) tells us that v̄τ = Lv̄ + Ẽ. Applying the pro-
jection P±, P0 we get

dv̄+

dτ
= Lv̄+ + P+Ẽ,

dv̄−
dτ

= Lv̄− + P−Ẽ,
dv̄0

dτ
= Lv̄0 + P0Ẽ.

This allows us to compute the rate at which V+ = ‖v̄+‖ changes by
differentiating ‖v̄+‖2 = 〈v̄+, v̄+〉:

d‖v̄+‖
dτ

=
1

2‖v̄+‖
d

dτ
‖v̄+‖2

=
1

‖v̄+‖
〈
v̄+,

d

dτ
v̄+

〉
=
〈v̄+,Lv̄+〉+ 〈Ẽ, v̄+〉

‖v̄+‖
.

At this point we recall that 1 is the lowest positive eigenvalue of L|H+,
so that

〈f,Lf〉 ≥ ‖f‖2 for all f ∈ H+.
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Moreover, ‖Ẽ‖ ≤ ε‖v̄‖ implies 〈Ẽ, v̄+〉 ≥ −ε‖v̄+‖ ‖v̄‖, so that

(5.13)
d‖v̄+‖
dτ

≥ ‖v̄+‖2 − ε‖v̄‖‖v̄+‖
‖v̄+‖

= ‖v̄+‖ − ε‖v̄‖.

A similar computation, exploiting the fact that 〈f,Lf〉 ≤ −‖f‖2 for all
f ∈ H− shows that

(5.14)
d‖v̄−‖
dτ

≤ ‖v̄−‖+ ε‖v̄‖,

and also

(5.15)

∣∣∣∣d‖v̄0‖
dτ

∣∣∣∣ ≤ ε‖v̄‖.
Finally, we note that ‖v̄‖ ≤ ‖v̄−‖+ ‖v̄0‖+ ‖v̄+‖, so that (5.13), (5.14),
and (5.15) imply the lemma. q.e.d.

Corollary 5.6. If V0, V−, V+ are the projections defined as above,
then we have either V0 + V− = o(V+) or V− + V+ = o(V0), as τ → −∞.

Proof. The proof follows immediately by combining Lemma 5.4 and
Lemma 5.5. q.e.d.

Lemma 5.7. For every ε > 0 there is a τε << −1 such that

V̇+ ≤ (1 + ε)V+ + ε(V0 + V−), for τ ≤ τε.

Proof. One can use the same arguments that led to (5.13), provided
one uses the fact that L|H+ is also bounded by 〈f,Lf〉 ≤ ‖f‖2, and

provided one uses 〈Ẽ, v̄+〉 ≤ +ε‖v̄‖ ‖v̄+‖. q.e.d.

The analogous argument for V− fails because L|H− is unbounded, i.e. no
bound of the form ∀f ∈ H− : 〈f,Lf〉 ≥ −C‖f‖2 holds.

Next we would like to rule out the case V0 + V− = o(V+) and that is
the focus of the following section.

5.5. Dominance of the neutral mode V0(τ). Corollary 5.6 implies
that either the ψ0 component of v̄ dominates the others,

V0(τ) + V−(τ) = o(V+(τ)) (τ → −∞),

or else the ψ2 component dominates,

V+(τ) + V−(τ) = o(V0(τ)) (τ → −∞).

We will show in a somewhat lengthy argument by contradiction that
the first alternative, where V+ dominates, cannot occur. During most
of the argument we assume that V+ is, in fact, the largest of V−, V0, V+,
and we obtain more precise asymptotics for v̄ in this case. Then we
show that given any ancient solution Mt of the unrescaled MCF, one
can always choose the blow-up time T in (1.4) so that the resulting
parabolic blow-up M̄τ leads to a v̄ for which the ψ2 is dominant. Since
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any solution can be reduced to the case where V0 dominates, we then
study the asymptotic behavior of v̄ in this case.

Before worrying about which component of v̄ is the largest, we first
establish that at least one of the components must be the largest.

Lemma 5.8. There is a τ0 such that v̄(τ) 6= 0 for all τ < τ0.

Proof. Suppose that for some τ1 ∈ R one has v̄(τ1) = 0. Then

u(0, τ1) =
√

2(n− 1). Since the surface Mτ1 is convex and symmet-
ric with respect to reflection y ↔ −y, we find that Mτ1 lies inside the

cylinder Γ with radius
√

2(n− 1). By the strong maximum principle all
later surfaces Mτ with τ > τ1 must lie strictly inside Γ, and, therefore,
v̄(τ) 6= 0 for all τ > τ1.

This argument shows that there cannot be more than one time τ1 at
which v̄(τ) vanishes. We, therefore, certainly know that v̄(τ) 6= 0 for all
τ < τ0, for some suitably chosen τ0. q.e.d.

Lemma 5.9. If V+ dominates, i.e. if V−+ V0 = o(V+), then for any
ε > 0 there are τε and cε, Cε such that

(5.16) cεe
(1+ε)τ ≤ V+(τ) ≤ Cεe(1−ε)τ ,

for all τ < τε. On the other hand, if V0 dominates, i.e. if V− + V+ =
o(V0) then

(5.17) V0(τ) ≥ Cεeετ ,

for all τ < τε.

Proof. If V+ dominates, then Lemmas 5.5 and 5.7 imply that for any
ε > 0 we can find a τε such that

(1− 2ε)V+ ≤
dV+

dτ
≤ (1 + 2ε)V+,

for all τ < τε. Integrating this we find (5.16).
Similarly, if V0 dominates instead of V+, then Lemma 5.5 implies∣∣∣∣dV0

dτ

∣∣∣∣ ≤ 2εV0,

which leads to (5.17). q.e.d.

We now improve our estimate (5.16) of the growth of V+ assuming it
is the largest term. While we will, in the end, prove that this situation
does not occur, the following lemma is essential to our proof that this
is so.

Lemma 5.10. If V+ dominates, then the limit

lim
τ→−∞

e−τV+(τ) = K
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exists. Moreover, K 6= 0, and on any fixed compact interval |y| ≤ L one
has

(5.18) lim
τ→−∞

e−τv(y, τ) = lim
τ→−∞

e−τ v̄(y, τ) = K,

uniformly.

Proof. By definition (5.11) we have V+(τ) =
∣∣〈ψ0, v̄(·, τ)〉

∣∣. Since we
may assume that V+(τ) 6= 0 for all τ < τ0, we have

either V+(τ) = 〈ψ0, v̄(·, τ)〉 or V+(τ) = −〈ψ0, v̄(·, τ)〉,

for all τ < τ0. We will assume V+(τ) = 〈ψ0, v̄(·, τ)〉 and leave the other
case to the reader. We consider the evolution of 〈ψ0, v̄〉.

d

dτ
〈ψ0, v̄〉 =

〈
ψ0,Lv̄ + Ẽ

〉
= 〈Lψ0, v̄〉+ 〈ψ0, Ẽ〉 = 〈ψ0, v̄〉+ 〈ψ0, Ẽ〉.

To prove the exponential behavior we must show that the error term
〈ψ0, Ẽ〉 is small. Using ‖Ẽ‖ ≤ ε‖v̄‖ only gives us the estimate (5.16), so
we will have to find better bounds on 〈ψ0, v̄〉.

We already know that ‖v̄(τ)‖ ≤ Cεe
(1−ε)τ . Lemma 4.7 implies that

for any fixed M > 0 we have∫ M

0

{
v2 + v2

y

}
e−y

2/4dy ≤ Ce2(1−ε)τ .

Lemma 4.12 then tells us that

sup
0<y<M

|v(y, τ)| ≤ Ce(1−ε)τ ,

where C is a generic constant which depends on M . This implies

u(M, τ) ≥
√

2(n− 1)
(

1− C e(1−ε)τ
)
,

so that Lemma 4.5 then provides us with a lower bound for u(y, τ) and
more importantly, for d̄(τ). We get

(5.19) d̄(τ) ≥ c e(1−ε)|τ |/2,

for τ < τε and for some c > 0.
〈ψ0, Ẽ1〉 has two terms, the first being∣∣∣∣〈ψ0,

φv2

2(1 + v)

〉∣∣∣∣ ≤ C ∫ 2l

0
v2e−y

2/4dy ≤ C‖v̄‖2 ≤ CV 2
+.

The other term in 〈ψ0, Ẽ1〉 is∣∣∣∣∣〈ψ0,
φv2

yvyy

1 + 2(n− 1)v2
y

〉∣∣∣∣∣ ≤ C

d̄(τ)

∫ 2l

0
v2
ye
−y2/4dy ≤ C

d̄(τ)
‖v̄‖2 ≤ CV 2

+.
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For 〈ψ0, Ẽ2〉 we have

|〈ψ0, Ẽ2〉| =
∣∣∣〈ψ0,

(
−φyy + (1

2 −
d̄′

3d̄
)yφy

)
v̄
〉∣∣∣

≤ C
∥∥∥−φyy + (1

2 −
d̄′

3d̄
)yφy

∥∥∥ ‖v̄‖.
The function −φyy + (1

2 −
d̄′

3d̄
)yφy is uniformly bounded and it is

supported in the interval ` ≤ y ≤ 2`, so∥∥∥−φyy + (1
2 −

d̄′

3d̄
)yφy

∥∥∥2
≤ C

∫ 2`

`
e−y

2/4dy ≤ Ce−`2/4.

Thus, we get

|〈ψ0, Ẽ2〉| ≤ Ce−`
2/8‖v̄‖ ≤ Ce−`2/8V+.

Finally, for 〈ψ0, Ẽ3〉 we get∣∣∣〈ψ0, Ẽ3〉
∣∣∣ = |〈ψ0, φyvy〉| ≤ C‖φy‖ ‖vy‖L2(`,2`).

We again use Lemma 4.7 to estimate ‖vy‖L2(`,2`) ≤ C‖v̄‖, and we again

note that φy is supported in ` ≤ y ≤ 2`, so that ‖φy‖ ≤ Ce−`
2/8.

Combined, we obtain∣∣∣〈ψ0, Ẽ3〉
∣∣∣ ≤ Ce−`2/8‖v̄‖ ≤ Ce−`2/8V+.

Adding the three estimates for 〈ψ0, Ẽi〉 (i = 1, 2, 3) we find∣∣∣〈ψ0, Ẽ
〉∣∣∣ ≤ C(V 2

+ + e−`
2/8V+

)
.

Recall that ` = d̄1/3, so that by (5.19) we get e−`
2/8 ≤ Ce−e

(1−ε)τ/3/8 ≤
Ceτ . This, combined with our rough exponential bound V+ ≤ Ce(1−ε)τ

leads us to ∣∣∣〈ψ0, Ẽ
〉∣∣∣ ≤ Ce(1−ε)τV+.

Thus, we have ∣∣∣∣dV+

dτ
− V+

∣∣∣∣ ≤ Ce(1−ε)τV+,

and
d log V+

dτ
= 1 +O

(
e(1−ε)τ).

Integration shows that e−τV+(τ) does, indeed, converge to some con-
stant K, and that

(5.20) V+(τ) =
(
K +O(e(1−ε)τ )

)
eτ .

We now prove (5.18). Since V0 + V− = o(V+) it follows from con-
vergence of e−τ 〈ψ0, v̄〉 that e−τ v̄ converges in H, and, therefore, that
e−τ v̄|[0,L] converges in L2([0, L]). Lemma 4.7 tells us that e−τ v̄|[0,L] is

bounded in H1([0, L]), so interpolation between L2 and H1 implies that
e−τ v̄|[0,L] converges uniformly, as claimed.
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We complete the proof of Lemma 5.10 by observing that K cannot
vanish, for if it did, then (5.20) would imply V+(τ) = O(e(2−ε)τ ), which
contradicts the lower bound in (5.16). q.e.d.

Lemma 5.11. The neutral mode V0 is the largest, namely we have
V− + V+ = o(V0) for τ → −∞.

Proof. We go back to our original definition (1.4) of the parabolic
blow-up of a given ancient solution Mt to MCF and consider the effect
of a change in the blow-up time T on the blow-up M̄τ (and, thus, u(y, τ)
and v̄(y, τ)).

Assume that U(x, t) is a solution to the unrescaled MCF (1.3). For
any choice of blow-up time T define u(y, τ) according to (1.5), i.e.

u(y, τ) =
1√
T − t

U(x, t), y =
x√
T − t

, τ = − log(T − t),

so that u(y, τ) satisfies (1.7).
If we assume that the solution is one in which V+ dominates, then

(5.18) implies that

u(y, τ) =
√

2(n− 1)(1 +K eτ ) + o(eτ ), as τ → −∞,

for some K > 0, uniformly on bounded intervals |y| ≤ L.
In terms of the original solution this is equivalent to

U(x, t) =
√
T − t

{√
2(n− 1)(1 +K (T − t)−1) + o((T − t)−1)

}
=
√

2(n− 1) (T +K − t) + o
(
(T − t)−1/2

)
(t→ −∞),

uniformly for |x| ≤ L
√
T − t.

If we had chosen T + K instead of T as our blow-up time, then the
rescaled profile would have been

û(y, τ) =
U(x, t)√
T +K − t

, y =
x√

T +K − t
, τ = − log(T +K − t),

where û still satisfies (1.7). The asymptotic behavior of û as τ → −∞
is given by

(5.21) û(y, τ) =
√

2(n− 1) + o(eτ ), (τ → −∞),

uniformly on bounded intervals |y| ≤ L. If we define v̂ by

û =
√

2(n− 1)(1 + v̂),

then we also have the three components V̂0, V̂+, and V̂− defined as in

(5.11). By construction we have V̂+ = o(eτ ). It then follows that V̂+

cannot be the largest, because then (5.18) would hold with K = 0, in

contradiction with Lemma 5.10. Thus, we have found that V̂0 is the
largest, i.e. V̂+ + V̂− = o(V̂0) as τ → −∞.
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Lemma 5.9 and, in particular, (5.17) applied to û give us that V̂0 ≥
Cεe

ετ for any small ε > 0. Using V̂+ + V̂− = o(V̂0) we conclude that

lim
τ→−∞

v̂

V̂0

= −ψ2(y) = − y2 − 2

‖y2 − 2‖
in the H norm. Hence,

lim
τ→−∞

〈
χ[−1,1],

v̂

V̂0

〉
= 〈χ[−1,1],−ψ2〉 6= 0.

On the other hand, we have shown that v̂ = o(eτ ) uniformly on bounded
intervals, while V −1

0 ≤ Ce−ετ . This would imply∥∥∥∥ v̂V̂0

∥∥∥∥ = o
(
e(1−ε)τ),

which then leads to limτ→−∞〈 v̂V̂0
, ψ2〉 = 0. This final contradiction

completes the proof. q.e.d.

5.6. Asymptotics of the dominating term v̄0. We have shown that
the v̄0 term in the expansion of v̄ is dominant for τ → −∞. If we write

v̄0(y, τ) = α(τ)ψ2(y),

where ψ2(y) = y2 − 2 and

(5.22) α(τ) =
〈v̄, ψ2〉
‖ψ2‖2

,

then

(5.23) v̄(y, τ) = α(τ)ψ2(y) + o(α(τ)).

Here o(α) is an H-valued function of τ whose norm satisfies

lim
τ→−∞

‖o(α(τ))‖
|α(τ)|

= 0.

Note that
V0(τ) = |α(τ)| · ‖ψ2‖.

Our main goal in this section is to prove that α asymptotically satisfies
a simple differential equation, from which its asymptotic growth at τ →
−∞ follows directly. Namely:

Lemma 5.12. For τ → −∞ one has

dα

dτ
= 4α2(τ) + o

(
α(τ)2

)
,

and

α(τ) = −1 + o(1)

4τ
.

The proof, which occupies the rest of this section, begins with dif-
ferentiating (5.22) with respect to time. Thus, to find α′(τ) we must
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compute
d

dτ
〈ψ2, v̄〉. Using the evolution equation (5.3) for v̄ we find

(5.24)
dα

dτ
= ‖ψ2‖−2〈ψ2, Ẽ〉.

where Ẽ = Ẽ1 +Ẽ2 +Ẽ3 is as in (5.4), (5.5). We will show that of all the

terms that contribute to 〈ψ2, Ẽ〉 the first term from Ẽ1 is the largest,
while the others are of order o(α2). We now begin with the estimates
we need to prove this.

Lemma 5.13. For τ ≤ τ0 we have

‖v̄‖+ ‖yv̄‖+ ‖v̄y‖ ≤ C|α|,(5.25a) ∫ 2`

0

{
v2 + y2v2 + v2

y

}
e−y

2/4dy ≤ Cα2.(5.25b)

Proof. Since V0 is dominant we have ‖v̄‖ ≤ (1 + o(1))V0(τ) ≤ C|α|.
This implies ∫ `

0
v(y, τ)2e−y

2/4dy ≤ Cα2,

and by the inner-outer Lemma 4.7 and Corollary 4.8 we get∫ 2`

0

{
v2 + v2

y

}
e−y

2/4dy ≤ Cα2.

In view of Lemma 4.12 we also get∫ 2`

0
y2v2e−y

2/4dy ≤ Cα2.

Together these estimates imply (5.25b). The bounds (5.25a) on v̄ then
follow from the definition v̄ = φv, combined with the boundedness of
the derivative φy. q.e.d.

So far we know that ‖v̄ − α(τ)ψ2‖ = o(α), but the same is true in a
stronger norm.

Lemma 5.14.∥∥∥√2− L
(
v̄ − α(τ)ψ2

)∥∥∥ = o(α(τ)) (τ → −∞).

Proof. We know that v̄ satisfies the linear inhomogeneous equation
(5.3), i.e. v̄τ = Lv̄ + Ẽ, and we also know that ‖Ẽ‖ ≤ ε‖v̄‖ for all ε > 0
and τ ≤ τε. If we let P be the projection

Pf = f − 〈ψ2, f〉
‖ψ2‖2

ψ2,

and abbreviate
w̄ = P v̄ = v̄ − αψ2,

then w̄(τ) satisfies

w̄τ = Lw̄ + PẼ.



ANCIENT CONVEX FLOWS 423

At any given τ the variation of constants formula says

w̄(τ) = eLw̄(τ − 1) +

∫ τ

τ−1
e(τ−τ ′)LPẼ(τ ′) dτ ′.

Apply
√

2− L to both sides and, using ‖
√

2− L eθL‖ ≤ Cθ−1/2 for
0 < θ ≤ 1, we compute the H norm to get

‖
√

2− L w̄(τ)‖ ≤ C‖w̄(τ − 1)‖+

∫ τ

τ−1

C√
τ − τ ′

‖Ẽ(τ ′)‖dτ ′

≤ C‖w̄(τ − 1)‖+ C sup
[τ−1,τ ]

‖Ẽ(τ ′)‖

≤ C‖w̄(τ − 1)‖+ Cε sup
[τ−1,τ ]

|α(τ ′)|,

for all τ ≤ τε. Recall that w̄ = v̄ − αψ2 = o(α), so ‖w̄(τ − 1)‖ ≤
Cε|α(τ − 1)| for τ ≤ τε, and, hence, we have

‖
√

2− L w̄(τ)‖ ≤ Cε sup
[τ−1,τ ]

|α(τ ′)|, for τ ≤ τε.

Finally, we observe that since V0(τ) dominates the other two norms, it

follows from Lemma 5.5 that |V̇0| ≤ εV0 for τ ≤ τε, and, thus, V0(τ ′) ≤
eεV0(τ) for τ ′ ∈ [τ − 1, τ ]. Since ‖V0(τ)‖ = ‖ψ2‖ · |α(τ)|, we get

sup
[τ−1,τ ]

|α(τ ′)| ≤ Cα(τ),

and, therefore, also

‖
√

2− L w̄(τ)‖ ≤ Cε|α(τ)| for τ ≤ τε,

as claimed. q.e.d.

Corollary 5.15. On any finite interval |y| ≤ L we have

lim
τ→−∞

v(y, τ)

α(τ)
= y2 − 2,

uniformly.

Since u(y, τ) =
√

2(n− 1)
(
1 + v(y, τ)

)
is a concave function this

implies that α(τ) < 0 for all τ < τ0 for some τ0.

Proof. For any function f the norm ‖
√

2− L f‖ bounds the H1 norm
on any compact interval |y| ≤ L, and, therefore, one has

sup
|y|≤L

|f(y)| ≤ CL‖
√

2− L f‖.

This, together with the previous Lemma 5.14, implies uniform conver-
gence of v̄/α to ψ2. For any L there is a τL such that v̄ and v coincide
on the interval |y| ≤ L if τ ≤ τL, so v/α also converges to ψ2 on [−L,L].

q.e.d.
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Lemma 5.16. There is a constant c > 0 such that

d̄(τ) ≥ c|α(τ)|−1/2 and `(τ) ≥ c|α(τ)|−1/6.

Proof. In our setting we know that v̄(τ) = αψ2 + o(α), and we can
repeat the argument that led to (5.19), with d̄ ≥ c/

√
α as immediate

conclusion. The second lower bound follows from the definition ` = d̄1/3.
q.e.d.

We can now begin with estimating how the various terms in Ẽ con-
tribute to α′(τ). We begin with Ẽ1.

Lemma 5.17.

(5.26)
〈ψ2, Ẽ1〉
‖ψ2‖2

= 4α2 + o(α2).

Proof. We can write Ẽ1 = Ẽ1a + Ẽ1b, where

Ẽ1a =

〈
ψ2,

vv̄

2(1 + v)

〉
and Ẽ1b =

〈
ψ2,

2(n− 1)φv2
yvyy

1 + 2(n− 1)v2
y

〉
.

To estimate Ẽ1b we recall that for |y| ≤ 2` one has |vyy| ≤ Cd̄−1 = C`−3

by Lemma 4.1. Also, since ψ2(y) = y2 − 2 we have |ψ2| ≤ C`2 when
|y| ≤ 2`. Thus,

|Ẽ1b| ≤ 2(n− 1)

∫
|y|≤2`

|ψ2vyy| v2
ye
−y2/4dy

≤ C`−1

∫
|y|≤2`

v2
ye
−y2/4dy

≤ C`−1α2.

By Lemma 5.16 we get `−1 ≤ C|α|1/6, so

|Ẽ1b| ≤ C|α|2+1/6 = o(α2).

To estimate the other term, which has Ẽ1a, we split Ẽ1a into three parts:

(5.27)
vv̄

2(1 + v)
=

1

2
vv̄ − v2v̄

2(1 + v)
=

1

2
v̄2 +

1

2
(v − v̄)v̄ − v2v̄

2(1 + v)
.

Since v̄ is supported on |y| ≤ 2` and since |v̄| ≤ v there, the contribution
of the third term can be bounded by∣∣∣∣〈ψ2,

v2v̄

2(1 + v)

〉∣∣∣∣ ≤ sup
[0,2`]
|v| ·

∫ 2`

0
|ψ2(y)|v2e−y

2/4dy.

We estimate v on the interval [0, 2`] by noting that v(0, τ) = O(|α|) by
Corollary 5.15 and |vy| ≤ Cd̄−1 = C`−3 by (4.5). It follows that

sup
[0,2`]
|v| ≤ C|α|+ C`−3 · 2` = C

(
|α|+ `−2

)
≤ C|α|1/3,
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by Lemma 5.16. Thus, we find∣∣∣∣〈ψ2,
v2v̄

2(1 + v)

〉∣∣∣∣ ≤ C|α|1/3 ∫ 2`

0

{
v2 + y2v2

}
dy ≤ C|α|2+1/3 = o(α2),

where we have used Lemma 5.13.
We go on with the middle term in (5.27). Since v̄ = φv we have

(v − v̄)v̄ = (1− φ)φv2, which is supported in the interval [`, 2`]. Thus,
we have ∣∣〈ψ2,

1
2(v − v̄)v̄

〉∣∣ = 1
2

∣∣〈ψ2, (1− φ)φv2
〉∣∣ .

Because of the Gaussian weight in the inner product, this term is very
small. We crudely bound |ψ2| ≤ Cy2, |v| ≤ C, and find

1
2

∣∣〈ψ2, (1− φ)φv2
〉∣∣ ≤ C ∫ 2`

`
y2e−y

2/4dy

≤ C`3e−`2/4

≤ C|α|−1/2e−c |α|
−1/3

= o(α2),

where we have again used Lemma 5.16.
We are left with the first term in (5.27). We substitute v̄ = αψ2 + w̄

and expand to get〈
ψ2, v̄

2
〉

= α2〈ψ2, ψ
2
2〉+ 2α〈ψ2

2, w̄〉+ 〈ψ2, w̄
2〉.

We know that ‖v̄‖+‖v̄y‖+‖yv̄‖ = O(|α|), and Lemma 5.14 says that we

have
√

2− L · w̄ = o(|α|), so we also have ‖w̄‖+ ‖w̄y‖+ ‖yw̄‖ = o(|α|).
Keeping in mind that ψ2(y) = y2 − 2, so that |ψ2(y)| ≤ C(1 + |y|)2, we
get ∣∣〈ψ2, w̄

2〉
∣∣ ≤ C‖(1 + |y|)w̄‖2 = o(α2),

and ∣∣〈ψ2
2, w̄〉

∣∣ ≤ o(α).

Finally, by (5.9) we have 〈ψ2, ψ
2
2〉 = 8‖ψ2‖2, so that 〈ψ2, v̄

2〉 =
8‖ψ2‖2α2 + o(α2). Adding this and the estimates of the other terms
in (5.27) leads to the asymptotic relation in (5.26). q.e.d.

In Lemma 5.2 we estimated the error terms Ẽ2 and Ẽ3. At this
point we have better estimates for ` which allow us to improve the old
estimates.

Lemma 5.18.

‖Ẽ2‖+ ‖Ẽ3‖ = o(α2).

Proof. In the proof of Lemma 5.2 we found that

‖Ẽ2‖2 ≤
∫ 2`

`
v2e−y

2/4dy.



426 S. ANGENENT, P. DASKALOPOULOS & N. SESUM

Using the very rough bound |v| ≤ C together with ` ≥ c|α|−1/6 we get

‖Ẽ2‖2 ≤ C
∫ 2`

`
e−y

2/4dy ≤ Ce−`2/4 ≤ e−c|α|−1/3
= o(α2).

For Ẽ3 we have a similar argument. From (5.5) and the fact that both

φy and vy are uniformly bounded we get |Ẽ3| ≤ C, while Ẽ3 is also
supported in [`, 2`]. The same computation as above then shows that

‖Ẽ3‖ = o(α2). q.e.d.

Completion of the proof of Lemma 5.12. We began the proof of
Lemma 5.12 by writing the derivative α′(τ) as in (5.24). We can now

use Lemmas 5.18 and 5.17 to expand Ẽ in (5.24), which quickly leads
to the claimed result, i.e. the ODE, α′ = 4α2 + o(α2).

Integration of this differential equation directly gives α = −(1 +
o(1))/(4τ), as claimed in Lemma 5.12.

A direct consequence of Lemma 5.12 is the following lower bound for
the extrinsic diameter 2d̄(τ):

(5.28) d̄(τ) ≥ c
√
−τ .

6. Intermediate region

From section 5, for every finite M > 0 we have

(6.1) u(y, τ) =
√

2(n− 1)
{

1 +
y2 − 2

4τ

}
+ o(|τ |−1), |y| ≤M,

as τ → −∞.
We introduce the coordinate z = y√

|τ |
and consider ū(z, τ) = u(y, τ).

It easily follows that

∂ū

∂τ
=

ūzz
|τ |+ ū2

z

− z

2

(
1− 1

τ

)
ūz +

ū

2
− n− 1

ū
.

Lemma 6.1. With the notation as above we claim

lim
τ→−∞

ū(z, τ) =
√
n− 1

√
2− z2,

and the convergence is uniform in z, away from z = ±
√

2.

Proof. We prove the proposition by constructing the appropriate up-
per and lower barriers around our solution which will force it to converge
to the right limit as τ → −∞.

Construction of lower barriers. The construction in §4.4 together
with the precise asymptotics in the parabolic region (6.1) yield the de-
sired lower barriers. To be more precise, take L > 0 big enough. By
(6.1) we have

(6.2)
u(L, τ)√
2(n− 1)

= 1 +
L2 − 2

4τ
+ o(|τ |−1) ≥ 1− L2 − 2

4|τ | (1− δ(τ))
,
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for some nonnegative function δ(τ) with limτ→−∞ δ(τ) = 0. We may
assume that |τ |(1− δ(τ)) is monotone in τ .

Let ub(y) be one of the stationary solutions constructed in Lemma
4.2. By the expansion (4.15) we have

(6.3)
ub(L)√
2(n− 1)

= 1− L2 − 2

2b2
+ o(b−2) ≤ 1− L2 − 2

(2 + ε(b))b2
,

for some nonnegative function ε(b) with limb→∞ ε(b) = 0.
Let τ < τ0 be arbitrary. Choose b(τ) so that

b2(2 + ε(b)) = 4|τ |(1− δ(τ)).

Such a choice can always be made, and one has

(6.4) b(τ) = (1− δ1(τ))
√

2|τ |,

for some function δ1(τ) with limτ→−∞ δ1(τ) = 0.
By our choice of δ1 and b(τ1) and by (6.3) we have

(6.5)
ub(τ)(L)√
2(n− 1)

≤ 1− L2 − 2

4|τ | (1− δ(τ ′))
for all τ ′ ≤ τ.

By (6.2) and (6.5) we have

u(L, τ ′) ≥ ub(τ)(L), for all τ ′ ≤ τ.

Therefore, by Lemma 4.5 we have,

u(y, τ) ≥ ub(τ)(y), for all y ≥ L.

Combining this with (4.14) we get

u(y, τ) ≥

√
2(n− 1)

(
1− y2 − 2

b(τ)2

)
− o(1),

which, in view of (6.4), implies

u(y, τ) ≥

√
2(n− 1)

(
1− y2

2|τ |

)
+ δ2(τ)

y2

|τ |
− o(1).

This estimate is meaningless unless y2 = O(|τ |), so we may absorb the
term δ2(τ)y2/|τ | in the o(1) term. In terms of the z variable we then
get

(6.6) ū(z, τ) ≥
√
n− 1

√
2− z2 + o(1).

Construction of upper barriers. The solution ū(·, τ) is concave and,
therefore, ūzz ≤ 0, yielding

∂

∂τ
ū ≤ −z

2

(
1− 1

τ

)
ūz +

ū

2
− n− 1

ū
.
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Figure 7. To estimate v̄ at (z, τ) we follow the charac-
teristic through (z, τ) back to the boundary of the para-
bolic region, where y = L, z = L/

√
−τ .

Define v̄ := ū2 − 2(n− 1). Then,

∂

∂τ
v̄ ≤ −z

2

(
1− 1

τ

)
v̄z + v̄.

We see v̄(z, τ) is a subsolution to the first order partial differential equa-
tion

∂

∂τ
w = −z

2

(
1− 1

τ

)
wz + w,

which we can write as

(6.7)
d

dτ
w(z(τ), τ) = w(z(τ), τ),

where

(6.8)
d

dτ
z =

z

2

(
1− 1

τ

)
is the characteristic equation for (6.7) (see Figure 7).

Assume the curve (z(τ), τ) connects (z, τ) and (z1, τ1) with z1 =
L/
√
−τ1, for L > 0 big. Integrate (6.8) from τ to τ1 to get

τ − τ1 = log

(
z2|τ |
L2

)
.

At the point z1 = L√
|τ1|

we can use (6.1) to compute v̄:

v̄(z1, τ1) = ū(z1, τ1)2 − 2(n− 1)

= 2(n− 1)
(

1 +
L2 − 2

2τ1
+ o(|τ1|−1)

)
− 2(n− 1)

= −(n− 1)
L2 − 2

|τ1|
(1 + ε(τ1)),

where ε(τ) is yet another function with limτ→−∞ ε(τ) = 0.
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On the other hand, if we integrate (6.7) from τ to τ1 we get

w(z, τ) = eτ−τ1 w(z1, τ1),

and we can start w with the initial condition w(z1, τ1) = v̄(z1, τ1), so
that

w(z, τ) = −(n− 1)
z2|τ |
|τ1|

L2 − 2

L2
(1 + ε(τ1)),

with τ1 = τ + log L2

z2|τ | . Therefore,

w(z, τ) = − (n− 1)z2|τ |∣∣∣τ + log L2

z2|τ |

∣∣∣ L
2 − 2

L2
(1 + ε1(τ)),

with limτ→−∞ ε1(τ) = 0. Since our point (z, τ) lies in the region y ≥ L,

we have z ≥ L/
√
|τ |. We also have z = O(1), so that we can bound the

logarithm in the denominator by∣∣∣∣log
L2

z2|τ |

∣∣∣∣ ≤ C log |τ |.

Thus, we get

w(z, τ) = −(n−1)z2L
2 − 2

L2

1 + ε1(τ)

1 +O
( log |τ |
|τ |
) = −(n−1)z2L

2 − 2

L2

(
1+ε2(τ)

)
.

Since v̄(z1, τ1) = w(z1, τ1), by the maximum principle applied to (6.7),
along characteristics (z(τ), τ) connecting (z1, τ1) and (z, τ) we have

v̄(z, τ) ≤ w(z, τ).

This implies that for all z ≥ L/
√
|τ | one has

ū(z, τ) ≤
√
n− 1

√
2− L2 − 2

L2
z2 + ε3(τ),

where again limτ→−∞ ε3(τ) = 0. Hence, for all z ∈ (0,
√

2)

lim sup
τ→−∞

ū(z, τ) ≤
√
n− 1

√
2− L2 − 2

L2
z2.

Since this holds for all L > 0, we may conclude that

(6.9) lim sup
τ→−∞

ū(z, τ) ≤
√
n− 1

√
2− z2.

Finally, (6.6) and (6.9) together imply Lemma 6.1. q.e.d.

Corollary 6.2. d̄(τ) =
√

2|τ |(1 + o(1)) for τ → −∞.

Proof. The proof of the statement immediately follows from (6.6) and

(6.9) if we recall that z = y/
√
|τ |. q.e.d.
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7. Tip region

In this section, we give a more precise description of the surface in
the tip region. First we complete our proof of Theorem 1.5, which gives
us a good estimate for the size of the curvature at the tip. With that
estimate in hand we then discuss the type-II blow-up at the tip.

7.1. Proof of Theorem 1.5. In Corollary 3.2 we already showed that

H̄max(τ) ≤ d̄(τ),

at all times τ . We will now show that there exists a uniform constant
C so that

d̄(τ) ≤ CH̄max(τ),

for all τ ≤ τ0 and for some τ0 < 0.
Recall that

d̄′(τ)− d̄(τ)

2
= −H̄max(τ).

Integrating this from τ to τ0, using H̄max(τ) ≤ d̄(τ) ≤ c̄
√
|τ | and d̄(τ) ≥

c
√
|τ |, and also choosing A sufficiently big in the last step we find

d̄(τ) = eτ/2
(
C +

∫ τ0

τ
H̄max(σ)e−σ/2 dσ

)
= eτ/2

(
C +

∫ τ0

τ+A
H̄max(σ)e−σ/2 dσ +

∫ τ+A

τ
H̄max(σ)e−σ/2 dσ

)
≤ C eτ/2

(
1 +

√
|τ | e−τ/2e−A/2 +

∫ τ+A

τ
H̄max(σ)e−σ/2 dσ

)
≤ C eτ/2 + C

√
|τ | e−A/2 + Ceτ/2

∫ τ+A

τ
H̄max(σ)e−σ/2 dσ

≤ d̄(τ)

2
+ Ceτ/2

∫ τ+A

τ
H̄max(σ)e−σ/2 dσ,

and, thus,

d̄(τ) ≤ 2C eτ/2
∫ τ+A

τ
H̄max(σ)e−σ/2 dσ.

One consequence of the Harnack inequality for the ancient mean cur-
vature flow ([10]) is that Ht ≥ 0 (for the unrescaled flow). Since

H = eτ/2H̄max, this implies that

H̄max(σ) eσ/2 ≤ H̄max(τ +A) e(τ+A)/2 for σ ∈ [τ, τ +A].
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Hence,

d̄(τ) ≤ Ceτ/2
∫ τ+A

τ
(H̄max(σ) eσ/2) e−σ dσ

≤ Ceτ/2
(
H̄max(τ +A) e(τ+A)/2

) ∫ τ+A

τ
e−σ dσ

≤ CeA/2H̄max(τ +A).

Using (3.3) we have d̄(τ +A) ≤ eA/2d̄(τ), for all τ ≤ τ0. This implies

d̄(τ +A) ≤ C H̄max(τ +A) for all τ ≤ τ0 −A,
or equivalently,

d̄(τ) ≤ CH̄max(τ), for all τ ≤ τ0,

since A only depends on universal constants. This completes the proof
of the estimate

c d̄(τ) ≤ H̄max(τ) ≤ d̄(τ).

Furthermore,

Ā(τ) = 2

∫ d̄(τ)

0
un−1

√
1 + u2

y dy ≤ C
∫ d̄(τ)

0

1

λ1(y, τ)
dy ≤ Cd̄(τ),

where in the last inequality we used Corollary 3.7 and the fact that we
have a uniform convergence to the cylinder on compact sets, so that
limτ→−∞ λ1(0, τ) = 1√

2(n−1)
. To complete the proof of Theorem 1.5 we

need to show that

(7.1) d̄(τ) ≤ C Ā(τ), τ ≤ τ0.

for some uniform constant C > 0. To this end, we have

Ā(τ) = 2

∫ d̄(τ)

0
un−1

√
1 + u2

y dy

≥ 2

∫ d̄(τ)/2

d̄(τ)/3
un−1

√
1 + u2

y dy

= 2
√
|τ |
∫ d̄(τ)

2
√
|τ |

d̄(τ)

3
√
|τ |

ūn−1

√
1 +

ū2
z

|τ |
dz

≥
√
|τ |
∫ d̄(τ)

2
√
|τ |

d̄(τ)

3
√
|τ |

ūn−1 dz.

By Lemma 6.1 and Corollary 6.2 the last integral in the previous es-
timate is greater or equal than c

√
|τ | for a uniform constant c > 0,

implying

(7.2) Ā(τ) ≥ c
√
|τ | ≥ c1 d̄(τ), τ ≤ τ0.

This completes the proof of Theorem 1.5.
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7.2. Asymptotic expansion of the curvature at the tip. We can
improve the bounds we have just derived and describe the limiting be-
havior of the maximal curvature as τ → −∞.

Proposition 7.1. The following limits hold

(7.3) lim
t→−∞

Hmax(t)
√
|t|√

log |t|
=

1√
2

and lim
τ→−∞

H̄max(τ)√
|τ |

=
1√
2
.

Proof. The second limit implies the first one by simple rescaling, so
we will only prove the second one here.

Recall again that from Harnack inequality for the mean curvature
flow we have

d

dt
Hmax ≥ 0,

or equivalently, for the rescaled flow, we have

(7.4)
d

dτ

(
eτ/2 H̄max(τ)

)
≥ 0.

We also have
d̄′(τ)

d̄(τ)
=

1

2
− H̄max(τ)

d̄(τ)
,

with d̄(τ) =
√

2|τ | (1 + δ(τ)). Let ε > 0 be a small number. Integrate
previous identity from τ to τ + ε to get

(7.5) I :=

∫ τ+ε

τ

H̄max(s)

d̄(s)
ds =

ε

2
− log

d̄(τ + ε)

d̄(τ)
.

Using (7.4) we get
(7.6)

1

ε
I =

1

ε

∫ τ+ε

τ

H̄max(s)es/2√
2|s|(1 + δ(s))

e−s/2 ds ≤ H̄max(τ + ε) eε/2√
2|τ + ε|

(1 + δ(τ)),

and similarly,

(7.7)
1

ε
I ≥ H̄max(τ)√

2|τ |
(1 + δ(τ)).

On the other hand, by Corollary 6.2 and (7.5) we get

1

ε
I =

1

2
− 1

ε
log

√
|τ + ε|(1 + δ(τ))√

|τ |
.

Combining this with (7.7) yields

H̄max(τ)√
2|τ |

≤ eε/2 (1+ δ(τ))

(
1

2
− 1

2ε
log
(

1 +
ε

τ

)
+

1

ε
log

1 + δ(τ + ε)

1 + δ(τ)

)
,

which implies
H̄max(τ)√

2|τ |
<

1

2
+ σ,



ANCIENT CONVEX FLOWS 433

for σ > 0 arbitrarily small and ε = ε(σ) and τ < τ(ε, σ) chosen so that
the estimate holds. Similarly, using (7.6) we get

H̄max(τ)√
2|τ |

>
1

2
− σ,

for ε = ε(σ) and τ ≤ τ(ε, σ) sufficiently small. Finally, (7.3) follows as
claimed.

7.3. Proof of Theorem 1.6, (iii). Let λs := Hmax(s) and let M̃ s
t =

λs (Ms+λ−2
s t − ps), where ps is the tip of Ms as in the statement of

proposition. By Corollary 3.8, Hmax(s) = H(ps, s). Take any sequence

si → −∞ and denote by M̃ i
t := M̃ si

t and λi := λsi for simplicity. Then
H̄i(0, 0) = 1 and

H̃i(p, t) =
H(p, si + λ−2

i t)

Hmax(si)
≤
Hmax(si + λ−2

i t)

Hmax(si)
.

Using (7.3) we get

(7.8) H̃i(p, t) ≤

√
|si + λ−2

i t| log |si + λ−2
i t|√

|si| log |si|
(1 + ε(si)),

where limi→∞ ε(si) = 0. For any finite interval in t the above quantity
is uniformly bounded as i → ∞, and, therefore, there exists a smooth
limiting flow

M̃∞t = lim
i→∞

M̃ i
t ,

which is an eternal solution to the mean curvature flow. It has the prop-
erty that H̄∞(0, 0) = 1. Furthermore, by (7.8) we have H̃∞(p, t) ≤ 1 on

M̃ t
∞. Since M̃ t

∞ arises as a smooth limit of compact solutions, it satisfies

Hamilton’s Harnack inequality [10], and, in particular,
∂

∂t
H̃t
∞ ≥ 0. To-

gether with H̃∞(0, 0) = 1 and H̃∞(p, t) ≤ 1 on M̃ t
∞, we have

∂

∂t
H̃∞ = 0

at the origin, for all t > 0. By symmetry we have ∇H̃∞ = 0 at the ori-
gin. Thus, by the same proof of the equality case of Hamilton’s Harnack
inequality, which was, in fact, the observation made in [12], M̃ t

∞ must
be a translating soliton, and so it must be the Bowl soliton. Finally,
due to the uniqueness of the Bowl with the mean curvature being one
at the origin, the subsequential limit is actually a full limit. q.e.d.

Remark 7.2. In [12] the statement of part (iii) in Theorem 1.6,
was proved to be true for the ancient oval solution the authors were
constructing. Note that they proved a rescaled limit of ancient oval
solutions along a carefully chosen sequence of times si → −∞ must
be the Bowl. In our case, knowing more precise asymptotics which we
prove to hold for any rotationally symmetric noncollapsed solution to
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the mean curvature flow, allows us to show that the rescaled limit along
any sequence of times si →∞ will be the unique Bowl solution.

8. Constructing the minimizing foliation

8.1. The foliation. In this section, we construct a foliation of the trun-
cated cone in Rn+1 defined by y ≥ y0 and u ≤ b0y (for suitable constants
y0 and b0) whose leaves are “self shrinkers,” i.e. which satisfy (4.10). The
normals to these surfaces provide a calibration that allowed us to prove
the inner-outer lemma, and they also provided the barriers that we used
to deduce convergence in the intermediate region from convergence in
the parabolic region.

The foliation we consider consists of rotationally symmetric surfaces,
with the y-axis as axis of rotation. Such surfaces are obtained by re-
volving a curve γ ⊂ [0,∞) × R around the y-axis. We use the same
notation as in §4.5.2.

Theorem 8.1. Let b0 > 0 be given. There is a constant y0 > 0 for
which the following holds:

(a) For each a ≥ y0 there is a unique rotationally symmetric embed-
ding Σa of a disc with the following properties

1) Σa is a self shrinker, i.e. it satisfies (4.10).
2) Σa meets the y-axis at y = a.

3) Σa is contained in the half cylinder r ≤
√

2(n− 1), y ≥ y0.

4) the boundary ∂Σa is contained in the disc r ≤
√

2(n− 1), y = y0.

(b) For each b ∈ (0, b0) there exists an embedding Σ̃b of a cylinder
[y0,∞) × Sn−1, obtained by rotating the graph of a function r = ũb(y)
around the y axis, that satisfies

1) Σ̃b is a self shrinker, i.e. it satisfies (4.10) and ũb is a solution of
(4.11).

2) Σ̃b is asymptotic to the cone with opening slope b, in fact, ũb(y) =
by +O

(
y−1
)

as (y →∞).

3) the boundaries ∂Σa and ∂Σ̃b are contained in the disc r ≤ b0y0,
y = y0.

(c) The family of disks Σa with a > y0, the family of cylinders Σ̃b

with 0 < b < b0, and the cylinder Γ together form a foliation of the
region r < b0y, y > y0. The unit normals ν to Σa, Σ̃b, and Γ define a
continuous vector field on this region that is everywhere smooth except
possibly on the cylinder Γ.

The self shrinkers Σ̃b with conical ends are exactly the “trumpets”
that were constructed by Kleene and Møller in Theorem 3 of [15]. For

the surfaces Σ̃b we, therefore, only have to verify that they form a folia-
tion, and that their normals satisfy the same estimate from Lemma 4.11.
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It will become clear from the construction that these surfaces Σa

and Σ̃b can be extended uniquely as immersions that still satisfy (4.10).
However, in the region y ≤ y0 they may intersect each other or even
themselves. See Figure 1.

It will also be important to have an asymptotic description of the
surfaces Σa, Σ̃b for large values of a, or small values of b, respectively.

Theorem 8.2. For each a ≥ y0 the surface Σa is obtained by rotating
the graph of a function r = u(y; a) about the y-axis. This function
satisfies

(8.1) u(y, a) ≥
√

2(n− 1)
√

1− y2/a2 for 0 ≤ y ≤ a,

and

(8.2) u(y, a) ≤
√

2(n− 1)

√
1−

(
1−O

( log a

a2

))y2 − 10

a2
,

on the interval 8
√
n− 1 ≤ y ≤ a− C0/a for some constant C0.

The constant C0 = Ψ(M)+O(a−2) is determined in Proposition 8.10.

8.2. Construction of Σa. A surface obtained by rotating a curve γ ⊂
R× [0,∞) about the y-axis satisfies the self shrinker equation (4.10) if
and only if the curve γ satisfies

(8.3) k − y

2
sin θ +

(r
2
− n− 1

r

)
cos θ = 0,

where k is the curvature of γ, and θ is the angle between the tangent to
γ and the y-axis.

If we parametrize γ by Euclidean arc length, then we can rewrite
(8.3) as a system of three ordinary differential equations

(8.4) ys = cos θ, rs = sin θ, θs =
(n− 1

r
− r

2

)
cos θ +

y

2
sin θ.

This system of differential equations is regular in the region {(y, r, θ) ∈
R×R+×R : r > 0}, and, thus, there is a unique solution of (8.4) for any
given point (y0, r0) in the upper half plane, and any given initial angle
θ0 ∈ R. This solution can be extended uniquely and indefinitely, unless
r ↘ 0, i.e. unless it reaches the y-axis. These are familiar facts from Rie-
mannian geometry once one realizes that curves satisfying equation (8.3)
are exactly geodesics for the Huisken metric

g = rn−1e−(y2+r2)/4
{

(dy)2 + (dr)2
}
.

8.3. Analysis of Σa near the tip. We begin our construction of Σa

by proving the existence of a short segment of γ near the y-axis. The
surface Σa can only be smooth if γ meets the y-axis perpendicularly.
We may, therefore, represent an initial segment of γ as the graph of a
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function y = h(r). For such graphs the condition (8.3) on γ is equivalent
to the differential equation

(8.5)
hrr

1 + h2
r

+
(n− 1

r
− r

2

)
hr +

h

2
= 0, h(0) = a, hr(0) = 0.

The following arguments establish the existence of a solution to this
problem on some short interval r ∈ [0, ra) for any a ∈ R, but we will
only need the solution for large a. Therefore, we expand the surface
near the tip and assume h is of the form

h(r, a) = a− 1

a
ψ(ar, a).

If we let ρ = ar, then (8.5) for h is equivalent to

(8.6)
ψρρ

1 + ψ2
ρ

+
n− 1

ρ
ψρ −

1

2
=

1

2a2

(
ρψρ − ψ

)
, ψ(0) = ψ′(0) = 0.

We may regard ε = 1/2a2 as a small parameter. For ε = 0 (a =∞) the
equation for ψ reduces to

(8.7)
ψρρ

1 + ψ2
ρ

+
n− 1

ρ
ψρ =

1

2
, ψ(0) = ψ′(0) = 0,

which is exactly the ODE for the rotationally symmetric translating
soliton. The arguments above imply the existence of a solution to (8.7).
The following expansion is proved in [AV1995].

Lemma 8.3. The differential equation (8.7) has a unique solution
Ψ(ρ). This solution is concave, decreasing, and for ρ→∞ satisfies

Ψ(ρ) =
1

4(n− 1)
ρ2 − 2 log ρ+ C0 +O(ρ−2),

Ψ′(ρ) =
1

2(n− 1)
ρ− 2

ρ
+O(ρ−3),

Ψ′′(ρ) =
1

2(n− 1)
+

2

ρ2
+O(ρ−4).

Lemma 8.4. The ODE (8.6) has a unique solution which can be
written as

ψ = ψ(ρ, a) = ψ̃
(
ρ,

1

2a2

)
,

where ψ̃(ρ, ε) is a real analytic function of two variables.

Proof of Lemma 8.4. We can rewrite the ODE (8.6) as a system for
three variables (ψ, χ = ψρ, ρ):

ψρ = χ, χρ = (1 + χ2)
(
−n− 1

ρ
χ+

1

2
+ ε(ρχ− ψ)

)
, ρρ = 1.
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This system is singular at ρ = 0. To remove the singularity we multiply
with ρ and get

(8.8)


ρψρ = ρχ,

ρχρ = (1 + χ2)
(
−(n− 1)χ+ 1

2ρ+ ερ(ρχ− ψ)
)
,

ρρρ = ρ,

which is an autonomous system provided we take log ρ as new “time”
variable (if ς = log ρ then ∂/∂ς = ρ∂/∂ρ.)

For any ε the origin is a fixed point of the system (8.8). The lin-
earization at the origin is0 0 0

0 −(n− 1) 1
2

0 0 1

 ,

whose eigenvalues are {−(n−1), 0, 1}. The solution we are looking for is
the fast unstable manifold of the origin corresponding to the eigenvalue
+1. The fast unstable manifold is an analytic curve and depends ana-
lytically on the parameter ε. It is tangent to the eigenvector (0, 1, 2n)
of the linearization, so that near the origin we can write it as a graph
(ψ, χ) = (ψ(ρ, ε), χ(ρ, ε)) over the ρ axis. We conclude that (8.6) with

ε = 1/(2a2) has a unique solution ψ̃(ρ, ε), which is a real analytic func-
tion of ρ and ε. q.e.d.

8.4. Extending the leaf Σa. We have constructed an initial segment
of the curve γ near (a, 0). The curve can then be uniquely extended by
solving the system of ODE (8.4). While the extension is generally not
a graph and may “loop around” many times (see Figure 1), the initial
segment that we have constructed is a graph y = h(r; a), defined for
0 ≤ r ≤ M/a. Since hr < 0 on that interval we can also represent the
initial segment as a graph

r = u(y, a), y ∈ [yMa, a],

where yMa = a − a−1ψ(M,a). The condition H + 1
2X · ν = 0 for the

surface Σa is equivalent to this ODE for the function u

(8.9)
uyy

1 + u2
y

− y

2
uy +

u

2
− n− 1

u
= 0.

In the end it will follow that u(y, a) is defined for all y ≥ 0, but at this
point we only know it is defined on some interval y ∈ (y∗(a), a].

Consider the quantity

(8.10) w
def
=

yuy
u
2 −

n−1
u

= − 2yuuy
2(n− 1)− u2

= y
d

dy
log
(
2(n− 1)− u2

)
.
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The second order equation (8.9) implies the following first order equa-
tion for w

(8.11) ywy = w −
(1

2
+
n− 1

u2

)
w2 +

1

2
y2
(
1 + u2

y

)
(w − 2).

Proposition 8.5. lim
y↗a

w(y) =
2n

n− 1
.

Proof. For any y < a we write w(y) in terms of ρ and ψ(ρ, a):

w = − yuy
n−1
u −

u
2

= −

(
a− ψ

a

)−1
ψρ

(n−1)a
ρ − ρ

2a

=
1− ψ2

a2

n− 1− ρ2

2a2

ρ

ψρ
.

It follows that

lim
y↗a

w(y) = lim
ρ↘0

1− ψ2

a2

1− ρ2

2a2

ρ

ψρ
=

1

ψρρ(0)
,

by l’Hospital’s rule. We can compute ψρρ(0) by letting ρ → 0 in (8.6).
Keeping in mind that ψ = ψρ = 0 at ρ = 0, and, thus, limρ→0 ψρ/ρ =
ψρρ(0), we get

nψρρ(0) =
1

2
, i.e. ψρρ(0) =

1

2n
. q.e.d.

Proposition 8.6. On the interval (y∗(a), a), where the function
u(y, a) is defined, we have w > 2.

Proof. By proposition 8.5 we know that w(y) > 2 for y close to a. To
reach a contradiction assume that there is a y1 ∈ (0, a) with w(y1) =
2, and choose y1 to be the largest y with this property. Then the
differential equation (8.11) for w implies that at y1 we have

y1
dw

dy
= 2−

(
1

2
+
n− 1

u(y1)2

)
22 = −4(n− 1)

u(y1)2
< 0.

On the other hand, w > 2 on (y1, a) and w(y1) = 2 imply w′(y1) ≥ 0,
and we have our contradiction. q.e.d.

Proposition 8.7. For y ∈ (y∗(a), a) we have

u(y) >
√

2(n− 1)
√

1− y2/a2.

Proof. Using u(a) = 0 and (8.10) we can integrate to get

log
2(n− 1)− u(y)2

2(n− 1)− u(a)2
= −

∫ a

y

w(ȳ)

ȳ
dȳ < −2 log

a

y
.

This leads to 2(n − 1) − u2 > 2y2/a2 and, thus, u(y)2 > 2(n − 1)
(
1 −

y2/a2
)
. q.e.d.
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The analogous upper bound for u is less simple. To derive it we will
first estimate w(yMa), and find the upper bound (8.14) for w(y) on an
interval [y0, yMa], for an appropriate choice of the constant y0 (it turns
out y0 = 8

√
n− 1 will work). Integration then leads to an upper bound

for u(y) on that same interval.

Proposition 8.8. For any M > 0 we have

(8.12) w(yMa) =
1

n− 1

M

Ψ′(M)
+O(a−2), (a→∞).

For M →∞ we have

(8.13)
M

Ψ′(M)
= 2(n− 1) +

8(n− 1)2

M2
+O(M−4).

Proof. Our initial segment ends at

y = yMa = a− a−1ψ(M,a) = a+O(a−1).

At y = yMa we have u = M/a and

uy = −ψρ(M,a)−1.

Thus, we also have

w(yMa) = −
2yMa · (M/a) ·

(
−1/ψρ(M,a)

)
2(n− 1)− (M/a)2

= 2

(
1− ψ

a2

2(n− 1)− M2

a2

)
M

ψρ(M,a)

=

(
1 +O(a−2)

n− 1

)
M

Ψ′(M) +O(a−2)
.

To prove (8.13) we use the asymptotic expansion from Lemma 8.3 for
Ψ(ρ) for large ρ:

M

Ψ′(M)
=

M
M

2(n−1) −
2
M +O(M−3)

=
2(n− 1)

1− 4(n− 1)/M2 +O(M−4)
= 2(n− 1) +

8(n− 1)2

M2
+O(M−4),

as claimed. q.e.d.

Proposition 8.9. There exist constants K and y0 for which one can
choose M > 0 such that

(8.14) w(y) ≤ 2 +
K

a2 − y2
+
K

y2
,

holds for all y ∈ [y0, yMa] with y > y∗(a), provided a is sufficiently large.
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The proof below will show that one can choose any K > 16(n− 1) and

y0 >
√

2K. We will choose

(8.15) K = 20(n− 1) and y0 = 8
√
n− 1.

We will later on show that y∗(a) ≤ 0 for large enough a so that the
condition y > y∗(a) is trivially fulfilled for all y ≥ y0.

Proof. Define

w1(y) =
1

y2
+

1

a2 − y2
=

a2

y2
(
a2 − y2

) .
We will show that

w̄ = 2 +Kw1

is an upper barrier for (8.11) on the interval (y0, yMa), when K = 20(n−
1) and y0 = 8

√
n− 1, in the sense that it satisfies

yw̄y < w̄ −
(1

2
+
n− 1

u2

)
w̄2 +

1

2
y2
(
1 + u2

y

)
(w̄ − 2),(8.16a)

w(yMa) ≤ w̄(yMa).(8.16b)

This implies that w(y) ≤ w̄(y), for all y ∈ (y0, yMa).
To prove (8.16a) we begin by estimating the RHS in (8.16a). We note

that by Proposition 8.7 we have u2 ≥ 2(n−1)(1−y2/a2), which implies

1

2
+
n− 1

u2
≤ 1

2
+

a2

2(a2 − y2)
≤ a2

a2 − y2
= y2w1.

We also note that for y ∈ [y0, yMa] we have

w1(y) ≤ 2 max
{ 1

y2
0

,
1

a2 − y2
Ma

}
.

For large a we can estimate a2 − y2
Ma by

a2 − y2
Ma = a2 −

(
a− 1

a
ψ(M,a)

)2

= 2ψ(M,a)− 1

a2
ψ(M,a)2

= 2Ψ(M) +O(a−2),(8.17)

so that

max
[y0,yMa]

w1(y) ≤ 2 max
{ 1

y2
0

,
1

Ψ(M) +O(a−2)

}
,

and

max
[y0,yMa]

w̄(y) ≤ max
{

2 +
2K

y2
0

, 2 +
2K

Ψ(M) +O(a−2)

}
.

We have chosen y0 so that y0 >
√

2K, and we will choose M so large
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that Ψ(M) > 2K. Then

2 < w̄ < 3 for y ∈ (y0, yMa),

if a is sufficiently large.
We can now estimate the RHS in (8.16a) by

RHS = w̄ −
(1

2
+
n− 1

u2

)
w̄2 +

1

2
y2
(
1 + u2

y

)
(w̄ − 2)

≥ −y2w1 · w̄2 +
1

2
y2Kw1

≥ −9y2w1 + 10y2w1

= y2w1,

on the interval [y0, yMa], and assuming a is large enough.
Turning to the LHS in (8.16a) we first compute

y
dw1

dy
= − 2

y2
+

2y2(
a2 − y2

)2 ≤ 2y2(
a2 − y2

)2
≤ 2

a2 − y2
Ma

a2

a2 − y2
≤ 2

a2 − y2
Ma

y2w1.

Using Ψ(M) > 2K and (8.17) we conclude that the LHS in (8.16a)
satisfies

y
dw̄

dy
= Ky

dw1

dy
≤ 2K

a2 − y2
Ma

y2w1 =
2K

2Ψ(M) +O(a−2)
y2w1 < y2w1,

on the interval (y0, yMa), and assuming a is large enough. It follows
that (8.16a) holds.

To prove (8.16b) we note that, because of (8.17),

w̄(yMa) = 2 +
K

y2
Ma

+
K

b2 − y2
Ma

≥ 2 +
K

2Ψ(M)
+O(b−2).

On the other hand, we have, by Proposition 8.8,

w(yMa) =
1

n− 1

M

Ψ′(M)
+O(a−2).

For large M we also have, by the same Proposition,

1

n− 1

M

Ψ′(M)
= 2 +

8(n− 1)

M2
+ o(M−2).

Thus, if K > 16(n − 1), and if M is large enough we get w(yMa) <
w̄(yMa) for all sufficiently large a.

We have now proved both estimates, (8.16a) and (8.16b). Since w̄ is
an upper barrier for w on the interval max{y0, y∗(a)} ≤ y ≤ yMa the
Proposition follows. q.e.d.
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Proposition 8.10. If a is sufficiently large then y∗(a) ≤ 0, and for
8
√
n− 1 ≤ y ≤ yMa one has

(8.18) u(y)2 ≤ 2(n− 1)

[
1−

(
1−O

( log a

a2

))y2 − 10(n− 1)

a2

]
.

In particular, on any bounded interval 8
√
n− 1 ≤ y ≤ L one has

(8.19) u(y)2 ≤ 2(n− 1)

[
1− y2 − 10(n− 1)

a2
+O

( log a

a4

)]
.

Proof. We integrate the upper bound for w(y) between y and yMa

log
2(n− 1)− (M/a)2

2(n− 1)− u(y)2

=

∫ yMa

y

w(η)

η
dη

≤
∫ yMa

y

{2

η
+
K

η3
+

K

η(a2 − η2)

}
dη

≤ log
y2
Ma

y2
+

K

2y2
+
[ K

2a2

{
log η2 − log(a2 − η2)

}]yMa

y

≤ log
y2
Ma

y2
+

K

2y2
+
CK log a

a2
.

Thus,

2(n− 1)− u(y)2 ≥
(

2(n− 1)−O
( 1

a2

)) y2

y2
Ma

e−K/2y
2
(

1 +O
( log a

a2

))
=
(

2(n− 1)−O
( log a

a2

))y2 −K/2
a2

,(8.20)

where we have used e−x ≥ 1− x for x ≥ 0.
This implies (8.18) under the assumption that a is large enough (recall

that we have chosen K = 20(n − 1) in (8.15)). We still have to show
that y∗(a) ≤ 0.

The upper bound (8.18) for u, combined with the complementing
lower bound from Proposition 8.7 implies that the solution u(y, a) of
(8.9) is a priori bounded and bounded away from u = 0 on the interval
[8
√
n− 1, yMa]. The bound for w implies that the derivative uy = w

y

(
u
2−

n−1
u

)
is also a priori bounded on [8

√
n− 1, yMa]. It follows that the

solution u(y) to (8.9) can be extended from y = a all the way down to
y = 8

√
n− 1.

At y = 8
√
n− 1 our estimate (8.20) implies that 2(n − 1) − u2 =

O(a−2). Together with our bound for w(8
√
n− 1) and the relation uy =

w
2uy (u2 − 2(n − 1)) we then find that uy(8

√
n− 1) = O(a−2). In other

words, (u(8
√
n− 1), uy(8

√
n− 1)) is O(a−2) close to (

√
2(n− 1), 0).
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Standard theorems on the dependence of solutions to ODE on param-
eters then imply that the solution can be continued from y = 8

√
n− 1

down to y = 0 (and beyond). Thus, y∗(a) ≤ 0 for large enough a. q.e.d.

8.5. Proof of Lemma 4.4. We now use the bounds in Proposition 8.7
and equation (8.18) to derive finer asymptotics of the minimizers u(y, a)
on bounded intervals [0, L] for large a.

Proposition 8.11. Let L > 0 be given. For y ∈ [5, 4L] we have∣∣∣∣u−√2(n− 1)
(

1− y2

2a2

)∣∣∣∣ ≤ Cn
a2
,

where Cn only depends on the dimension n, and where a must be suffi-
ciently large.

Proof. From Propositions 8.7 and 8.10 we know that u2 is bounded
on the interval [8

√
n− 1, 4L] by

2(n− 1)
(

1− y2

a2

)
≤ u2 ≤ 2(n− 1)

(
1− y2

a2

)
+

20(n− 1)2

a2
+O

( log a

a4

)
.

We may assume that |O((log a)/a4)| ≤ 1/a2, provided we choose a
sufficiently large. Dividing by 2(n− 1) we arrive at

1− y2

a2
≤ u2

2(n− 1)
≤ 1− y2

a2
+
Cn
a2
,

with Cn =
(
20(n− 1)2 + 1

)
/(2(n− 1)). Use a Taylor expansion to take

the square root:

1− y2

2a2
+O(y2/a4) ≤ u√

2(n− 1)
≤ 1− y2 − Cn

2a2
+O(y2/a4).

For y ≤ 4L we may assume that |O(y2/a4)| ≤ 1/a2, if a is large enough.
After replacing the error term O(y2/a4) by 1/a2, the Proposition im-
mediately follows. q.e.d.

To derive the more precise estimate from Lemma (4.4) we look at
the almost linear equation satisfied by the difference between u and√

2(n− 1). Thus, we define v by

u =
√

2(n− 1)
(
1 +

v

a2

)
.

Then the differential equation (8.9) for u implies that v satisfies

(8.21) vyy =
(
1 + ε2v2

y

){y
2
vy −

2 + εv

2 + 2εv
v
}
,

where ε = a−2.
The inequality in Proposition 8.11 implies that the solutions v(y) we

get for different values of a all satisfy

(8.22) − 1

2
y2 − Cn ≤ v ≤ −

1

2
y2 + Cn,
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on the interval [8
√
n− 1, 4L]. Since the function u is concave, v is also

concave, and the uniform bounds on [8
√
n− 1, 4L] for v imply that

their derivatives are bounded on a smaller interval, say [10
√
n− 1, 3L].

Using the differential equation (8.21) we also get bounds for the second
derivatives. Thus, for some constant C we have

|v|+ |vy|+ |vyy| ≤ C,

on the interval [10
√
n− 1, 3L] for all large enough a. Ascoli’s theorem

tells us that any sequence ai →∞ has a subsequence for which v(y, ai)
converges in C1, and by the differential equation also in C2. Any pos-
sible limit v̄ is a solution of

(8.23) vyy =
y

2
vy − v.

This linear differential equation is known as a Hermite equation. It has
one polynomial solution, namely

v0(y) = y2 − 2.

The general solution can be given in terms of Hermite functions, most of
which are not polynomial. To choose a specific solution of (8.23) we can
find a solution which is odd. There are many possible representations,
e.g. one can represent the function as a power series

v1(x) =
∞∑
k=0

(y/2)2k+1

(−1
2)(1

2)(3
2) · · · (k − 3

2)
.

Another representation is in terms of a contour integral (see e.g.
Courant–Hilbert [4, Ch.7, p.508]). One can also substitute v1(y) =
ψ(y)(y2 − 2) in the differential equation and solve for ψ(y). This leads
to1

v1(y) = −(y2 − 2)

∫ y

0

eη
2/4dη(

η2 − 2
)2 .

For y → ∞ the solution v1 is much larger and grows much faster than
the polynomial solution v0(y) = y2 − 2. One has

(8.24) v1(y) =
2 + o(1)

y3
ey

2/4 = ey
2/4+o(y2) (y →∞).

We return to the possible limits of v(y, ε) as ε → 0. Assume that for
some sequence εi → 0 one has v(y, εi)→ v̄(y). Then there are α, β such
that

v̄(y) = α(y2 − 2) + βv1(y).

1The integral is singular at η =
√

2 even though the solution v1(y) is smooth
everywhere. It turns out that one can regard the integral as a contour integral along
any path from 0 to y that avoids the singularity at

√
2. The residue of the integrand

eη
2/4/(η2−2)2 vanishes, so the integral is independent of the chosen path from η = 0

to η = y.
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Evaluating this at y = 3L and y = 2L we get this system of linear
equations for α and β:

v̄(3L) = α(9L2 − 2) + βv1(3L), and v̄(2L) = α(4L2 − 2) + βv1(2L).

After solving these we find

α = − v1(2L)v̄(3L)− v1(3L)v̄(2L)

(4L2 − 2)v1(3L)− (9L2 − 2)v1(2L)
,

β =
(4L2 − 2)v̄(3L)− (9L2 − 2)v̄(2L)

(4L2 − 2)v1(3L)− (9L2 − 2)v1(2L)
.

In these expressions v1(3L) = e9L2/4+o(L2) while v1(2L) = eL
2+o(L2), so

we can rewrite α as

α =
v̄(2L)− e−5L2/4+o(L2)v̄(3L)

4L2 − 2− e−5L2/4+o(L2)(9L2 − 2)
.

The limit v̄(y) must satisfy (8.22), so that we can write v̄(y) = −y2/2+θ

with |θ| < Cn. Also, v̄(3L) = O(L2) = eo(L
2), and v̄(2L) = eo(L

2). We
get

α = −2L2 + θ + e−5L2/4+o(L2)

4L2 − 2− e−5L2/4+o(L2)
= −1

2
+O(L−2).

A similar computation applied to β leads to

β =
1

v1(3L)

v̄(3L)− 9L2−2
4L2−2

v̄(2L)

1 + e−5L2/4+o(L2)
= e−9L2/4+o(L2).

On the interval [10
√
n− 1, L] we, therefore, can estimate the two terms

in v̄(y) = α(y2 − 2) + βv1(y) by

α(y2 − 2) = −1

2
(y2 − 2) +O(y2/L2),

and

βv1(y) = e−9L2/4+o(L2)ey
2/4+o(L2) = e−5L2/4+o(L2) = O(e−L

2
).

Adding these two estimates and substituting them in u =
√

2(n− 1)(1+
v/a2) we get

u(y) =
√

2(n− 1)
(

1− y2 − 2

2a2

)
+

1

a2
O
( y2

L2
+ e−L

2)
.

On any finite interval [10
√
n− 1,M ] we have y2/L2 ≤M2/L2 so that

u(y) =
√

2(n− 1)
(

1− y2 − 2

2a2

)
+

1

a2
O
(
L−2 + e−L

2)
.

Since we can make O
(
L−2 + e−L

2)
arbitrarily small by choosing L large

enough, we, finally, arrive at the asymptotic expansion (4.15), which
concludes the proof of Lemma 4.4.
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8.6. Estimating the unit normal of Σa near the cylinder. In
the derivation of the inner-outer estimates we will need an asymptotic
estimate of the unit normal ν to the hypersurfaces Σa, at least in a
neighborhood of the cylinder r =

√
2(n− 1). Since the hypersurface

Σa ⊂ Rn+1 is rotationally symmetric we can parametrize it by

(y, ω) ∈ J × Sn−1 7→
(
y, u(y, a)ω

)
∈ R× Rn.

The unit normal is, therefore, given by

ν =

(
−uy,ω

)√
1 + u2

y

.

Using the quantity w = 2yuuy/(u
2 − 2) we can write this normal as a

function of (y, u), namely

(8.25) ν =
(
− sinϕ, cosϕω

)
where tanϕ = uy =

w

2y
(u2 − 2).

8.7. The normal variation. The normal variation V of the family of
hypersurfaces Σa is defined by choosing a smooth family of parametriza-
tions Xa : Rn → Rn+1 of Σa and setting

V = ν · ∂Xa

∂a
.

The normal velocity does not depend on the choice of the particular
parametrizations Xa.

Lemma 8.12. There is a y0 > 0 such that V > 0 on the part of Σa

on which y ≥ y0.
Different minimizers Σa and Σa′ (a 6= a′) do not intersect in the

region y ≥ y0. The Σa smoothly foliate the region within the cylinder
r <

√
2(n− 1) with y > y0.

We prove the lemma by studying a linear differential equation L(V ) =
0 that V satisfies. On most of the surface Σa we can find that the
function W = e‖X‖

2/8 is a supersolution for L (i.e. L(W ) < 0). In
the region near the tip, defined by r ≤ M/a, we use our expansion
of the surface Σa in powers of a−2 to get a good approximation of V
at r = M/a. Comparison with the supersolution W then allows us to
conclude that V 6= 0 on Σa when y is large enough.

8.7.1. The Jacobi equation.

Proposition 8.13. The normal variation V satisfies

(8.26) L(V )
def
= ∆V − gkl∇kφ∇lV +

(
‖A‖2 + 1

2

)
V = 0,

where φ = 1
4‖X‖

2, A is the second fundamental form of Σa, and where
gij = ∇iX · ∇jX is the induced metric on Σa.
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Proof. Since all surfaces Σa satisfy the shrinker equation H+ 1
2X ·ν =

0, we have

∂

∂a

(
H + 1

2X · ν
)

= 0.

The first variation of the mean curvature is

∂H

∂a
= ∆V + |A|2V.

The first variation of the unit normal is the tangential gradient of the
velocity V ,

∂ν

∂a
= −gkl∇kX∇lV,

and, hence,

∂X · ν
∂a

=
∂X

∂a
· ν −X ·

(
∇kV∇kX

)
= V −

(
X · ∇kX

)
∇kV = V − 2gkl∇lφ∇kV.

Combine with the equation for ∂
∂aH and we find (8.26). q.e.d.

8.7.2. The normal variation near the tip. We can parametrize Σa

near the tip by Xa : (ρ,ω) ∈ R× Sn−2 → Rn given by

Xa(ρ,ω) =
(
y, rω

)
=
(
a− a−1ψ(ρ, a),

ρ

a
ω
)
.

The unit normal and first variation are then given by

ν =

(
1, ψρω

)√
1 + ψ2

ρ

,
∂Xa

∂a
=
(
1 +O(a−2),O(a−2)ω

)
,

so that the normal variation is

V = ν · ∂X
∂a

=
1 +O(a−2)√

1 + ψ2
ρ

.

For large a we get

V =
1√

1 + Ψ′(ρ)2
+O(a−2),

uniformly for ρ ∈ [0,M ]. In order to compare V with the supersolution
W in the intermediate region later on, we will also need Vρ, or rather
the ratio Vρ/V . This ratio is given by

(8.27)
Vρ
V

= −Ψ′(ρ)Ψ′′(ρ)

1 + Ψ′(ρ)2
+O(a−2).
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8.7.3. The normal variation at the tip. We note that at ρ = 0,
i.e., at the tip, we have Xa(0,ω) = (a, 0) and ν = (1, 0), so that

(8.28) V = ν · ∂Xa

∂a
= 1.

In particular, V > 0 at the tip. To prove that V > 0 for y ≥ y0 we only
have to show that V 6= 0 in this region.

8.7.4. Upper barrier for V in the intermediate region.

Proposition 8.14. The function W = eφ/2 = e‖X‖
2/8 satisfies

L(W ) ≤ 0 on the intermediate region y0 ≤ y ≤ yMa for large enough a
and y0.

Proof. We compute

L(eθφ) = ∆eθφ −∇eθφ · ∇φ+
(
‖A‖2 + 1

2

)
eθφ

= θeθφ∆φ+ θ2eθφ‖∇φ‖2 − θeθφ∇φ · ∇φ+
(
‖A‖2 + 1

2

)
eθφ

= θeθφ∆φ+
(
θ2 − θ

)
eθφ‖∇φ‖2 +

(
‖A‖2 + 1

2

)
eθφ

= eθφ
{
θ∆φ+ (θ2 − θ)‖∇φ‖2 + ‖A‖2 + 1

2

}
.

Using H + 1
2X · ν = 0 we find the following derivatives for φ = 1

4‖X‖
2,

∇φ = gkl∇kφ∇lX = gkl 12
(
X · ∇kX

)
∇lX = 1

2

(
X − (X · ν)ν

)
,

‖∇φ‖2 = 1
4

(
‖X‖2 − (X · ν)2

)
= φ−H2,

∆φ = 1
2g
kl∇k

(
∇lX ·X

)
=
n− 1

2
+ 1

2X · (Hν) =
n− 1

2
−H2,

and, therefore,

e−θφL(eθφ) = θ
n− 1

2
− θH2 − θ(1− θ)φ+ θ(1− θ)H2 + ‖A‖2 + 1

2

=
θn+ 1− θ

2
+ ‖A‖2 − θ2H2 − θ(1− θ)φ.

From here on we set θ = 1
2 , so that

e−φ/2L
(
eφ/2

)
=
n+ 1

4
+ ‖A‖2 − 1

4H
2 − 1

4φ,

and, thus,

(8.29) e−φ/2L(W ) ≤ n+ 1

4
+ ‖A‖2 − 1

16‖X‖
2.

The principal curvatures of the hypersurface Σa are given by (3.6), so
that

‖A‖2 =
u2
yy(

1 + u2
y

)3 +
n− 1

u2
(
1 + u2

y

)2 ≤ ( uyy
1 + u2

y

)2

+
n− 1

u2
.
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Using the ODE (8.9) for u(y), we get

0 <
−uyy
1 + u2

y

= 1
2

(
−yuy + u

)
− n− 1

u
< 1

2

(
−yuy + u

)
.

Hence, using u <
√

2(n− 1) on [y0, yMa],

‖A‖2 ≤ 1
2y

2u2
y +

1

2
u2 +

n− 1

u2
≤ 1

2y
2u2
y + n− 1 +

n− 1

u2
.

On [y0, yMa] we also have uyy < 0, so that

0 > uy(y) > uy(yMa) =
−1

ψρ(M,a)
=
−1

Ψ′(M)
+O(a−2).

Moreover, u is concave, so u−1 is convex, and we can find an upper
bound for u−1 by interpolating between u(y0) =

√
2(n− 1) + O(a−2)

and u(yMa) = M/a. Keeping in mind that yMa = a+O(a−1) and also
yMa − y0 = a

(
1−O(a−1)

)
, we find

u(y)−1 ≤ u(y0)−1 +
y − y0

yMa − y0

(
u(yMa)

−1 − u(y0)−1
)

≤ 1√
2(n− 1)

+O(a−2) +
y

yMa

(
1− y0/yMa

)−1 a

M

≤ 1√
2(n− 1)

+O(a−2) +
y

M

(
1 +O(a−1)

)
≤ y

M
+ Cn,

where Cn is some constant that only depends on n. Since (α + β)2 ≤
2α2 + 2β2 for all α, β, we see that on the interval [y0, yMa]

u(y)−2 ≤ 2
y2

M2
+ 2C2

n

holds if a is sufficiently large.
Combining our estimates for uy and u−2 we find that on the interval

[y0, yMa] the curvature is bounded by

‖A‖2 ≤ 1
2y

2u2
y +

n− 1

u2
+ n− 1

≤
( 1

2Ψ′(M)2
+O(a−2)

)
y2 +

2(n− 1)

M2
y2 + C ′n

≤
( 1

2Ψ′(M)2
+

4(n− 1)

M2
+O(a−2)

)
y2 + C ′n.

Hence, we can choose M so that for large enough b one has

‖A‖2 ≤ C ′n +
1

32
y2 ≤ C ′n +

1

32
‖X‖2,

and, thus,

e−φ/2L(W ) ≤ C ′n −
(

1
16 −

1
32

)
‖X‖2 ≤ C ′n − 1

32‖X‖
2 ≤ C ′n − 1

32y
2
0.

Thus, if y0 is large enough, we get L(W ) < 0 for y0 ≤ y ≤ yMa. q.e.d.
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Proposition 8.15. For large b one has

(8.30)
Wρ

W
= −1

4Ψ′(M) +O(b−2).

Proof. We parametrize Σa by

X(ρ,ω) =
(
a− a−1ψ(ρ, a),

ρ

a
ω
)
, (ρ > 0,ω ∈ Sn−2).

Then Xρ =
(
a−1ψρ, a

−1ω
)
, and

φρ = 1
2X ·Xρ = −1

2ψρ(ρ, a) +O(a−2) = −1
2aΨ′(ρ) +O(a−2).

The Proposition now follows from Wρ/W = (logW )ρ = 1
2φρ. q.e.d.

8.7.5. Proof of Lemma 8.12. With the intention of reaching a con-
tradiction we suppose that V = 0 at some y1 ≥ y0. Let Σ∗ be the part
of Σa on which y1 ≤ y ≤ yMa.

Since W > 0 everywhere on Σ∗, and since Σ∗ is compact, there is a
smallest λ > 0 for which V ≤ λW on Σ∗. Again because Σ∗ is compact,
there is a y2 ∈ [y1, yMa] at which V = λW . Since V = 0 when y = y1

we clearly must have y2 > y1.
By the maximum principle, it follows from L(V ) = 0 and L(λW ) < 0

on Σ∗ that the point of contact y2 between V and λW cannot be an
interior point. Thus, y2 = yMa, i.e., V < λW for y < yMa and V =
λW at y = yMa. In terms of the coordinate ρ on Σa, which increases
as y decreases, this implies Vρ ≤ λWρ at y = yMa (i.e. at ρ = M).
Eliminating λ we conclude

(8.31)
Vρ
V
≤ Wρ

W
at y = yMa, i.e. when ρ = M.

On the other hand, we recall that at y = yMa we had the two expan-
sions (8.27) and (8.30):

Vρ
V

= −Ψ′(M)Ψ′′(M)

1 + Ψ′(M)2
+O(a−2),

and
Wρ

W
= −1

4Ψ′(M) +O(a−2) for a→∞.

We can approximate the leading terms in these expansions by using
Lemma 8.3 which says that for large M

Ψ′(M) =
M

2(n− 1)
+O(M−1), Ψ′′(M) =

1

2(n− 1)
+O(M−2).

We find

−Ψ′(M)Ψ′′(M)

1 + Ψ′(M)2
= − 1

M
+O(M−3),

−1
4Ψ′(M) = − M

8(n− 1)
+O(M−1).
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If we choose M large enough we can guarantee that

−1
4Ψ′(M) < −Ψ′(M)Ψ′′(M)

1 + Ψ′(M)2
.

With this choice of M we will also have
Wρ

W <
Vρ
V at y = yMa if a is

sufficiently large.
Thus, our assumption that V = 0 at some y = y1 implies both, that

Vρ/V ≤ Wρ/W and Vρ/V > Wρ/W at y = yMa. This contradiction
shows that V 6= 0 at all y ∈ [y0, yMa], if a is sufficiently large.

8.8. The foliation outside the cylinder. We now verify that Kleene
and Møller’s “trumpets” foliate a conical region

√
2(n− 1) ≤ r ≤ b0y,

y ≥ y0, as claimed in Theorem 8.1, and that their normals satisfy the
estimate from Lemma 4.11.

Each self-shrinker Σ̃b is obtained by revolving the graph of a solution
ũb of (4.11) about the y-axis. For each b > 0 Kleene and Møller proved
existence of a unique ũb with ũb(y) = by + O(y−1) (y → ∞). They
showed that ũb(y) is defined for all y ≥ 0, and that it is a convex
function, so that ũb(y) ≥ by and ũ′b(y) ≤ b. They observed that the ũb
can be obtained by a contraction mapping argument, and, hence, that
the ũb depend smoothly on the parameter b > 0. To show that the
Σ̃b define a foliation we, therefore, only have to show that the normal
variation does not change sign. We can do this using the same method
as for the foliation Σa in the interior of the cylinder: in fact, this case
is a bit easier since the analysis of the distant region y →∞ is already
contained in Kleene&Møller’s work.

For any b > 0 we parametrize Σ̃b by

Xb(y,ω) =
(
y, ũb(y)ω

)
.

Then the unit normal is ν = (1 + ũ2
b,y)
−1/2

(
ũb,y,ω

)
and the normal

variation of the family of immersions Xb is

V =
1√

1 + ũ2
b,y

∂ũb
∂b

.

In view of the asymptotic expansion ũb(y) = by +O(y−1) we get

V =
y +O(y−1)√

1 + ũ2
b,y

,

which shows that for large y the normal variation is positive, and that
it grows according to V = O(y) as y →∞.

Recall the function W = e‖X‖
2/8 and, in particular, the equation

(8.29) which it satisfies. Since ‖A‖ is bounded on Σ̃b, it follows from
(8.29) that W is, indeed, an upper barrier for the Jacobi equation
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L(V ) = 0. Since W grows much faster than V as y → ∞ the max-
imum principle implies that V cannot vanish at any y ≥ y0. (Otherwise
V/W would attain a maximal value, say m, at some y1 > y0, and then
V ≤ mW with equality at y1 would contradict the maximum principle.)

Thus, the Σ̃b do, indeed, foliate an open region outside the cylinder.
Using the monotonicity of b 7→ ũb(y) which we have just established,

one can show that limb→0 ũb(y) =
√

2(n− 1), so that the Σ̃b foliate

the entire region with y ≥ y0, between any given Σ̃b0 and the cylinder

r =
√

2(n− 1).
To complete the proof we analyze the normals ν near the cylinder.

Consider again

w(y) =
2yũũy

ũ2 − 2(n− 1)
,

where we have dropped the subscript on ũb for brevity.
The quantity w is defined on some interval (y1,∞) where ũ(y) >√
2(n− 1) for all y > y1. We will show that y1 can be chosen indepen-

dently from the slope b of the shrinker Σ̃b.
The asymptotic behavior of ũ(y) as y →∞ implies that

lim
y→∞

w(y) = 2.

The quantity w − 2 satisfies the differential equation (8.11), which we
can write as

d

dy
(w − 2) = α(y)(w − 2)− n− 1

yũ2
w2,

where

α(y) =
y

2
(1 + ũ2

y)−
w

2y
.

If y >
√

2 then w < 2 implies α(y) > 0, and, thus, dw
dy < 0. Therefore,

limy→∞w = 2 forces w > 2 for all y > y1.
Assume that y1 was chosen so that w ≤ 4 on the interval [y1,∞).

Then

α(y) ≥ y

2
− 2

y
for y ≥ y1.

By assumption we also have ũ ≥
√

2(n− 1) for y ≥ y1, so that

d

dy
(w − 2) ≥

(y
2
− 2

y

)
(w − 2)− 8

y
.

Multiplying with y2e−y
2/4 we get

d

dy

(
y2e−y

2/4(w − 2)
)
≥ −y2e−y

2/4 8

y
= −8ye−y

2/4,

which upon integration leads to

y2e−y
2/4(w − 2) ≤

∫ ∞
y

8ηe−η
2/4 dη = 16e−y

2/4.
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We have found

w − 2 ≤ 16

y2
.

This estimate shows that as long as y ≥ 2
√

2 we will have w − 2 ≤ 2,
i.e. w ≤ 4. Thus, the leaves outside the cylinder satisfy Lemma 4.11
with K = 16, for y ≥ 2

√
2.

Appendix A. Curvature sign conventions

Several sign conventions for the mean curvature can be found in the
literature. The ambiguities appear in the relation between the mean
curvature, the unit normal, and the mean curvature vector. Here we
list the choices that can be made in defining the mean curvature and
unit normal for a hypersurface Mn ⊂ Rn+1 with a local parametrization
X : O → Rn+1, (O ⊂ Rn open.)

The mean curvature vector is defined by

(A.1) H = gij∇i∇jX, where gij = Xi ·Xj ,

and a parametrization X : O × (t0, t1)→ Rn+1 evolves by MCF if

∂X

∂t
= H.

On convex pieces of a hypersurface the mean curvature vector points
in the direction in which the surface is curved. For a sphere, H points
towards the center. All sources agree on this definition. The mean
curvature vector does not depend on a choice of orientation for M or
of a unit normal ν. Indeed, one could consider the evolution of an
immersed Klein bottle in R3.

At each point on the surface there are two unit normals. We let ν be
one of these. The second fundamental form of the surface is defined in
terms of the derivative of the normal: in components one has

(A.2) Aij = A(Xi,Xj) = −Xi · ∇Xjν = +∇i∇jX · ν.

The most common definition of the mean curvature H is as the trace of
the second fundamental form, i.e.

(A.3) H = gijAij = ν ·H.

With these sign conventions a convex surface has positive mean curva-
ture if one chooses ν to be the inward normal. If the surface is one
leaf in a foliation of an open subset of Rn+1, and if ν is defined on
this open region, then it follows from (A.2) that the mean curvature is
H = −∇ · ν.

In the discussion in the introduction convex surfaces are assumed to
have positive mean curvature, so that we have implicitly assumed that
the unit normal is directed inwards. In section 4 and 4.5.6 in particular,
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we consider a foliation and have chosen all normals to be directed away
from the axis of rotation.

If one wants to arrange the definitions so that a convex hypersurface
with its outward unit normal has positive mean curvature, then one
must change the signs in (A.2) and (A.3). This also affects the equa-
tion (4.10) for self-shrinking solitons, which would have to be H − 1

2X ·
ν = 0 instead of H + 1

2X · ν = 0.
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