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CONTACT PERTURBATIONS OF REEBLESS

FOLIATIONS ARE UNIVERSALLY TIGHT

Jonathan Bowden

Abstract

We give a complete proof of the fact that a contact structure
that is sufficiently close to a Reebless foliation is universally tight.

1. Introduction

In both the general theory of contact structures and that of foliations
on 3-manifolds, one has a certain amount of flexibility due to the pres-
ence of overtwisted discs on the one hand and Reeb components on the
other. This flexibility is borne out by the fact that any co-oriented plane
field is homotopic both to a contact structure and a foliation—both con-
tact structures and foliations satisfy an h-principle. On the other hand,
the construction of tight contact structures and foliations without Reeb
components is a fundamental theme in both areas, and the respective
existence questions have stimulated much research over several decades.

The relationship between contact structures and foliations on 3-
manifolds was established by Eliashberg and Thurston [4], who showed
that any foliation apart from the product foliation on S2×S1 can be C0-
approximated by contact structures. They also observed that tautness
of a foliation implies tightness of any sufficiently close contact structure.
On the other hand, the correct analogue of tightness for foliations ought
to be the absence of Reeb components, and in their book on confolia-
tions Eliashberg and Thurston state that a contact structure ξ that is
sufficiently C0-close to a Reebless foliation F is universally tight. How-
ever, their proof was incomplete and Colin [3] subsequently proved that
a Reebless foliation can indeed be C0-approximated by universally tight
contact structures, but not that any contact structure sufficiently close
to a Reebless foliation is necessarily universally tight. Recently, Vogel
[13] was able to give a proof under the additional assumption that all
torus leaves have attractive holonomy. The aim of the present article
is to give a complete proof of the original statement of the theorem as
formulated in [4].
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Theorem 1.1. Let F be a Reebless foliation on a closed 3-manifold
M . Then there is a C0-neighborhood U0 of TF in the space of smooth
plane fields such that any contact structure ξ in U0 is universally tight.

The main steps in the proof are as follows: The fact that F is a
Reebless foliation gives a decomposition of M into two (possibly dis-
connected) pieces—Mtaut, NTor. This decomposition is such that F is
taut on Mtaut and each component of NTor is a thickened incompress-
ible torus T 2 × [0, 1] on which the foliation is transverse to the interval
fibers. Any sufficiently small perturbation of F is then universally tight
on each of these pieces. The key observation (Proposition 3.11) is then
that the contact structure on each torus piece is isotopic to one that
is everywhere transverse to the T 2-slices. One then distinguishes two
cases depending on whether the slopes of the characteristic foliations
on the T 2-slices are constant or not. In the first case, one can fill in the
product piece with a foliation so that the contact structure looks like
a perturbation of a taut foliation and is consequently universally tight.
In the second case, one can apply results of Colin [1] for glueing uni-
versally tight contact structures along linearly foliated tori to conclude
the proof.

Since the space of confoliations on a given closed 3-manifold corre-
sponds precisely to the C0-closure of the space of contact structures
except in the case of the product foliation on S2 × S1, Theorem 1.1
suggests a notion of tightness for confoliations, which might be called
perturbation tightness or p-tightness. Here, a confoliation ξ is p-tight
if all positive contact structures are tight in some C0-neighborhood of
ξ. Eliashberg and Thurston already proposed a definition of tightness
for confoliations in [4] that is a generalization of both tightness for con-
tact structures and Reeblessness for foliations. However, Vogel [12] has
since shown that this notion of tightness for confoliations was too gen-
eral, since the Thurston–Bennequin inequalities can be violated, and
this led him to introduce the more restrictive notion of s-tightness. Per-
haps the correct definition of tightness for confoliations should capture
the fact that if a given confoliation is not tight, then it is a C0-limit
of overtwisted contact structures. In Section 4 we compare the various
notions of tightness for confoliations and discuss the inclusions between
them.

Conventions. All manifolds, contact structures, and foliations are
smooth and oriented. Unless otherwise stated, all manifolds will be
closed and connected.
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2. Foliations, contact structures and confoliations

A codimension-1 foliation F on a 3-manifold M is a decomposition
of M into immersed surfaces called leaves that is locally diffeomorphic
to the decomposition of R3 given by the level sets of the projection to
the z-axis. We will always assume that all foliations are smooth and
co-oriented. One can then define a global non-vanishing 1-form α by
requiring that

Ker(α) = TF = ξ ⊂ TM.

By Frobenius’ Theorem such a cooriented distribution is tangent to a
foliation if and only if

α ∧ dα ≡ 0,

and in this case ξ is called integrable. By contrast, a totally non-integrable
plane field or contact structure ξ is a distribution such that α ∧ dα is
nowhere zero for any defining 1-form with ξ = Ker(α). Unless spec-
ified otherwise, all contact structures will be positive with respect to
orientation the on M so that α ∧ dα > 0. If α only satisfies the weaker
inequality α ∧ dα ≥ 0, then ξ is called a (positive) confoliation.

There is a fundamental dichotomy among contact structures between
those that are tight and those that are overtwisted. Recall that a contact
structure ξ on manifold M is called overtwisted if there is an embedded
disc D ↪→ M such that

TD|∂D = ξ|∂D.

If a contact structure ξ admits no such disc, then it is called tight. A
contact structure is universally tight if its pullback to the universal cover

M̃ → M is tight.

Figure 1. (Left) An overtwisted disc D: the singular
foliation induced by ξ has one elliptic tangency and the
contact planes are tangent to D along ∂D. (Right) The
Reeb foliation on R/Z ×D2 is given by taking the quo-
tient of the foliation given by stacking cups on top of
each other as shown.
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Recall, furthermore, that a foliation is taut if each leaf admits a closed
transversal, i.e., for each leaf L of F there is a simple closed curve γ
intersecting L that is everywhere transverse to F . There are several
equivalent formulations of tautness given by the following (cf. [11]):

Lemma 2.1. Let F be a foliation on M . Then the following are
equivalent:

1) F is taut.
2) M admits a dominating closed 2-form ω with ω|F > 0.
3) M admits a metric so that all leaves of F are minimal surfaces.

The construction of the closed 2-form in the implication (1) =⇒ (2)
will be important, for this one takes a collection of transversals γx
through every point x ∈ M . Then a bump form on the 2-disc D gives
a closed form on a small tubular neighborhood N(γx) ∼= γx ×D that is
non-negative on F and strictly positive on some open neighborhood of
γx. By compactness, the sum of finitely many such forms will be positive
on F .

A slightly more general notion than tautness is that of a Reebless
foliation. Here, a Reebless foliation is a foliation containing no Reeb
components, where a Reeb component is a solid torus whose boundary
is a leaf and whose interior is foliated by planes. Note that any taut
foliation is Reebless since the boundary of a Reeb component is a null-
homologous closed leaf, which thus admits no closed transversal. The
existence of a Reebless foliation on a manifold has certain geometric
consequences due to the following result of Novikov.

Theorem 2.2 (Novikov). Let F be a Reebless foliation on a 3-
manifold. Then all leaves of F are incompressible and all transverse
loops are essential in π1(M). Moreover, π2(M) = 0 unless F is the
product foliation on S2 × S1.

The relationship between contact structures and foliations is given by
the following fundamental theorem of Eliashberg and Thurston.

Theorem 2.3 (Eliashberg and Thurston [4]). Let ξ be an integrable
plane field of class C2 that is not tangent to the foliation by spheres
on S2 × S1. Then ξ can be C0-approximated by positive and negative
contact structures.

A version of Theorem 2.3 also holds for confoliations and shows that the
space of confoliations is the C0-closure of the space of (positive) contact
structures in the space of smooth plane fields unless ξ is tangent to the
product foliation on S2 × S1.

One of the most important applications of Theorem 2.3 is that a
C0-small contact perturbation of a taut foliation is (universally) tight,
which in turn gives a large supply of tight contact structures in general.
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Theorem 2.4 ([4], Corollary 3.2.5). Let F be a taut foliation. Then
any contact structure ξ that is C0-close to TF is universally tight.

2.1. Surfaces in contact manifolds. Given a surface S in a contact
manifold, one can consider the induced singular foliation or character-
istic foliation on S, which we denote by ξ(S). For a generic surface the
singularities of this foliation will be non-degenerate, and hence either
elliptic or hyperbolic depending on whether the determinant of the lin-
earization of ξ(S) at a singularity is positive or negative. After a further
perturbation one can also assume that the linearization at an elliptic
singularity has real eigenvalues, and we will always assume that this is
the case. If S is oriented, then each singularity carries a sign that is
determined by whether the orientation of the contact structure agrees
with that of the surface.

An important notion for performing cut and paste operations in con-
tact manifolds is that of a convex surface.

Definition 2.5 (Convexity). Let ξ be a contact structure on a 3-
manifold M , and let S ⊂ M be a closed, embedded surface. The surface
is called convex if there is a vector field X transverse to S that preserves
the contact structure on a small neighborhood of S.

Note that the contact structure in a neighborhood of a convex surface
is defined by a 1-form

λ = β + fdt,

where t is a normal coordinate given by the contact vector field X and
both β and f do not depend on t. The set of points where X is tangent
to ξ is an embedded submanifold transverse to ξ(S) called the dividing
set Γ of S and is well defined up to isotopy independently of the choice
of contact vector field. The dividing set has the property that ξ(S) is
defined by a 1-form β such that dβ vanishes precisely on Γ and the
existence of such a defining form is then equivalent to S being convex.
Most importantly, convexity is a generic property so that after an initial
C∞-perturbation we may always assume convexity (cf. [7]).

One has a very useful criterion for convexity in the case that the
characteristic foliation satisfies the Poincaré–Bendixson property : This
means that the singularities of ξ(S) are isolated and the limit sets of any
half-infinite orbit is either a singular point, a closed orbit, or a polycycle
consisting of orbits between between singularities.

Lemma 2.6 ([7], Proposition 2.5). Let S be a closed surface in a
contact manifold and suppose that ξ(S) has the Poincaré–Bendixson
property. Then S is convex if and only if all closed orbits are non-
degenerate (i.e., the return map φ has φ′(0) 
= 1) and there are no
oriented connections from negative to positive singularities.
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Figure 2. The Novikov component A(L) of the thick-
ened leaf L is the shaded open annulus consisting of
the translates of L. The dotted line represents a closed
transversal for L in T 2.

Example 2.7. Since all flows on planar surfaces satisfy the Poincaré–
Bendixson property, it follows that any singular foliation with isolated
singularities on S = T 2 with at least one closed orbit automatically
has the Poincaré–Bendixson property. If in addition all singularities are
positive, then the only way that S cannot be convex is that it has a
degenerate closed orbit.

3. Novikov Components and Reebless foliations

Let F be a foliation on a closed 3-manifold. For a leaf L, we de-
fine A(L) as the set of points y such that there exists a closed curve
transverse to F intersecting L that contains y. The set A(L) is called
the Novikov component of L and is an open (possibly empty) saturated
subset of M , whose boundary consists of closed leaves (cf. [10]). Here,
saturated means that if x ∈ A(L) then the entire leaf Lx through x also
lies in A(L). An example on the 2-torus T 2 is shown in Figure 2. The
boundary leaves of A(L) are called barriers, since they do not admit
closed transversals. Let L0 be such a barrier leaf. After possibly swap-
ping the co-orientation of F , we may assume that L0 is co-oriented by
the inward pointing normal of A(L). We let A+(L0) be the subset of all
those points that are reachable from L0 by an arc positively transverse
to F . Note that A+(L0) is an open submanifold whose boundary again
consists of closed leaves, which are all oriented by the inward pointing
normal and L0 ⊂ ∂A+(L0). By doubling A+(L0), one obtains a closed
oriented manifold MDouble. The normal directions to F endow A+(L0)
with a nowhere-vanishing vector field that is inward pointing on the
boundary. Thus we have the following formula for the Euler character-
istic:

0 = χ(MDouble) = 2χ(A+(L0))− χ(∂A+(L0)) = −χ(∂A+(L0)).
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Since none of the boundary components of A+(L0) can be spheres by
the Reeb Stability Theorem, it follows immediately that all boundary
components must have Euler characteristic 0. Thus all barrier leaves
must be tori, a fact that goes back to Goodman [8]. In particular, any
closed leaf of genus at least 2 admits a closed transversal.

By a result of Haefliger, the set of torus leaves is compact. It follows
that there are finitely many disjoint embeddings

Sj
∼= T 2 × [0, cj ] ↪→ M

so that ∂Sj consists of leaves and M \∪Sj has no torus leaves unless F
is itself a foliation by tori. We call each subset Sj a stack of torus leaves.
Note that we allow cj = 0, in which case Sj consists of a single torus leaf.
We may also assume that F is transverse to the intervals {pt} × [0, cj ]
on each Sj. We consider the collection of stacks that contain a barrier
leaf, which we denote by {Ni}. If F is not a foliation by tori, we set
NTor = ∪Ni and note that in view of the discussion above F is taut on
(each component of) Mtaut = M \NTor. In the case that F is a foliation
by tori, we set Mtaut = M , since in this case F is itself taut.

We thicken the neighborhoods Ni to obtain N̂i
∼= T 2 × [−ε, ci + ε] so

that the boundary tori are transverse to F . The way the foliation can
look near the boundary of a stack Ni is very restricted. In fact, results of
Kopell and Szekeres imply that after a suitable isotopy one can assume
that the induced foliation on tori near the ends of a stack of torus leaves
is linear. More precisely, we have the following (cf. [5, Lemme 5.21].

Lemma 3.1. Let F be a smooth foliation on T 2 × [0, ε] having only
L = T 2 × {0} as a closed leaf, and let (x, y, z) denote standard coordi-
nates on T 2× [0, ε]. Then there is a fiber-preserving C1-isotopy φt map-
ping T 2 × [0, ε] into itself that fixes L and is smooth away on T 2 × (0, ε]
such that the image of F under φ1 is defined by the kernel of the 1-form

dz − u(z)(a dx + b dy)

for some function u(z) ≥ 0 that is positive away from z = 0 and a, b ∈ R.

We apply Lemma 3.1 near each end of a stack. Then, after being nor-
malized to have length 1, the pair (−a,−b) corresponds to the (signed)
slope near an end of such a stack. If the slopes at the two ends of a given
stack of leaves are not equal, then this stack is stable. This terminology
stems from the fact that any foliation that is C0-close to F has a closed
torus leaf in a neighborhood of the given stack. If the slopes agree, then
the stack is called unstable.

Note that since the foliation F is transverse both to the intervals of
N̂i

∼= T 2 × [−ε, ci+ ε] and to its boundary, TF has trivial relative Euler

class on N̂i, and this is of course C0-stable. We next claim that any

transverse contact structure ξ on N̂i is universally tight.
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Lemma 3.2. Let ξ be a contact structure on T 2× [0, 1] that is trans-
verse to the interval fibers, and assume that ξ is transverse to the bound-
ary tori and that the characteristic foliations on each boundary torus is
diffeomorphic to the suspension of an S1-diffemorphism. Then ξ is uni-
versally tight.

Proof. After an initial C∞-small perturbation, we may assume with-
out loss of generality that the boundary tori are convex. We let ∂

∂t
denote

the coordinate vector field given by the second coordinate in the prod-
uct T 2 × [0, 1], which is in particular transverse to ξ. Near the ends we
choose contact vector fields X0,X1 that are transverse to ∂(T 2 × [0, 1]).
We let s be the coordinate given by the flow of X0 (resp. X1). Then
near T 2 × {0} and T 2 × {1}, respectively, the contact structure is the
kernel of a 1-form

λi = βi + fids, i = 0, 1,

where βi and fi are independent of s. Thus we may add on half infinite
ends to obtain a contact structure ξ′ on M = T 2 ×R that is s-invariant
oustide M = T 2 × [0, 1]. Since the characteristic foliations near the
boundary tori are given by suspension foliations, we may choose linear
vector fields on T 2

ai
∂

∂x
+ bi

∂

∂y

with rational slopes bi
ai

∈ Q that are transverse to the characteristic

foliations on T 2 × {0} and T 2 × {1} respectively. For sufficiently large
C, the vector fields

Yi =
∂

∂s
+ C(ai

∂

∂x
+ bi

∂

∂y
)

are then transverse to ξ′ outside some compact set. By using a partition
of unity, we may then extend ∂

∂t
to a vector field Y that agrees with Y0

and Y1 near the ends and is still transverse to ξ′.
Considering the identification M ∼= T 2 × R given by the flow of Y

makes ξ′ everywhere transverse to the R-fibers, and we denote the R-
coordinate by s. Note that the flow induced by Y is just translation in
the s-direction composed with a periodic linear flow

Φt
i(x, y) = (x, y) + s(Cai, Cbi)

in the torus direction for |s| sufficiently large. Using the translation in-
variance of ξ′ near the ends with respect to the s-coordinate and the
periodicity of the flow Φs

i , we deduce that the contact structure is pe-
riodic in the s coordinate for |s| sufficiently large. It follows that ξ′

defines a complete connection on T 2×R and that ξ′ is universally tight.
To see this latter claim, one takes the pullback to the universal cover
of T 2 × R, which can be identified with R2 × R, and lifts the family of
curves {y = pt} using the completeness of the connection. This gives
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coordinates (x, y, z) on R2 ×R so that the contact structure is the ker-
nel of

dz + f(x, y, z)dy.

By the contact condition ∂f
∂x

> 0; thus choosing new coordinates

(x′, y′, z′) = (f(x, y, z), y, z),

we see that ξ′ is contactomorphic to the standard contact structure on
R3, which is tight. It follows in particular that ξ itself is universally
tight. q.e.d.

3.1. Movies of transverse contact structures. Giroux [7] has clas-
sified contact structures on the product T 2 × [0, 1] by considering the
movies given by the family of characteristic foliations on the torus slices
Ft = T 2 × {t}. Although it is in general difficult to describe precisely
which movies occur, Giroux proved the existence of a normal form for
tight contact structures with certain boundary constraints, which then
yields a classification up to isotopy relative to the boundary. One of the
key points in Giroux’s classification is that the isotopy class of a tight
contact structure on T 2× [0, 1] is essentially determined by its “feuilles”
or sheets.

Definition 3.3. Let ξ be a contact structure on T 2 × [0, 1]. A sheet

is a properly embedded surface S, such that the intersection S ∩ Ft is
either empty or a smooth Legendrian curve and all singularities of ξ(Ft)
have the same sign. The collection of all sheets is called the feuillage

associated to ξ.

Since we are only interested in contact structures up to isotopy, we will
always assume that all movies are C1-generic. For us this will mean that
all closed orbits and singularities of the characteristic foliations ξ(Ft) are
isolated and are non-degenerate or of birth-death type and that there
is at most one degenerate orbit/singularity of birth-death type for each
level Ft. Here, a closed orbit is non-degenerate if the return map φ(t) has
non-trivial linear holonomy. A non-degenerate closed orbit is repelling if
φ′(0) > 1, and it is attractive if φ′(0) < 1, where the return map is taken
in the direction determined by the induced orientation on ξ(Ft) and 0
corresponds to the closed orbit. Note that a non-degenerate closed orbit
of ξ(Ft) can be realized as the intersection of a small annulus A with Ft

so that the intersection of A with nearby levels is also a non-degenerate
closed orbit. We will also always assume that the characteristic foliations
on the boundary tori F0, F1 are given by suspension foliations.

The key classification results for contact structures on thickened tori
are due to Giroux and, independently, Honda [9]. The following is a
special case of ([7, Théorème 1.5]), that is tailored to our needs.

Theorem 3.4. Let ξ be a universally tight contact structure on T 2×
[0, 1], and assume that the characteristic foliations on the boundary are
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given by suspension foliations with precisely two non-degenerate closed
orbits and that the relative Euler class of ξ is trivial. Then ξ is isotopic
to a contact structure whose associated movie consists of suspension
foliations.

Contact structures whose movies consist of suspension foliations are re-
ferred to as “rotatives” by Giroux in [7]. A key tool in manipulating the
movies of a given contact structure is the so-called Elimination Lemma
of Giroux and Fuchs (see, e.g., [6, Lemma 4.6.26]).

Lemma 3.5 (Elimination Lemma). Let e+, h+ be non-degenerate
positive elliptic resp. hyperbolic singularities of the characteristic foli-
ation on Ft0 , and assume they are connected by some trajectory E of
ξ(Ft0). Then there is a C0-small isotopy with support in a neighborhood
of E eliminating the pair of singularities.

Moreover, if U is some compact neighborhood of E such that dα|Ft0
>

0 for some contact form α, then this is also true after elimination.

Remark 3.6. Note that the Elimination Lemma in [7] gives criteria
to ensure that one can eliminate singularities without altering convexity.
The version above is much weaker than this, and the fact that dα|Ft0

can be assumed to be positive is an immediate consequence of the way
the elimination is carried out.

Another key ingredient in manipulating the movie of a contact structure
is Giroux’s Flexibility Lemma ([7, Lemme 2.7]).

Lemma 3.7 (Flexibility Lemma). Let ξ, ξ′ be contact structures on
N = T 2 × [0, 1] such that all levels Ft are convex and such that the
characteristic foliations agree on the boundary. Assume that both ξ and
ξ′ are divided by a continuous family of curves Γt. Then ξ is isotopic to
ξ′ relative to ∂N .

There is also a relative version of the Flexibility Lemma, as stated in
[13, Lemma 3.4].

Lemma 3.8 (Relative Flexibility Lemma). Let ξ be a contact struc-
ture on N = T 2 × [0, 1], and let F ′

t be a smooth collection of compact
subsurfaces such that ξ(F ′

t ) is transverse to ∂F ′
t and dα|F ′

t
> 0 for some

contact form α. Let λt be a family of 1-forms agreeing with α|F ′

t
near

∂F ′
t and α|F ′

t
for t = 0, 1 and such that dλt|F ′

t
> 0. Then ξ is isotopic

to a contact structure whose characteristic foliation is given by λt on
∪t F

′
t and which agrees with ξ outside this set.

Building on Giroux’s work, Vogel [13] has shown that the sheets of
a contact structure that is transverse to the interval fibers of T 2 × [0, 1]
are of a very restricted form. The key observation is that any attractive
closed orbit is contained in an annular sheet consisting entirely of co-
herently oriented closed orbits that is transverse to the interval fibers
and either terminates at the boundary or at a degenerate closed orbit.
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Figure 3. A sheet before and after (a partial) straight-
ening. The thickened segments correspond to attrac-
tive closed orbits oriented positively (resp. negatively)
(A+/A−) and degenerate orbits correspond to tangen-
cies of sheets with the levels of T 2 × [0, 1].

Lemma 3.9 ([13], Proposition 3.14, Lemma 3.16). Let ξ be a contact
structure on T 2× [0, 1] that is positively transverse to the interval fibers,
and let β be an attractive orbit of the characteristic foliation ξ(Ft). Then
β lies on an open annular sheet A(β) consisting of attractive closed or-
bits that can be compactified to a closed annulus such that each boundary
component is either contained in the boundary of N or is a degenerate
closed orbit of ξ(Ft′) for some 0 < t′ < 1.

Moreover, the map given by projecting A(β) to T 2 is a submersion,
and as t increases A(β) ∩ Ft moves in the direction opposite to that
determined by the coorientation of ξ(Ft).

Although the way a sheet lies in the productN = T 2×[0, 1] can be quite
complicated, they can always be straightened so that they have at most
one (circular) tangency with the levels of N (cf. [7, Proposition 3.22]).
This straightening is particularly easy to describe in the case where the
contact structure is elementary. This means that there are coordinates
(x, y, t) ∈ S1 × S1 × [0, 1] = N so that S1 × (y, t) is either transverse
to the contact structure or Legendrian (i.e., tangent to it). In this case,
straightening sheets amounts to straightening a collection of properly
embedded arcs given by projecting to S1 × [0, 1].

Lemma 3.10 (Straightening sheets). Let ξ be an elementary contact
structure on N = T 2× [0, 1]. Let A be an annular sheet such that ∂A lies
in a single boundary component of ∂N . Then after an isotopy we may
assume that A has precisely one tangency with the levels of N (corre-
sponding to a degenerate closed orbit of the characteristic foliation). If
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the boundary components of A lie in different components of ∂N , then
we may isotope A to be transverse to all levels of N .

Moreover, this isotopy can be made relative to all other sheets.

Using Lemma 3.9, one finds a movie of a particularly nice form for any
transverse contact structure.

Proposition 3.11. Let ξ be a contact structure on T 2 × [0, 1] that is
(positively) transverse to the interval fibers. Assume that the boundary
tori are convex with characteristic foliations given by suspensions of S1-
diffeomorphisms. Then ξ is isotopic relative to the boundary of T 2×[0, 1]
to a contact structure that is at all times transverse to the tori Ft =
T 2×{t} and the characteristic foliations ξ(Ft) are given by suspensions.

Proof. First, suppose that on all levels the characteristic foliation
ξ(Ft) has at least one (attractive) closed orbit. In particular, this means
that ξ(Ft) has the Poincaré–Bendixson property for 0 ≤ t ≤ 1 (cf.
Example 2.7). Since the contact structure is (positively) transverse to
the interval fibers, all singularities are positive so that the only way
that a surface Ft = T 2 × {t} cannot be convex is that it contains one
of the finitely many degenerate closed orbits by Lemma 2.6. We let
0 < t0 < t1 < . . . < tk < 1 be the non-convex levels. One can then
use the Elimination Lemma to eliminate all singularities on Fti via an
isotopy with support near Fti : by genericity all singularities are non-
degenerate on Fti , and if there are singularities, then since χ(T 2) = 0 at
least one must be (positive) elliptic—say, e+. If there is no connection
between e+ and a (positive) hyperbolic singularity, then each trajectory
eminating from e+ must accumulate on a closed leaf that bounds a disc,
which then yields an overtwisted disc, contradicting Lemma 3.2. For the
same reason, not every trajectory eminating from e+ can accumulate on
a polycyle. Thus there is some trajectory joining e+ to a hyperbolic sin-
gularity and e+ can be eliminated. Repeating this argument, we can
assume that ξ(Fti) has no singularities. Moreover, since all singularities
are positive and Fti has isolated closed orbits, we may assume that the
trajectories connecting them are contained in a collection of annular
neighborhoods Uj such that ∂Uj is transverse to the characteristic foli-
ation and dα|Uj

> 0 for a contact form α. Thus these eliminations can
be chosen to have support disjoint from the closed orbits of Ft for t near
ti and can be performed without introducing either degenerate (resp.
attractive) closed orbits or negative singularities. Thus all levels Ft near
Fti with t 
= ti remain convex.

We can now assume that we have eliminated all singularities on each
non-convex level. Then, using the Flexibility Lemma as in [7, Proposi-
tion 3.15], we can isotope ξ relative to F0 � F1 to become elementary.
In particular, we obtain a movie so that each closed orbit of Fti+ε is
connected to a closed orbit of Fti+1−ε by an annular sheet A that is
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transverse to each level Ft. The union of these annuli together with the
closed orbits near each non-convex level Fti then give the feuillage of ξ.
Note that this can be achieved without altering the contact structure
near the non-convex levels. In view of Lemma 3.9, we can also assume
that we did not alter the contact structure near any attractive closed
orbits. Furthermore, these modifications are such that on the parts of
a sheet not consisting of attractive closed orbits, the Legendrian curves
γt = A ∩ Ft are all repulsive closed orbits, except in the case where the
orientations of the closed orbits at each end of the annulus are opposite,
in which case γt′ is a singular circle of ξ(Ft′) for precisely one value
ti < t′ < ti+i.

Now all sheets are properly embedded, and we consider a sheet A
whose negative end intersects F0 in an attractive closed orbit. First,
assume that both boundary components of A are contained in F0. Let
tmax be the maximum value of t such that A∩Ftmax is non-empty. Then,
since the direction that a sheet moves near an attractive closed orbit is
determined by its (co)orientation, we see that the orientation of A∩Ftmax

must agree with that of A ∩ F0 (see Figure 3). A symmetric argument
applies to sheets whose ends lie in F1 (in which case, one considers tmin).
In a similar way, a sheet whose boundary intersects both boundary
components and begins at an attractive closed orbit must intersect the
other boundary component in an attractive closed orbit with the same
orientation. We then straighten out sheets to assume that each sheet is
transverse to all levels Ft or has precisely one point of tangency, which
is then a degenerate closed orbit whose orientation agrees with that of
the closed orbit on the boundary of the sheet.

We now consider two cases: first, we assume that there is a sheet that
intersects both boundary components. We may then apply the Relative
Version of the Flexibility Lemma away from the degenerate closed or-
bits to assume that all closed orbits in the movie are in fact oriented
in the same direction. In particular, the non-convex levels are given by
suspension foliations. A final application of the Flexibility Lemma pro-
vides an isotopy to a contact structure whose associated movie consists
entirely of suspension foliations.

In the case where no sheet intersects both boundary components,
we can argue as above until the first point t− ∈ [0, 1] where all sheets
beginning at T 2 × {0} have disappeared. We also let t+ be the value at
which all sheets beginning at T 2 × {1} have disappeared. By isotoping
the sheets beginning at F0 downward, we may assume that t− < t+.
After a further isotopy, we may also assume that for some small ε > 0
the tori Ft−−ε, Ft++ε are convex and have only two closed orbits. Since
the contact structure is transverse to the interval fibers, its relative Euler
class on T 2× [0, 1] is trivial. Furthermore, since the contact structure is
transverse to the T 2-slices on T 2 × [0, t− − ε] and T 2 × [t+ + ε, 1], the
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relative Euler class is trivial on each of these pieces and hence it is also
trivial on T 2 × [t− − ε, t+ + ε]. The result then follows by Theorem 3.4,
since ξ is universally tight in view of Lemma 3.2. q.e.d.

Remark 3.12. The contact structures given in Proposition 3.11 are of
two kinds—either the asymptotic slopes of the characteristic foliations
ξ(Ft) are constant or not. In the latter case, there is a time t− when all
sheets intersecting F0 first disappear. Moreover, near Ft− one can find a
linearly foliated torus Ft−+ε. The same is true for the time t+ at which all
sheets that intersect F1 have disappeared. Moreover, after an isotopy one
can assume that the characteristic foliations are all transverse to non-
vanishing closed 1-forms α0, α1 on T 2 × [0, t− + ε] and T 2 × [t+ − ε, 1],
respectively. If the asymptotic slope is constant, then we can assume
that the characteristic foliations ξ(Ft) are all transverse to a fixed non-
vanishing closed 1-form for all t ∈ [0, 1].

Remark 3.13. Using Remark 3.12, it is easy to construct a closed
dominating 2-form for any C0-small perturbation of a Reebless foliation
F whose kernel is either transverse to a taut foliation or has the form
αt ∧ dt on each thickened stack N̂i

∼= T 2 × [0, 1], where αt are non-
vanishing closed 1-forms that depend smoothly on t. Since all torus
leaves of a Reebless foliation are incompressible and no transversal of a
taut foliation can be contractible, it follows that ξ is taut in the sense
of [4, Definition 3.5.3)]. So the (universal) tightness of perturbations
of Reebless foliations would follow from the fact that tautness implies
(universal) tightness for contact structures (cf. [4, Conjecture 3.5.14]).

We shall need two more ingredients for the proof of Theorem 1.1. The
first is Colin’s result on glueing contact structures along linearly foliated
(pre-Lagrangian) tori.

Theorem 3.14 ([1], Théorème 4.2). Let ξ be contact structure on
a manifold M possibly with boundary, and let T be an incompressible
torus in the interior of M such that ξ(T ) is linear. If the restriction of
ξ to M \ T is universally tight, then ξ is also universally tight on all
of M .

We will also need a version of Theorem 2.4 for taut foliations on
manifolds with boundary. We will state this in a slightly more technical
fashion, which is best suited for the proof of Theorem 1.1, below. The
proof is essentially the same as in the closed case except that one needs
now to take care near the boundary by completing the manifold in a
controlled fashion

Theorem 3.15. Let F be a taut foliation that is transverse to ∂M
(if non-empty), and assume that the induced 1-dimensional foliation on
the boundary is also taut. Let ω be a dominating 2-form for F which
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has the form α∧ dt near ∂M , where α is a closed 1-form on ∂M . Then
any contact structure ξ that is dominated by ω is universally tight.

Proof. After a suitable choice of coordinates, we can assume that
F is a product foliation near the boundary. We may then take the
double of M , which carries a (taut) foliation given by doubling F . Thus
according to Theorem 2.3 there is a negative contact structure ξ− on
M itself that is C0-close to F . Now after a C∞-small perturbation, we
may assume that all boundary tori are convex with respect to both ξ
and ξ−, respectively. We next attach half-infinite ends T 2 × [0,∞) to

each boundary component to obtain a completion M̂ of M .
Any smooth extension of ξ, again denoted ξ, will be contact in a

small neighborhood of M in M̂ . Then on a suitable neighborhood Ni
∼=

T 2 × (−ε, ε) of a boundary component Ti ⊂ ∂M the contact structure ξ
is defined by a form

λ = βt + ftdt

for a smooth family of 1-forms αt on T 2. The contact condition is then

ftdβt + βt ∧ (dft − β̇t) > 0.

Since Ti is convex, there is a function g on T 2 such that

gdβ0 + β0 ∧ dg > 0.

By taking ε small enough, the same then holds on the neighborhood T 2×
(−ε, ε). Let ϕ(t) be a non-increasing cut-off function that is identically
1 for t ≤ − ε

2 and identically 0 for t ≥ 0. We then set

λ̂ = βtϕ(t− ε
2
) + (ϕft +K (1− ϕ)g) dt.

Since the contact condition is convex in ft, the form λ̂ is contact for K

large. Note that λ̂ is t-invariant for t ≥ ε
2 , and thus we can extend ξ to a

contact structure ξ̂ that is translation invariant on the half-infinite ends.
Furthermore, the characteristic foliations on these ends are C0-close to
ξ(Ti) and thus are dominated by the closed 2-form ω̂ that agrees with
ω on M and is equal to α ∧ dt on ∂M × [0,∞). The same holds for the

analogously defined extension ξ̂−.

We then define a symplectic form on W = M̂ × [−1, 1] by setting

Ω̂ = ω̂ + ε d(s λ̂),

where λ̂ is a defining form for ξ̂ and ε is sufficiently small. This form is
translation invariant on the half-infinite torus pieces outside a compact
set. We then choose a compatible almost-complex structure J that is

also translation invariant outside a compact set and leaves both ξ̂ and

ξ̂− invariant on M̂ × {1} and M̂ × {−1}, respectively. The symplectic

manifold (W, Ω̂) is a weak symplectic (semi-)filling of ξ̂, and the metric

Ω̂(·, J ·) has bounded geometry. The same is true when we pass to the
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universal cover. Then exactly as in the case when M is closed [4, Corol-
lary 3.2.5]), the Gromov–Eliashberg argument using Bishop families of

J-holomorphic discs then shows that ξ̂ is universally tight on M̂ and
a fortiori so is ξ. Note that bubbling cannot occur a priori, since by
Novikov’s Theorem π2(M) = 0 or M = S2 × S1 and F is the product
foliation, which cannot be approximated by contact structures at all.

q.e.d.

3.2. Proof of Theorem 1.1.

Proof. Let F be a Reebless foliation, and let M = Mtaut ∪ NTor be
the decomposition of M into a (possibly disconnected) piece on which F
is taut and its complement consisting of stacks of torus leaves. Consider

a stack Ni
∼= T 2 × [0, ci], and, as above let N̂i

∼= T 2 × [−ε, ci + ε] be a

small neighborhood of Ni so that F is transverse to ∂N̂i. After an initial
isotopy we may assume that the induced foliations on the boundary of

each N̂i is linear. Let ω be a dominating closed 2-form on Mtaut, and
let α±

i be closed 1-forms that are positive on the induced foliations on

the positive (resp. negative) end of N̂i. Without loss of generality, we

may assume that ω = α±

i ∧ dt near each boundary component of N̂i.
We let U0 be a C0-neighborhood of TF such that any ξ ∈ U0 is still
dominated by ω and such that ξ is transverse to the interval fibers on

each neighborhood N̂i. We also choose U0 small enough so that the
slopes of the characteristic foliations near the boundary of any stable
stack of leaves remain distinct.

We let ξ be any contact structure in U0, and we first consider those
(necessarily unstable) stacks Nik on which the contact structure ξ is
isotopic to one whose slopes remain constant. Then, according to Re-
mark 3.12, we can assume that the contact structure is dominated by

α+
i ∧ dt = α−

i ∧ dt = αi ∧ dt on N̂ik . By inserting a product foliation on

N̂ik , we obtain a foliation F ′ on

M ′
taut = Mtaut ∪

(
p⋃

k=1

Nik

)
that is transverse to ∂M ′

taut and has a dominating closed 2-form ω′. By
construction F ′ is taut. Furthermore, ξ is isotopic to a contact structure
that is dominated by ω′ on M ′

taut, and thus ξ|M ′

taut
is universally tight

by Theorem 3.15.
Since ξ is transverse to the interval fibers on each thickened stack

N̂i, the restriction ξ|
N̂i

is universally tight by Lemma 3.2. According

to Remark 3.12, we may assume that the characteristic foliations on

∂N̂i are linear for the remaining stacks. Since F is Reebless, all torus
leaves are incompressible. Thus ξ is obtained by gluing universally tight
contact structures along incompressible linearly foliated tori, and thus
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it is universally tight on all of M by repeated application of Theorem
3.14. q.e.d.

Remark 3.16. Theorem 1.1 implies that any foliation that can be
C0-approximated by overtwisted contact structures must contain a Reeb
component. It would be interesting to find a vanishing cycle, and hence
a Reeb component, as some sort of limit of a sequence of overtwisted
discs.

4. Notions of tightness for confoliations

Eliashberg and Thurston [4] introduced the notion of a tight confo-
liation as a generalization of both the notions of tightness for contact
structures and Reeblessness for foliations.

Definition 4.1 (Tightness for confoliations [4]). A confoliation ξ on
a 3-manifold M is called tight if for every embedded disc D ⊂ M such
that ∂D is tangent to ξ and D is transverse to ξ along ∂D there exists
an embedded disc D′ so that

• ∂D′ = ∂D;
• D′ is tangent to ξ and e(ξ)[D ∪D′] = 0.

A confoliation that is not tight can always be approximated by over-
twisted contact structures (cf. [12, p. 119]). Eliashberg and Thurston
conjectured that tightness should imply that the Thurston–Bennequin
inequalities hold. However, Vogel [12] showed that this is not the case.
In particular, he constructed tight confoliations on T 3 that do not sat-
isfy the Thurston–Bennequin inequalities so that all perturbations are
necessarily overtwisted. This led him to define a more restrictive notion
of tightness that he calls s-tightness.

Definition 4.2 (s-tight confoliations [12]). A confoliation ξ on a
3-manifold M is called s-tight if the characteristic foliation on any
generically embedded closed surface contains no overtwisted stars.

We refer to [12] for a precise definition of an overtwisted star, but
the most important aspect of the definition for us is that as in the case
of tightness, confoliations that are not s-tight can be approximated by
overtwisted contact structures ([12, Theorem 6.9)]). Both tightness and
s-tightness have universal analogues. Namely, a confoliation is univer-
sally tight (resp. s-tight) if all its finite covers are tight (resp. s-tight).
Note that this definition agrees with the ordinary definition of univer-
sal tightness for contact structures since in view of geometrization all
3-manifold groups are residually finite. One could of course define uni-
versal tightness for confoliations as tightness of the universal cover. How-
ever, for s-tightness, where the definition involves compact surfaces, it is
not clear that the pullback of a non-s-tight confoliation to the universal
cover is s-tight or not.



236 J. BOWDEN

Since Reeblessness for foliations ensures universal tightness for all suf-
ficiently small contact perturbations, we make the following definition.

Definition 4.3. A confoliation ξ is called perturbation tight, or
simply p-tight, if it has a C0-neighborhood U0 such that all (positive)
contact structures ξ′ ∈ U0 are tight.

In view of Colin’s C0-stability result [2], p-tightness agrees with ordinary
tightness for contact structures. Thus p-tightness generalizes both Reeb-
lessness for foliations and tightness for contact structure. Furthermore,
in the case of foliations, p-tightness is in fact equivalent to Reeblessness,
since any foliation with a Reeb component has an overtwisted contact
perturbation (cf. [4, Proposition 3.6.2]). Thus we have the following
sequence of inclusions for confoliations:

{p-tight} ⊆ {s-tight} � {tight}.

Note that all notions of tightness above agree with ordinary tightness
for contact structures and Reeblessness for foliations and that the last
inclusion is strict. However, for the universal versions of the above prop-
erties, the nature of each of these inclusions is unknown.

Question 4.4. Do the notions of universal tightness, p-tightness, and
s-tightness agree for confoliations?

There are several qualitative aspects of these definitions that are quite
different. In particular, p-tightness is by definition C0-stable, whereas
tightness in the sense of Eliashberg and Thurston is not in view of
Vogel’s examples. In the case of s-tightness, C0-stability seems to be an
important open question, even for transitive confoliations. On the other
hand, no notion of tightness for confoliations is closed, as one sees by
turbulizing a taut foliation along a closed transversal, which gives a C∞-
deformation of foliations that ends at a foliation with Reeb components,
which is not tight in any sense.
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