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QUASI-NEGATIVE HOLOMORPHIC SECTIONAL
CURVATURE AND POSITIVITY OF THE CANONICAL

BUNDLE

Simone Diverio & Stefano Trapani

Abstract

We show that if a compact complex manifold admits a Kähler
metric whose holomorphic sectional curvature is everywhere non-
positive and strictly negative in at least one point, then its canoni-
cal bundle is positive. This answers in the affirmative to a question
first asked by S.-T. Yau.

1. Introduction

Let (X,ω) be a Kähler manifold and let Θ(TX , ω) be its Chern cur-
vature. The holomorphic sectional curvature of ω in the direction given
by a tangent vector v ∈ TX,x \ {0} is defined by

HSCω(x, [v]) =
1

||v||4ω

〈
Θx(TX , ω) · v, v

〉
ω
(v, v̄).

In the above formula, Θ(TX , ω) firstly acts as an endomorphism of the
holomorphic tangent space and then, once contracted again with v using
the hermitian product defined by ω, eats the pair (v, v̄) as a (1, 1)-
form. Despite it is well-known that the holomorphic sectional curvature
completely determines the Chern curvature tensor, it is not a priori
clear whether and how its sign propagates and determines the signs
of the other curvature tensors. An average argument anyway shows
that there is a direct link between the sign of the holomorphic sectional
curvature and the scalar curvature, i.e., the trace of the Ricci curvature,
namely the positivity (resp. the negativity) of the former implies the
positivity (resp. the negativity) of the latter.

However, it was conjectured by S.-T. Yau that a compact Kähler
manifold (X,ω) with negative holomorphic sectional curvature should
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aways admit (a possibly different) Kähler metric ω′ with negative Ricci
curvature. Then, KX should be ample and, in particular, X should be
projective. This conjecture has been proved only very recently in the
projective case by Wu and Yau in [WY16a]. After this major break-
through, the result was extended by using essentially the same tech-
niques to the Kähler case in [TY17]. Before these achievements, only
some cases were known under some extra conditions. For instance, this
was proven in [HLW10] supposing the abundance conjecture to hold
true (which is the case, indeed, in dimension less than or equal to three).

This circle of ideas fits also in the general conjectural picture of
Kobayashi hyperbolicity of compact Kähler manifolds. Namely, it was
conjectured by Kobayashi himself that a compact hyperbolic Kähler
manifold should have positive canonical bundle. Now, if a compact
complex manifold admits a hermitian metric of negative holomorphic
sectional curvature, then it is well-known that the manifold in ques-
tion is Kobayashi hyperbolic (the converse does not hold in general,
see [Dem97, Theorem 8.2] for a very interesting class of projective ex-
amples). Thus, negativity of the holomorphic sectional curvature is a
strong way to have hyperbolicity and the result of Wu–Yau can also be
seen as a weak confirmation of the Kobayashi conjecture for projective
manifolds (and Wu–Yau coupled with Tosatti–Yang for the Kähler case).

Now, what about compact Kähler manifolds with merely non-positive
holomorphic sectional curvature? Such manifolds surely have nef canon-
ical bundle thanks to [TY17] (in the projective case this is a well-known
consequence of Mori’s theorem, since they do not admit any rational
curve, see next section for more details). Anyway, such a condition is
not strong enough in order to obtain positivity of the canonical bundle,
as flat complex tori show. A less obvious but still easy counterexample
is given by the product of a flat torus and, say, a compact Riemann
surface of genus greater than or equal to two endowed with its Poincaré
metric. In this example, over each point there are some directions with
strictly negative holomorphic sectional curvature but always some flat
directions, too. We refer the reader to the paper [HLW16, HLWZ17]
for some nice results about the merely non-positive case, including an in-
teresting structure theorem for such manifolds, built upon the so-called
nef fibration.

The above discussion can be seen as a motivation for the following
(standard, indeed) definition.

Definition 1.1. The holomorphic sectional curvature is said to be
quasi-negative if HSCω ≤ 0 and, moreover, there exists at least one
point x ∈ X such that HSCω(x, [v]) < 0 for every v ∈ TX,x \ {0}.

The quasi-negative situation was also already considered by S.-T.
Yau, who asked whether the same conclusions of the negative case still
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hold. Here comes our main contribution which is a positive answer to
Yau’s question.

Theorem 1.2. Let (X,ω) be a connected compact Kähler manifold.
Suppose that the holomorphic sectional curvature of ω is quasi-negative.
Then, KX is ample. In particular, X is projective.

A particular case of this theorem was already proved in [WWY12]
under the additional assumption that the Picard group of X is infinite
cyclic, and in [HLW16] under the additional assumption that X is a
projective surface. Our approach is essentially borrowed from the work
of S.-T. Yau and his collaborators on the subject, namely a Monge–
Ampère type equation and Yau’s refined Schwarz Lemma, together with
some ingredients from pluripotential theory.

Let us record that shortly after the first version of this paper was
put on the ArXiv, Wu and Yau in [WY16b] gave a unified proof of the
results contained here, as well as in [WY16a, TY17]. Also, R. Nomura
[Nom16] gave an alternative proof in the strictly negative case by means
of the Kähler–Ricci flow.

Let us finish the introduction with the following question. We saw
that, by [TY17], a compact Kähler manifold X with a Kähler metric ω
whose holomorphic sectional curvature is non positive has nef canonical
bundle. On the other hand, by the celebrated Abundance Conjecture,
such a manifold should have semiample canonical bundle. Now, if KX

is semiample, the cohomology class −c1(X) has a semipositive smooth
representative, hence, Yau’s solution of the Calabi conjecture implies
the existence of a (possibly different) Kähler metric ω′ with non-positive
Ricci curvature. It is, thus, legitimate to ask:

Question 1.3. Let (X,ω) be a compact Kähler manifold such that
HSCω ≤ 0. Does there exist a (possibly different) Kähler metric ω′ on
X such that Ric(ω′) ≤ 0?

Acknowledgments. We would like to warmly thank V. Tosatti and H.
Guenancia for interesting and generous exchanges.

2. Reduction to the key inequality

Let (X,ω) be a n-dimensional compact Kähler manifold such that
HSCω ≤ 0. Then, it is classically known (see, for instance, [Roy80,
Corollary 2]) that X cannot contain any (possibly singular) rational
curve, i.e., it does not admit any non-constant map P1 → X. Now,
if X is projective, Mori’s theorem immediately gives us that KX must
be nef. If X is merely supposed to be Kähler, then the nefness of KX

still holds true and is a direct consequence of the non-positivity of the
holomorphic sectional curvature, but this is a much more recent result
[TY17, Theorem 1.1].
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Now, suppose that one can show under the quasi-negativity assump-
tion of the holomorphic sectional curvature that

(1) c1(KX)n > 0.

Then, by [DP04, Theorem 0.5], we deduce thatKX is big. In particular,
carrying a big line bundle, X is Moishezon. Since X is Kähler and
Moishezon, by Moishezon’s theorem X is projective. But then, the
following lemma implies that KX is ample.

Lemma 2.1 (Exercise 8, page 219 of [Deb01]). Let X be a smooth
projective variety of general type which contains no rational curves.
Then, KX is ample.

Here is a proof, for the sake of completeness.

Proof. Since there are no rational curves on X, Mori’s theorem im-
plies as above that KX is nef. Since KX is big and nef, the Base Point
Free theorem tells us that KX is semi-ample. If KX were not am-
ple, then the morphism defined by (some multiple of) KX would be
birational but not an isomorphism. In particular, there would exist
an irreducible curve C ⊂ X contracted by this morphism. Therefore,
KX · C = 0. Now, take any very ample divisor H. For any ε > 0
rational and small enough, KX − εH remains big and, thus, some large
positive multiple, say m(KX−εH), of KX−εH is linearly equivalent to
an effective divisor D. Set ∆ = ε′D, where ε′ > 0 is a rational number.
We have:

(KX + ∆) · C = ε′D · C
= ε′m(KX − εH) · C
= −εε′mH · C < 0.

Finally, if ε′ is small enough, then (X,∆) is a klt pair. Thus, the
(logarithmic version of the) Cone Theorem would give the existence
of an extremal ray generated by the class of a rational curve in X,
contradiction. q.e.d.

Remark 2.2. The same conclusion can be directly obtained by means
of [Tak08, Theorem 1.1]. This theorem states, among other things, that
the non-ample locus of the canonical divisor of a smooth projective
variety of general type is uniruled. In particular, if there are no rational
curves, the non-ample locus must be empty and, thus, KX is ample.

It is, thus, sufficient to prove inequality (1). Since KX is nef, for
any ε > 0, the cohomology class [εω − Ric(ω)] = ε[ω] + c1(KX) is
a Kähler class. By [WY16a, Proposition 8], for every ε > 0, there
exists a smooth function uε which solves the following Monge–Ampère
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equation:

(2)

{(
εω − Ric(ω) + i∂∂̄uε

)n
= euεωn,

ωε := εω − Ric(ω) + i∂∂̄uε > 0.

Moreover, again by [WY16a, Proposition 8], there exists a constant
C > 0 which only depends on ω and n = dimX, such that

(3) sup
X
uε < C.

Now, ∫
X
euε ωn =

∫
X
ωnε

=
(
ε[ω] + c1(KX)

)n
= c1(KX)n +

n−1∑
j=0

(
n

j

)
εn−j [ω]n−j · c1(KX)j .

Therefore,

lim
ε→0+

∫
X
euε ωn = c1(KX)n,

and what we have to show is that

(4) lim
ε→0+

∫
X
euε ωn > 0.

The next section will be entirely devoted to the proof of inequality (4),
which in the sequel will be referred to as “key inequality”.

3. Proof of the key inequality

The first observation is that the functions uε we are considering are
all ω′-plurisubharmonic for some fixed Kähler form ω′ and ε > 0 small
enough. For, let ` > 0 be such that `ω − Ric(ω) is positive and call
ω′ = `ω − Ric(ω). Thus, for all 0 < ε < `, one has

0 < εω − Ric(ω) + i∂∂̄uε < `ω − Ric(ω) + i∂∂̄uε = ω′ + i∂∂̄uε.

Moreover, the uε’s are uniformly bounded from above thanks to (3).

Lemma 3.1 (See, for instance, [GZ05, Proposition 2.6] and [GZ17,
Proposition 4.8]). Either {uε} converges uniformly to −∞ on X or it
is relatively compact in L1(X).

Since this property will be crucial for our approach, following the
referee’s suggestion, we explain how to get the global case needed here
from the standard local case (see for example [GZ17, Theorem 1.46]).
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Proof. Suppose that {uε} does not converge uniformly to −∞. Then,
there exist a subsequence {uεk} and a sequence of points {xk} ⊂ X such
that {supX uεk = uεk(xk)}k is bounded from above and below, and {xk}
converges to some point x0 ∈ X.

Now, fix a finite atlas {Vi} for X consisting of open coordinate charts
which are relatively compact in some other bigger local charts. Let x0
be say in V0. By the local version of the lemma, up to subsequences,
uεk converges in L1(V0). Let V1 be such that V0 ∩ V1 6= ∅. Since uεk
converges in L1(V0∩V1), up to a further subsequence, again by the local
version of the lemma, uεk converges in L1(V1). Iterating the reasoning
we get the convergence in L1(Vi), for all i, and, hence, in L1(X). q.e.d.

Now, suppose for a moment that we are in the second case of Lemma
3.1. Then, there exists a subsequence {uεk} converging in L1(X) and,
moreover, the limit coincides a.e. with a uniquely determined ω′-pluri-
subharmonic function u. Up to pass to a further subsequence, we can
also suppose that uεk converges pointwise a.e. to u. But then, euεk → eu

pointwise a.e. on X. On the other hand, we have euεk ≤ eC so that, by
dominated convergence, we also have L1(X)-convergence and

lim
k→∞

∫
X
euεk ωn =

∫
X
euωn > 0.

The upshot is that what we need to prove is that {uε} does not converge
uniformly to −∞ on X. From now on, we shall suppose by contradiction
that

sup
X
uε → −∞.

Now, as in [WY16a], consider the smooth positive function Sε on X
defined by

ω ∧ ωn−1ε =
Sε
n
ωnε .

Now, define Tε to be logSε. In other words, Tε is the logarithm of the
trace of ω with respect to ωε.

Lemma 3.2. The function Tε satisfies the following inequality:

Tε ≥ −
uε
n
.

In particular, if {uε} converges uniformly to −∞ on X, then Tε con-
verges uniformly to +∞ on X.

Proof. Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of ωε with respect
to ω. Then,

eTε = trωε ω =
1

λ1
+ · · ·+ 1

λn
>

1

λ1
.
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Thus, e−Tε < λ1 so that e−nTε < (λ1)
n ≤ λ1 · · ·λn. But, euεωn = ωnε =

λ1 · · ·λn ωn, and so we get e−nTε < euε , or, in other words,

Tε ≥ −
uε
n
. q.e.d.

Next, since we do not dispose of a negative constant uniform upper
bound for HSCω, we are naturally led to consider the following contin-
uous function on X:

κ : X → R,
x 7→ − max

v∈TX,x\{0}
HSCω(x, [v]).

The quasi-negativity of the holomorphic sectional curvature of Theorem
1.2 translates in κ ≥ 0 and κ(x0) > 0 for some x0 ∈ X.

By [WY16a, Proposition 9], for every ε > 0 we have the follow-
ing crucial inequality which makes the holomorphic sectional curvature
enter into the problem:

(5) ∆ωεTε(x) ≥
(
n+ 1

2n
κ(x) +

ε

n

)
eTε(x) − 1.

Let us set M(x) = (n+ 1)κ(x)/2n and

M ε =

∫
XM ωnε∫
X ω

n
ε

=

∫
XMeuε ωn∫
X e

uε ωn
.

Lemma 3.3. There exist a sequence {εk} of positive real numbers
converging to zero as k goes to infinity such that

M εk →M0 > 0.

Proof. Let us define

vε(x) := uε(x)−max
X

uε.

Then, {vε} is a family of ω′-plurisubharmonic functions on X such that
for every ε > 0 one has

max
X

vε = 0.

Therefore, the functions vεk cannot converge uniformly to −∞, and we
see as above that, up to extracting a further subsequence, the func-
tion evεk tends to ev in L1(X) and a.e. pointwise for some quasi-
plurisubharmonic function v. Next, since we have that evεk ≤ 1 and
Mevεk ≤ maxXM , by dominated convergence we obtain that both evεk

and Mevεk converge in L1(X) respectively to ev and Mev, and, more-
over,∫

X
Mevεk ωn →

∫
X
Mev ωn > 0,

∫
X
evεk ωn →

∫
X
ev ωn > 0,
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since M > 0 on some open set and ev > 0 almost everywhere. To
conclude, it suffices to observe that∫

XMeuε ωn∫
X e

uε ωn
=

∫
XMevε ωn∫
X e

vε ωn
. q.e.d.

Now, for every ε > 0, we consider the differential equation on X

(6) ∆ωεϕ = Meϕ − 1.

Proposition 3.4. Suppose that ϕ+, ϕ− ∈ C2(X) are such that

∆ωεϕ− ≥Meϕ− − 1, and ∆ωεϕ+ ≤Meϕ+ − 1.

Then, ϕ− ≤ ϕ+.

Proof. Let Ω ⊂ X be the set of points x ∈ X such that ϕ−(x) >
ϕ+(x). First, observe that Ω cannot be the whole of X. Indeed, by
subtracting the two differential inequalities in the statement we have
that

∆ωε(ϕ− − ϕ+) ≥M(eϕ− − eϕ+),

so that we would obtain ∆ωε(ϕ−−ϕ+) ≥ 0 everywhere on X. But then,
ϕ− − ϕ+ would be constant and, hence, we would get

M(eϕ− − eϕ+) ≤ 0.

But this is impossible, since there is at least one point of X where M
is strictly positive. Therefore, Ω is a proper open subset of X. In this
open subset one has by definition that ϕ−(x) > ϕ+(x), which implies
that ∆ωε(ϕ−−ϕ+) ≥ 0, and, moreover, ϕ− = ϕ+ on the boundary ∂Ω.
By the maximum principle, we, thus, get a contradiction. q.e.d.

Next, inspired by [KW74], we want to construct a supersolution of
(6). We first settle a regularity issue.

Lemma 3.5. The function M : X → R is Lipschitz.

Proof. It suffices of course to prove that κ : X → R is Lipschitz.
Suppose the contrary. Then, there exists a sequence (pi, qi) ∈ X × X
such that

lim
i→+∞

|κ(pi)− κ(qi)|
dX(pi, qi)

= +∞,

where dX is the distance on X induced by ω. Without loss of generality,
up to extract a subsequence, we can suppose that both {pi} and {qi}
converge to the same point x0 ∈ X. Fix a normal, geodesically convex,
relatively compact coordinate neighborhood V of x0. The distance dX |V
is, thus, equivalent to the flat Euclidean metric on V . By smoothly
trivializing the tangent bundle over V via a ω-unitary local frame, we
are led to the simpler situation where we consider a smooth function on
the product Bn × Cn, where Bn is the open unit ball in Cn, and take
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the maximum on the unit sphere in the second set of variables. Such a
maximum is clearly a Lipschitz function on compact sets of Bn. q.e.d.

Remark 3.6. V. Tosatti kindly communicated to us the following
alternative way to proceed. Instead of taking care of the regularity

properties of M , one may construct an auxiliary function M̃ which is
smooth and nonnegative onX, strictly positive at x0 and bounded above
by M . Such a function is easily constructed, since M is continuous.

Now, in (5), replace M(x) = n+1
2n κ(x) by M̃(x). The inequality re-

mains then true and the arguments above and right here below goes
through as well without any issue of regularity for the RHS of the equa-
tion and then with now smooth fε’s.

Now, since by construction∫
X

(M −M ε)
ωnε
n!

= 0,

and M is Lipschitz, we can find for each ε > 0 a unique C2(X)-solution
fε of the differential equation

∆ωεfε = M −M ε,

such that infX fε = 0. Our next goal is to find uniform real constants
A,B such that Afε +B is a supersolution of (6). Therefore, we would
like to find A,B such that

∆ωε(Afε +B) = A∆ωεfε ≤M eAfε+B − 1,

that is
1−AM ε ≤M

(
eAfε+B −A

)
.

Since infX fε = 0, then

eAfε+B −A ≥ eB −A.
We, thus, choose A,B to be any real numbers respectively such that A
is greater than 1/M0 and B is greater than logA. But then, along the
subsequence extracted in Lemma 3.3, for all k large enough, we have

1−AM εk < 0,

and
M
(
eAfε+B −A

)
≥M

(
eB −A

)
≥ 0

holds for any ε > 0. In particular, for all k large enough, Afεk +B is a
supersolution of (6) with ε = εk. But

∆ωεTε ≥
(
n+ 1

2n
κ+

ε

n

)
eTε − 1 ≥MeTε − 1,

so that Tε is a subsolution of (6) for all ε > 0. By Proposition 3.4, for
each k large enough, we obtain

Tεk ≤ Afεk +B

on X.
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To conclude the proof of the key inequality, recall that we are assum-
ing by contradiction that

lim
ε→0

sup
X
uε → −∞,

and that this would imply that limε→0 infX Tε → +∞, thanks to Lemma
3.2. But then,

lim
ε→0

inf
X
Tε = lim

k→+∞
inf
X
Tεk ≤ lim

k→+∞
inf
X

(Afεk +B) = B,

because of our choice infX fε = 0. This is absurd.

Remark 3.7. Note that if the holomorphic sectional curvature had
been strictly negative, then much more simply we could have chosen as
a supersolution a constant (large enough) function. This would have im-
mediately given a uniform upper bound for Tε, as in [WY16a, TY17].

Remark 3.8. The following elegant and somehow quicker way to
conclude, which bypasses the use of sub and supersolutions, has been
kindly communicated to us by H. Guenancia shortly after a first version
of the present paper appeared on the ArXiv. Start from the inequality

∆ωεTε ≥MeTε − 1.

Now, integrate over X using the volume form associated to ωε, to get

0 =

∫
X

∆ωεTε ω
n
ε ≥

∫
X

(
MeTε − 1

)
ωnε .

We obtain, therefore, the following integral inequality:∫
X
MeTεeuε ωn ≤

∫
X
euε ωn,

and setting vε = uε − supX uε one has∫
X
MeTεevε ωn ≤

∫
X
evε ωn.

Finally, if we define Cε = infX e
−uε/n, we have that eTε > Cε, and

Cε

∫
X
Mevε ωn ≤

∫
X
evε ωn.

But then, as in Lemma 3.3, we can extract a subsequence of {vε} with
limit v which makes the two integral involved converge to a finite non-
zero limit. This is a contradiction since Cε → +∞.

Remark 3.9. Now that we know that KX is ample, we also know by
the classical work of Aubin and Yau that there exists a unique smooth
function u on X such that(

−Ric(ω) + i∂∂̄u
)n

= eu ωn,

and
−Ric(ω) + i∂∂̄u > 0.
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We claim, as in [WY16a], that uε converges to this solution u in each
Ck,α-topology. Indeed, by standard arguments in the theory of Monge–
Ampère equations it is sufficient to show hat there exist a uniform C0-
estimate for uε (see, for example, the proof of [BEGZ10, Theorem
5.1], or [Yau78, pp. 360 and 363]). We already know that there exists
a uniform upper bound, so we only need a uniform lower bound.

Now, the function u is a subsolution of each of the equations(
−Ric(ω) + εω + i∂∂̄uε

)n
= euε ωn,

then by [EGZ11, Theorem 2.18] we have that uε ≥ inf u for all 0 <
ε < 1.
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[BEGZ10] Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed
Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math.
205 (2010), no. 2, 199–262. MR 2746347

[Deb01] Olivier Debarre, Higher-dimensional algebraic geometry, Universitext,
Springer-Verlag, New York, 2001. MR 1841091

[Dem97] Jean-Pierre Demailly, Algebraic criteria for Kobayashi hyperbolic projec-
tive varieties and jet differentials, Algebraic geometry – Santa Cruz 1995,
Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI,
1997, pp. 285–360. MR 1492539

[DP04] Jean-Pierre Demailly and Mihai Păun, Numerical characterization of the
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