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NON-PROPERLY EMBEDDED H-PLANES IN H
3

Baris Coskunuzer, William H. Meeks III
& Giuseppe Tinaglia

Abstract

For any H ∈ [0, 1), we construct complete, non-proper, sta-
ble, simply-connected surfaces with constant mean curvature H
embedded in hyperbolic three-space.

1. Introduction

In their ground breaking work [3], Colding and Minicozzi proved that
complete minimal surfaces embedded in R

3 with finite topology are
proper. Based on the techniques in [3], Meeks and Rosenberg [8] then
proved that complete minimal surfaces embedded in R

3 are proper, if
they have positive injectivity radius; since complete, immersed finite
topology minimal surfaces in R

3 have positive injectivity radius, their
result generalized Colding and Minicozzi’s work.

Recently Meeks and Tinaglia [9] proved that complete constant mean
curvature surfaces embedded in R

3 are proper if they have finite topology
or have positive injectivity radius. With the convention that the mean
curvature function of an oriented surface is the pointwise average of its
principal curvatures, these results of Meeks and Tinaglia in R

3 should
generalize to show that a complete embedded surface Σ of constant mean
curvature H ∈ [1,∞) in a complete hyperbolic three-manifold is proper
if Σ has finite topology or it is connected and has positive injectivity
radius; this is work in progress in [10].

In contrast to the above results, in this paper we prove the following
existence theorem for non-proper, complete simply-connected surfaces
embedded in H

3 with constant mean curvature H ∈ [0, 1). See the
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Appendix where a description of the spherical catenoids appearing in
the next theorem is given.

Theorem 1.1. For any H ∈ [0, 1) there exists a complete simply-
connected surface ΣH embedded in H

3 with constant mean curvature H
satisfying the following properties:

1) The closure of ΣH is a lamination with three leaves, ΣH , C1 and
C2, where C1 and C2 are stable spherical catenoids of constant
mean curvature H in H

3 with the same axis of revolution L. In
particular, ΣH is not properly embedded in H

3.
2) The asymptotic boundary of ΣH is a pair of embedded curves in

∂∞H
3 which spiral into the union of the round circles which are

the asymptotic boundaries of C1 and C2.
3) Let KL denote the Killing field generated by rotations around L.

Every integral curve of KL that lies in the region between C1 and
C2 intersects ΣH transversely in a single point. In particular, the
closed region between C1 and C2 is foliated by surfaces of constant
mean curvature H, where the leaves are C1 and C2 and the rotated
images ΣH(θ) of Σ around L by angle θ ∈ [0, 2π).

Previously Coskunuzer [5] constructed an example of a non-proper,
stable, complete minimal plane in H

3 that can be roughly described as a
collection of “parallel” geodesic planes connected via “bridges at infinity”.
However, his techniques do not generalize to construct non-proper, non-
zero constant mean curvature planes in H

3.
There is a general conjecture related to Theorem 1.1 and the pre-

viously stated positive properness results. This conjecture states that
if X is a simply-connected, homogeneous three-manifold with Cheeger
constant Ch(X), then for any H ≥ 1

2Ch(X), every complete, connected
H-surface embedded in X with positive injectivity radius or finite topol-
ogy is proper. The Cheeger constant of H3 is 2.

In the case of the Riemannian product X = H
2×R, then Ch(X) = 1,

and the validity of this conjecture would imply that every complete,
connected H-surface embedded in X with positive injectivity radius or
finite topology is properly embedded when H ≥ 1

2 . In view of this
conjecture and Theorem 1.1, it is natural to ask the question:

Given H ∈ [0, 12), does there exist a complete, non-properly
embedded H-surface of finite topology in H

2 × R?

When H = 0, Rodríguez and Tinaglia [12] have constructed non-
proper, complete minimal planes embedded in H

2 × R. However, their
construction does not generalize to produce complete, non-proper planes
embedded in H

2 × R with non-zero constant mean curvature.
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2. An outline of the construction

In this section, we outline the construction of the examples described
in Theorem 1.1. Throughout the paper, we refer to an oriented surface
embedded in H

3 with constant mean curvature H as an H-surface, and
call it an H-disk if it is simply-connected. After possibly reversing the
orientation of an H-surface, we will always assume H ≥ 0. Given a
domain Ω ⊂ H

3 with smooth boundary ∂Ω, we say that ∂Ω is H0-
convex, H0 ≥ 0, if after orienting ∂Ω so that its unit normal is pointing
into Ω, then inf∂ΩH∂Ω ≥ H0, where H∂Ω denotes the mean curvature
function of ∂Ω.

We will work in H
3 using the Poincaré ball model, that is we consider

H
3 as the unit ball in R

3 and its ideal boundary ∂∞H
3 at infinity cor-

responds to the boundary of the ball. Fix H in [0, 1). Given λ1 > 0
sufficiently large and λ2 > λ1, for any λ ∈ [λ1, λ2], there exists a unique
spherical H-catenoid Cλ whose distance to its rotation axis, which we
assume is the z-axis, is λ in the hyperbolic metric, is invariant under
reflection in the (x, y)-plane and the mean curvature vectors of Cλ point
toward the z-axis; see Figure 1 and the discussion in the Appendix for
further details. Throughout this paper if n denotes the unit normal, the
mean curvature vector is the vector �H = Hn.

Let W ⊂ H
3 denote the closed region between Cλ1 and Cλ2 . By

Proposition 5.3 in the Appendix, the collection F = {Cλ | λ ∈ [λ1, λ2]}
is a foliation of W . We will identify W topologically with [λ1, λ2]×S

1×R

and its boundary consists of the two H-surfaces Cλ1 and Cλ2 ; in the next
section this identification is made explicit.

For λ1 sufficiently large and for a fixed λ2 > λ1 that is sufficiently close
to λ1, we will construct the surface ΣH ⊂ W described in Theorem 1.1
by creating a sequence of compact H-disks in W whose interiors converge
to ΣH on compact subsets of Int(W ). To do this, we will consider the
universal cover W̃ = [λ1, λ2]×R×R of W , which is an infinite slab with
boundary H-planes C̃λ1 and C̃λ2 . By construction, the mean curvature
vectors of the surface C̃λ2 ⊂ ∂W̃ point into W̃ , while the mean curvature
vectors of C̃λ1 point out of W̃ ; see Figure 1.

To create the compact sequence of H-disks we first exhaust W̃ by a
certain increasing sequence of compact domains Ωn ⊂ Ωn+1 such that
∂Ωn \ (∂Ωn∩C̃λ1) is H-convex. Next we choose an appropriate sequence
of simple closed curves Γn on ∂Ωn so that each Γn is the boundary of
an H-disk Σn embedded in Ωn, with each such disk being a graph over
its natural projection to [λ1, λ2]×{0}×R; see Figure 4. A compactness
argument then gives that a subsequence of the projected interiors of the
surfaces Π(Σn) ⊂ W converges to a complete H-disk ΣH embedded in
Int(W ), which we prove is a entire graph over (λ1, λ2)×{0}×R. Finally,
we will show that ΣH satisfies the other conclusions of Theorem 1.1.



408 B. COSKUNUZER, W. H. MEEKS III & G. TINAGLIA

Figure 1. The induced coordinates (λ, θ̃, z) in W̃ .

3. The examples

3.1. The construction of the compact exhaustion of W̃ . We be-
gin by explaining in detail the construction of the domains Ωn briefly
described in the previous section. For the remainder of the paper we fix
a particular H ∈ [0, 1).

Let cH > 0 be the constant described in Lemma 5.2 and Proposi-
tion 5.3 in the Appendix. As described in the previous section, given
λ2 > λ1 ≥ cH , W denotes the closed region between Cλ1 and Cλ2 . The
number λ2 will be fixed later. The region W is foliated by the collec-
tion F = {Cλ | λ ∈ [λ1, λ2]} of spherical H-catenoids. By using the
foliation F of W , we introduce cylindrical coordinates (λ, θ, z) on W as
follows. The coordinate λ indicates that the point is in Cλ. The co-
ordinate θ ∈ [0, 2π) parameterizes the core circles of the catenoids in
F and corresponds to θ in cylindrical coordinates in R

3. Finally, the
z-coordinate of a point (λ, θ, z) represents the signed intrinsic distance
on Cλ to the core circle of the catenoid Cλ which lies in the (x, y)-plane,
where the sign is taken to be positive if the z-coordinate of the point in
the ball model is positive, and otherwise it is negative. Note that this
choice of z-coordinate is different from the one of the ball model. It is
clear that for points of W , λ ∈ [λ1, λ2], θ ∈ [0, 2π) and z ∈ (−∞,∞) in
these coordinates; see Figure 1.

Let W̃ be the universal cover of W , which is topologically an infinite
slab [λ1, λ2]×R×R with boundary H-planes C̃λ1 and C̃λ2 . We will use
the induced coordinates (λ, θ̃, z) in W̃ . Namely, if Π : W̃ → W is the
covering map, then

Π(λ, θ̃, z) = (λ, θ̃ mod 2π, z),

i.e., Π keeps fixed the λ and z coordinates, and sends θ̃ ∈ (−∞,∞) to
the point (θ̃ mod 2π) corresponding to a point in the core circle of the
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catenoid; see Figure 1. W̃ is endowed with the metric induced by W
and in these coordinates, for any θ0 ∈ (−∞,∞), the map

Tθ0 : W̃ → W̃ , Tθ0(λ, θ̃, z) = (λ, θ̃ + θ0, z)

is an isometry of W̃ as it is induced by the isometry of H3 which is a
rotation by angle θ0 about the z-axis. In particular, T2πn is a covering
transformation for any n. We let ∂θ denote the Killing field in W gen-
erated by the rotations about the z-axis and denote by ∂

˜θ
the related

Killing field in W̃ generated by the one-parameter group of isometries
{Tθ}θ∈R.

Since when H > 0 the mean curvature vectors of the boundary of W
point towards the rotation axis, the mean curvature vectors point into
W̃ on C̃λ2 and out of W̃ on C̃λ1 ; thus, when considered to be a part of
∂W̃ , C̃λ2 is H-convex, while C̃λ1 is not.

As explained in Section 2, our next goal is to exhaust W̃ by an increas-
ing sequence of compact domains Ωn ⊂ Ωn+1 such that ∂Ωn\(∂Ωn∩Cλ1)
is H-convex. Let Rn ↗ ∞ as n ↗ ∞ and let BRn be the closed geodesic
ball in H

3 with center the origin. Let Wn = W ∩BRn ⊂ W and let W̃n

be the universal cover of Wn; see Figures 1 and 2. Assume R1 is chosen
sufficiently large so that every W̃n can be viewed as an infinite tube in
W̃ which is bounded in the z-direction, but unbounded in θ̃-direction.
Then there exists a sequence of bounded continuous positive functions

Zn : [λ1, λ2] → (0,∞), Zn+1 > Zn,

such that

W̃n = {(λ, θ̃, z) ∈ W̃ with z ∈ [−Zn(λ), Zn(λ)]}.

Figure 2. Wn = W ∩BRn and W̃n denotes its universal
cover. Note that ∂W̃n ⊂ C̃λ1 ∪ C̃λ2 ∪ Z+

n ∪ Z−
n .
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Note that Zn does not depend on θ̃ because BRn is rotationally sym-
metric. Let Z±

n be the two annular components of ∂BRn ∩ W . The
preimages of the surfaces Z±

n in the universal cover W̃ are

Z̃±
n := {(λ, θ̃,±Zn(λ)) | λ ∈ [λ1, λ2], θ̃ ∈ (−∞,∞)}.

Since the mean curvature of ∂BRn with inner pointing unit normal is
strictly greater than one, Z̃+

n ∪ Z̃−
n is H-convex as part of the boundary

of W̃n. Note that these spheres would not be good barriers if H ≥ 1
because their mean curvatures are converging to 1 as the radius goes to
infinity. Therefore, if H ≥ 1, this construction would not work.

The final and most difficult step in defining the piecewise-smooth
compact domains Ωn is to bound W̃n in the θ̃-direction. In order to do
this, we will again use spherical H-catenoids. Let P+ = (0,−ε, p3) be a
point on ∂∞H

3 for some small ε > 0 and let P− = (0,−ε,−p3) ∈ ∂∞H
3

be its symmetric point in ∂∞H
3 with respect to the (x, y)-plane. Let γ

be the geodesic in H
3 connecting P+ and P− and let φ be the hyperbolic

translation along the y-axis in the ball model for H
3 and that maps the

z-axis to γ.
For ε > 0 chosen sufficiently small, the asymptotic boundary circles

of Ĉλ1 = φ(Cλ1) intersect transversely the asymptotic boundary circles
of Cλ1 , and Ĉλ1 intersects Cλ1 transversely with Ĉλ1 ∩ Cλ1 = l+1 ∪ l−1 ,
where l±1 is a pair of infinite “vertical” arcs in the intersecting catenoids
with ∂∞l±1 ⊂ ∂∞Cλ1 . Similarly, by choosing λ2 − λ1 sufficiently small,
we can make sure that Ĉλ1 intersects Cλ2 in a pair of infinite “vertical”
arcs l±2 , i.e., Ĉλ1 ∩ Cλ2 = l+2 ∪ l−2 . See the proof of Proposition 5.5 in
the Appendix for the details on the existence of l±i and for some details
on the next argument. Now, the intersection Ĉλ1 ∩ W consists of two
thin infinite strips T+ and T−, where ∂T± = l±1 ∪ l±2 and T± looks like
l±i × (λ1, λ2). The strips T+ and T− separate W into two components,
say W+ and W−, and T+ ∪ T− is H-convex as boundary of one of these
two components, say W+.

Notice that the strips T+ and T− have infinitely many lifts {T̃ n
+ }n∈Z

and {T̃ n− }n∈Z in W̃ . In particular, if we fix a lift T̃ 0
+ , then T̃ n

+ = T2πn(T̃ 0
+)

for any n ∈ Z. Similarly, the same is true for T̃ n− . We fix the lifts T̃ 0
+

and T̃ 0− in W̃ so that the mean curvature vectors are pointing into the
region that they bound, and so that there is no other lift T̃ n± between
them. Then there exists a function G : [λ1, λ2]× (−∞,∞) → (0, π) such
that

T̃ 0
+ = {(λ,G(λ, z), z)} and T̃ 0

− = {(λ,−G(λ, z), z)}.

Moreover, let Gn(λ, z) = G(λ, z) + 2πn. Then, T̃ n
+ = {(λ,Gn(λ, z), z)}

and T̃ −n
− = {(λ,−Gn(λ, z), z)}.
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Figure 3. Ωn is the region in Wn between T̃ n
+ and T̃ −n

− .

Finally, let Ωn be the region in W̃n between T̃ n
+ and T̃ −n

− . In partic-
ular,

Ωn= {(λ, θ̃, z)∈ W̃ | θ̃∈ [−Gn(λ, z), Gn(λ, z)] and z ∈ [−Zn(λ), Zn(λ)]}.
Hence, we have obtained an exhaustion of W̃ by compact regions with
the property that ∂Ωn \ (∂Ωn ∩ C̃λ1) is H-convex; see Figure 3.

3.2. The sequence Σn of graphical H-disks. Our aim in this section
is to construct a sequence of compact H-disks Σn ⊂ Ωn with ∂Σn ⊂ ∂Ωn,
which are θ̃-graphs over their projections to [λ1, λ2]× {0} × R.

Let
∂∗Ωn := ∂Ωn \ (∂Ωn ∩ {C̃λ1 ∪ C̃λ2}),

and let γ be a piecewise smooth, embedded, simple closed curve in ∂∗Ωn

that does not bound a disk in ∂∗Ωn. Recall that ∂∗Ωn is piecewise
smooth and H-convex as part of the boundary of Ωn, since the dihedral
angles are less than π at the corners.

Consider the following variational problem. Let M be a compact
surface embedded in Ωn with ∂M = γ ⊂ ∂∗Ωn. Since Ωn is simply-
connected, M separates Ωn into two regions, i.e., Ωn −M = Ω+

M ∪ Ω−
M

where Ω+
M denotes the region that contains C̃λ2 ∩Ωn. Let A(M) denote

the area of M and let V (M) denote the volume of the region Ω+
M . Then,

let

(1) I(M) = A(M) + 2HV (M).

By working with integral currents, it is known that for any simple
closed essential curve γn in ∂∗Ωn there exists a smooth (except at the 4
corners of γn), compact, embedded H-surface Σn ⊂ Wn with Int(Σn) ⊂
Int(Wn) and ∂Σn = γn. In fact, Σn can be chosen to be, and we will
assume it is, a minimizer for this variational problem, i.e., I(Σn) ≤ I(M)
for any M ⊂ Ωn with ∂M = γn; see for instance [14, Theorem 2.1] [1,
Theorem 1]. In particular, the fact that Int(Σn) ⊂ Int(Wn) is proven in
Lemma 3 of [7]. Moreover, Σn separates Ωn into two regions and the
mean curvature vectors of Σn points “down,” namely into Ω−

Σn
.

If λΣn denotes the restriction of the λ-coordinate function to Σn, then
the following holds. If P+ and P− are interior points of Σn where the
function λΣn obtains, respectively, its maximum and minimum value,
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then the mean curvature vector at P+ and P− points “down”, toward
C̃λ1 ∩ Ωn.

Lemma 3.1. Let P+ (respectively, P−) be a point in Σn where the
function λΣn attains its maximum (respectively, minimum) value. Then,
P+ and P− cannot be in the interior of Σn unless Σn = C̃λ ∩ Ωn for a
certain λ ∈ (λ1, λ2).

Proof. By applying the maximum principle for constant mean curva-
ture surfaces, this lemma follows from the previous observation and the
fact that the collection

F̃n = {C̃λ ∩ Ωn | λ ∈ [λ1, λ2]}
foliates Ωn. q.e.d.

Note that with a suitable choice of γn, we will show later that Σn is
a graphical disk, i.e., Lemma 4.1.

3.3. Choosing the right boundary curve Γn. Let W̃ be the hyper-
bolic compactification of W̃ , which is a covering of the related compact-
ification of W when viewed to be a subset of H3.

For each n ∈ N large, we will construct a simple closed curve Γn in
∂∗Ωn such that the minimizer surface Σn ⊂ Ωn for the functional I in (1)
with ∂Σn = Γn is a θ̃-graph over its projection to [λ1, λ2]× {0} × R.

Let Γn be the union of four arcs in ∂∗Ωn,

Γn := αn
+ ∪ βn

+ ∪ αn
− ∪ βn

−,

where αn
+ ⊂ C̃λ+

n ∩ T̃ n
+ with λ+

n ↗ λ2 and with its endpoints on Z̃±
n , and

αn− ⊂ C̃λ−n ∩ T̃ −n
− with λ−

n ↘ λ1 and with its endpoints on Z̃±
n . The

curve βn
+ ⊂ Z̃+

n connects the endpoints of αn
+ and αn− that are contained

in Z̃+
n while the curve βn− ⊂ Z̃−

n connects the endpoints of αn
+ and αn−

that are contained in Z̃−
n ; see Figure 4.

Figure 4. In the left, βn
+ is pictured in Z̃+

n . In the
right, Γn curve is described in ∂Ωn.
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Figure 5. Let ∂∞Cλi = γ+i ∪ γ−i , i = 1, 2, and Γ =
Γ+ ∪ Γ−. Then, Γ+ is an infinite line in ∂∞H

3 spiraling
into γ+1 in one end, and spiraling into γ+2 in the other
end.

Moreover, we chose βn
+ and βn− so that they are smooth graphs in the

θ̃-variable with positive slope; see Figure 4. We will assume that the
curves βn

+ and βn− converge, respectively, to a pair of curves β+, β− in
∂∞W̃ . With these choices, if we denote by β̂n± the projections of βn± in
H

3 ∩Wn, the curves β̂n± are embedded curves contained in Z±
n . Finally,

we require that β̂n± to converge to a pair of infinite smooth spiralling
curves β̂± in the pair of compact annuli A+, A− in ∂∞H

3 ∩ W , each
of which is a graph of some smooth function ±λ(θ) with positive slope
and the graphs converge to the asymptotic boundary curves of Cλ1 , Cλ2 .
Here W denotes the union of W with its limit points in ∂∞H

3. We will
also assume that β̂± have positive bounded geodesic curvature and the
reflection in the (x, y)-plane interchanges them; see Figure 5.

We will next make some further restrictions on the choices of βn
+ and

βn−. For each p ∈ β̂+, let C1(p) and C2(p) be the two circles on opposite
sides of β̂+ at p in ∂∞W ∩ {z > 0} ⊂ ∂∞H

3. Furthermore, they are
maximal radius such that C1(p) ∩ C2(p) = p and the pairwise disjoint
open disks that they bound in ∂∞H

3 are disjoint from β̂+.

Definition 3.2. Δ1(p) and Δ2(p) the rotationally symmetric open
H-disks in H

3 with boundaries, respectively, C1(p) and C2(p), chosen
so that the mean curvature vector of Δi(p) points into the component
of W \ ∪2

i=1Δ
i(p) that contains Cλ1 ∪ Cλ2 , i = 1, 2. Note that the mean

curvature vectors of Δ1(p) and Δ2(p) also point into the component of
H

3 − [Δ1(p) ∪Δ2(p)] that contains the origin.

Note that the disks Δ1(p) and Δ2(p) are disjoint because they are
separated by the totally geodesic disk with boundary C1(p). By the
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arguments in the proof of Lemma 3.4 below, these disks must be disjoint
from Cλ1∪Cλ2 . The disks Δ1(p) and Δ2(p) can be defined in an analogous
way when p ∈ β̂−.

Definition 3.3. Γ = β̂+ ∪ β̂− and Γ̃ = β+ ∪ β−.

Abusing the notation, for each p ∈ Γ̃, we let Δ1(p),Δ2(p) denote the
lifts at p of the related disks Δ1(Π(p)), Δ2(Π(p)). The final condition
on the convergence of βn

+ and βn− to β+ and β− is that

βn
+ ∩

⋃
p∈β+

[Δ1(p) ∪Δ2(p)] = Ø, βn
− ∩

⋃
p∈β−

[Δ1(p) ∪Δ2(p)] = Ø,

for all n sufficiently large.
Necessarily, if λβ± denotes the restriction of the coordinate function

λ to β± then λβ±(θ̃) → λ2 as θ̃ → +∞ and λβ±(θ̃) → λ1 as θ̃ → −∞,
which means that they are spiralling toward [∂Cλ1 ∪∂Cλ2 ] ⊂ ∂∞H

3, e.g.,

λ(θ̃) = λ1 + (λ2 − λ1)
2 arctan θ̃ + π

2π
.

Lemma 3.4. For all p ∈ Γ and all n sufficiently large, the compact
surfaces Π(Σn) are disjoint from Δ1(p) ∪ Δ2(p). In particular, for n
sufficiently large, the compact surfaces Π(Σn) are disjoint from the two
components of H3 \ [Δ1(p)∪Δ2(p)] that do not contain the origin. Fur-
thermore, the limit set of the closed set ∪∞

n=1Π(Σn) ⊂ H
3 in ∂∞H

3 must
be contained in the closed set Γ ⊂ ∂∞H

3.

Proof. The proof will follow from a simple application of the maxi-
mum principle and the mean curvature comparison principle. Recall that
the mean curvature comparison principle implies that if two surfaces Λ1,
Λ2 intersect at an interior point x, Λ1 has a nonzero mean curvature vec-
tor �HΛ1(x) at x and near x the surface Λ2 lies on the side of Λ1 where
�HΛ1(x) is pointing, then, for some λ ≥ 1, �HΛ2(x) = λ �HΛ1(x).

Fix p ∈ Γ. By the construction of the curves Γn = ∂Σn, for n suffi-
ciently large, Π(∂Σn)∩[Δ1(p)∪Δ2(p)] = Ø. If Π(Σn)∩[Δ1(p)∪Δ2(p)] �=
Ø, then one of the two disks, say Δ1(p), intersects Π(Σn) at some point.
Note that the closure B1 of the component of H3−Δ1(p) that is disjoint
from the origin is foliated by rotationally symmetric open disks D1(t)
of constant mean curvature H each of which is properly embedded in
H

3, where t ∈ [0,∞) and D1(0) = Δ1(p). Also note that the mean cur-
vature vectors of these disks are chosen to vary continuously and when
considered to be the boundaries of associated domains B1(t), they point
towards the complement of B1(t) in H

3; in particular, H3 − Int(B1(t))
is H-convex. The boundary circles of such disks D1(t) can be cho-
sen to be disjoint and to converge to a point in ∂∞H

3. Since for ev-
ery t ≥ 0 and n sufficiently large, D1(t) is disjoint from Π(∂Σn) and
Π(Σn) is compact, there exists a largest non-negative number t1 such
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that D1(t1) intersects Π(Σn). Therefore, Π(Σn) locally lies on one side
of D1(t1) at an interior point of intersection. This contradicts the max-
imum principle in the case that the mean curvature vectors of the two
surfaces agree at the point of intersection, a property that we now show
must hold. Since Π(Σn) lies in the H-convex region H

3 − Int(B1(t1)),
then the mean curvature comparison principle implies that the mean
curvature vectors of the surfaces D1(t1) = ∂B1(t1) and Π(Σn) agree
at the point of intersection. This completes the proof that Π(Σn) ∩
Δ1(p) = Ø.

After viewing H
3 with the closed unit ball metric, let q ∈ ∂∞H

3 \
([∂∞Cλ1 ∪ ∂∞Cλ2 ∪ Γ] = Γ). By construction, the distance from q to
∪∞
i=1Π(∂Σn) is positive in the closed ball metric on H

3. The arguments in
the first paragraph of this proof using the maximum principle show that
there exists a disk Dq ⊂ H

3 of revolution and constant mean curvature
H, with boundary circle in ∂∞H

3 centered at q, that is disjoint from
∪∞
n=1Σn. The existence of Dq implies that q is not in the closure of

∪∞
n=1Π(Σn) in H

3. This completes the proof of the lemma. q.e.d.

4. Constructing the surface ΣH

In this section, we construct ΣH and finish the proof of Theorem 1.1.

Lemma 4.1. Let Γn be as described in Section 3.3 and let En =
Ωn ∩ ([λ−

n , λ
+
n ]× {0} × R). Then Σn is a θ̃-graph over the compact disk

En. In particular, the related Jacobi function Jn on Σn induced by the
inner product of the unit normal field to Σn with the Killing field ∂

˜θ
is

positive in the interior of Σn.

Proof. Recall that Tα is an isometry of W̃ , which is translation by α,
i.e., Tα(λ, θ̃, z) = (λ, θ̃ + α, z). Let Tα(Σn) = Σα

n and Tα(Γn) = Γα
n. We

claim that Σα
n ∩ Σn = Ø for any α ∈ R \ {0} which implies that Σn is a

θ̃-graph.
Arguing by contradiction, suppose that Σα

n ∩ Σn �= Ø for a certain
α �= 0. By compactness of Σn, there exists a largest positive number α′
such that Σα′

n ∩Σn �= Ø. Let p ∈ Σα′
n ∩Σn. Since ∂Σα′

n ∩ ∂Σn = Ø and,
by Lemma 3.1, the interiors of both Σα′

n and Σn lie in (λ−
n , λ

+
n )×R×R,

then p ∈ Int(Σα′
n ) ∩ Int(Σn). Since the surfaces Int(Σα′

n ), Int(Σn) lie
on one side of each other and intersect tangentially at the point p with
the same mean curvature vector, then we obtain a contradiction to the
maximum principle for constant mean curvature surfaces. This proves
that Σn is graphical over its θ̃-projection to En.

Since by construction every integral curve, (λ, t, z) with λ, z fixed and
(λ, 0, z) ∈ En, of the Killing field ∂

˜θ
has non-zero intersection number

with any compact surface bounded by Γn, we conclude that every such
integral curve intersects both the disk En and Σn in single points. This
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means that Σn is a θ̃-graph over En and thus the related Jacobi function
Jn on Σn induced by the inner product of the unit normal field to Σn

with the Killing field ∂
˜θ

is non-negative in the interior of Σn. Since Jn
is a non-negative Jacobi function, then either Jn ≡ 0 or Jn > 0. Since
Jn is positive somewhere in the interior, then Jn is positive everywhere
in the interior. This finishes the proof of the lemma. q.e.d.

To summarize, with Γn as previously described, we have constructed
a sequence of compact stable H-disks Σn with ∂Σn = Γn ⊂ ∂Ωn. By
the curvature estimates for stable H-surfaces given in [13], the norms
of the second fundamental forms of the Π(Σn) are uniformly bounded
from above at points at least ε > 0 intrinsically far from their bound-
aries, for any ε > 0. Since for any compact subset X ⊂ Int(W ) and
for n sufficiently large, Γn is a positive distance from X, the norms of
the second fundamental forms of the Π(Σn) are uniformly bounded on
compact sets of Int(W ).

A standard compactness argument, using the uniform curvature esti-
mates for the surfaces Σn on compact subsets of Int(W ) and their graph-
ical nature described in Lemma 4.1, implies that a subsequence Π(Σn(k))
of the surfaces Π(Σn) converges to an H-lamination L of Int(W ). By
the nature of the convergence, each leaf of L has bounded norm of its
second fundamental form on compact sets of Int(W ) and this bound
depends on the compact set but not on the leaf.

By similar arguments, there exists an H-lamination L̃ of W̃ that is
a limit of some subsequence of the graphs Σn(k); note that in this case
we include the boundary of W̃ in the domain, contrary to the previous
case where we constructed the lamination L in the interior of W . After
a refinement of the original subsequence, we will assume that Π(Σn(k))

converges to L and that Σn(k) converges to L̃. Since the boundaries of
the Σn(k) leave every compact subset of W̃ , the leaves of L̃ are complete.
Note also that the leaves of L̃ have uniformly bounded norms of their
second fundamental forms. The fact that the laminations L and L̃ are
not empty will follow from the next discussion.

Note that the region Int(W ) is foliated by the integral curves of the
Killing field ∂θ, which are circles and each such circle intersects B =
(λ1, λ2)×{0}×R orthogonally in a unique point b; let S(b) denote this
circle. We next study how the circles S(b) intersect the leaves of L and
prove some properties of the laminations L and L̃. Let Θ: Int(W ) → B
denote the natural projection.

Claim 4.2. For every b ∈ B, S(b) intersects at least one of the leaves
of L. Furthermore, if S(b) intersects a leaf L of L transversely at some
point p, then L is the only leaf of L that intersects S(b) and S(b) ∩ L =
{p}.
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Proof. The first statement in this claim follows from the fact that
for any b ∈ B, for n sufficiently large, S(b) intersects the “graphical”
surface Π(Σn(k)) in a single point pn(k), and since S(b) is compact, some
subsequence of these points converges to a point p ∈ S(b) ∩ L.

If S(b) intersects a leaf L of L transversely in a point q, then there
exists an ε(q) > 0 such that for n sufficiently large, a small neighbor-
hood N(q, L) ⊂ L of q is a θ-graph of bounded gradient over the disk
DB(b, ε(b)) ⊂ B centered at b of radius ε(b), and {Θ−1(DB(b, ε(b))) ∩
Σn(k)}n(k) is a sequence of graphs converging smoothly to the graph
N(q, L) = Θ−1(DB(b, ε(b))) ∩ Σn(k). In particular, S(b) intersects L
transversely in the single point q. q.e.d.

Claim 4.3. The limit set ∂∞L contains Γ and it contains no other
points in the two annuli in ∂∞W \ [∂∞Cλ1 ∪ ∂∞Cλ2 ].

Proof. Let Lim(L) denote the limit set of L that lies in ∂∞W\[∂∞Cλ1∪
∂∞Cλ2 ]. By Lemma 3.4, Lim(L) ⊂ Γ. We next show that Γ ⊂ Lim(L).
Let x ∈ Γ and choose a sequence of circles {S(bk)}k∈N that converges to
the circle C(x) ⊂ ∂∞H

3 passing through x. By Claim 4.2, there exist
points pk ∈ S(bk)∩L, and by compactness of H3, a subsequence of these
points converges to a point p ∈ C(x)∩Lim(L). But since C(x)∩Γ = {x},
then x = p, which completes the proof that Lim(L) = Γ, and the claim
holds. q.e.d.

Claim 4.4. The limit set of L̃ in ∂∞W̃ is equal to Γ̃.

Proof. By arguing with barriers as in the proof of Lemma 3.4, the
limit set of L̃ must be contained in Γ̃. Let p ∈ β+ ⊂ ∂∞W̃ and let
Δ1(p),Δ2(p) be the disks described at the end of the previous section.
Consider a small arc α ⊂ W̃ with end points in Δ1(p)∪Δ2(p) that links
β+ and such that Π(α) is the compactification of a geodesic in W̃ . Then
by previous arguments, α must intersect a leaf L of L̃. Since a sequence
of these arcs can be chosen to converge to p, then p is in the limit set
of L̃.

Using exactly the same arguments gives that the same is true of p ∈
β−. This completes the proof of the claim. q.e.d.

Remark 4.5. Note that this claim implies that no leaves of L̃ are
invariant under the one-parameter group of translations T

˜θ
, since such

complete surfaces are the lifts of surfaces of revolution in H
3, and as such

they have their limit sets that contain circles which are not contained in
Γ̃. In particular, L̃ does not contain C̃λ1 nor C̃λ2 .

Claim 4.6. Let α ⊂ W ⊂ [H3∪∂∞H
3] be a compact arc with Int(α) ⊂

W , joining Cλ1 ∪ ∂∞Cλ1 to Cλ2 ∪ ∂∞Cλ2 . Then there exists a leaf L of
L that intersects α and that is not invariant under rotations around the
z-axis.
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Proof. Let α̃ ⊂ W̃ be any fixed lift of α. By a linking argument, it
follows that when n(k) is sufficiently large, α̃ intersect Σn(k) at some
interior point pn(k). Suppose that a subsequence of the points pn(k)
converges to an end point of α̃ that corresponds to an end point of α in
Cλ1 ∪ Cλ2 . This would imply that C̃λ1 or C̃λ2 is a leaf of the lamination
L̃, contradicting the previous remark. Next, suppose that a subsequence
of the points pn(k) converges to an end point of α̃ that corresponds to an
end point of α in ∂∞Cλ1∪∂∞Cλ2 . This picture is ruled out by Claim 4.4.
Therefore, a subsequence of the points pn(k) must converge to a point in
the interior of α̃, which is, therefore, a point on some leaf L̃ of L̃. Note
that α intersects L = Π(L̃) and, since L̃ is not invariant under the one-
parameter group of translations T

˜θ
, L is not invariant under rotations

around the z-axis Thus the claim holds. q.e.d.

Claim 4.7. Every complete leaf L of L is the graph of a smooth
function defined on its θ-projection Θ(L) ⊂ B.

Proof. Let L be a complete leaf of L. Recall that the surfaces Π(Σn(k))
are θ-graphs and let Jn(k) denote the related positive Jacobi functions
induced by the inner product of the unit normal field to Π(Σn(k)) with
the Killing field ∂θ. Let J denote the limit Jacobi function on the leaves
of L and let JL be the related Jacobi function on L. Since L is the limit
of portions of the surfaces Π(Σn(k)), the previous observation implies
that JL is non-negative. Since JL is a non-negative Jacobi function,
then either JL ≡ 0 or JL > 0. If JL > 0, then by Claim 4.2, L is the
graph of a smooth function over its projection to (λ1, λ2) × {0} × R.
Therefore, to prove the claim, it suffices to show that JL > 0.

Arguing by contradiction, assume that JL ≡ 0, then L is a complete
embedded surface in W that is invariant under rotations around the
z-axis. In particular, there exists a complete arc β in L ∩ E and β
is embedded since L is embedded; completeness of β follows from the
completeness of L. Also this arc cannot be bounded in H

3 since otherwise
L would be a bounded H-lamination in H

3, which is impossible since
there would exist a leaf L′ of L that would be contained in a geodesic ball
BH3 centered at the origin and tangent to ∂BH3 at some point q. But
∂BH3 has mean curvature greater than one, which is a contradiction to
the mean curvature comparison principle applied at the point q. Hence,
since β is not bounded in H

3, then ∂∞L �= Ø.
Since L is invariant under rotation around the z-axis and ∂∞L ⊂ Γ∪

∂∞Cλ1 ∪∂∞Cλ2 , then ∂∞L ⊂ ∂∞Cλ1 ∪∂∞Cλ2 . To obtain a contradiction
we will consider separately each of the following three possible cases for
the limiting behavior of L:
Case A: ∂∞L ⊂ ∂∞Cλ1 or ∂∞L ⊂ ∂∞Cλ2 and L is a spherical catenoid
as described in the Appendix with its mean curvature vector pointing
toward the z-axis.
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Case B: ∂∞L contains one component in ∂∞Cλ1 and another compo-
nent in ∂∞Cλ2 .
Case C: ∂∞L ⊂ ∂∞Cλ1 or ∂∞L ⊂ ∂∞Cλ2 and L is a surface of revolu-
tion as described in Gomes [6] with its mean curvature vector pointing
away from the z-axis. Note that in this case it might hold that ∂∞L is
a single circle with multiplicity two.

First suppose that Case A holds. By the discussion in the Appen-
dix and the description of stable catenoids, the only possible spherical
catenoids are Cλ1 or Cλ2 but they do not intersect Int(W ), which gives
a contradiction.

If Case B holds, then there is a compact arc α ⊂ L ∪ ∂∞L satisfying
the hypotheses of Claim 4.6. By the same claim, there must exist a
non-rotational leaf L1 of L that intersects L, which is impossible since
distinct leaves of L are disjoint.

Finally, suppose that Case C holds. If H = 0, then using the maxi-
mum principle applied to the foliation of W by minimal catenoids gives
an immediate contradiction; hence, assume that H > 0. As remarked in
Gomes [6], the properly embedded surfaces of revolution in H

3 extend to
C1-immersed surfaces in H

3 and they make a particular oriented angle
θH �= π/2 with ∂∞H

3 according to their orientation. First consider the
case where L contains a single circle S component in ∂∞Cλ1 ∪ ∂∞Cλ2 .
This means that the surface L makes two different positive oriented an-
gles along its single boundary circle S at infinity. Since L lies on the side
of the spherical catenoid Cλ2 that makes an acute angle with ∂∞H

3, and
Cλ2 is disjoint from L, if S ⊂ ∂∞Cλ2 , we obtain a contradiction. Hence,
we may assume that S is a boundary curve of Cλ1 . But in this case, there
is a largest λ ∈ [λ2, λ1) such that Cλ intersects L at an interior point
and L lies on the mean convex side of Cλ. This contradicts the maxi-
mum principle. Therefore, if Case C holds, then either ∂∞L = ∂∞Cλ1

or ∂∞L = ∂∞Cλ2 .
Reasoning as in the previous paragraph with the angles along the

boundary, we find that the only possibility is ∂∞L = ∂∞Cλ1 . But in this
case, there is again a largest λ ∈ [λ2, λ1) such that Cλ intersects L at an
interior point and L lies on the mean convex side of Cλ. This contradicts
the maximum principle. This final contradiction completes the proof of
the claim. q.e.d.

Consider a complete leaf L of L̃. Recall that L has bounded norm of
the second fundamental form, is not invariant under the one-parameter
group of translations T

˜θ
, and by the maximum principle L ⊂ Int(W̃ ). It

follows from the construction of the H-laminations L and L̃
that ΣH = Π(L) is a complete leaf of L. By the previous lemma,
ΣH is the graph of a smooth function defined on its θ-projection
Θ(ΣH) ⊂ B.
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We next prove that the leaf ΣH is properly embedded in Int(W ). If
not, then there exists a limit leaf L �= ΣH of L in the closure of ΣH . Since
this leaf is easily seen to be complete as well, by Claim 4.7 L is a graph
of a smooth function over its projection Θ(L) ⊂ B. Since the open sets
Θ(ΣH),Θ(L) intersect near any point of Θ(L), this contradicts Claim 4.2
and so ΣH is properly embedded in Int(W ). Since Θ: Int(W ) → B is
a proper submersion, Θ(ΣH) = B and thus, by Claim 4.2, ΣH is the
unique leaf of L. Clearly the closure ΣH of ΣH in W is ΣH ∪ Cλ1 ∪ Cλ2 .

To summarize, we have shown that ΣH is a complete graph over B
and is properly embedded in Int(W ). Moreover:

1) ΣH has bounded norm of the second fundamental form.
2) The closure ΣH of ΣH in W is ΣH ∪ Cλ1 ∪ Cλ2 .
3) ∂∞ΣH = Γ ∪ ∂∞Cλ1 ∪ ∂∞Cλ2 ; see Figure 5.

In particular, the surfaces {Tθ(ΣH) | θ ∈ [0, 2π)} together with the
spherical catenoids Cλ1 , Cλ2 form an H-foliation of W . This finishes the
proof of the Theorem 1.1.

5. Appendix

In this appendix, we recall some facts about spherical H-catenoids in
H

3 that are used throughout the paper. As we have done in the previous
sections, we will work in H

3 using the Poincaré ball model, that is we
consider H

3 as the unit ball in R
3 and its ideal boundary at infinity

corresponds to the boundary of the ball. We will let Px,y, Px,z and Py,z

be the related totally geodesic coordinate planes in this ball model of H3.

Definition 5.1. Let C be a properly immersed annulus in H
3 with

constant mean curvature H ∈ [0, 1] and ∂∞C = α1 ∪ α2 ⊂ ∂∞H
3 where

α1 and α2 are two disjoint round circles in ∂∞H
3. Let γ be the unique

geodesic in H
3 from the center of α1 to the center of α2. If C is rotation-

ally invariant with respect to γ, then we call C a spherical H-catenoid
with rotation axis γ.

In other words, spherical H-catenoids are obtained by rotating a cer-
tain curve, a catenary, around a geodesic. In [6], Gomes studied the
spherical H-catenoids in H

3 for 0 ≤ H ≤ 1, and classified them in terms
of the generating curve which is a solution to a certain ODE. In what
follows, when H �= 0, we will only focus on the spherical H-catenoids
for which the mean curvature vector points towards the rotation axis.

After applying an isometry, we can assume that the x-axis is the
rotation axis for the spherical H-catenoid and that the circles α1 and
α2 are symmetric with respect to the (y, z)-plane. Gomes proved that
for a fixed H ∈ [0, 1) and λ ∈ (0,∞) there exists a unique spherical
H-catenoid Cλ

H with generating curve βλ
H and satisfying the following

properties:
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1) βλ
H is the graph in normal coordinates over the x-axis of a positive

even function gλH(x) defined on an interval (−dλH , dλH), namely

βλ
H = {(x, gλH(x)) | x ∈ (−dλH , dλH)},

and satisfying λ = gλH(0); see Figure 6-right;
2) Up to isometry, a spherical H-catenoid is isometric to a certain

Cλ
H .

In particular, Cλ
H is embedded and symmetric with respect to the (y, z)-

plane. Recall that if Σ is a properly embedded H-surface, H < 1 in
H

3, with limit set at infinity a smooth compact embedded curve with
multiplicity one, then the closure of Σ in the closed ball H

3 is a C1

surface that makes a constant angle with the boundary sphere and this
angle is the same as the one that a complete curve in H

2 of constant
geodesic curvature H makes with the circle ∂∞H

2.
Gomes also analyzed the relation between the spherical H-catenoid

Cλ
H and its asymptotic boundary ∂∞Cλ

H = τ+H,λ ∪ τ−H,λ where each of the
curves τ±H,λ is a circle in ∂∞H

3. Define the asymptotic distance function
dH(λ) as the distance between the geodesic planes P+

H,λ and P−
H,λ where

∂∞P±
H,λ = τ±H,λ, respectively. By an abuse of language, we will say

that dH(λ) is the distance between the asymptotic circles of Cλ
H . Recall

that we use normal coordinates over the x-axis in the description of the
function gλH(x). Let the asymptotic boundary of the generating curve
βλ
H be the points {w+

H,λ, w
−
H,λ} ⊂ ∂∞H

3, i.e., ∂∞βλ
H = {w+

H,λ, w
−
H,λ} ⊂

∂∞H
3. Then the geodesic projections of these points to the x-axis will be

Π(w±
H,λ) = ±dλH . Since w±

H,λ ⊂ τ±H,λ and the construction is rotationally
invariant, it is easy to see that dH(λ) = 2dλH .

Gomes showed that for a fixed H ∈ [0, 1), the function dH(λ) increases
from a non-negative value limλ→0 dH(λ), which is zero and not acquired
when H = 0 and positive when H > 0, reaches a maximum at a certain
cH ∈ (0,∞), and then decreases to 0 as λ → ∞; see Figure 6 and [6,
Lemma 3.5].

Figure 6. λ represents the distance from the rotation
axis, and dH(λ) represents the asymptotic distance be-
tween the asymptotic circles of Cλ

H .
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In particular, this discussion implies that for a fixed H ∈ [0, 1), the
distance between the asymptotic boundaries of the spherical H-catenoids
is bounded by max(dH). He also showed that max(dH) is monotone
increasing in H, and max(dH) → ∞ as H → 1. The following lemma
summarizes some of these results:

Lemma 5.2 ([6]). For any H ∈ [0, 1) and any λ ∈ (0,∞), there exists
a unique spherical H-catenoid Cλ

H in H
3 such that the distance from its

generating curve βλ
H to the x-axis is λ. Moreover, there exists a number

cH > 0 such that dH(cH) = max(0,∞) dH , and dH(λ) decreases to 0 on
the interval [cH ,∞) as λ goes to infinity; see Figure 6-left.

In the next proposition we construct the foliations by spherical H-
catenoids that are used in producing our examples.

Proposition 5.3. For any H ∈ [0, 1), the family of spherical H-
catenoids FH = {Cλ

H | λ ∈ [cH ,∞)} foliates the closure of the non-
simply-connected component of H

3 \ CcH
H . In particular, each of the

spherical catenoids in FH admits a positive Jacobi function, that is in-
duced by the associated normal variational field.

Proof. We first consider the case H ∈ (0, 1). After adding the leaf
CcH
H , it suffices to show that the family of spherical H-catenoids FH =

{Cλ
H | λ ∈ (cH ,∞)} foliates the non-simply-connected component of

H
3 \ CcH

H . Note that by construction, the elements in FH are embedded
and form a continuous family with respect to λ. Therefore, if for λ0 ∈
(cH ,∞) the spherical H-catenoids CcH

H and Cλ0
H are disjoint, then an

application of the maximum principle gives that {Cλ
H | λ ∈ (cH , λ0)} is

a foliation of the region between CcH
H and Cλ0

H . Therefore, it suffices to
show that for any λ sufficiently large, CcH

H and Cλ
H are disjoint.

Since limλ→∞ dH(λ) = 0, the end points of the generating curve βλ
H

of Cλ
H converge to (0, 0, 1) in ∂∞H

3 as λ goes to infinity. Recall that
the mean curvature vector of Cλ

H is pointing toward the x-axis. Using
barriers that are planes of constant mean curvature H and are rota-
tionally invariant with respect to rotations around the x-axis, it can be
shown that as dH(λ) → 0, the set Cλ

H viewed in the unit ball converges
to the unit circle in the (y, z)-plane. Thus, for any λ sufficiently large,
CcH
H and Cλ

H are disjoint and, by the previous discussion, the family of
spherical H-catenoids FH foliates the non-simply-connected component
of H

3 \ CcH
H when H ∈ (0, 1).

The foliation in the H = 0 case can be obtained as the limit as H
goes to zero of the foliations FH . q.e.d.

Remark 5.4. Since, for any fixed H ∈ [0, 1) and λ < cH , the Jacobi
function Jλ

H on Cλ
H induced from the variational vector field of the Gomes

family Cλ
H is positive along the circle in Cλ

H closest to its axis of revolution
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but limits to −∞ at its asymptotic boundary, then such a Cλ
H is unstable.

Thus, the pair of asymptotic boundary circles of Cλ
H , λ < cH , bounds

two spherical H-catenoids, a stable one Cλ2 , and an unstable one Cλ1 ,
where λ1 < λ2.

We will need the next proposition in the proof of Theorem 1.1.

Proposition 5.5. Fix H ∈ [0, 1). For t ∈ [0,∞), let S(t) be the par-
allel surface in H

3 that lies “above” Py,z at distance t and for t ∈ (−∞, 0)
let S(t) denote the parallel surface that lies “below” Py,z at distance −t.
Let Vx denote the related Killing field generated by the one-parameter
group of isometries {φε : H

3 → H
3 | ε ∈ R} where φε : H

3 → H
3 is the

hyperbolic translation along the y-axis by the signed distance ε. Then:
1. For each t ∈ R, S(t) intersects CcH

H transversely in a single circle
(closed curve of constant geodesic curvature in S(t)) centered at the
intersection of the x-axis with S(t).

2. If we let CcH
H (+) denote the portion of CcH

H with non-negative y-co-
ordinate, then CcH

H (+) is a Vy-Killing graph over its projection to
Px,z, and this projected domain has boundary CcH

H ∩ Px,z.
3. Let D(t) ⊂ S(t) be the open disk bounded by the circle S(t) ∩ CcH

H .
For ε < 0 sufficiently close to zero, φε(x-axis) intersects each of the
disks in a single point.

4. For ε satisfying the previous item and for λ2 ∈ (cH ,∞) sufficiently
close to cH , φε(CcH

H )∩∪s∈[cH ,λ2]Cs
H is a pair of infinite strips in W =

∪s∈[cH ,λ2]C
s
H that separate W into two regions, and for one of these

two regions the portion of φε(CcH
H ) in its boundary has non-negative

mean curvature with respect to the inward pointing to the boundary.

Proof. Recall that the rotation axis of Cλ
H is the x-axis. By definition,

the planes S(t) are equidistant planes to plane Py,z with distance t,
and hence ∂∞S(t) = ∂∞Py,z. Since the boundary circle of Py,z has
linking number 1 with the arc βcH

H and the x-axis (See Figure 6-right),
each of the planes S(t) intersect βcH

H in some point, and so since these
planes are also invariant under rotation around the x-axis, each point
in βcH

H ∩ S(t) lies on a circle of intersection of S(t) with CcH
H . Also

note that S(0) = Py,z intersects CcH
H orthogonally in a circle of radius

cH centered at (0, 0, 0). If S(t) fails to intersect CcH
H transversely at

some point, then Vy is tangent to CcH
H along some circle S in CcH

H as
well as to the related circle in S′ ⊂ CcH

H obtained by reflection in the
plane Py,z. But in this case the compact subannulus of CcH

H bounded by
S ∪S′ would represent a compact non-strictly stable subdomain of CcH

H ,
which contradicts that CcH

H is stable. This contradiction shows that S(t)
always intersects CcH

H transversally. Since S(0) and CcH
H intersect along

a single circle, elementary arguments imply that every S(t) intersects
CcH
H transversely in a single circle centered at the point of intersection

of S(t) with the x-axis. This finishes the proof of item 1.
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Items 2 and 3 follow from item 1 and the details will be left to the
reader. Finally, item 4 follows from item 3 after observing that for
λ2 chosen sufficiently close to cH , then for all t ∈ R, φε(CcH

H ) ∩ S(t)
is a translation of the circle CcH

H ∩ S(t) and these two circles intersect
transversely in two points; this is true since S(t) is preserved under the
isometry φε. q.e.d.
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