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RIGIDITY FOR QUASI-MÖBIUS ACTIONS

ON FRACTAL METRIC SPACES

Kyle Kinneberg

Abstract

In [4], M. Bonk and B. Kleiner proved a rigidity theorem for ex-
panding quasi-Möbius group actions on Ahlfors n-regular metric
spaces with topological dimension n. This led naturally to a rigid-
ity result for quasi-convex geometric actions on CAT(−1)-spaces
that can be seen as a metric analog to the “entropy rigidity” the-
orems of U. Hamenstädt [16] and M. Bourdon [8]. Building on the
ideas developed in [4], we establish a rigidity theorem for certain
expanding quasi-Möbius group actions on spaces with different
metric and topological dimensions. This is motivated by a corre-
sponding entropy rigidity result in the coarse geometric setting.

1. Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n. If
we assume that M is locally symmetric and negatively curved, then its
universal cover is isometric to Hk

F—one of the hyperbolic spaces defined
over F = R,C, the quaternions, or the octonians (in the last case,
only for k = 2, which corresponds to real dimension n = 16). We can
therefore identify (Mn, g) with the quotient H

k
F/Γ, where Γ = π1(M)

acts on H
k
F by deck transformations. A natural question then arises: Is

this hyperbolic structure uniquely determined by the topology of M?
G. Mostow’s classic rigidity theorem [23] gives an affirmative answer

to this question in dimensions n ≥ 3. More specifically, he proves that
if two locally symmetric compact manifolds, both with maximal sec-
tional curvature −1, have isomorphic fundamental groups, then they
are isometric. The curvature assumption here is simply a scaling nor-
malization. In other words, the topology of a locally symmetric compact
manifold determines its metric structure, up to scaling.
It is important to note, of course, that there is no analogous theorem

for surfaces. Indeed, a compact surface of genus g ≥ 2 has a (6g − 6)-
dimensional moduli space of hyperbolic metrics (i.e., locally symmetric
metrics of constant curvature −1). Such surfaces therefore have many
metric deformations that would be ruled out by a rigidity theorem.

Received 8/22/2013.

349



350 K. KINNEBERG

1.1. Extending Mostow rigidity. Let us now turn our attention to
a different question: How can one determine when a negatively curved
manifold is locally symmetric? A significant amount of work in this
direction, much of it from the early and mid-1990s, sought to find a
symmetric structure in manifolds that were extremal for certain met-
ric quantities—volume, curvature bounds, geodesic lengths, entropy,
etc. Most relevant for us here is the entropy rigidity theorem of U.
Hamenstädt [16].
Before stating this result, we must first define entropy. Let (Mn, g)

be a compact Riemannian manifold and let (M̃ , g̃) be its universal Rie-
mannian cover with metric g̃. Let B(p,R) denote the ball of radius R

centered at p ∈ M̃ , and let Volg̃ B(p,R) be the volume of this ball. We
call

hvol(g) = lim
R→∞

log (Volg̃ B(p,R))

R

the volume entropy of g; this limit is independent of the choice p ∈ M̃ .
For example, if (Mn, g) is hyperbolic, then (M̃, g̃) can be identified with
real hyperbolic space Hn. Consequently,

Volg̃ B(p,R) = VolHn B(p,R) ≈ e(n−1)R,

so that h(g) = n− 1.
The following relationship indicates why this volume-growth quantity

is considered to be a type of entropy. Let htop(g) denote the topological
entropy of the geodesic flow on the unit tangent bundle of (Mn, g) (see
[21, Section 3] for definitions). For general compact manifolds, Manning
[21] showed that

htop(g) ≥ hvol(g),

and if (Mn, g) has non-positive sectional curvature, then equality holds.
As we will concern ourselves only with compact manifolds of negative
sectional curvature, we can set

h(g) = htop(g) = hvol(g)

from now on and refer to it simply as the entropy of g.

Theorem 1.1 (Hamenstädt [16]). Let (Mn, g0) be a locally symmet-
ric compact manifold with maximal sectional curvature −1 and n ≥ 3.
Let g be another Riemannian metric on M , also with maximal sectional
curvature −1. Then h(g) ≥ h(g0), and equality holds if and only if g is
locally symmetric. In particular, equality holds if and only if (Mn, g) is
isometric to (Mn, g0).

In other words, the locally symmetric structures on M are precisely
the minima of the entropy functional, at least among metrics suitably
normalized by curvature. Note also that the “in particular” statement
in this theorem follows from Mostow rigidity.
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From Hamenstädt’s theorem, there are various directions in which
one may proceed (see, for example, the survey [25] on rigidity theory).
Remaining in the Riemannian setting, we can ask if there are other pairs
of normalizations and metric quantities for which rigidity theorems can
be obtained. For example, suppose that (M,g0) is a locally symmetric
compact manifold of dimension ≥ 3 with unit volume and let g be an-
other metric on M with unit volume. Then h(g) ≥ h(g0) and equality
holds precisely when (M,g) and (M,g0) are isometric. A more general
version of this was established by G. Besson, G. Courtois, and S. Gallot
[1], along with several consequential rigidity statements, but the gen-
eral theme is that the locally symmetric metrics on manifolds related
to (M,g0) can be identified by two quantities: volume and entropy. In-
cidentally, the methods used in their paper give a constructive proof of
Mostow’s original result by exhibiting the desired isometry.

1.2. Toward a metric setting. A different direction one may take
(and the direction we wish to push further in this paper) is to extend
Hamenstädt’s theorem to metric geometry. To motivate the compari-
son between the Riemannian and metric settings, let (Mn, g) be as in
Theorem 1.1, and let Γ = π1(M) be its fundamental group. Also, let
(X, d) be its Riemannian universal cover with metric d. Of course d is
a Riemannian metric itself, but as we move away from the Riemannian
setting, we want to think of d simply as a distance function.
The negative curvature in (Mn, g), which guarantees negative cur-

vature in (X, d) as well, allows one to define an ideal boundary: the
collection of asymptotic classes of geodesic rays emanating from a fixed
base-point. Moreover, this boundary has a canonical metric structure
that is closely related to the asymptotic geometry of X. For example, if
g is hyperbolic, then its universal cover is, once again, the real hyperbolic
space Hn, whose ideal boundary is the Euclidean sphere Sn−1.
The isometric action of Γ on (X, d) passes naturally to an action on

the ideal boundary. Here the entropy of g plays an important role, as
h(g) is the Hausdorff dimension of the canonical metric on the bound-
ary. Equality of h(g) and h(g0) therefore guarantees that the boundary
associated to g has metric properties similar to those of the boundary
associated to g0, which is much better understood.
Let us make the comparison between Riemannian and metric geom-

etry more explicit. The universal cover (X, d) has sectional curvature
at most −1, so it satisfies the CAT(−1) condition [26, Théorème 9].
Recall that a geodesic metric space is called CAT(−1) if its geodesic
triangles are thinner than their comparison triangles in the real hyper-
bolic plane. Moreover, the action of the fundamental group Γ on X is
isometric, properly discontinuous, and cocompact. We will refer to such
actions as geometric actions from now on. Actually, to deal with more
general situations, it will be convenient to weaken the cocompactness
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property to quasi-convex cocompactness: there is a quasi-convex subset
Y ⊂ X on which Γ acts cocompactly. We call such actions quasi-convex
geometric; see Section 6 for formal definitions.
For a CAT(−1)-space X, one can define a boundary at infinity, which

we denote by ∂∞X. As with the ideal boundary, it will be a topological
space with a canonical metric structure (again, see Section 6 for details).
Let Λ(Γ) be the limit set of Γ in ∂∞X. If the action is cocompact, then
Λ(Γ) = ∂∞X, but in general the limit set can be much smaller than the
whole boundary. However, its Hausdorff dimension has a familiar form
[7, Théorème 2.7.4]:

dimH Λ(Γ) = lim sup
R→∞

log(N(R))

R

where p ∈ X is any point and N(R) = #{Γp ∩ BX(p,R)} is the num-
ber of points in the orbit Γp that lie at distance at most R from p.
This Hausdorff dimension is therefore a metric analog of the entropy we
considered earlier.
In this context, M. Bourdon [8] proved the following generalization

of Theorem 1.1.

Theorem 1.2 (Bourdon [8]). Let Γ = π1(M
n, g0) be the fundamen-

tal group of a locally symmetric compact manifold of maximal sectional
curvature −1 and dimension n ≥ 3. Suppose that Γ acts quasi-convex
geometrically on a CAT(−1)-space X. Let S be the universal Riemann-
ian cover of (Mn, g0). Then

dimH Λ(Γ) ≥ dimH ∂∞S,

and equality holds if and only if there is an isometric embedding F : S →
X, equivariant with respect to the natural action of Γ on S, whose ex-
tension to the boundary has F (∂∞S) = Λ(Γ).

Although this theorem certainly points in the direction of metric ge-
ometry, it does not strictly fall in this category. Indeed, the restriction
of Γ to fundamental groups of locally symmetric spaces and the use of
dimH ∂∞S in the rigidity inequality seem to place this result, in some
sense, between Riemannian geometry and metric geometry.
In [4], M. Bonk and B. Kleiner extended the real-hyperbolic version of

Bourdon’s theorem to the metric setting. By real-hyperbolic, we mean
the case that (Mn, g0) has constant sectional curvature −1, so that
S = H

n. Recall that ∂∞H
n = S

n−1, which has Hausdorff dimension
n− 1.

Theorem 1.3 (Bonk–Kleiner [4], [5]). Suppose that a group Γ acts
quasi-convex geometrically on a CAT(−1) metric space X. Let n ≥ 1 be
the topological dimension of Λ(Γ). Then

dimH Λ(Γ) ≥ n,
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and equality holds if and only if Γ acts geometrically on an isometric
copy of Hn+1 in X.

The assertion dimH Λ(Γ) ≥ n here is nothing special, as the Hausdorff
dimension of any metric space is bounded from below by its topological
dimension [18, Chapter 7]. Let us focus on the case of equality, then,
and briefly describe the method of proof.
As in the rigidity theorems discussed above, the argument relies on a

quasiconformal analysis of the limit set Λ(Γ). The isometric action of Γ
on X naturally passes to an action on Λ(Γ) by uniformly quasi-Möbius
maps. As Γ acts cocompactly on a quasi-convex subset of X, the induced
action on Λ(Γ) will be cocompact on triples: any three distinct points in
the limit set can be uniformly separated by applying an element of the
group. This property should be viewed as a type of expanding dynamics
on Λ(Γ). It also allows us to conclude that Λ(Γ) is Ahlfors regular of
dimension n: the n-dimensional Hausdorff measure of any metric ball
B(x, r) in the limit set is ≈ rn (for 0 ≤ r ≤ diamΛ(Γ)).
The following theorem is the main result in [4].

Theorem 1.4 (Bonk–Kleiner [4]). Let Z be a compact, Ahlfors n-
regular metric space with topological dimension n ≥ 1. Suppose that
Γ � Z is a uniformly quasi-Möbius group action that is cocompact on
triples. Then Γ� Z is quasi-symmetrically conjugate to an action of Γ
on S

n by Möbius transformations.

As Möbius transformations can be extended naturally to isometries
of Hn+1, we obtain a geometric action of Γ on H

n+1. If n ≥ 2, this puts
us in the setting of Bourdon’s theorem, which we apply to conclude that
Γ acts cocompactly on an isometric copy of Hn+1 in X.
Actually, it turns out that appealing to Bourdon’s theorem is not

necessary. An alternative argument is given in [5], and it works just as
well in the case that n = 1.

1.3. Rigidity on fractal spaces. Following Bonk and Kleiner, this
paper is primarily concerned with rigidity of expanding quasi-Möbius
group actions. Indeed, results in this setting often lead to rigidity the-
orems that are more geometric. Reconsidering, then, Theorem 1.4, it is
natural to wonder what one can say if the Hausdorff and topological
dimensions differ.
A large collection of such examples are boundaries of Gromov hyper-

bolic groups equipped with a visual metric. In many important cases,
the boundary is topologically a sphere, and always, it will be Ahlfors
regular. Generally, though, the metric dimension is strictly larger than
its topological dimension. In the case where the boundary is homeomor-
phic to S

2, it is conjectured that there exists an Ahlfors regular metric
of dimension 2, but this is a difficult problem (see [2, Section 5] for this
formulation of Cannon’s conjecture).
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It is therefore of interest to obtain rigidity results for quasi-Möbius
group actions on fractal metric spaces—spaces in which the metric di-
mension differs from the topological dimension. This is the general ob-
jective in the present paper. In moving from such a broad goal to con-
crete theorems, we have kept an eye on applications to coarse hyperbolic
geometry, which is a relevant setting for the study of Gromov hyper-
bolic groups. As a consequence, our main theorem will lead, via the
work in [4], to an entropy rigidity result for geometric group actions on
Gromov hyperbolic metric spaces with an asymptotic upper curvature
bound. Naturally, this can be seen as a “coarse” analog of the CAT(−1)
rigidity theorem in [4] and therefore also as an analog of Hamenstädt’s
theorem and of Bourdon’s theorem (in the real-hyperbolic cases).
The precise statement of our main result is the following. We will

discuss terminology and notation in subsequent sections, but let us
make one important remark now. Rather than considering general quasi-
Möbius group actions, we restrict our attention to those that are strongly
quasi-Möbius. In particular, each group element will act as a bi-Lipschitz
homeomorphism. See Definition 2.1 for a formal definition.

Theorem 1.5. Let n ∈ N, 0 < ε ≤ 1, and let Z = (Z, d) be a
compact metric space, homeomorphic to S

n, and Ahlfors regular of di-
mension n/ε. Suppose that Γ� Z is a strongly quasi-Möbius action that
is cocompact on triples. Assume, moreover, that Z satisfies the following
discrete length property:

(1.1) each δ-path between two points x, y has length ≥ c
(
d(x,y)

δ

)1/ε
.

Then there is a metric dnew on Z satisfying

C−1d(x, y)1/ε ≤ dnew(x, y) ≤ Cd(x, y)1/ε

for some C ≥ 1 and a bi-Lipschitz homeomorphism between (Z, dnew)
and S

n. Moreover, if n ≥ 2, then this map can be taken to conjugate the
action of Γ on Z to an action on S

n by Möbius transformations.

Remark 1.6. The assumption that Z is homeomorphic to S
n can

be replaced by the assumption that Z is an n-dimensional manifold.
Indeed, in this case, the expanding behavior of the group action forces
Z to be a topological n-sphere. See, for example, the proof of Theorem
4.4 in [20].

Remark 1.7. Recall that if ρ is a metric on Z, then ρε is also a
metric whenever 0 < ε ≤ 1. The metric spaces (Z, ρε) are typically called
“snowflakes” of (Z, ρ), in reference to the standard construction of the
von Koch snowflake. In Theorem 1.5, we go in the opposite direction,
“de-snowflaking” the original metric d on Z to a metric dnew with better
regularity.
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When the metric dimension and the topological dimension of Z coin-
cide (i.e., if ε = 1), the results in [4] give a bi-Lipschitz homeomorphism
between Z and S

n. Once these dimensions differ, relationships between
the metric structures of Z and S

n are more delicate. While Ahlfors reg-
ularity gives good control on volume, and the strongly quasi-Möbius
action provides robust self-similarity structure in Z, additional assump-
tions are needed to obtain rigidity statements. We impose the condition
(1.1) because, in the case where Z is the boundary of a hyperbolic metric
space X, it arises naturally from upper curvature bounds on X.
In concise terms, the discrete length condition (1.1) is strong enough

that it forces (Z, d) to be a “snowflake” of Sn. Once we de-snowflake,
we are able to pass almost directly through the theorem of Bonk and
Kleiner. It is natural to ask, then, if there are weaker conditions one can
place on Z that still guarantee it is, say, quasisymmetrically equivalent
to S

n. This would be of significant interest, in particular for n = 2.
As we suggested above, Theorem 1.5 leads to a rigidity theorem in a

coarse geometric setting. The objects considered here are (Gromov) hy-
perbolic metric spaces with an appropriate asymptotic upper curvature
bound. These curvature bounds, denoted by ACu(κ), were introduced
by M. Bonk and T. Foertsch [3] as a coarse analog to the CAT(κ) con-
ditions. We will discuss this further in Section 6, but for now we only
mention that ACu(−1) is an appropriate replacement for CAT(−1).
For hyperbolic metric spaces X, even with asymptotic upper curva-

ture bounds, there is no canonical Hausdorff dimension of the bound-
ary, as there was for CAT(−1)-spaces. Indeed, the visual metrics on
∂∞X form a Hölder class, and there is not a natural choice of a bi-
Lipschitz sub-class. Thus, to formulate an entropy-rigidity statement
here, we must look back inside X and use the coarse version of volume
entropy—the same quantity that bridged the results of Hamenstädt and
Bourdon. Namely, if X is a hyperbolic metric space and Γ acts on X,
the exponential growth rate of the action is

e(Γ) = lim sup
R→∞

log(N(R))

R
,

where N(R) = #{Γp ∩ BX(p,R)} is the number of points in an orbit
Γp of distance at most R from p. Once again, the limit is independent
of p ∈ X. We then have the corresponding coarse rigidity theorem.

Theorem 1.8. Let X be a proper, geodesic, Gromov hyperbolic met-
ric space, and let Γ � X be a quasi-convex geometric group action.
Suppose that Λ(Γ) is homeomorphic to S

n, with n ≥ 2, and that there
is an orbit Γp that is ACu(−1). Then e(Γ) ≥ n and equality holds if
and only if there is a rough isometry Φ: Hn+1 → Γp that is roughly
equivariant with respect to a geometric action of Γ on H

n+1.
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Remark 1.9. Again, the assumption that Λ(Γ) is a topological sphere
can be weakened; it suffices to assume that Λ(Γ) contains an open subset
homeomorphic to Rn. Indeed, this will imply that Λ(Γ) is homeomorphic
to S

n (cf. Theorem 4.4 in [20]). We leave as an open question, though,
whether it suffices to assume only that the topological dimension of Λ(Γ)
is n.
Moreover, one should ask about the case n = 1. We do not know if

the conclusion in Theorem 1.8 holds in this case as well. See, however,
Remark 6.13 at the end of Section 6, where we discuss what can be said
in its place.

This paper is organized as follows. In Section 2, we will introduce the
necessary definitions, terminology, and background for the considera-
tion and proof of Theorem 1.5. Section 3 will be devoted to a slightly
technical study of strongly quasi-Möbius group actions that will reveal
some properties relevant for a “de-snowflaking” result. In Section 4, we
will state and prove this general de-snowflaking theorem, which forms
the heart of the proof of Theorem 1.5. In Section 5 we finish the proof
of Theorem 1.5 by de-snowflaking and applying quantitative versions of
theorems from [4] and [27]. We will also, of course, need to verify these
quantitative versions. Finally, in Section 6 we will prove Theorem 1.8
after discussing in more detail the terminology used in its statement.
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2. Definitions and Notation

Let (Z, d) be a metric space. Occasionally, we will write dZ for the
metric on Z when this needs to be specified. If x ∈ Z and r > 0, then
we use

B(x, r) = {y ∈ Z : d(x, y) < r}
to denote the open metric ball of radius r about x.
If x1, x2, x3, x4 ∈ Z are distinct points, we define their (metric) cross-

ratio as

[x1, x2, x3, x4] =
d(x1, x3)d(x2, x4)

d(x1, x4)d(x2, x3)
.

We are interested in maps between metric spaces that distort cross-ratios
in a controlled manner. To make this precise, let η : [0,∞)→ [0,∞) be a
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homeomorphism. Then a homeomorphism f : X → Y is called η-quasi-
Möbius if

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4])

for all distinct four-tuples x1, x2, x3, x4 ∈ X. Note that this definition
makes sense for injective f as well, but we will be concerned only with
homeomorphisms in what follows.
A second class of maps that arise naturally in quasiconformal geom-

etry are the quasisymmetric maps, which distort relative distances by a
controlled amount. A homeomorphism f : X → Y is η-quasisymmetric
if

dY (f(x1), f(x2))

dY (f(x1), f(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)

for all triples x1, x2, x3 of distinct points in X.
The quasi-Möbius and quasisymmetric conditions are closely related,

though there are subtle differences. For example, every η-quasisymmetric
map is η̃-quasi-Möbius, where η̃ depends only on η. Conversely, if X
and Y are bounded, then each individual η-quasi-Möbius map will be
η̃-quasisymmetric for some η̃, but in general there is no quantitative
relationship between η and η̃.
In this paper, we are mostly interested in studying metric spaces on

which there is a group action by maps belonging to a particular function
class. In such a context, the quasi-Möbius and quasisymmetry conditions
are very different. As quasi-Möbius maps are the weaker of these two
types, it makes sense to focus on these actions. This choice is further
motivated by the following fact about hyperbolic groups (which occupy
center stage in studying the geometry of hyperbolic metric spaces). If
G is a hyperbolic group and ∂∞G is its boundary (i.e., the Gromov
boundary of the Cayley graph of G with respect to a fixed finite gen-
erating set) equipped with a visual metric, then the isometric action of
G on its Cayley graph by translations extends to an action on ∂∞G.
Moreover, there is η for which each g ∈ G acts as an η-quasi-Möbius
map. Actually, something stronger is true: we can take η to be linear
(see Section 6 for more details).
Quasi-Möbius maps with a linear distortion function will play an

important role in our analysis. Thus, we give them a name.

Definition 2.1. A homeomorphism f : X → Y is called strongly
quasi-Möbius if there is C ≥ 1 for which

[f(x1), f(x2), f(x3), f(x4)] ≤ C[x1, x2, x3, x4]

whenever x1, x2, x3, x4 ∈ X are distinct.
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Each strongly quasi-Möbius map between bounded metric spaces is
actually bi-Lipschitz: there is a constant C ′ ≥ 1 for which

1

C ′
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ C ′dX(x1, x2)

for all x1, x2 ∈ X (see Remark 3.2). But again, the relationship between
C and C ′ is not quantitative. We will study group actions by strongly
quasi-Möbius maps in much greater detail in subsequent sections.
Most of the group actions we encounter here will be of an expanding

type, in the following sense.

Definition 2.2. An action of a group Γ on a metric space (Z, d) is
said to be cocompact on triples if there is δ > 0 such that for every
triple x1, x2, x3 ∈ Z of distinct points, there is a map g ∈ Γ for which
d(gxi, gxj) ≥ δ if i 
= j.

It should be no surprise that this assumption is again motivated by
the geometry of hyperbolic groups: the action of a hyperbolic group on
its boundary (equipped with a visual metric) is indeed cocompact on
triples. More generally, the expanding behavior of a group action, com-
bined with a (assumed) regularity of maps in the group, often translates
into self-similarity properties of the metric space. See Lemma 3.1 for a
particular manifestation of this principle.
A final metric property that will commonly undergird our spaces is

a standard type of volume regularity.

Definition 2.3. A compact metric space (Z, d) is Ahlfors α-regular
(or Ahlfors regular of dimension α > 0) if there is a Borel measure μ on
Z and a constant C ≥ 1 so that

(2.1)
1

C
rα ≤ μ(B(x, r)) ≤ Crα

for all x ∈ Z and 0 < r ≤ diamZ.

Using standard covering arguments, it is not difficult to show that
Z is Ahlfors α-regular if and only if (2.1) holds with μ replaced by
Hausdorff measure of dimension α.
In subsequent sections, we will frequently encounter the n-dimensional

sphere Sn. Unless otherwise specified, we give it the chordal metric—the
restriction of the Euclidean metric when S

n is viewed as the unit sphere
in R

n+1. However, every metric property of Sn that we consider will be
preserved under a bi-Lipschitz change of coordinates. Thus, any metric
that is bi-Lipschitz equivalent to the chordal metric would work just as
well.
Finally, it will be convenient for us to suppress non-essential multi-

plicative constants in many inequalities. For quantities A and B that
depend on some collection of input variables, we write A � B to in-
dicate that there is a constant C, independent of these variables, for
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which A ≤ CB. When possible confusion could arise, we will indicate
which data C may depend on. For example, the bi-Lipschitz condition
can be expressed simply as

dX(x1, x2) � dY (f(x1), f(x2)) � dX(x1, x2),

where the constants are uniform over all x1, x2 ∈ X.

3. Strongly Quasi-Möbius Group Actions

We now focus our attention on strongly quasi-Möbius maps—those
with a linear distortion function. Such maps tend to behave even more
like traditional Möbius functions than general quasi-Möbius maps do.
For example, each strongly quasi-Möbius homeomorphism between bounded
metric spaces is bi-Lipschitz (cf. Remark 3.2).
Strongly quasi-Möbius maps are particularly important when they

come in a group with uniform distortion constant. We will say that a
group action Γ � Z on a metric space Z is strongly quasi-Möbius if
there is a constant C ≥ 1 for which every g ∈ Γ is an η-quasi-Möbius
homeomorphism with η(t) = Ct.
The following lemma tells us that a strongly quasi-Möbius group ac-

tion that is cocompact on triples gives Z locally self-similar structure:
each ball can be blown up to a uniform scale by a homeomorphism that
is essentially a scaling on that ball. See [9, Section 2.3] for a general dis-
cussion of local self-similarity in metric spaces. See also Lemma 5.1 in
[4] for a statement similar to ours, albeit in a slightly different context.

Lemma 3.1. Let (Z, d) be a compact, connected metric space with at
least two points, and let Γ� Z be a strongly quasi-Möbius group action
which is cocompact on triples. For fixed p ∈ Z, 0 < r ≤ diamZ, and
L ≥ 2, let N = B(p, r) be a “near” set and F = Z\B(p, Lr) be a “far”
set with respect to p. Then there is a map g ∈ Γ satisfying the following:

(i) r · d(x, y) � d(gx, gy) � (1/r) · d(x, y) for all x, y ∈ Z,
(ii) (1/r) · d(x, y) � d(gx, gy) � (1/r) · d(x, y) for all x, y ∈ N ,
(iii) there exists c > 0 such that B(gx, c) ⊂ gN for each x ∈ B(p, r/2),
(iv) diam gF � 1/L.

Here, the implicit constants and c depend only on diamZ, the constant
δ in Definition 2.2, and C from the strongly quasi-Möbius condition. In
particular, they do not depend on p, r, or L.

Observe that property (ii) tells us that on N , the map g is basically
a scaling by 1/r, in that g blows up B(p, r) to a uniform scale. Property
(iii) guarantees that gN will contain large balls around images of points
that are well inside N . Or, to put it negatively, points outside of N
cannot get mapped nearby the images of points well within N . Property
(iv) shows that if we take L to be large, we can map the “far” set F to
something negligible.
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Proof. Given p, r, and L, we first choose three points that we wish to
δ-separate. Let x1 = p, and choose x2 to be a point for which d(x1, x2) =
r/2. Then choose x3 so that d(x1, x3) = r/4. Such points x2 and x3 exist
by the assumption that Z is compact and connected. Take g ∈ Γ so that
gx1, gx2, gx3 have pairwise distances at least δ. Now that we have chosen
g, we use x′ to refer to the image of points x under g.
(i) Let x, y ∈ Z with x 
= y. Then there are i, j ∈ {1, 2, 3} for which

d(x, xi) ≥ r/8 and d(x, xj) ≥ r/8. Of these, either d(y, xi) ≥ r/8 or
d(y, xj) ≥ r/8; without loss of generality, say d(y, xi) ≥ r/8. We then
have

d(x′, y′)d(x′i, x
′
j)

d(x′, x′j)d(y
′, x′i)

�
d(x, y)d(xi, xj)

d(x, xj)d(y, xi)
�
d(x, y) · r
r/8 · r/8 �

d(x, y)

r
,

and so

d(x′, y′) �
d(x′, x′j)d(y

′, x′i)

d(x′i, x
′
j)

· d(x, y)
r

�
1

δ
· d(x, y)

r
�
d(x, y)

r

which is the second inequality in (i). Recall that the implicit constant
is allowed to depend on diamZ and on δ.
For the first inequality, take i, j ∈ {1, 2, 3} for which d(x′, x′i) ≥ δ/2

and d(x′, x′j) ≥ δ/2. Then either d(y′, x′i) ≥ δ/2 or d(y′, x′j) ≥ δ/2;

without loss of generality, say d(y′, x′i) ≥ δ/2. Then

d(x′, x′j)d(y
′, x′i)

d(x′, y′)d(x′i, x
′
j)

�
d(x, xj)d(y, xi)

d(x, y)d(xi, xj)
�

1

d(x, y) · r ,

and so

d(x, y) �
1

r
· d(x

′, y′)d(x′i, x
′
j)

d(x′, x′j)d(y
′, x′i)

�
d(x′, y′)

r
,

as desired.

Remark 3.2. The same reasoning can be used to show that any
strongly quasi-Möbius map between bounded metric spaces is necessar-
ily bi-Lipschitz. Indeed, notice that after choosing g, the arguments in
(i) use only four facts: pairwise distances between x1, x2, and x3 are
≥ r/4; pairwise distances between x′1, x

′
2, and x

′
3 are ≥ δ; the domain

and image of g are both bounded; and g is strongly quasi-Möbius. In
general, then, if f is a strongly quasi-Möbius homeomorphism between
bounded metric spaces, choose distinct points x1, x2, and x3 in the do-
main. These four facts will hold for some r, δ > 0, so we can conclude
that f is bi-Lipschitz.

(ii) Let x, y ∈ N . The second inequality here is directly from (i). For
the first inequality, take i, j for which d(x′, x′j), d(y

′, x′i) ≥ δ/2 as we did
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above. Then

d(x′, x′j)d(y
′, x′i)

d(x′, y′)d(x′i, x
′
j)

�
d(x, xj)d(y, xi)

d(x, y)d(xi, xj)
�

2r · 2r
d(x, y) · r/4 �

r

d(x, y)
,

and so

d(x, y) � r · d(x
′, y′)d(x′i, x

′
j)

d(x′, x′j)d(y
′, x′i)

� r · d(x′, y′),
as claimed.
(iii) Fix x ∈ B(p, r/2), and note that if y ∈ Z\N , then d(x, y) ≥ r/2.

Taking i ∈ {2, 3} for which d(y′, x′i) ≥ δ/2, we have

d(x′, p′)d(y′, x′i)

d(x′, y′)d(p′, x′i)
�
d(x, p)d(y, xi)

d(x, y)d(p, xi)
�
d(x, p)

r
· d(y, xi)
d(x, y)

.

As d(x, y) ≥ r/2, we also have d(y, xi) ≤ d(x, y) + d(x, xi) ≤ d(x, y) +
2r ≤ 5d(x, y), and so

d(x′, p′)d(y′, x′i)

d(x′, y′)d(p′, x′i)
�
d(x, p)

r
.

Thus,

d(x′, y′) �
d(x′, p′)d(y′, x′i)

d(p′, x′i)
· r

d(x, p)
�
d(x′, p′)

d(x, p)
· r � 1

by the bounds we established in (ii). Let c be the implicit constant in
this last inequality. Then B(x′, c) ⊂ gN by the fact that g is surjective.
(iv) We may, of course, assume that B(p, Lr) is not all of Z. Then

fix a point x ∈ B(p, 2Lr)\B(p, Lr). We claim that gF is contained in a
small ball centered at x′. Indeed, let y ∈ F , and observe that

d(x, y) ≤ d(x, x1) + d(y, x1) ≤ 2Lr + d(y, x1) ≤ 3d(y, x1),

d(x1, x2) = r/2,

d(x, x1) ≥ Lr,

d(y, x2) ≥ d(y, x1)− d(x1, x2) ≥ d(y, x1)− r.
Thus, we have

d(x′, y′)d(x′1, x
′
2)

d(x′, x′1)d(y
′, x′2)

�
d(x, y)d(x1, x2)

d(x, x1)d(y, x2)
�

d(y, x1) · r
Lr · (d(y, x1)− r) .

As d(y, x1) ≥ Lr and the function t �→ t/(t− r) is decreasing for t > r,
we obtain

d(y, x1) · r
Lr · (d(y, x1)− r) ≤

Lr

L(Lr − r) �
1

L
,

and so

d(x′, y′) �
1

L
· d(x

′, x′1)d(y
′, x′2)

d(x′1, x
′
2)

�
1

L
.

Consequently, gF is contained in a ball of radius � L−1 centered at x′,
as needed. q.e.d.
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The previous lemma gives us a good understanding of the type of ex-
panding behavior found in a strongly quasi-Möbius group action, when
it acts cocompactly on triples. This use of a group element to “blow
up” a ball to a uniform scale is sometimes called a “conformal eleva-
tor” (see, for example, [15]). One can therefore view Lemma 3.1 as a
particular type of conformal elevator that comes with a strongly quasi-
Möbius group action. This elevator will be essential in the proof of our
de-snowflaking result, coming in the next section.
Actually, in the proof of that result, it is the conformal elevator itself

(rather than the strongly quasi-Möbius action generating it) that will be
important. In order to work in greater generality, we make the following
definition.

Definition 3.3. A metric space (Z, d) admits a conformal elevator
if there exists a constant C and a function ω : (0,∞) → (0,∞) with
ω(t)→ 0 as t→ 0 such that, for every choice of p ∈ Z, 0 < r ≤ diamZ,
and λ ≥ 2, there is a homeomorphism g : Z → Z with the following
properties:

(i) d(gx, gy) ≤ Cd(x, y)/r for all x, y ∈ B(p, λr),
(ii) C−1d(x, y)/r ≤ d(gx, gy) for all x, y ∈ B(p, r),
(iii) B(gx, 1/C) ⊂ g(B(p, r)) for all x ∈ B(p, r/C),
(iv) diam (Z\g(B(p, λr))) ≤ ω(1/λ).

The conclusions in Lemma 3.1 tell us that if Z admits a strongly
quasi-Möbius group action that is cocompact on triples, then it admits
a conformal elevator. We now turn our attention toward using the con-
formal elevator to de-snowflake a metric space.

4. De-snowflaking

This section is devoted to establishing the following proposition, which
provides quantitative conditions under which a metric space can be de-
snowflaked by a particular amount.

Proposition 4.1. Fix n ∈ N and 0 < ε < 1. Let (Z, d) be a metric
space with the following properties:

(i) Z is homeomorphic to Sn,
(ii) Z admits a conformal elevator, in the sense of Definition 3.3,

(iii) every δ-separated set in Z has size at most Cδ−n/ε,
(iv) every discrete δ-path from x to y in Z has length at least

(1/C) · (d(x, y)/δ)1/ε.
Then there is a metric dnew on Z satisfying

(4.1) d(x, y)1/ε � dnew(x, y) � d(x, y)1/ε

where the implicit constant depends only on the data from assumptions
(i)–(iv).
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Recall that a “δ-separated set” is simply a set of points for which
pairwise distances are at least δ. Also, by a “discrete δ-path from x to y”
we mean a chain of points x = z0, z1, . . . , zl = y in Z with d(zi, zi−1) ≤ δ.
The length of such a chain is l; notice that this is one less than the
number of points in the chain.
Some remarks on the assumptions in Proposition 4.1 are in order. The

first condition gives Z non-trivial topological structure and guarantees
that the metric structure of (Z, d) on large scales is similar to that of the
standard sphere. The conformal elevator, as we have already said, gives
us a way of moving from small scales to a uniformly large scale. The third
assumption should be thought of as a volume condition; for example,
it is easily implied by Ahlfors n/ε-regularity. In fact, our condition is
similar to assuming that the Assouad dimension of (Z, d) is n/ε. See
[9, Chapter 9] for a discussion on various notions of metric dimension.
Finally, condition (iv) is exactly the discrete length assumption that
appears in Theorem 1.5. It basically functions as a one-dimensional
metric condition. Thus, the essential ingredients to our de-snowflaking
result are topological regularity, metric self-similarity, upper bounds on
volume, and lower bounds on one-dimensional metric structure.
Regarding the conclusion of the proposition, the “data from assump-

tions (i)–(iv)” include the following: the parameters ε and n; the diame-
ter of Z; the constant C from conditions (ii), (iii), and (iv); the function
ω from the conformal elevator; and the modulus of continuity of a fixed
homeomorphism between Z and S

n. We will also refer to these as the
“data associated to Z.”
The proof of Proposition 4.1 will proceed as follows. We begin by

fixing, for each length scale e−εk, a cover of Z by metric balls. For x, y ∈
Z, the smallest number of these balls needed to join x and y provides a
“fuzzy” notion of distance at scale e−εk. After a proper normalization of
this fuzzy distance, we let k tend to infinity to obtain the metric dnew.
The lower bound in (4.1) will follow almost directly from the discrete

length condition in (iv). The upper bound is more complicated, but in
it we will see a nice interplay between the topological and metric struc-
tures of Z, which are linked together by the existence of the conformal
elevator.

4.1. The definition of dnew. Fix notation as in the statement of the
proposition. In particular, we let C be a constant large enough so that
conditions (iii) and (iv) hold, as well as the conditions from the definition
of a conformal elevator. We also let ω be the function associated with
the conformal elevator on Z. This notation will remain fixed throughout
the proof.
By scaling the metric d, we may assume for simplicity that diamZ =

1. Indeed, the implicit constant in the desired conclusion is allowed to
depend on the diameter, so we lose no generality.
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For each k ∈ N, fix a maximal e−εk-separated set in Z and call it Pk.
This also will remain fixed throughout the proof. It is not difficult to
see that if P is any e−εk-separated set contained in a ball B(p, r), with
0 < r ≤ 1, then

(4.2) #P � rn/ε · enk.
Indeed, this follows from the volume bound in (iii) after applying the
conformal elevator for p, r, and λ = 2. In particular, if r = e−εm, then
such a set has size � en(k−m).
By maximality of Pk, we mean with respect to set inclusion. This is,

of course, equivalent to

Z =
⋃

x∈Pk

B(x, e−εk)

for each k. It will be more convenient to work with balls of twice this
radius, and so we refer to

{B(x, 2e−εk) : x ∈ Pk}
as the set of k-balls. For notational simplicity, we may abbreviate
B(x, 2e−εk) by Bk(x) when x ∈ Pk. Often, the center-point x of Bk(x)
is not important. As a result, we will usually denote k-balls simply by
B or Bi, e.g., when dealing with a chain of such balls. In these cases, k
will be understood from the context.
We first observe that for each k, the set of k-balls has controlled

overlap, in that each k-ball intersects at most a uniformly bounded
number of k-balls. Indeed, if Bk(x) is a k-ball and Bk(xi), 1 ≤ i ≤ m, are
those that intersect Bk(x) non-trivially, then the collection {x1, . . . , xm}
is an e−εk-separated set in the ball B(x, 4e−εk). By (4.2), above, we get

(4.3) m � (4e−εk)n/ε · enk � 1,

where the implicit constant is allowed to depend on n and ε.
A sequence of k-balls B1, B2, . . . , Bl with Bi ∩ Bi+1 
= ∅ is called a

k-ball chain. We say that such a chain connects two points x and y
if x ∈ B1 and y ∈ Bl. Observe that, as Bi may not be a connected
set itself, chains may not be connected topologically. This will pose no
problem for our later analysis, though.
The length of a k-ball chain is simply the number of balls appearing

in it, counted with multiplicity. For each k, let

dk(x, y) = (length of shortest k-ball chain connecting x and y) · e−k.
The normalization by e−k is appropriate; indeed, each k-ball has diam-
eter approximately e−εk with respect to d, so its diameter with respect
to the sought-after dnew should be approximately e−k. Note that dk is
not actually a metric; for each x, we have dk(x, x) = e−k. But dk is
symmetric and the triangle inequality clearly holds.
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We now set

dnew(x, y) = lim sup
k→∞

dk(x, y).

It is not immediate that this is a metric either. It is certainly symmetric,
has dnew(x, x) = 0 for all x, and satisfies the triangle inequality. The in-
equalities 0 < dnew(x, y) <∞ for x 
= y will, however, be a consequence
of proving that dnew is bi-Lipschitz equivalent to d1/ε. Thus, we wish to
show that for each pair of distinct points x, y ∈ Z,

d(x, y)1/ε � dk(x, y) � d(x, y)1/ε

for k large enough, where the implicit constants depend only on the
data associated to Z.
As we mentioned before, the lower bound will be an easy consequence

of assumption (iv) in the statement of the proposition—the lower bound
on the length of discrete “paths” between points. We quickly verify this.
Let x, y ∈ Z be distinct and let B1, . . . , Bl be a k-ball chain connecting

x and y. Then x ∈ B1 and y ∈ Bl. Choose xi ∈ Bi ∩ Bi+1 for each
1 ≤ i ≤ l − 1 and consider the discrete path

x = x0, x1, . . . , xl−1, xl = y

from x to y. Observe that d(xi, xi+1) ≤ 4e−εk, as diamBi ≤ 4e−εk.
Consequently,

l �

(
d(x, y)

4e−εk

)1/ε

,

so that l � d(x, y)1/ε · ek where the implicit constant depends only on
C and ε. This gives immediately that dk(x, y) � d(x, y)1/ε, as desired.
We now turn to the upper bound, which is much more subtle. To

obtain it, we will use the lower bound, along with a discrete length-
volume inequality for cubes.

4.2. The upper bound. We begin by stating the crucial lemma, which
will almost immediately give the upper bound when applied iteratively.
This method of proof was motivated by a similar argument in [28],
where the author also sought to establish upper bounds on “tile” chains
connecting two points.

Lemma 4.2. Let x, y ∈ Z and m ∈ N with d(x, y) ≤ e−ε(m−1).
Then for each k ≥ m, there is a k-ball chain connecting B(x, e−εm) and
B(y, e−εm) of length at most C ′ek−m. Here, C ′ depends only on the data
associated to Z.

As should be clear, we say that a k-ball chain B1, . . . , B� connects
two sets A and B if B1 ∩A and B� ∩B are non-empty. We will first see
how this lemma implies the desired upper bound.
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Proof of the Upper Bound. Suppose that Lemma 4.2 holds. Fix distinct
points x and y in Z, and choose h ∈ N so that e−εh < d(x, y) ≤ e−ε(h−1).
Recall that we have normalized diamZ = 1. Also fix k > h; it is helpful
to think of k being very large relative to h. We will temporarily use Bm

z

to denote the ball B(z, e−εm) for z ∈ X and m ∈ N. This should not be
confused with the shorthand notation we used earlier for k-balls.
By the lemma, there is a k-ball chain connecting Bh

x and B
h
y of length

at most C ′ek−h. This gives us points x = x1,0, x1,1, x1,2, x1,3 = y where

x1,0, x1,1 ∈ Bh
x and x1,2, x1,3 ∈ Bh

y , and x1,1 is connected to x1,2 by a

k-ball chain of length at most C ′ek−h.
We now iterate this process. Observe that d(x1,0, x1,1) ≤ e−εh so that

we can apply the lemma again to obtain a k-ball chain of length at most
C ′ek−(h+1) connecting Bh+1

x1,0
and Bh+1

x1,1
. This gives us points x = x2,0,

x2,1, x2,2, x2,3 = x1,1 where x2,0, x2,1 ∈ Bh+1
x1,0

and x2,2, x2,3 ∈ Bh+1
x1,1

, and

x2,1 is connected to x2,2 by a k-ball chain of length at most C
′ek−(h+1).

Of course, we do a similar process to the pair of points x1,2 and x1,3.
The mth step in this process (for 1 ≤ m ≤ k−h) proceeds as follows.

From the (m− 1)-th step, we have 2m points

x = xm−1,0, xm−1,1, . . . , xm−1,2m−1 = y

satisfying d(xm−1,i, xm−1,i+1) ≤ e−ε(h+m−2) for each even integer i ∈
{0, . . . , 2m−2}. Moreover, there is a previously-constructed k-ball chain
connecting xm−1,i+1 to xm−1,i+2.
It will be convenient to rename these 2m points so that they appear

in the m-th step. To do this, we let

xm,j =

{
xm−1,j/2, if j ≡ 0 mod 4

xm−1,(j−1)/2, if j ≡ 3 mod 4

for 0 ≤ j ≤ 2m+1 − 1. We do not yet define the points corresponding to
j ≡ 1, 2 mod 4, because we still have to find them.
To this end, observe that d(xm,j , xm,j+3) ≤ e−ε(h+m−2) for each j ≡ 0

mod 4. Thus, applying Lemma 4.2 to these points, we find a k-ball
chain of length at most C ′ek−(h+m−1) connecting the balls Bh+m−1

xm,j
and

Bh+m−1
xm,j+3

. We can therefore choose points xm,j+1 ∈ Bh+m−1
xm,j

and xm,j+2 ∈
Bh+m−1

xm,j+3
that are connected by this k-ball chain.

We have now obtained 2m+1 points

x = xm,0, xm,1, . . . , xm,2m+1−1 = y,

such that
d(xm,i, xm,i+1) ≤ e−ε(h+m−1)

for each even integer i ∈ {0, . . . , 2m+1 − 2}. Note that we have con-
structed 2m−1 different k-ball chains at this step, each of length at most
C ′ek−(h+m−1). Moreover, for each even i ∈ {0, . . . , 2m+1 − 2}, there is a
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k-ball chain connecting xm,i+1 to xm,i+2, constructed either at this mth
step or at a previous one.
Consider what happens at the end of the (k − h + 1)-th step. We

obtain 2k−h+2 points

x = xk−h+1,0, xk−h+1,1, . . . , xk−h+1,2k−h+2−1 = y

satisfying d(xk−h+1,i, xk−h+1,i+1) ≤ e−εk for each even i. Consequently,
there is a k-ball containing both xk−h+1,i and xk−h+1,i+1. Indeed, if

z ∈ Pk with d(z, xk−h+1,i) < e−εk, then

xk−h+1,i, xk−h+1,i+1 ∈ B(z, 2e−εk) = Bk(z).

Moreover, there is a k-ball chain connecting xk−h+1,i+1 to xk−h+1,i+2
that was constructed at some step of the whole process.
Concatenating these k-ball chains, using the single k-balls containing

xk−h+1,i and xk−h+1,i+1 to join them together, we end up with a k-ball
chain from x = xk−h+1,0 to y = xk−h+1,2k−h+2−1 of length at most

2k−h+1 +

k−h+1∑
m=1

2m−1 · C ′ek−(h+m−1) � ek−h.

By the way we chose h, we obtain

dk(x, y) � ek−h · e−k �
(
e−εh

)1/ε
� d(x, y)1/ε,

where the implicit constants depend only on C ′. q.e.d.

It therefore remains to prove Lemma 4.2. Broadly, our goal is to
use the conformal elevator on Z to blow up the balls B(x, e−εm) and
B(y, e−εm) to a uniform scale, so that we can essentially reduce to the
case thatm ≈ 1. Establishing the analogous bound on this uniform scale
will require some topological arguments, combined with the discrete
volume and length bounds on Z. We will first develop the topological
tools necessary to carry this out.

4.3. A discrete length-volume inequality. An important topic in
metric geometry is the relationship between the volume of a space and
the lengths of curves that, in some way, generate it. See [14, Chapter 4]
for a survey of methods and results in this spirit. Among these is the
following theorem, originally proved by W. Derrick [11]. We state it in
the form cited in [14] in order to motivate more clearly what will follow.

Theorem 4.3 (Derrick [11, Theorem 3.4]). Let g be a Riemannian
metric on the cube [0, 1]n, and let Fk, Gk, 1 ≤ k ≤ n, denote the pairs
of opposite codimension-1 faces of [0, 1]n. Let dk be the distance between
Fk and Gk with respect to the metric g. Then

Vol(g) ≥ d1d2 · · · dn.
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We will need a discrete/topological version of this theorem. Inciden-
tally, the proof of the discrete version mimics the proof of the Riemann-
ian version.
To set this up, let U1, . . . , UN be an open cover of the cube [0, 1]n.

Again let Fk, Gk denote the pairs of opposite codimension-1 faces:
πk(Fk) = {0} and πk(Gk) = {1}, where πk : Rn → R is the projec-
tion onto the kth coordinate axis. We say that Ui1 , . . . , Uil is a chain if
Uij ∩Uij+1


= ∅ for each j. Moreover, such a chain is said to connect two
sets A and B if Ui1 ∩A 
= ∅ and Uil ∩B 
= ∅.

Proposition 4.4. Let U1, . . . , UN be as above, and let dk denote the
smallest number of sets Ui in a chain that connects Fk and Gk. Then

N ≥ d1d2 · · · dn.
Proof. Without loss of generality, we may assume that no Ui is re-

dundant, i.e., that for each i, there is a point xi ∈ Ui that belongs
to no other Uj. Otherwise, we could delete Ui from the cover, thereby
decreasing the total number of sets without reducing the numbers dk.
We first define a map f0 : {x1, . . . , xN} → Z

n where the kth compo-
nent is

πk(f0(xi)) =
minimal number of sets Uj in a chain
that connects Fk and {xi}.

The existence of such a chain follows from the fact that there is a path
in [0, 1]n from Fk to xi and the collection {Uj} is an open cover of this
path.
Now we extend f0 to a map on [0, 1]n by using a partition of unity

subordinate to {Ui}. More precisely, let {ϕi} be a partition of unity such
that supp(ϕi) ⊂ Ui, and let

f(x) =
N∑
i=1

ϕi(x)f0(xi) =
N∑
i=1

ϕi(x)yi,

for x ∈ [0, 1]n, where we use yi to denote f0(xi). Observe that f does
indeed extend f0 because ϕj(xi) = 0 for j 
= i and ϕi(xi) = 1. It is also,
of course, continuous.
We claim that πk(f(Fk)) = {1} and πk(f(Gk)) ⊂ [dk,∞) for each k.

For x ∈ Fk, let Ui1 , . . . , Uim be the sets containing x so that

f(x) =
m∑
j=1

ϕij (x)yij .

As x ∈ Uij ∩ Fk, we see that the single set Uij connects Fk and {xij}.
Thus, the kth coordinate of yij is 1. Consequently,

πk(f(x)) =
m∑
j=1

ϕij (x) = 1.
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Similarly, if x ∈ Gk, again let Ui1 , . . . , Uim be the sets containing x.
Then Uij ∩Gk is non-empty, so any chain connecting Fk to {xij} (which
necessarily must end with the set Uij ) actually connects Fk and Gk.
By the definition of dk, this chain has size at least dk. Thus, the k-th
coordinate of yij is at least dk. As a result,

πk(f(x)) =

m∑
j=1

ϕij (x)πk(yij) ≥ dk

m∑
j=1

ϕij (x) = dk.

We now claim that the image of f must contain the n-dimensional
rectangle

S =
n∏

k=1

[1, dk].

If not, there exists a point y ∈ S\f([0, 1]n). As f is continuous, f([0, 1]n)
is closed, so we may assume that y is in the interior of S. Let g be
a homeomorphism from [0, 1]n to S that sends corresponding faces to
corresponding faces (an affine map will do). Then by the previous claim,

ft = (1− t)f |∂[0,1]n + tg|∂[0,1]n
gives a homotopy with values in R

n\ int(S). In particular, f |∂[0,1]n is
homotopic to g|∂[0,1]n in R

n\{y}.
Fix a simplicial decomposition of [0, 1]n; this gives a corresponding

decomposition of ∂[0, 1]n. The latter decomposition allows us to ex-
press f |∂[0,1]n and g|∂[0,1]n as singular (n− 1)-chains with integer coeffi-
cients. Abusing notation, we continue to denote the chains by f |∂[0,1]n
and g|∂[0,1]n . The homotopy given above implies that the correspond-
ing classes [f |∂[0,1]n ] and [g|∂[0,1]n ] are equal in the singular homology
group Hn−1(R

n\{y}). Notice, though, that f |∂[0,1]n extends to the map
f : [0, 1]n → R

n\{y}, which we can view as a singular n-chain via the
decomposition of [0, 1]n. Thus, the chain f |∂[0,1]n is the image of the
chain f under the boundary map, so [f |∂[0,1]n ] is zero in Hn−1(R

n\{y}).
In particular, [g|∂[0,1]n ] is also zero. This, however, contradicts the fact
that [g|∂[0,1]n ] generatesHn−1(R

n\{y}), which is isomorphic to Z. Hence,
it must be that S ⊂ f([0, 1]n).
Finally, we claim that if f(x) ∈ Z

n, then f(x) = yi for some i. Let
Ui1 , . . . , Uim be the sets for which ϕij (x) > 0, so that x ∈ Ui1 ∩· · ·∩Uim .
Then

f(x) =

m∑
j=1

ϕij (x)yij ,

and for each j, l ∈ {1, . . . ,m},
||yij − yil ||∞ ≤ 1,

where ||y||∞ = max{|πk(y)| : 1 ≤ k ≤ n} is the ∞-norm. This inequal-
ity follows immediately from the fact that Uij and Ui� have non-trivial
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intersection. Consequently, for each k, there is an integer ak such that

πk(yij ) ∈ {ak, ak + 1}
for all j; namely, ak = min{πk(yij ) : 1 ≤ j ≤ m}. Now fix k, and let

I = {j : πk(yij ) = ak} and J = {j : πk(yij ) = ak + 1}.
By the definition of ak, we have I 
= ∅. Then

πk(f(x)) =
m∑
j=1

ϕij (x)πk(yij ) =
∑
j∈I

ϕij (x)ak +
∑
j∈J

ϕij (x)(ak + 1)

= ak +
∑
j∈J

ϕij (x).

By assumption, πk(f(x)) is an integer, so
∑

j∈J ϕij (x) is also an integer,

necessarily equal to 0 or 1. This can happen only if J = ∅ or J =
{1, . . . ,m}, but the latter implies that I = ∅, contrary to assumption.
Thus, J = ∅, so each yij has k-th coordinate ak. In particular, f(x) =
(a1, . . . , an) as well, giving f(x) = yi1 .
From the previous claims we obtain the desired conclusion immedi-

ately. Each integer lattice point in the cube S = [1, d1]×· · ·× [1, dn] has
some xi in its pre-image under f . There are d1d2 · · · dn integer lattice
points in S, so N ≥ d1d2 · · · dn. q.e.d.

It is easy to see that Proposition 4.4 still holds if all of the sets Ui

are assumed to be closed. Indeed, we can enlarge Ui by a small amount
to obtain open sets U ′i without changing the incidence structure. Then
apply the proposition to these open sets.
More importantly for our later use, we point out that the proposition

above remains true if we replace [0, 1]n by a topological cube. Indeed,
the assumptions and conclusions are entirely topological.
Before moving on to the proof of Lemma 4.2, we must establish a

basic fact about finding topological cubes in the sphere Sn.

Lemma 4.5. Let B0 and B1 be metric balls of radius δ > 0 in S
n

for which dist(B0, B1) ≥ δ. Suppose that E ⊂ S
n has diam(E) < δ

and dist(Bi, E) ≥ δ for i = 0, 1. Then there is a set S ⊂ S
n with the

following properties:

(i) S is homeomorphic to [0, 1]n;
(ii) the faces {0}× [0, 1]n−1 and {1} × [0, 1]n−1 correspond, under this

homeomorphism, to sets C0 ⊂ B0 and C1 ⊂ B1, respectively;
(iii) if x and y in S correspond to points that lie in opposite codimension-

1 faces of [0, 1]n, then dSn(x, y) ≥ cδ3;
(iv) S is disjoint from E.

Here, c is an absolute constant.
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We should remark that the bound in (iii) is certainly far from optimal.
It is, however, sufficient for our purposes and makes the following proof
much simpler.

Proof. By rotation, we may assume that E contains the north pole
N = (0, . . . , 0, 1). Let D be the metric ball of radius δ centered at N so
that E ⊂ D and Bi ∩D = ∅ for i = 0, 1.
Let p : Sn → R

n be the stereographic projection

(x1, · · · , xn+1) �→
(

x1
1− xn+1 , . . . ,

xn
1− xn+1

)
.

Then p(∂D) is an (n − 1)-dimensional sphere of radius R ∈ [1/δ, 2/δ].
Moreover, we can say that p|Sn\D is a bi-Lipschitz map onto the Eu-
clidean ball BRn(0, R) with

(4.4) dSn(x, y) � dRn(p(x), p(y)) �
1

δ2
dSn(x, y),

where the implicit constants are absolute. This follows from trigonomet-
ric arguments in the plane containing N , p(x), and p(y). As a result,
p(B0) and p(B1) are Euclidean balls in BRn(0, R) with

dist(p(B0), p(B1)) � δ and diam(p(Bi)) � δ

for i = 0, 1. It is then easy to find an n-dimensional topological cube
Ŝ ⊂ BRn(0, R) with a pair of opposite codimension-one faces in p(B0)
and p(B1), respectively, and for which any pair of opposite faces are at
distance � δ.

Now let S = p−1(Ŝ). Properties (i), (ii), and (iv) immediately follow

from our choice of Ŝ, and property (iii) is a consequence of the bounds
in (4.4). q.e.d.

4.4. Proof of Lemma 4.2.We will prove a slight variant of the lemma,
which easily implies the form stated above. Namely, we show that if x
and y are distinct with e−εm < d(x, y) ≤ e−ε(m−1), then for each k ≥ m
there is a k-ball chain connecting the balls B(x, e−εm) and B(y, e−εm)
of length at most C ′ek−m.
It is straightforward to obtain Lemma 4.2 from this. Indeed, let x, y ∈

Z andm ∈ N with d(x, y) ≤ e−ε(m−1). Fix k ≥ m, and letm′ ≥ m be the

integer for which e−εm
′

< d(x, y) ≤ e−ε(m
′−1). If k ≥ m′, then the desired

conclusion in Lemma 4.2 follows immediately from the conclusion of the
variant. If k < m′, then d(x, y) ≤ e−εk so that x and y are contained in
a common k-ball. Thus, it suffices to prove the variant.
To this end, let x, y ∈ Z with e−εm < d(x, y) ≤ e−ε(m−1), and fix

k ≥ m. For ease of notation, let

Bx = B(x, e−εm) and By = B(y, e−εm),
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which again should not be confused with the earlier notation for k-balls.
To find a short k-ball chain connecting Bx and By, we will proceed in
the following way. We first restrict our attention to larger balls

B(p, r) ⊂ B(p, λr),

containing bothBx and By but still of radius roughly e
−εm. By estimates

we have discussed earlier, such a ball intersects � en(k−m) k-balls. Ap-
plying the conformal elevator at this location and scale enlarges Bx and
By to a uniform size so that we can find a “wide” topological cube
inside the image of B(p, λr). This cube will have a pair of opposite
codimension-1 faces in the images of Bx and By, respectively, and each
pair of opposite faces will be uniformly far apart. Pulling this cube back
down to scale ≈ e−εm, it will be covered by those k-balls that intersect
B(p, λr). This puts us in the setting of Proposition 4.4, where the lower
discrete length bound will imply that di � ek−m for each i. As the size
of this cover is � en(k−m), Proposition 4.4 guarantees that di � ek−m

as well. In particular, there is a chain connecting Bx and By of length

roughly ek−m.
We must, of course, make these arguments rigorous; to do so, it will

be convenient to set p = x and r = 2Ce−ε(m−1), where C is the large
constant we chose at the beginning of Section 4.1. Observe then that

Bx ∪By ⊂ B(p, r),

and moreover, that x, y ∈ B(p, r/C). Let us also choose λ (for later use
in applying the conformal elevator) in the following way. Fix a homeo-
morphism F : Z → S

n and let 0 < δ < 1 be small enough that

(4.5) d(z, w) ≥ 1

2C2eε
implies dSn(F (z), F (w)) ≥ 3δ

for z, w ∈ Z. Then take λ ≥ 2 large enough so that

(4.6) d(z, w) < ω
(
1
λ

)
implies dSn(F (z), F (w)) < cδ3,

where 0 < c < 1 is the constant from Lemma 4.5. Note that λ will
depend on the modulus of continuity of F and F−1.
The conformal elevator on Z gives a map g for this choice of p, r, and

λ. If it happens that r > 1 (i.e., if m is small), then we simply choose g
to be the identity map. All of the following estimates work equally well
in this case.
Let x′ = g(x), y′ = g(y), and K = g(Z\B(p, λr)). Property (ii) of the

conformal elevator guarantees that

d(x′, y′) ≥ d(x, y)

Cr
≥ e−εm

2C2e−ε(m−1)
=

1

2C2eε
,

so x′ and y′ are far apart. Property (iii) tells us that

(4.7) B(x′, 1/C) ∪B(y′, 1/C) ⊂ g(B(p, r)),
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and as g is a homeomorphism, this implies that

dist({x′, y′},K) ≥ 1
C .

Moreover, we claim that

(4.8) B
(
x′, 1

2C2eε

) ⊂ g(Bx) and B
(
y′, 1

2C2eε

) ⊂ g(By).

Indeed, if w ∈ B(x′, 1/(2C2eε)), then z = g−1(w) must be in B(p, r) by
(4.7). Consequently, property (ii) again gives

d(x, z) ≤ Cr · d(gx, gz) = Cr · d(x′, w) < 2C2e−ε(m−1)

2C2eε
= e−εm,

so that z ∈ Bx. Hence, w = g(z) is in g(Bx). The same reasoning works
also for By. Finally, property (iv) of the conformal elevator guarantees
that

diamK ≤ ω
(
1
λ

)
,

which we view as being very small.
Let us now use the homeomorphism F : Z → S

n to “regularize” this
large-scale configuration. By our choice of δ from (4.5), we have

dSn
(
F (x′), F (y′)

) ≥ 3δ and dist
({F (x′), F (y′)}, F (K)) ≥ 3δ

so that B0 = BSn(F (x
′), δ) and B1 = BSn(F (y

′), δ) are metric balls in
S
n with

dist(B0, B1) ≥ δ

and of distance at least δ from F (K). Moreover, observe that

(4.9) B0 ⊂ F
(
B(x′, 1/(2C2eε))

) ⊂ F (g(Bx))

and

(4.10) B1 ⊂ F
(
B(y′, 1/(2C2eε))

) ⊂ F (g(By)) ,

both of which follow from (4.5) and (4.8). Also note that by our choice
of λ,

diamF (K) ≤ cδ3 < δ.

The metric balls B0 and B1 and the set F (K) therefore satisfy the

hypotheses in Lemma 4.5. Let Ŝ ⊂ S
n\F (K) be the n-dimensional topo-

logical cube given in the conclusion of this lemma. Then Ŝ has a pair
of opposite codimension-1 faces Ĉ0 and Ĉ1 in B0 and B1, respectively;
moreover, any two opposite faces have spherical distance ≥ cδ3 from
each other.
Now send this set Ŝ back to Z via the homeomorphism (F ◦ g)−1;

that is, let

S = g−1 ◦ F−1(Ŝ)
so that S is a topological cube in the ball B(p, λr). Observe that it has
a pair of opposite codimension-1 faces

C0 = g−1 ◦ F−1(Ĉ0) and C1 = g−1 ◦ F−1(Ĉ1)
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that lie within Bx and By, respectively. This follows from the inclusions
in (4.9) and (4.10).
Consider the set of k-balls that meet B(p, λr). Intersect each k-ball

with S, and call the resulting collection U . The estimate in (4.2) implies
that

#U � en(k−m).

Hence, U is an open cover of the topological cube S by � en(k−m) sets.
In view of Proposition 4.4, we wish to show that each chain from U that
joins opposite codimension-1 faces of S must have � ek−m sets.
To this end, let U1, . . . , Ul be such a chain, so that Ui ∩ Ui+1 
= ∅ for

each i and there are a ∈ U1 and b ∈ Ul in opposite faces of S. As F ◦g(a)
and F ◦ g(b) lie in opposite faces of Ŝ, we know that

dSn(F ◦ g(a), F ◦ g(b)) ≥ cδ3.

By our choice of λ in (4.6), this implies that

d(ga, gb) ≥ ω
(
1
λ

)
.

Property (i) of the conformal elevator then guarantees that

d(a, b) ≥ r · d(ga, gb)
C

= 2e−ε(m−1)d(ga, gb) � e−εm,

because ω(1/λ) is a uniform constant. The points

a = x0, x1, . . . , xl−1, xl = b

where xi ∈ Ui ∩ Ui+1 for each 1 ≤ i ≤ l − 1, form a discrete 4e−εk-path
from a to b. Consequently,

l �

(
d(a, b)

4e−εk

)1/ε

� ek−m,

as desired.
Using the notation from Proposition 4.4, let d1 denote the smallest

number of sets in U that form a chain connecting C0 to C1. Similarly, for
2 ≤ i ≤ n, let di be the smallest number of sets in a chain connecting the
other (n−1) pairs of opposite faces in S. We have shown that di � ek−m

for each i, so Proposition 4.4 gives

en(k−m) � #U � d1 · e(n−1)(k−m).
Thus, there is a k-ball chain of length � ek−m joining C0 and C1; in
particular, such a chain joins Bx and By. This completes the proof of
Lemma 4.2.
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5. Proof of Theorem 1.5

Let (Z, d) be a compact metric space satisfying the assumptions in
Theorem 1.5. The strongly quasi-Möbius action Γ� Z equips Z with a
conformal elevator by Lemma 3.1 (see the remarks following the defini-
tion of a conformal elevator). The Ahlfors n/ε-regularity of Z immedi-

ately implies that every δ-separated set in Z has size at most Cδ−n/ε for
some uniform constant C. Finally, the discrete length property we im-
pose on Z is precisely the lower bound on discrete paths between points
that appears in condition (iv) of Proposition 4.1. Thus, Z satisfies all
four de-snowflaking conditions, so there is a metric dnew on Z for which

d(x, y)1/ε � dnew(x, y) � d(x, y)1/ε.

It is an easy exercise to see that the Ahlfors n/ε-regularity of (Z, d)
translates into Ahlfors n-regularity of (Z, dnew). Of course, (Z, dnew)
remains homeomorphic to S

n. More importantly, the action Γ � Z
remains strongly quasi-Möbius and cocompact on triples with respect
to dnew. The following theorem, which we discussed in Section 1, is
therefore relevant.

Theorem 5.1 ([4], Theorem 1.1). Let n ∈ N, and let Z be a compact,
Ahlfors n-regular metric space of topological dimension n. Suppose that
Γ � Z is a uniformly η-quasi-Möbius action on Z that is cocompact
on triples. Then Z is η̃-quasi-Möbius equivalent to the sphere S

n, where
η̃(t) = Cη(Ct) for some constant C.

Proof. The conclusion we state in this theorem is slightly different
from that stated in [4]. The authors conclude that the action Γ� Z is
quasisymmetrically conjugate to a Möbius action on S

n, but the above
statement is implicit on the way to this conclusion.
We must point out, though, that the authors do not explicitly state

the quantitative relationship between η̃ and η. However, the control on η̃
that we give here comes from their proof: first establish, as they do, that
Z and S

n have bi-Lipschitz equivalent weak-tangents; a quantitative ver-
sion of [4, Lemma 2.1] gives a quantitative version of [4, Lemma 5.3],
which guarantees that the compactification of a weak tangent of Z is
η1-quasi-Möbius equivalent to Z, where η1(t) = C1η(C1t); the compact-
ification of a weak tangent of Sn is again S

n; and the bi-Lipschitz equiv-
alence between weak tangents translates into a strongly quasi-Möbius
equivalence between the compactifications of weak tangents. Putting
these facts together gives the desired function η̃. q.e.d.

In our situation, Γ acts on (Z, dnew) by strongly quasi-Möbius maps,
so the distortion function η̃ that we obtain from Theorem 5.1 is also
linear. Hence, (Z, dnew) is strongly quasi-Möbius equivalent to S

n. As
any strongly quasi-Möbius homeomorphism between compact sets is
necessarily bi-Lipschitz (cf. Remark 3.2), we find that (Z, dnew) and
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S
n are bi-Lipschitz equivalent. Let f̃ : Z → S

n be a map giving this
equivalence, so that

dnew(x, y) � dSn(f̃(x), f̃(y)) � dnew(x, y)

for all x, y ∈ Z. This completes the proof in the case that n = 1.
Suppose now that n ≥ 2. Of course, the map f̃ that we have chosen

need not conjugate the action Γ � Z to a Möbius action on S
n. To

correct this, we use a classical theorem of Tukia.

Theorem 5.2 (Tukia [27, Theorem G]). Let Γ be a group that acts
on S

n, n ≥ 2, by η-quasi-Möbius homeomorphisms and is cocompact on
triples. Then there is an η̃-quasi-Möbius map ψ : Sn → S

n for which
ψΓψ−1 is a Möbius action; here, η̃(t) = Cη(t) for some constant C.

Proof. Again, Tukia’s stated result does not include the quantitative
relationship between η̃ and η that we give here. His proof, however,
constructs ψ as a limit of maps whose cross-ratio distortion we can keep
track of. More specifically, he finds a sequence gi ∈ Γ, corresponding
scaling factors λi > 0, and a linear map α ∈ GLn(R) for which

fi(x) = α̂(λi · gi(x))
converges to the desired map, ψ. Here, α̂ is the bi-Lipschitz homeomor-
phism of Sn obtained from α by conjugation by stereographic projection.
Consequently,

[fi(x1), fi(x2), fi(x3), fi(x4)]

≤ ‖α̂‖4[λigi(x1), λigi(x2), λigi(x3), λigi(x4)] ≤ ‖α̂‖4η([x1, x2, x3, x4]),
as scaling by λi does not change the cross-ratio. We use ‖α̂‖ to denote
the bi-Lipschitz constant of α̂.
Thus, each fi is η̃-quasi-Möbius with η̃(t) = ‖α̂‖4η(t), and so the

limit function ψ is also η̃-quasi-Möbius. q.e.d.

Applying this theorem to the strongly quasi-Möbius action f̃Γf̃−1

on S
n, we obtain a strongly quasi-Möbius ψ, which is therefore also

bi-Lipschitz, such that

(ψ ◦ f̃)Γ(f̃−1 ◦ ψ−1)
is a group of Möbius transformations on S

n. Setting f = ψ ◦ f̃ yields
the desired f .

Remark 5.3. It is not clear whether the stronger conclusion (bi-
Lipschitz conjugacy to a Möbius group) should hold in the case n = 1.
Tukia’s theorem has analogs in this setting; see, for example, [17] and
[22], which give us quasisymmetric conjugacy to a Möbius group. The
problem is in choosing the “correct” conjugacy. Note that there are pairs
of cocompact Möbius groups acting on S

1 that are quasisymmetrically
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conjugate but whose conjugating homeomorphism has non-zero deriva-
tive nowhere. See [19] for more information about the delicacy of such
questions.

6. Entropy Rigidity in Coarse Geometry

We now turn our attention to Theorem 1.8, which is a rigidity result
in the setting of Gromov hyperbolic geometry. We refer primarily to [9]
and [12] for background on hyperbolic metric spaces.
Let (X, d) be a metric space. We say that X is proper if all closed

balls B(x, r) are compact and that X is geodesic if any two points can
be connected by an isometric image of an interval in R.
Given two metric spaces (X, dX ) and (Y, dY ), a map f : X → Y is

called a quasi-isometric embedding if there are constants λ ≥ 1 and
k ≥ 0 such that

1

λ
dX(x, x

′)− k ≤ dY (f(x), f(x
′)) ≤ λdX(x, x

′) + k

for all x, x′ ∈ X. If, in addition, each point y ∈ Y lies in the k-
neighborhood of the image f(X), then we say that f is a quasi-isometry.
A rough isometric embedding or a rough isometry is defined in the same
way by requiring that λ = 1. For the most part, we will be concerned
with rough isometries. When it is necessary to specify the additive con-
stant k, we will use the term k-rough isometry.
For any three points x, y, p ∈ X, let

(x, y)p =
1
2 (dX(x, p) + dX(y, p)− dX(x, y)) .

This is the Gromov product of x and y based at p.

Definition 6.1. A metric space X is δ-hyperbolic if there is a base-
point p ∈ X so that

(6.1) (x, y)p ≥ min{(x, z)p, (y, z)p} − δ
for every x, y, z ∈ X. We say that X is a (Gromov) hyperbolic metric
space if it is δ-hyperbolic for some δ ≥ 0.

We will refer to the inequality in (6.1) as the δ-inequality. Although
this definition may seem slightly esoteric, it has a concrete geometric
meaning as a “thinness” condition on triangles. More precisely, if X is
a δ-hyperbolic geodesic metric space, then for every geodesic triangle
in X, each side is contained in the δ′-neighborhood of the union of the
other two sides, where δ′ is a constant multiple of δ (cf. [9, Proposition
2.1.3]).
Iterating the δ-inequality, one can obtain a corresponding condition

on finite chains of points in X. Namely, if x0, x1, . . . , xn ∈ X, then
(x0, xn)p ≥ min

1≤i≤n
(xi, xi−1)p − δ

log 2
log n− c,
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where c is a uniform constant depending only on δ [12, Chapter 2,
Lemma 14(i)]. Notice that the smaller we can take δ, the more negatively
curved X is. This leads to the following definition, given by M. Bonk
and T. Foertsch in [3].

Definition 6.2. For κ ∈ [−∞, 0), we say that X has an asymptotic
upper curvature bound κ if there is p ∈ X and a constant c ≥ 0 so that

(x0, xn)p ≥ min
1≤i≤n

(xi, xi−1)p − 1√−κ log n− c

for all chains x0, . . . , xn in X.

Here, we use the convention that 1/
√∞ = 0. If X has an asymptotic

upper curvature bound κ < 0, then we say that X is an ACu(κ)-space.
By our discussion in the previous paragraph, every hyperbolic metric
space is an ACu(κ)-space for some κ < 0. And conversely, the definitions
immediately imply that every ACu(κ)-space is Gromov hyperbolic.
Allowing the additive constant c in the definition of asymptotic up-

per curvature is what makes this notion asymptotic. A collection of
uniformly bounded configurations in X will not affect the asymptotic
curvature bounds, as one could simply make c larger. It makes sense,
then, that the best way to study these curvature bounds is to pass to
the boundary at infinity, which we now recall.

6.1. The hyperbolic boundary. To begin, we say that a sequence
{xn} in X converges at infinity if

(xn, xm)p →∞ as n,m→∞.
It is immediate to see that this property is independent of p. We consider
two such sequences {xn} and {yn} to be equivalent if

lim
n→∞

(xn, yn)p =∞,
and in this case, we write {xn} ∼ {yn}. This is an equivalence relation
on the set of sequences converging at infinity, and we let ∂∞X denote
the set of equivalence classes. Observe that if a sequence converges at
infinity, then any subsequence also converges at infinity and, moreover,
is equivalent to the original sequence.
The Gromov product on X extends to ∂∞X by

(ξ, η)p = inf lim inf
n→∞

(xn, yn)p,

where the infimum is taken over all {xn} and {yn} in the equivalence
classes ξ and η, respectively. Although taking this infimum is necessary
in general, the following lemma shows that it is not too restrictive.

Lemma 6.3 ([9], Lemma 2.2.2). Let X be δ-hyperbolic with base-point
p, and let ξ, η, ζ ∈ ∂∞X.
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(i) If {xn} represents ξ and {yn} represents η, then

(ξ, η)p ≤ lim inf
n→∞

(xn, yn)p ≤ lim sup
n→∞

(xn, yn)p ≤ (ξ, η)p + 2δ.

(ii) The δ-inequality (ξ, η)p ≥ min{(ξ, ζ)p, (η, ζ)p} − δ is satisfied.

When X is a CAT(−1)-space, Bourdon [7] has shown that
ρ(ξ, η) = e−(ξ,η)p

is a metric on ∂∞X and thus gives the boundary a canonical metric.
In the more general Gromov hyperbolic setting, however, this function
may fail the triangle inequality. In its place, we have

(6.2) ρ(ξ, η) ≤ Kmax{ρ(ξ, ζ), ρ(ζ, η)}
for any ξ, η, ζ ∈ ∂∞X, which follows immediately from part (ii) in the
preceding lemma. Note that K = eδ if X is δ-hyperbolic. A general
procedure then produces, for ε small enough (depending only on δ), a
metric dε on ∂∞X satisfying

1
4e
−ε(ξ,η)p ≤ dε(ξ, η) ≤ e−ε(ξ,η)p .

See [9, Section 2.2], especially Lemma 2.2.5, for details. This motivates
the following definition.

Definition 6.4. A metric d on ∂∞X is called a visual metric of
parameter ε if there is a base-point p ∈ X so that

e−ε(ξ,η)p � d(ξ, η) � e−ε(ξ,η)p

for all ξ, η ∈ ∂∞X. We say that d is visual if it is visual with respect to
some ε > 0.

The dependence on p is not important here; if d is visual with respect
to p, then it will be visual with respect to any other base-point, with
the same parameter ε. Observe that if ∂∞X admits a visual metric of
parameter ε, then it admits metrics of all parameters smaller than ε.
Thus, if we set

ε0 = ε0(X) = sup{ε : there is a visual metric on ∂∞X of parameter ε},
then each ε ∈ (0, ε0) has an associated visual metric. We call this interval
the visual interval. One should keep in mind the heuristic that the more
negatively curved X is, the larger ε0 will be.
The relationship between curvature in X and the length of this visual

interval is more explicit in terms of asymptotic upper curvature bounds.
Actually, we first need an additional assumption on X to guarantee that
its boundary accurately reflects its geometry at large scales.

Definition 6.5. We say that X is visual if there is a constant k and a
base-point p ∈ X such that for every x ∈ X there is a k-rough isometric
embedding γ : [0,∞)→ X with γ(0) = p and x in the image of γ.
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We will refer to the image of such γ as a k-rough geodesic ray, starting
at p. For visual metric spaces, the ACu(κ) condition can be transferred
to the boundary.

Proposition 6.6 ([3], Lemma 4.1). Let X be a visual, hyperbolic
metric space and assume that there are constants a and c with

(ξ0, ξn)p ≥ min
1≤i≤n

(ξi, ξi−1)p − a log n− c

for all chains ξ0, . . . , ξn in ∂∞X. Then there is a constant c′ for which

(x0, xn)p ≥ min
1≤i≤n

(xi, xi−1)p − a log n− c′

for all chains x0, . . . , xn in X. Conversely, if the inequality with chains
in X holds for some c′, then there is a constant c for which the inequality
with boundary chains holds.

This condition on boundary chains gives more precise control on the
type of inequality for ρ in (6.2). Indeed, we now have

ρ(ξ0, ξn) ≤ Cna max
1≤i≤n

ρ(ξi, ξi−1)

for any chain ξ0, . . . , ξn. Arguments similar to those in [9, Lemma 2.2.5]
allow one to build visual metrics on ∂∞X, but this time with more
control on the optimal value of ε0. In the end, the authors obtain the
following.

Proposition 6.7 ([3], Theorem 1.5). Let X be a visual, hyperbolic
metric space. If X is ACu(κ), then for each 0 < ε <

√−κ there is a
visual metric on ∂∞X with parameter ε. Conversely, if there is a visual
metric on ∂∞X with parameter ε, then X is an ACu(−ε2)-space.
Together with other results in [3], this fact suggests that the correct

analog of CAT(−1) in the coarse setting is ACu(−1). In the case where
X is CAT(−1), the canonical metric on ∂∞X is associated to the param-
eter ε0 = 1; in particular, there are visual metrics of parameter 1. Unfor-
tunately, this may not happen for more general ACu(−1)-spaces, even
though we know that visual metrics exist for all parameters 0 < ε < 1.

6.2. Geometric actions on hyperbolic metric spaces. Let X be
a proper, geodesic, hyperbolic metric space. These basic assumptions
guarantee two important “accessibility” properties for points in ∂∞X.
First, for any base-point p ∈ X and each z ∈ ∂∞X, there is an isometric
embedding γ : [0,∞)→ X for which

γ(0) = p and {γ(tn)} represents z
whenever tn → ∞. We refer to images of such embeddings as geodesic
rays and denote them by [p, z).
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Similarly, for any two distinct points z, z′ ∈ ∂∞X there is an isometry
γ : R→ X for which

{γ(−tn)} represents z and {γ(tn)} represents z′

whenever tn → ∞. Naturally, we will denote such geodesic lines by
(z, z′). The hyperbolicity of X then guarantees that there is a uniform
constant C for which

(6.3)
∣∣(z, z′)p − dist(p, (z, z′))

∣∣ ≤ C

whenever z, z′ ∈ X ∪ ∂∞X are distinct and p ∈ X.
A subset Y ⊂ X is called quasi-convex if there is a constant C for

which every geodesic segment in X with endpoints in Y lies in the C-
neighborhood of Y . We then say that an action Γ � X is quasi-convex
geometric if the action is

(i) isometric (each g ∈ Γ acts as an isometry);
(ii) properly discontinuous (the set {g ∈ Γ : g(K) ∩ K 
= ∅} is finite

for every compact set K ⊂ X);
(iii) quasi-convex cocompact (there is a non-empty, Γ-invariant, quasi-

convex set Y ⊂ X and a compact set K ⊂ Y for which Y =⋃
g∈Γ g(K)).

Let us fix such a group action Γ � X and a corresponding quasi-
convex set Y . As Y is Γ-invariant, the action Γ� Y is isometric, prop-
erly discontinuous, and cocompact. Recall that such actions are said to
be geometric.
For p ∈ X fixed, the limit set Λ(Γ) is the collection of points z ∈ ∂∞X

that can be represented by a sequence {xn} ⊂ Γp. Of course, this is
independent of our choice of p. It is not difficult to see that the orbit
Γp and the set Y are within finite Hausdorff distance from each other,
so Λ(Γ) coincides with ∂∞Y , viewed as a subset of ∂∞X. In particular,
Λ(Γ) is compact.
In fact, it will be convenient simply to replace Y with Γp. We lose no

generality in doing this, as quasi-convexity of Y implies quasi-convexity
of Γp. Thus, we take Y = Γp from now on.
Recall from earlier that the entropy of this action Γ� X is

(6.4) e(Γ) = lim sup
R→∞

log(N(R))

R

where N(R) = #{Γp ∩ BX(p,R)}. Under our assumptions, e(Γ) < ∞
and we can replace the “lim sup” with “lim”; in fact,

exp(e(Γ)R) � N(R) � exp(e(Γ)R)

(see [10, Théorème 7.2]). This quantity e(Γ) is the coarse analog of
volume entropy for Riemannian manifolds, and it is closely related to
the metric regularity on Λ(Γ).
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Theorem 6.8 (Coornaert [10, Section 7]). When equipped with a
visual metric of parameter ε > 0, the limit set Λ(Γ) is Ahlfors regular
of dimension e(Γ)/ε.

We now wish to transfer the action Γ� X to a quasi-Möbius action
on Λ(Γ). Until we mention otherwise, we equip Λ(Γ) with a visual metric
d of parameter ε. The following lemma indicates that the induced action
on Λ(Γ) is strongly quasi-Möbius.

Lemma 6.9. Let g ∈ Γ. Then g extends naturally to an η-quasi-
Möbius homeomorphism of (Λ(Γ), d), where η(t) = Ct, and C depends
only on the hyperbolicity constant of X and the multiplicative constant
in d.

This lemma and its proof are well known, though most references
deal with the more general case when g is assumed to be only a quasi-
isometry. In that setting, g still extends to a quasi-Möbius homeomor-
phism of the boundary, but the distortion function η might not be linear.
One does, however, recover a linear distortion function when g is a rough
isometry. The proof of Lemma 6.9 follows standard extension arguments
(see, for example, [24, Section 4]) and makes use of the following impor-
tant fact: for x1, x2, x3, x4 ∈ X, the cross-difference

(x1, x3)p + (x2, x4)p − (x1, x4)p − (x2, x3)p

= 1
2 (dX(x1, x4) + dX(x2, x3)− dX(x1, x3)− dX(x2, x4)) ,

is independent of the chosen base-point p ∈ X. In particular, isometries
preserve cross-differences, and so their extensions preserve metric cross-
ratios, up to a multiplicative constant.
Abusing terminology, we will continue to let g denote the extension of

g ∈ Γ to Λ(Γ). It is clear that composition is preserved in the extension,
so we indeed obtain a strongly quasi-Möbius group action Γ � Λ(Γ).
The next lemma, well known in this subject, shows that the cocom-
pactness and proper discontinuity of Γ � Y extends to cocompactness
and proper discontinuity on triples for Γ � Λ(Γ). See, for example,
[13, Sections 8.2.K–8.2.Q] for further discussion.

Lemma 6.10. If Λ(Γ) has at least three points, then the induced
action Γ � Λ(Γ) is

(i) cocompact on triples,
(ii) properly discontinuous on triples: for each triple z1, z2, z3 ∈ Λ(Γ)

of distinct points, for every τ > 0 there are only finitely many
g ∈ Γ for which gz1, gz2, and gz3 are τ -separated.

Before setting out to prove Theorem 1.8, it is necessary to explain
what it means for a rough isometry Φ: S → Y to be “roughly equivari-
ant” with respect to a geometric action of Γ on S. Of course, we will be
interested in the case when S = H

n+1.
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Definition 6.11. A map Φ: S → Y is roughly equivariant with re-
spect to the actions Γ � S and Γ � Y if there is a constant C for
which

dX (Φ(gx), gΦ(x)) ≤ C

for each x ∈ S and g ∈ Γ.
We will shortly need the fact that ∂∞H

n+1 can be identified with S
n.

Under this identification, the chordal metric on S
n is a visual metric of

parameter 1, cf. [9, Section 2.4.3].

6.3. Proof of Theorem 1.8. Let us return now to the set-up in The-
orem 1.8. Fix Γ � X as in the statement of the theorem, and recall
that Λ(Γ) is assumed to be a topological sphere. Let Y = Γp, so that
Y is quasi-convex and is an ACu(−1)-space. Using the geometric action
Γ� Y , we can verify the following lemma.

Lemma 6.12. There is a uniform constant C such that each y ∈ Y
lies in a C-rough geodesic ray in Y , starting at p. In other words, Y is
visual, in the sense of Definition 6.5.

Proof. Fix x ∈ Y . We first want to find a geodesic line (z, z′), with
z, z′ ∈ Λ(Γ), that passes close to x. To do this, choose two distinct points
w,w′ ∈ Λ(Γ). The quasi-convexity of Y ensures that the geodesic line
(w,w′) inX lies in the C1-neighborhood of Y , for some uniform constant
C1. In particular, there is a point x

′ ∈ Y for which dist(x′, (w,w′)) ≤ C1,
and there is g ∈ Γ with gx′ = x. Thus, dist(x, (gw, gw′)) ≤ C1. Let
z = gw and z′ = gw′ so that dist(x, (z, z′)) ≤ C1.
Consider now the geodesic triangle with sides [p, z), [p, z′), and (z, z′).

The δ-inequality in Lemma 6.3(ii) is valid for points in X ∪ ∂∞X, and
this translates into a thinness condition for geodesic triangles, even those
with some vertices in ∂∞X. Consequently,

dist(x, [p, z) ∪ [p, z′)) ≤ dist(x, (z, z′)) +C2 ≤ C1 + C2,

where C2 is uniform. Thus, we may assume that dist(x, [p, z)) ≤ C3 for
a uniform constant C3.
It now suffices to show that [p, z) is in the C4-neighborhood of Y ,

where again C4 is a uniform constant. Indeed, this easily implies that
we can find a C-rough geodesic ray in Y , starting at p, and passing
through x. As z ∈ Λ(Γ), there is a sequence {xn} ⊂ Y that represents z,
and by quasi-convexity of Y , the geodesic segments [p, xn] lie in the C4-
neighborhood of Y . The parameterized geodesic ray [p, z) is simply the
limit of the parameterized segments [p, xn] (in the topology of uniform
convergence on compact sets), so we immediately see that [p, z) is also
in the C4-neighborhood of Y . q.e.d.

As Y is visual and ACu(−1), we can apply Proposition 6.7 to obtain,
for each 0 < ε < 1, a visual metric on ∂∞Y of parameter ε. Recall,
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though, that ∂∞Y coincides with Λ(Γ). Thus, there are visual metrics
on Λ(Γ) for all parameters 0 < ε < 1. By Theorem 6.8, these metrics
are Ahlfors regular of dimension e(Γ)/ε. In particular, the Hausdorff
dimension of Λ(Γ) with this metric is e(Γ)/ε.
On the other hand, all visual metrics induce the same topology on

Λ(Γ); in our case, this is the topology of the standard n-dimensional
sphere. Recalling that the topological dimension of a compact metric
space always bounds the Hausdorff dimension from below (cf. [18, The-
orem 7.2]), we obtain

e(Γ)

ε
= dimH(Λ(Γ), dε) ≥ dimtop(Λ(Γ), dε) = n

for all 0 < ε < 1. This gives e(Γ) ≥ n, which is the first part of the
theorem.
It remains to prove the rigidity statement in Theorem 1.8, and this

task will occupy us for the remainder of the section. The “if” part of the
statement follows easily from standard facts about hyperbolic metric
spaces. Namely, if Φ: Hn+1 → Y is a rough isometry, then the fact
that ∂∞H

n+1 = S
n admits a visual metric of parameter 1 implies that

∂∞Y = Λ(Γ) does as well. Equipped with these metrics, we can extend
Φ to a bi-Lipschitz map of the boundaries:

Φ: Sn → Λ(Γ).

In particular,

e(Γ) = dimH Λ(Γ) = n.

Let us now address the converse statement. Thus, we assume that
e(Γ) = n and wish to construct the desired action Γ � H

n+1 and map
Φ: Hn+1 → Y .
Fix a visual parameter 0 < ε < 1 for Z = Λ(Γ), which we also view

as ∂∞Y , and let d denote a corresponding visual metric. Then (Z, d)
is Ahlfors n/ε-regular and Lemma 6.9 implies that there is a strongly
quasi-Möbius action Γ � Z. Moreover, Lemma 6.10(i) guarantees that
this action is cocompact on triples. We claim that the discrete length
condition appearing in Theorem 1.5 follows from the ACu(−1) assump-
tion on Y . Indeed, if

u = z0, z1, . . . , zl = v

is a discrete δ0-path between u and v in Z, then Proposition 6.6 gives

(u, v)p ≥ min
1≤i≤l

(zi, zi−1)p − log l − c

for some uniform constant c. Translating this to the metric, we obtain

d(u, v) � lε · max
1≤i≤l

d(zi, zi−1) � δ0l
ε,

and rearranging gives l � (d(u, v)/δ0)
1/ε. The conditions in Theorem 1.5

are therefore satisfied, and so we obtain a metric dnew for which d and
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dεnew are bi-Lipschitz equivalent. In particular, dnew is a visual metric on
Z of parameter 1. We also obtain a bi-Lipschitz map f : Sn → (Z, dnew)
for which f−1Γf is a Möbius action on the sphere. Observe that this
action is cocompact on triples.
Furthermore, as Γ� X is properly discontinuous, the induced bound-

ary action Γ � Z will be properly discontinuous on triples by Lemma
6.10(ii). This property is preserved under conjugation by homeomor-
phisms, so the Möbius action f−1Γf will also be properly discontinuous
on triples.
By the correspondence between Möbius transformations on S

n and
isometries of Hn+1, for each g ∈ Γ, there is a unique isometry of Hn+1

that induces f−1gf on the boundary. This gives us a geometric ac-
tion Γ� H

n+1. Indeed, the cocompactness and proper discontinuity on
triples for f−1Γf translate into cocompactness and proper discontinuity
for Γ� H

n+1.
To construct Φ, we use standard arguments about extending bi-

Lipschitz maps between boundaries of hyperbolic metric spaces to rough
isometries of the hyperbolic spaces themselves. Actually, our argument
will mimic the proof of Theorem 7.1.2 in [9]. Important to this con-
struction is again the fact that the chordal metric on S

n is a visual met-
ric of parameter 1 under the identification of Sn with ∂∞H

n+1. Thus,
f : Sn → (Z, dnew) is a bi-Lipschitz homeomorphism between two spaces

whose metrics are of the form e−(u,v), up to multiplicative constants.
Fix x ∈ H

n+1; for concreteness we will use the unit ball model of
H

n+1. Then there is a geodesic ray [0, z) in H
n+1, ending at some z ∈ S

n,
with x ∈ [0, z). Let γ : [0,∞) → H

n+1 be the unit speed parameteriza-
tion of this ray, and let t = dHn+1(0, x) so that γ(t) = x. Now, as f(z)
is in Λ(Γ), we also know that there is a geodesic ray [p, f(z)) in X that
lies in the C1-neighborhood of Y (cf. the proof of Lemma 6.12). Let
γ̃ : [0,∞) → X be the geodesic parameterization of this ray. We then
define Φ(x) to be a point in Y that is of distance at most C1 from γ̃(t).
Of course, this definition depends on the choice of a ray [p, f(z)) and
on the choice of a point in Y . Making different choices, however, yields
points that are within distance C2 of each other, where C2 is uniform.
The map Φ: Hn+1 → Y thus defined induces, almost by definition,

the homeomorphism f between S
n and Z. Moreover, we claim that Φ

is a rough isometry. To prove the desired bounds on dX(Φ(x),Φ(y)), it
suffices to show that

(6.5) |(x, y)0 − (Φ(x),Φ(y))p| ≤ C3

for a constant C3 independent of x, y ∈ H
n+1. Indeed, the definition of

Φ guarantees that

(6.6) |dHn+1(0, x) − dX(p,Φ(x))| , |dHn+1(0, y) − dX(p,Φ(y))| ≤ C4

for a uniform constant C4.
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Fix x, y ∈ H
n+1 and let u, v ∈ S

n be boundary points for which
x ∈ [0, u) and y ∈ [0, v). The metric hyperbolicity of Hn+1 implies that

|(x, y)0 −min{dHn+1(0, x), dHn+1(0, y), (u, v)0}|
is uniformly bounded (cf. [9, Lemma 7.1.3]). Similarly, the hyperbolicity
of X ensures that

|(Φ(x),Φ(y))p −min{dX(p,Φ(x)), dX (p,Φ(y)), (f(u), f(v))p}|
is uniformly bounded. Using (6.6) again, it is clear that (6.5) would
follow from the uniform boundedness of

|(u, v)0 − (f(u), f(v))p| .
This, however, is an immediate consequence of the fact that f is bi-
Lipschitz with respect to visual metrics of parameter 1; observe that
the bound will depend on the bi-Lipschitz constant of f . Thus, (6.5)
holds, and so

dHn+1(x, y)− C5 ≤ dX(Φ(x),Φ(y)) ≤ dHn+1(x, y) + C5,

where C5 is uniform. Note also that the definition of Φ, along with the
facts that f is surjective and Y is visual, imply that each point in Y is
of distance at most C6 from Φ(Hn+1). Thus, Φ is a rough isometry.
Finally, we must show that Φ is roughly equivariant. To this end, let

g ∈ Γ and consider the rough isometry g−1Φg : Hn+1 → Y . Observe
that it extends to the map

g−1fg : Sn → Λ(Γ).

As f is equivariant with respect to the boundary actions, we know that
g−1fg = f . Thus, g−1Φg and Φ are rough isometries whose boundary
extensions coincide. This implies that there is a uniform constant C for
which

dX(g
−1Φ(gx),Φ(x)) ≤ C

whenever x ∈ H
n+1 (cf. [6, Proposition 9.1]). Hence,

dX(Φ(gx), gΦ(x)) ≤ C

for each x ∈ H
n+1 and g ∈ Γ. This completes the proof of Theorem 1.8.

Remark 6.13. Many of the arguments we have used are valid in the
case n = 1 as well. In particular, we can conclude that e(Γ) ≥ 1 and that
if Γp is roughly isometric to H

2, then e(Γ) = 1. The notable exception
is the argument that allows us to conjugate the action Γ � Λ(Γ) to
a Möbius action on S

1 by a bi-Lipschitz map. We discussed this issue
in Remark 5.3, where we also indicated that the conjugation is possible
with a quasisymmetric map. By standard extension arguments similar to
those we used above to construct Φ, one can extend the quasisymmetric
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conjugation map to a quasi-isometry between H
2 and Γp. This quasi-

isometry will still be roughly equivariant with respect to the actions of
Γ on H

2 and on Γp by the same arguments we used above.
Thus, when n = 1, we can say only that Φ will be a quasi-isometry,

rather than a rough isometry. We leave as an open question whether the
stronger conclusion holds.
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1990. MR1086648, Zbl0731.20025.

[13] M. Gromov, Hyperbolic Groups, Essays in group theory, Math. Sci. Res. Inst.
Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR919829, Zbl0634.20015.

[14] ,Metric structures for Riemannian and non-Riemannian spaces, Progress
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