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CALABI-YAU THEOREM AND HODGE-LAPLACIAN

HEAT EQUATION IN A CLOSED

STRICTLY PSEUDOCONVEX CR MANIFOLD

Der-Chen Chang, Shu-Cheng Chang & Jingzhi Tie

Abstract

In this paper, we address the Calabi-Lee conjecture for pseudo-
Einstein contact structure via the CR Poincaré-Lelong equation.
Then we confirm the Calabi-Yau Theorem via Hodge-Laplacian
heat flow in a closed strictly pseudoconvex CR (2n+ 1)-manifold
(M, θ) for n ≥ 2. With its applications, we affirm a partial an-
swer of the CR Frankel conjecture in a closed spherical strictly
pseudoconvex CR (2n+ 1)-manifold.

Dedicated to the memory of Professor Jianguo Cao

1. Introduction

In his celebrated paper [21], Yau established several related results
which are of fundamental importance in the study of Kähler manifolds.
These results have to do with the existence of Kähler metrics with cer-
tain special properties on compact Kähler manifolds. In order to achieve
this goal, Yau reduced the problem to questions about some nonlinear
partial differential equations of Monge-Ampere type and then solved
them by a continuity method involving a priori estimates. More pre-
cisely, Yau established the following Calabi-Yau Theorem.

Proposition 1.1. ([21]) Let (X,ω0) be a compact Kähler manifold of
complex dimension m with a Kähler class [ω0] ∈ H2(X,R)∪H1,1(X,C).
Given any form Ω representing the first Chern class c1(X), there exists
a unique Kähler metric ω ∈ [ω0] such that

Ric(ω) = Ω.

In particular if c1(X) = 0, there exists a unique Kähler metric ω ∈ [ω0]
such that Ric(ω) = 0.

By the well-known ∂∂-Lemma (see, e.g., [18]) in Kähler geometry,
this is equivalent to finding a solution ϕ of the complex Monge-Ampere
equation

(ω0 +
i

2π
∂∂ϕ)m = efωm

0
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where f is unique after normalizing to
∫
X
(ef − 1)ωm

0 = 0.
In the present paper, we study the CR analogue of the Calabi-Yau

Theorem in a closed strictly pseudoconvex CR (2n+1)-manifold (M,θ)
(see the next section for basic notions in pseudohermitian geometry).
The pseudohermitian Ricci tensor and the torsion tensor on T 1,0M are
defined by

Ric(X,Y ) = Rαβ̄X
αY β̄,

T or(X,Y ) = i(Aᾱβ̄X
ᾱY β̄ −AαβX

αY β),

where X = XαZα, Y = Y βZβ, Rαβ̄ = Rγ
γ
αβ̄. The Tanaka-Webster

scalar curvature is R = Rα
α = hαβ̄Rαβ̄ . Before going any further, let us

recall some definitions.

Definition 1.1. ([16]) A contact form θ on a closed strictly pseu-
doconvex CR (2n+1)-manifold (M,θ) is said to be pseudo-Einstein for
n ≥ 2 if the pseudohermitian Ricci tensor Rαβ is proportional to the

Levi form hαβ , i.e.,

Rαβ = R
n hαβ

where R = hαβRαβ is the Tanaka-Webster scalar curvature of (J, θ).

The pseudo-Einstein condition is less rigid than the Einstein condition
in Riemannian geometry. Indeed, the CR contracted Bianchi identity no
longer implies R to be a constant due to the presence of pseudohermitian
torsion for n ≥ 2,

Rαβ,β = Rα − i(n− 1)Aαβ,β.

Note that any contact form on a closed strictly pseudoconvex 3-manifold
is actually pseudo-Einstein (since the pseudohermitian Ricci tensor has
only one component R11).

Next we define the real first Chern class c1(T
1,0(M)) for the holo-

morphic subbundle T 1,0M in (M,θ).

Definition 1.2. ([16]) Let (M,θ) be a closed strictly pseudoconvex
CR (2n + 1)-manifold. We define the first Chern class c1(T

1,0M) ∈
H2(M,R) for the holomorphc tangent bundle T 1,0M by

c1(T
1,0M) =

i

2π
[dωα

α] =
i

2π
[Rα

α
ABθ

A ∧ θB] =
i

2π
[γ]

with

γ = Rαβθ
α ∧ θβ +Aαµ,αθ

µ ∧ θ −Aαµ,αθ
µ ∧ θ

which is the purely imaginary two-form.

Then we have the following result.
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Proposition 1.2. ([16]) For any pseudo-Einstein manifold (M2n+1, θ)
with n ≥ 2, the first Chern class c1(T

1,0M) of T 1,0M is represented by

γ = − i
n
d(Rθ).

Here γ is globally exact and hence represents the trivial cohomology
class:

c1(T
1,0M) = 0.

In view of Proposition 1.1 and Proposition 1.2, we have the corre-
sponding CR Calabi-Lee conjecture ([16], [4]) in a closed strictly pseu-
doconvex CR (2n + 1)-manifold (M,θ) for n ≥ 2 as follows.

Conjecture 1.1. (Calabi-Lee Conjecture) Given any closed 2-form
Φ representing the first Chern class c1(T

1,0M) in a closed strictly pseu-
doconvex CR (2n + 1)-manifold (M,θ), there exists a unique contact

structure θ̃ ∈ [θ] such that

R̃ic
θ̃
(X,Y ) = Φ(X,Y )

for all X,Y ∈ ker θ. More precisely, it is equivalent to

(1.1) R̃ic
θ̃
(X,Y ) = Φ(X,Y ) = Ric(X,Y ) + dσ(X,Y )

for some purely imaginary 1-form σ = (σβθ
β − σαθ

α) + iσ0θ. In par-

ticular if c1(T
1,0M) = 0, there exists a unique pseudo-Einstein contact

structure θ̃ ∈ [θ] such that

(1.2)
R̃

n
h̃(X,Y ) = Φ(X,Y ) = Ric(X,Y ) + dσ(X,Y ).

We observe that as in the Calabi conjecture for compact Kähler man-
ifolds, it is natural to work on a fixed Kähler class due to the ∂∂-Lemma.
However, we do not have the analogue ∂b∂b-Lemma in the CR case. In-
stead, we work on a fixed contact class. More precisely, it is proved

(Theorem 3.1) that θ̃ = e2uθ is a pseudo-Einstein contact structure if
and only if u is the solution of

(n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .

Some of well-known results (Theorem 4.1) for the CR Calabi-Lee con-
jecture were derived by J. Lee ([16]) and Cao and the second author
([3]) via the elliptic method.

In this paper, we derive the following CR Calabi-Yau Theorem via
CR Hodge-Laplacian heat equation.

Theorem 1.1. Let (M,θ) be a closed strictly pseudoconvex CR (2n+
1)-manifold with c1(T

1,0M) = 0 for n ≥ 2. Then there is a smooth real-
valued function u solving

∆u =
1

n+ 2
(r −R) with r =

∫
M
Rdµ∫

M
dµ

.
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u also satisfies the following identities:

(n+ 2)(uαβ + uβα) = Rαβ −
r

n
hαβ

and

(1.3) (n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .

Hence e2uθ is a pseudo-Einstein contact structure. In addition, if R is
constant, then u is constant and

(1.4) Rαβ =
R

n
hαβ .

In general, it is difficult to see when a CR manifold has the vanishing
first Chern class c1(T

1,0M). By applying the CR version of Bochner-
type identity due to Mok-Siu-Yau [17] in the case of Kähler manifolds,
we derive the following result (also Corollary 5.1):

Theorem 1.2. Let (M,J, θ) be a closed strictly pseudoconvex CR
(2n+1)-manifold of positive pseudohermitian bisectional curvature and

Aαγ,α = 0

for each α. Then there exists a smooth real-valued function u such that

(n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .

Hence e2uθ is a pseudo-Einstein contact structure.

As an application of Theorem 1.1, we can affirm a partial answer of
the CR Frankel conjecture in a closed spherical strictly pseudoconvex
CR (2n+ 1)-manifold for n ≥ 2.

Conjecture 1.2. (CR Frankel Conjecture) A simply connected closed
strictly pseudoconvex CR (2n+1)-manifold (M,J, θ) of positive pseudo-
hermitian bisectional curvature is globally CR equivalent to a standard

CR sphere (S2n+1, Ĵ , θ̂) in Cn+1 with the induced CR structure Ĵ and

the standard contact form θ̂.

Definition 1.3. ([6]) Let (M,θ) be a closed strictly pseudoconvex CR
(2n + 1)-manifold with n ≥ 2; we call a CR structure J spherical if the
Chern curvature tensor
(1.5)

Cβαλσ = Rβαλσ − 1
n+2 [Rβαhλσ +Rλαhβσ + δαβRλσ + δαλRβσ]

+ R
(n+1)(n+2) [δ

α
βhλσ + δαλhβσ]

vanishes identically.

Remark 1.1. 1. Note that Cααλσ = 0. Hence Cβαλσ is always van-
ishing for n = 1.
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2. We observe that the spherical structure is CR invariant and a
closed spherical CR (2n + 1)-manifold (M,J) is locally CR equivalent

to (S2n+1, Ĵ).
3. ([14]) In general, a spherical CR structure on a (2n+1)-manifold is

a system of coordinate charts into S2n+1 such that the overlap functions
are restrictions of elements of PU(n + 1, 1). Here PU(n + 1, 1) is the
group of complex projective automorphisms of the unit ball in Cn+1 and
the holomorphic isometry group of the complex hyperbolic space CHn.

Now we may state the second main theorem in this paper.

Theorem 1.3. Let (M,J, θ) be a simply connected, closed spherical
strictly pseudoconvex CR (2n+1)-manifold of positive constant Tanaka-
Webster scalar curvature with c1(T

1,0M) = 0 for n ≥ 2. Then M is CR

equivalent to the standard CR sphere (S2n+1, Ĵ , θ̂).

Note that in [6], Chern and Ji proved a generalization of the Riemann
mapping theorem: If Ω is a bounded simply connected domain in Cn+1

and its connected smooth boundary ∂Ω has a spherical CR structure,
then it is biholomorphic to the unit ball and M = ∂Ω is the standard
CR (2n+ 1)-sphere.

However, it is shown ([3, Proposition 3.2 and Lemma 3.1]) that
c1(T

1,0M) = 0 if M is the boundary of a smooth, bounded strictly
pseudoconvex domain in a complete Stein manifold V n+1 for n ≥ 2.
Hence Theorem 1.3 implies the following result.

Corollary 1.1. Let (M,J, θ) be the smooth simply connected spheri-
cal boundary of a bounded strictly pseudoconvex domain Ω in a complete
Stein manifold V n+1 for n ≥ 2. Assume that (M,J, θ) has positive con-
stant Tanaka-Webster scalar curvature. Then M is CR equivalent to the

standard CR sphere (S2n+1, Ĵ , θ̂). In particular, any simply connected
closed spherical CR hypersurface of positive constant Tanaka-Webster
scalar curvature in Cn+1 is CR equivalent to the standard CR sphere

(S2n+1, Ĵ , θ̂) for n ≥ 2.

Furthermore, Proposition 5.1 implies that there is a smooth real-
valued function u such that e2uθ is a pseudo-Einstein contact structure
if (M,θ) is a closed spherical CR (2n + 1)-manifold of positive pseu-
dohermitian bisectional curvature for n ≥ 2. Hence from Theorem 1.3
again, we have

Corollary 1.2. Any simply connected closed spherical CR (2n+ 1)-
manifold (M,J, θ) of positive pseudohermitian bisectional curvature and
constant Tanaka-Webster scalar curvature is CR equivalent to the stan-

dard CR sphere (S2n+1, Ĵ , θ̂) for n ≥ 2.

It is conjectured that any simply connected closed spherical CR 3-
manifold (M,J, θ) of positive constant Tanaka-Webster scalar curvature

is CR equivalent to the standard CR sphere (S3, Ĵ , θ̂).
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The paper is organized as follows. In section 2, we introduce some
basic materials in a pseudohermitian (2n+1)-manifold. In section 3, we
address the Calabi-Lee conjecture for pseudo-Einstein contact structure
via Poincaré-Lelong equation. In section 4, we prove the CR Calabi-
Yau Theorem via the Hodge-Laplacian heat equation. Finally, some ap-
plications on the CR Frankel conjecture for a closed spherical strictly
pseudoconvex (2n+ 1)-manifold are derived in section 5.
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2. Preliminary

We first give a brief introduction to pseudohermitian geometry (see
[16] for more details). Let (M, ξ) be a (2n+1)-dimensional, orientable,
contact manifold with contact structure ξ, dimR ξ = 2n. A CR structure
compatible with ξ is an endomorphism J : ξ → ξ such that J2 = −1.
We also assume that J satisfies the following integrability condition:
If X and Y are in ξ, then so is [JX, Y ] + [X,JY ] and J([JX, Y ] +
[X,JY ]) = [JX, JY ] − [X,Y ]. A CR structure J can extend to ξ⊗C

and decomposes ξ⊗C into the direct sum of T 1,0M and T 0,1M which
are eigenspaces of J with respect to eigenvalues i and −i, respectively.
A pseudohermitian structure compatible with ξ is a CR structure J
compatible with ξ together with a choice of contact form θ. Such a
choice determines a unique real vector field T transverse to ξ, which
is called the characteristic vector field of θ, such that θ(T ) = 1 and
LT θ = 0 or dθ(T, ·) = 0.

Let {T,Zα, Zᾱ} be a frame of TM ⊗ C, where Zα is any local frame
of T 1,0, Zᾱ = Zα ∈ T 0,1, and T is the characteristic vector field. Then
{θ, θα, θᾱ}, which is the admissible coframe dual to {T,Zα, Zᾱ}, satisfies

dθ = ihαβ̄θ
α ∧ θβ̄,

for some hermitian matrix of functions (hαβ̄). We call {θα} an admissible

coframe for θ. Moreover, we say (M,θ) is a (strictly pseudoconvex) CR
manifold if the hermitian matrix (hαβ̄) is positive definite. We always
assume it through this paper.

A complex-valued q-form η is said to be of type (q, 0) if T 0,1⌋η = 0,
and type (0, q) if T 1,0⌋η = 0. The canonical bundle KM is the complex
line bundle of (n+1, 0)-forms. The Levi form Lθ := 〈 , 〉 is the Hermitian
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form on T 1,0 defined by

〈Z,W 〉 = −i
〈
dθ, Z ∧W

〉

or

Lθ(U
αZα, V

βZβ) = hαβ̄U
αV β .

We use the matrix hαβ̄ in the usual way to raise and lower indices:

Aα
β

= hγβ̄A
αγ . We can extend 〈 , 〉 to T 0,1 by defining

〈
Z,W

〉
=

〈Z,W 〉 for all Z,W ∈ T 1,0. The Levi form induces naturally a Hermitian
form on the dual bundle of T 1,0, also denoted by 〈 , 〉, and hence on all
the induced tensor bundles.

The pseudohermitian connection of (J, θ) is the connection ∇ on
TM ⊗ C (and extended to tensors) given in terms of a local frame
Zα ∈ T 1,0 by

∇Zα = ωα
β ⊗ Zβ, ∇Zᾱ = ωᾱ

β̄ ⊗ Zβ̄, ∇T = 0,

where ωα
β are the 1-forms uniquely determined by the following equa-

tions:

dθβ = θα ∧ ωα
β + θ ∧ τβ,

τα ∧ θα = 0, ωα
β + ωβ̄

ᾱ = dhαβ̄ .
(2.1)

We can write τα = Aαβθ
β with Aαβ = Aβα. The curvature of the

Tanaka-Webster connection, expressed in terms of the coframe {θ =
θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
α can be written

(2.2)
Πβ

α = Rβ
α
ρσ̄θ

ρ ∧ θσ̄ +Wβ
α
ρθ

ρ ∧ θ −Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ =Wγᾱβ .

It is useful to note that contraction of (2.2) yields

(2.3) Πα
α = dωα

α = Rρσ̄θ
ρ ∧ θσ̄ +Wα

α
ρθ

ρ ∧ θ −Wα
αρ̄θ

ρ̄ ∧ θ.

We will denote components of covariant derivatives with indices pre-
ceded by a comma; thus write Aαβ,γ . The indices {0, α, ᾱ} indicate
derivatives with respect to {T,Zα, Zᾱ}. For derivatives of a function,
we will often omit the comma, for instance,

ϕα = Zαϕ, ϕαβ̄ = Zβ̄Zαϕ− ωα
γ(Zβ̄)Zγϕ, ϕ0 = Tϕ
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for a (smooth) function ϕ. The tangential Cauchy-Riemann operator ∂b
is defined locally as ∂bϕ = ϕαθ

α, and ∂b is the complex conjugate of
∂b such that ∂bϕ = ϕαθ

α. Then the formal adjoint of ∂b on functions
(with respect to the Levi form and the volume form dµ = θ ∧ (dθ)n)
is ∂∗b = −δb. Here δb is the divergence operator that takes (1, 0)-forms
to functions by δb(σαθ

α) = σα,
α and δ̄b(σαθ

α) = σα,
α. In general, we

define an L2 inner product by

(ω, ζ) =

∫

M

< ω, ζ > θ ∧ (dθ)n

for any (0, q)-form ω, ζ on M. Here < ω, ζ >= ωα1...αqζ
α1...αq with

ω = ωα1...αqθ
α1 ∧ ... ∧ θαq and ζ = ζα1...αqθ

α1 ∧ ... ∧ θαq .

The formal adjoint ∂
∗
b of ∂b is given by

(∂
∗
b̟, ζ) = (̟, ∂bζ)

for any (0, q)-form ζ and (0, q + 1)-form ̟ on M .
For a function ϕ, the subgradient ∇b is defined locally by ∇bϕ =

ϕαZα + ϕαZᾱ. The sub-Laplacian ∆b on functions is defined as

∆bϕ = −(ϕα
α + ϕα

α).

The Kohn-Rossi Laplacian �b on functions is defined by

�bϕ = 2∂
∗
b∂bϕ = (∆b + inT )ϕ = −2ϕα

α

and is defined on (0, q)-forms by

�b = 2(∂
∗
b∂b + ∂b∂

∗
b).

3. Pseudo-Einstein contact structure and Poincaré-Lelong

equation

In this section, we address the Calabi-Lee conjecture for pseudo-
Einstein contact structure via the CR Poincaré-Lelong equation (3.8).
Let {θα} be an admissible coframe for θ with

dθ = ihαβ̄θ
α ∧ θβ̄.

Then it is convenient to work with the coframe {θ̃α = θα+2iuαθ} which

is admissible for θ̃ = e2uθ with

dθ̃ = ih̃αβ̄ θ̃
α ∧ θ̃β̄.

Thus

(3.1) h̃αβ = e2uhαβ .
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Theorem 3.1. Let (M,θ) be a closed strictly pseudoconvex CR (2n+

1)-manifold with a fixed contact class [θ] and θ̃ ∈ [θ] with θ̃ = e2uθ. Then

θ̃ = e2uθ is a pseudo-Einstein contact structure if and only if u is the
solution of

(3.2) (uαβ + uβα) =
1

(n+ 2)
{Rαβ −

1

n
[(n + 2)∆bu+R]hαβ}.

Proof. Let Φ be a closed 2-form representing the first Chern class
c1(T

1,0M) as we have introduced before. We need to find a contact

structure θ̃ such that

R̃ic(X,Y ) = Φ(X,Y )

for all X,Y ∈ ker θ. It is natural to choose θ̃ in a fixed contact class [θ]

with θ̃ = e2uθ . It follows from [16, Lemma 2.4] that

(3.3) R̃αβ = Rαβ − (n+ 2)(uαβ + uβα) + [∆bu− 2(n + 1)|∇u|2]hαβ .

Next we choose a purely imaginary 1-form

σ = −(n+ 2)(uβθ
β − uαθ

α)− i[∆bu− 2(n + 1)|∇u|2]θ.

Then

dσ = {−(n+2)(uαβ+uβα)+[∆bu−2(n+1)|∇u|2]hαβ}θ
α∧θβ mod θ

and

(3.4) R̃ic(X,Y ) = Ric(X,Y ) + dσ(X,Y ).

Now if θ̃ = e2uθ is a pseudo-Einstein contact structure, then

(3.5) R̃αβ =
R̃

n
h̃αβ .

But for θ̃ = e2uθ, we have ([16])

(3.6) R̃ = e−2u[R+ 2(n + 1)∆bu− 2n(n + 1)|∇u|2].

Therefore, it follows from (3.1), (3.3), (3.5), and (3.6) that

(n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .

q.e.d.

Remark 3.1. By [16], if u is a CR-pluriharmonic function, then
there exists a smooth function ϕ on M such that

uαβ = ϕhαβ .

Note that uβα = uαβ − iu0hαβ. Hence uαβ + uβα = 2uαβ − iu0hαβ =

(2ϕ− iu0)hαβ . Now if θ is pseudo-Einstein, it follows from (3.3) that

R̃αβ = e−2u[
R

n
− (n+ 2)(2ϕ − iu0) + (∆bu− 2(n + 1)|∇u|2)]h̃αβ
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and θ̃ is also pseudo-Einstein.

Define

dH = ∂b + ∂b and dcH = i(∂b − ∂b).

Thus

dHd
c
H = i(∂b∂b − ∂b∂b)

and

(3.7)

dHd
c
Hu = i[∂b(uβθ

β)− ∂b(uαθ
α)]

= i[(uβαθ
α ∧ θβ)− (uαβθ

β ∧ θα)]

= i(uβα + uαβ)θ
α ∧ θβ.

It follows from Theorem 3.1 that

Corollary 3.1. Let (M,θ) be a closed strictly pseudoconvex CR (2n+

1)-manifold with a fixed contact class [θ] and θ̃ ∈ [θ] with θ̃ = e2uθ. Then

θ̃ = e2uθ is a pseudo-Einstein contact structure if and only if u is the
solution of the CR Poincaré-Lelong equation

(3.8) dHd
c
Hu =

i

(n+ 2)
{Rαβ −

1

n
[(n+ 2)∆bu+R]hαβ}θ

α ∧ θβ

which is equivalent to

(3.9) dHd
c
Hu =

1

(n + 2)
{iRαβθ

α ∧ θβ −
1

n
[(n + 2)∆bu+R]dθ}.

4. CR Hodge-Laplacian heat equation

In this section, we will derive the CR analogue of the Calabi-Yau
Theorem via the so-called CR Hodge-Laplacian heat equation. We first
define the CR Hodge-Laplacian

∆H = −(dHd
∗
H + d∗HdH)

with d∗H = ∂∗b + ∂
∗
b . We know that a k-form ω can be decomposed

uniquely as

ω = ω1 + θ ∧ ω2

with ω1 =
∑

|I|+|I′|=k fI,I′θ
I ∧ θI

′

and ω2 =
∑

|I|+|I′|=k−1 gI,I′θ
I ∧ θI

′

.

Thus

(4.1) d(ω1 + θ ∧ ω2) = (dHω1 + (dθ) ∧ ω2) + θ ∧ (Tω1 − dHω2).

Furthermore

∂2b = ∂
2
b = ∂b∂

∗
b + ∂

∗
b∂b = 0

and

d2H = ∂b∂b + ∂b∂b = −Te(dθ)
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with e(dθ)ω = dθ ∧ ω. Straightforward computation ([19]) yields

∆H = −
1

2
(�b +�b).

Lemma 4.1. For any (1, 1)-form ψ with ψ = ψαβθ
α ∧ θβ, we have

(∆Hψ)αβ = −∆bψαβ + 2Rαγµβψγµ − (Rγβψαγ +Rαγψγβ).

Here ∆bψαβ = −(ψαβ,γγ + ψαβ,γγ).

Proof. Direct computation ([8], [15]) shows that

1

2
(�bψ)αβ = −ψαβ,γγ − 2iψαβ,0 −Rαγµβψγµ +Rγβψαγ

and
1

2
(�bψ)αβ = −ψαβ,γγ + 2iψαβ,0 −Rαγµβψγµ +Rαγψγβ .

The conclusion of this lemma follows immediately. q.e.d.

We will work on the so-called CR Hodge-Laplacian heat equation on
M × [0,∞)

(4.2)
∂

∂t
η(x, t) = ∆Hη(x, t).

It follows from Lemma 4.1 that the equation (4.2) is equivalent to the
CR Lichnerowicz-Laplacian heat equation:

(4.3) (
∂

∂t
+∆b)ηαβ(x, t) = 2Rαγµβηγµ − (Rγβηαγ +Rαγηγβ)

for any (1, 1)-form η(x, t) = ηαβθ
α ∧ θβ.

Lemma 4.2. For any dH -closed (1, 1)-form η, we have

dHd
c
H(∧η) = ∆Hη.

Here ∧ is the trace operator.

Proof. We first compute

dHd
c
H(∧η) = 1

2 (dHd
c
H ∧ η − dcHdH ∧ η)

= 1
2 i[(∂b∂b − ∂b∂b) ∧ η − (∂b∂b − ∂b∂b) ∧ η].

Recall that ([19])

[∧, ∂b] = i∂
∗
b and [∧, ∂b] = −i∂∗b .

Thus
∧∂bη − ∂b ∧ η = i∂

∗
b η

and since ∂bη = 0 = ∂bη,

∂b ∧ η = −i∂
∗
b η.

Similarly, we have
∂b ∧ η = i∂∗b η.
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Finally, these computations imply that

dHd
c
H(∧η) = −1

2 [(∂b∂
∗
b + ∂b∂

∗
b )η + (∂b∂

∗
b + ∂b∂

∗
b )η]

= −(∂b∂
∗
bη + ∂b∂

∗
b η)

= −[(∂b∂
∗
b + ∂

∗
b∂b)η + (∂b∂

∗
b + ∂∗b ∂b)η]

= −1
2(�bη +�bη)

= ∆Hη.

This completes the proof of the lemma. q.e.d.

Now we are in a position to discuss the heat equation for the CR
Hodge-Laplacian. This approach was initiated by Ni and Tam ([20]) for
Kähler manifolds. Here we generalize it to the sub-Riemannian setting.
The heat equation associated with a subelliptic differential operator is
a very interesting subject which was studied by many mathematicians
extensively in the past 20 years; see, e.g., Beals, Greiner, and Stanton
([1]) and Beals, Gaveau, and Greiner ([2]).

Theorem 4.1. Let (M,θ) be a closed strictly pseudoconvex CR (2n+
1)-manifold. Suppose the following are true:

(i) There is a real (1, 1)-form η(x, t) satisfying
{

∂
∂t
η(x, t) = ∆Hη(x, t), M × [0,∞)
η(x, 0) = ρ(x).

Here ρ(x) = iραβθ
α ∧ θβ is a real dH -closed (1, 1)-form with ραβ =

1
(n+2){Rαβ

− r
n
hαβ} and r =

∫
M
Rdµ�

∫
M
dµ such that η(x, t) is dH-

closed and

(4.4) lim
t→∞

η(x, t) = 0.

(ii) There is a smooth real-valued function u solving ∆bu = −tr(ραβ) =
1

n+2(r −R) and a solution v(x, t) of
{

∂
∂t
v(x, t) = −∆bv(x, t), M × [0,∞)
v(x, 0) = u(x)

and

(4.5) lim
t→∞

dHd
c
Hv(x, t) = 0.

Then

dHd
c
Hu =

i

(n+ 2)
{Rαβ −

1

n
[(n+ 2)∆bu+R]hαβ}θ

α ∧ θβ.

Proof. Define
φ(x, t) = tr(ηαβ(x, t)).

Then{
∂
∂t
φ(x, t) = tr( ∂

∂t
ηαβ(x, t)) = tr(∆Hη)αβ = −∆bφ(x, t),

φ(x, 0) = tr(ηαβ(x, 0)) = tr(ραβ(x)).
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Consider

w(x, t) = −

∫ t

0
φ(x, s)ds.

Thus

(4.6)
∂

∂t
w(x, t) = −φ(x, t) = −tr(ηαβ(x, t))

and

∆bw(x, t) = −

∫ t

0
∆bφ(x, s)ds =

∫ t

0

∂

∂s
φ(x, s)ds

= tr(ηαβ(x, t))− tr(ραβ(x)).

Hence

(4.7)

{
∂
∂t
w(x, t) = −∆bw(x, t) − tr(ραβ(x)),

w(x, 0) = 0.

Let
ṽ(x, t) = u(x)− w(x, t).

Then
∂
∂t
ṽ(x, t) = ∆bw(x, t) + tr(ραβ(x))

= −∆bṽ(x, t) + ∆bu(x) + tr(ραβ(x))

= −∆bṽ(x, t).

It follows that

(4.8)

{
∂
∂t
ṽ(x, t) = −∆bṽ(x, t),
ṽ(x, 0) = u(x).

Finally by maximum principle, we have

(4.9) v(x, t) = ṽ(x, t) = u(x)− w(x, t).

By applying Lemma 4.2, we compute

d
dt
(η + dHd

c
Hw) = ∆Hη + dHd

c
H( ∂

∂t
w)

= ∆Hη − dHd
c
H(∧η)

= 0.

But at t = 0,
η + dHd

c
Hw = ρ.

This implies
η + dHd

c
Hw = ρ

and
η + dHd

c
Hu− dHd

c
Hv = ρ

for all t > 0. But

lim
t→∞

η(x, t) = 0 = lim
t→∞

dHd
c
Hv(x, t).

Therefore

(4.10) dHd
c
Hu = ρ.
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Note that

dHd
c
Hu = i(uβα + uαβ)θ

α ∧ θβ

and

ρ =
i

(n+ 2)
[R

αβ
−
r

n
hαβ ]θ

α ∧ θβ.

It follows from (4.10) that

r = (n+ 2)∆bu+R

and then

dHd
c
Hu =

i

(n+ 2)
{Rαβ −

1

n
[(n+ 2)∆bu+R]hαβ}θ

α ∧ θβ.

The proof of the theorem is therefore complete. q.e.d.

In general, if condition (4.4) does not hold, we still have a real (1, 1)-
form

lim
t→∞

η(x, t) :=
i

(n+ 2)
(η∞

αβ
(x) + η∞

βα
(x))θα ∧ θβ

with the following property:

Corollary 4.1. Let (M,θ) be a closed strictly pseudoconvex CR (2n+
1)-manifold. Then there is a smooth real-valued function u solving ∆bu =
1

n+2(r −R) such that

(n+ 2)(uβα + uαβ) = Rαβ −
1

n
[(n + 2)∆bu+R]hαβ − (η∞

αβ
+ η∞

βα
)

with

η∞αα + η∞αα = 0.

In the following, we will investigate situations when η∞
αβ

+ η∞
βα

=

0. More precisely, we are able to derive the following CR analogue of
Calabi-Yau Theorem via the Hodge-Laplacian parabolic equation which
recaptures well-known results by the elliptic method due to Cao-Chang
([4]) and Lee ([16]).

Theorem 4.2. Let (M,θ) be a closed strictly pseudoconvex CR (2n+
1)-manifold for n ≥ 2. Assume that

(i) (M,θ) is the smooth boundary of a bounded strongly pseudo-convex
domain Ω in a complete Stein manifold V n+1, or

(ii) (M,θ) has positive pseudohermitian Ricci curvature with
c1(T

1,0M) = 0.
Then there is a smooth real-valued function u solving ∆bu = 1

n+2(r−

R) and r =
∫
M
Rdµ�

∫
M
dµ such that

(n+ 2)dHd
c
Hu = i{Rαβ −

r

n
hαβ}θ

α ∧ θβ
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and

(n + 2)dHd
c
Hu = i{Rαβ −

1

n
[(n+ 2)∆bu+R]hαβ}θ

α ∧ θβ.

Hence e2uθ is a pseudo-Einstein contact structure.

Proof. In order to apply Theorem 4.1, we need to justify (4.4) and
(4.5). We first note that

ρ(x) =
1

(n+ 2)
{iRαβθ

α ∧ θβ −
r

n
dθ}

is an dH -closed (1, 1)-form. Since M is closed, then η(x, t) is also dH -
closed. If c1(T

1,0M) = 0, there exists a global imaginary one-form

(4.11) σ(x) = σβ(x)θ
β − σα(x)θ

α + iσ0(x)θ

on M such that

(4.12) dωα
α(x) = dσ(x).

Thus ([16])

(4.13) Rαβ(x) = σβ,α(x) + σα,β(x)− σ0(x)hαβ(x).

It follows from (4.1) that

(n+ 2)ρ(x) = idH σ̃ − (σ0 +
r

n
)dθ = idH σ̃ − dH((σ0 +

r

n
)θ)

with

σ̃(x) = (σβθ
β − σαθ

α).

Thus

η(x, t) = dH [δ(x, t) + κ(x, t)]

with

δ(x, t) = i[lβ(x, t)θ
β − lα(x, t)θ

α)] and κ(x, t) = k(x, t)θ.

Here

η(x, 0) = ρ(x) = dH [δ(x, 0) + κ(x, 0)]

and

(4.14) δ(x, 0) = i[σβθ
β − σαθ

α)] ; κ(x, 0) = −(σ0 +
r

n
)θ.

Now

∆Hη(x, t) = ∂
∂t
η(x, t) = dH [ ∂

∂t
δ(x, t)) + ∂

∂t
κ(x, t)]

and since dHη(x, t) = 0 ,

∆Hη(x, t) = −(dHd
∗
H + d∗HdH)η(x, t) = −dHd

∗
Hη(x, t).

Hence

(4.15)
∂

∂t
δ(x, t) = −d∗HdHδ(x, t) + δ̃
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with dH δ̃ = 0 and δ̃ = δ̃(1,0) + δ̃(0,1) for real-valued (1, 0)-form δ̃(1,0) and

(0, 1)-form δ̃(0,1) which implies

(4.16) ∂bδ̃
(0,1) = 0 and ∂bδ̃

(1,0) = 0.

On the other hand, if dH(f(x, t)θ) = 0, then we have 0 = d(f(x, t)θ) =
f(x, t)dθ which implies f(x, t) = 0. Thus

(4.17)
∂

∂t
(κ(x, t)) = −d∗HdHκ(x, t).

(i) (M,θ) is the smooth boundary of a bounded strongly pseudo-
convex domain Ω in a complete Stein manifold V n+1 for n ≥ 2. By
a theorem of Kohn ([15], [3]), (4.16) implies that there is a smooth
real-valued function g on M such that

δ̃ = i(gβθ
β − gαθ

α).

Since dH δ̃ = 0, we have

gβα + gαβ = 0

and then

∆bg = 0.

Therefore g is constant and

(4.18) δ̃ = 0.

(ii) Let (M,θ) be a closed strictly pseudoconvex CR (2n+1)-manifold
of positive pseudohermitian Ricci curvature. It follows from ([15]) that

(4.19) δ̃(0,1) = igβθ
β + γ(0,1)

with �bγ
(0,1) = 0. Since the pseudohermitian Ricci curvature is positive,

by Lee’s result ([16, Proposition 6.4]), we have

γ(0,1) = 0.

Then

δ̃(0,1) = igβθ
β.

Similarly, we have

δ̃(1,0) = −igαθ
α.

Hence

(4.20) δ̃ = i(gβθ
β − gαθ

α)

and again δ̃ = 0 as in (i). Now from (4.15) and (4.17), we have

∂

∂t
δ(x, t) = −d∗HdHδ(x, t)

and
∂

∂t
κ(x, t) = −d∗HdHκ(x, t).
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Thus
d
dt

∫
M

||δ(x, t)||2dµ = −2(d∗HdHδ(x, t), δ(x, t))
= −2(dHδ(x, t), dHδ(x, t))
= −2

∫
M

||dHδ(x, t)||
2dµ

and
d
dt

∫
M

||κ(x, t)||2dµ = −2(d∗HdHκ(x, t), κ(x, t))
= −2

∫
M

||dHκ(x, t)||
2dµ.

Therefore
lim
t→∞

η(x, t) = 0.

Similarly,
d

dt

∫

M

||v||2dµ = −2

∫

M

||dHv||
2dµ

and then
lim
t→∞

dHd
c
Hv(x, t) = 0.

The proof of the theorem is therefore complete. q.e.d.

Now we will express δ̃ in the following general form.

Lemma 4.3. Let (M,θ) be a closed strictly pseudoconvex CR (2n+1)-

manifold for n ≥ 2. Assume that δ̃ is a smooth real-valued one-form with

dH δ̃ = 0.

Then
δ̃ = i(γβθ

β − γαθ
α)

and

(4.21) γα,β + γβ,α = 0.

Here
�b(γβθ

β) = 0 = �b(γαθ
α).

Proof. Since dH δ̃ = 0, it follows from (4.19) and (4.20) that

δ̃ = i(gβθ
β − gαθ

α) + i(γβθ
β − γαθ

α)

with �bγ
(0,1) = 0 = �bγ

(1,0). Again from dH δ̃ = 0 and (4.16), we have

∂bδ̃
(0,1) + ∂bδ̃

(1,0) = 0.

But δ̃(0,1) = igβθ
β + iγβθ

β and δ̃(1,0) = −igαθ
α − iγαθ

α. Then

0 = ∂bδ̃
(0,1) + ∂bδ̃

(1,0) = i[(gβα + gαβ) + (γβ,α + γα,β)]θ
α ∧ θβ.

Therefore
(gβα + gαβ) + (γβ,α + γα,β) = 0

and
−∆bg + γα,α + γα,α = 0.
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On the other hand, �bγ
(0,1) = 0 implies that

γα,α = 0 = γα,α.

Thus

∆bg = 0

and g is constant. Moreover, we have

γα,β + γβ,α = 0.

This is exactly (4.21) and the conclusion of the lemma follows immedi-
ately. q.e.d.

Remark 4.1. Theorem 4.2 is a special case of Lemma 4.3 where
γ(0,1) = 0 = γ(1,0).

In general, if δ̃ is non-vanishing with dH δ̃ = 0, then

d

dt
(δ(x, t), δ(x, t)) =

d

dt

∫

M

||δ(x, t)||2dµ

= −2

∫

M

||dHδ(x, t)||
2dµ− 2(δ̃(x, t), δ(x, t)).

(4.22)

We will work on the case of

(δ̃(x, t), δ(x, t)) = 0

with dH δ̃ = 0.
We first consider the special case with

σα = ϕ̃α

for a smooth real-valued function ϕ̃. Then

dωα
α = dσ

with

σ = ϕ̃βθ
β − ϕ̃αθ

α + iσ0θ = i(−dcH ϕ̃+ σ0θ).

On the other hand, it follows from (4.14) and (4.13) that

(n+ 2)ρ(x) = dH [δ(x, 0) − γ(x, 0)] = dHd
c
H ϕ̃− (σ0 +

r

n
)θ.

Hence

(4.23) δ(x, t) = dcHϕ(x, t)
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with ϕ(x, 0) = ϕ̃. By Lemma 4.3 and �bγ
(0,1) = 0 = �bγ

(1,0), we have

∂
∗
bγ

(0,1) = 0 = ∂∗b γ
(1,0) and then

(δ̃(x, t), δ(x, t)) = (i(γβθ
β − γαθ

α), i(∂bϕ− ∂bϕ))

= −([∂
∗
b(γβθ

β)− ∂
∗
b(γαθ

α)− ∂∗b (γβθ
β) + ∂∗b (γαθ

α)], ϕ)

= −([∂
∗
b(γβθ

β) + ∂∗b (γαθ
α)], ϕ)

= 0.

On the other hand, it follows from (4.14) and (4.13) that

Rαβ = ϕ̃βα + ϕ̃αβ − σ0hαβ

and then

R = −∆bϕ̃− nσ0.

Hence
ϕ̃βα + ϕ̃αβ = Rαβ + σ0hαβ

= Rαβ − 1
n
(∆bϕ̃+R)hαβ .

Taking u = ϕ̃
N+2 , we have

(n + 2)(uαβ + uβα) = Rαβ −
1

n
[(n + 2)∆bu+R]hαβ

and e2uθ is a pseudo-Einstein contact structure.
Let H(0,q) be the space of smooth harmonic (0, q)-forms with H(0,q) =

Ker(�b). It is of finite dimension in a closed strictly pseudoconvex CR
(2n + 1)-manifold (M,θ) with 1 ≤ q ≤ n− 1 and n ≥ 2 . Then for any
(0, 1)-form ω, we have the following Hodge-type decomposition ([15],
[5]):

(4.24) ω = ∂b∂
∗
bζ ⊕ ∂

∗
b∂bζ ⊕H(0,1)ω

and

(4.25) ω = ∂b∂
∗
b ζ ⊕ ∂∗b ∂bζ ⊕H(0,1)ω

for some (0, 1)-form ζ.

Lemma 4.4. Let (M,θ) be a closed strictly pseudoconvex CR (2n+1)-
manifold for n ≥ 2. Assume that

dωα
α = dσ with σ = i(σβθ

β − σαθ
α) + iσ0θ

and

i(σβθ
β) ∈ (H(0,1))⊥.

Then there is a smooth real-valued function u such that e2uθ is a pseudo-
Einstein contact structure.
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Proof. Again, it suffices to show that

(δ̃(x, t), δ(x, t)) = 0

if
i(σβθ

β) = ∂b∂
∗
bζ0 + ∂

∗
b∂bζ0

with (0, 1)-form ζ0.

Now from Lemma 4.3, (4.24), (4.25), and �bγ
(0,1) = 0 = �bγ

(1,0),

(δ̃(x, t), δ(x, t))

= (i(γβθ
β − γαθ

α), i(δβθ
β − δαθ

α))

= i(γβθ
β − γαθ

α, ∂b∂
∗
bζ + ∂

∗
b∂bζ + ∂b∂

∗
b ζ + ∂∗b ∂bζ)

= i(γβθ
β, ∂b∂

∗
bζ + ∂

∗
b∂bζ)− i(γαθ

α, ∂b∂
∗
b ζ + ∂∗b ∂bζ)

= i(γβθ
β, ∂b∂

∗
bζ) + i(γβθ

β, ∂
∗
b∂bζ)− i(γαθ

α, ∂b∂
∗
b ζ)− i(γαθ

α, ∂∗b ∂bζ)

= 0.

Here we have used the fact that (iδβθ
β) = ∂b∂

∗
bζ+∂

∗
b∂bζ and (−iδαθ

α) =

∂b∂
∗
b ζ + ∂∗b ∂bζ with ζ(x, 0) = ζ0(x) and δβ(x, 0) = σβ(x). q.e.d.

Now we are in a position to prove the main theorem, Theorem 1.1 :

Proof. It suffices to show that

(δ̃(x, t), δ(x, t)) = 0

under

(4.26)
∂

∂t
δ(x, t) = −d∗HdHδ(x, t) + δ̃

with dH δ̃ = 0. We first define H be the subspace of H(0,1) as

H = {i(γβθ
β) ∈ H(0,1) | γα,β + γβ,α = 0}.

It follows from Lemma 4.3 that for i(γβθ
β) ∈ H, the real-valued one-

form
δ̃ = i(γβθ

β − γαθ
α)

satisfying

dH δ̃ = 0.

Note that if δ(x, t) ∈ H, then

dH
∂

∂t
δ(x, t) = 0

and
∂

∂t
δ(x, t) ∈ H.

Hence, for the real one-form δ(x, t) = i(δβ(x, t)θ
β − δα(x, t)θ

α) with

δβ(x, 0) = σβ(x) as in (4.26), we may assume that

(iδβ(x, t)θ
β) = ∂b∂

∗
bζ ⊕ ∂

∗
b∂bζ ⊕H(0,1)(iδβθ

β)
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with

(4.27) H(0,1)(iδβθ
β) ⊥ H.

This also implies

−(iδα(x, t)θ
α) = ∂b∂

∗
b ζ ⊕ ∂∗b ∂bζ ⊕H(1,0)(−iδα(x, t)θ

α)

with

(4.28) H(1,0)(−iδα(x, t)θ
α) ⊥ H.

Thus from Lemma 4.4, (4.27), and (4.28), we have

(δ̃(x, t), δ(x, t))

= (iγβθ
β − iγαθ

α, i(δβ(x, t)θ
β − δα(x, t)θ

α))

= (iγβθ
β, ∂b∂

∗
bζ + ∂

∗
b∂bζ +H(0,1)(iδβθ

β) + ∂b∂
∗
b ζ + ∂∗b∂bζ

+H(1,0)(iδαθ
α))− (iγαθ

α, ∂b∂
∗
bζ + ∂

∗
b∂bζ +H(0,1)(iδβθ

β)

+∂b∂
∗
b ζ + ∂∗b ∂bζ +H(1,0)(iδαθ

α))

= (iγβθ
β, H(0,1)(iδβθ

β) +H(1,0)(iδαθ
α))

−(iγαθ
α, H(0,1)(iδβθ

β) +H(1,0)(iδαθ
α))

= (iγβθ
β, H(0,1)(iδβθ

β))− (iγαθ
α, H(1,0)(iδαθ

α))

= 0.

This completes the proof of Theorem 1.1. q.e.d.

5. The CR Frankel conjecture

In this section, we provide a partial answer of the CR Frankel conjec-
ture in a closed spherical strictly pseudoconvex CR (2n+ 1)-manifold.

We start with the proof of Theorem 1.3:

Proof. It follows from the contracted Bianchi identity ([16, (2.11)])

(5.1) Rαβ
,β = Rα − i(n− 1)Aαβ

,β.

On the other hand, from (1.4) of Theorem 1.1, we have

(5.2) Rαβ = R
n
hαβ

if R is the positive constant Tanaka-Webster scalar curvature. This and
(5.1) imply

(5.3) Aαβ
,β = 0

for all α and n ≥ 2. Since J is spherical, it follow from (1.5) and (5.2)
that
(5.4)

Rβαλσ = k
n+2 [hβαhλσ + hλαhβσ + δαβhλσ + δαλhβσ]

− nk
(n+1)(n+2) [δ

α
βhλσ + δαλhβσ]

= k
n+2 [hβαhλσ + hλαhβσ] +

k
(n+1)(n+2) [δ

α
βhλσ + δαλhβσ ].
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Now by [16, (2.7)] and (5.4),
(5.5)
iAαγ,βhρσ+iAαγ,σhρβ−iAαρ,βhγσ−iAαρ,σhγβ = Rαβρσ,γ−Rαβγσ,ρ = 0.

Contracting both sides by hρσ,

(5.6) inAαγ,β + iAαγ,σδ
σ
β − iAαρ,βδ

ρ
γ − iAαρ

,ρhγβ = 0.

But from (5.3),

(5.7) Aαγ,σδ
σ
β −Aαρ,βδ

ρ
γ −Aαρ

,ρhγβ = Aαγ,β −Aαγ,β = 0.

Hence

(5.8) Aαγ,β = 0

for all α, γ, β. Again by [16, (2.15)],

Aαρ,βγ −Aαρ,γβ = ihβγAαρ,0 +Rα
κ
βγAκρ +Rρ

κ
βγAακ

and from (5.8),

Aαρ,βγ = ihβγAαρ,0 +Rα
κ
βγAκρ +Rρ

κ
βγAακ.

Contracting both sides by hβγ ,

Aαρ,γ
γ = inAαρ,0 +Rα

κ
γ
γAκρ +Rρ

κ
γ
γAακ

= inAαρ,0 +RακA
κ
ρ +RρκA

κ
α

= inAαρ,0 + khακA
κ
ρ + khρκA

κ
α

= inAαρ,0 + 2kAαρ.

Here k := R
n
. That is,

(5.9) Aαγ,σ
σ = inAαγ,0 + 2kAαγ

for all α, γ. Next we claim that

(5.10) inAαγ,0 = − nk
n+1Aαγ .

Again from [16, (2.9)],

Aαρ,βγ −Aαγ,βρ = ihρβAαγ,0 − ihγβAαρ,0 +RαβρσA
σ
γ −RαβγσA

σ
ρ

and from (5.8),

ihρβAαγ,0 − ihγβAαρ,0 +RαβρσA
σ
γ −RαβγσA

σ
ρ = 0.

Contracting both sides by hρβ ,

inAαγ,0 − iδργAαρ,0 +Rα
ρ
ρσA

σ
γ −Rα

ρ
γσA

σ
ρ = 0.

Hence

i(n− 1)Aαγ,0 +RασA
σ
γ −Rα

ρ
γσA

σ
ρ = 0

and thus

i(n − 1)Aαγ,0 + kAαγ −Rα
ρ
γσA

σ
ρ = 0.



CR CALABI-YAU THEOREM 417

On the other hand,

Rα
ρ
γσA

σ
ρ =

k

n+ 2
[hαρhγσ + hγρhασ ]A

σ
ρ

+
k

(n+ 1)(n + 2)
[δραhγσ + δργhασ ]A

σ
ρ

=
2k

n+ 1
Aαγ .

All these imply

i(n− 1)Aαγ,0 +
n−1
n+1kAαγ = 0

for n ≥ 2. Thus (5.10) follows. Next, from (5.9) and (5.10), we obtain

Aαγ,σ
σ = inAαγ,0 + 2kAαγ = n+2

n+1kAαγ .

We integrate both sides with Aαγ to get

n+2
n+1k

∫
M

∑
α,γ |Aαγ |

2dµ +
∫
M

∑
α,γ,σ |Aαγ,σ |

2dµ = 0.

Thus

Aαγ = 0.

Moreover, it follows from (5.4) that

Rβαλσ =
R

n(n+ 1)
[hβαhλσ + hλαhβσ ].

Hence (M,θ) is a simply connected, closed spherical CR (2n + 1)-
manifold of positive constant pseudohermitian bisectional curvature with
vanishing torsion. It follows from ([14]) that M is CR equivalent to the
standard CR sphere. q.e.d.

In general, it is difficult to determine if a manifold has the vanishing
first Chern class c1(T

1,0M). By applying the CR version of Bochner-
type identity due to Mok-Siu-Yau ([17]) in case of Kähler manifolds, we
are able to characterize it for a closed spherical CR (2n + 1)-manifold
of positive pseudohermitian bisectional curvature.

Proposition 5.1. Let (M,J, θ) be a closed spherical CR (2n + 1)-
manifold of positive pseudohermitian bisectional curvature for n ≥ 2.
There is a smooth real-valued function u solving

∆bu =
1

n+ 2
(r −R) with r =

∫
M
Rdµ∫

M
dµ

.

u also satisfies the following identities:

(n+ 2)(uαβ + uβα) = Rαβ −
r

n
hαβ

(n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .
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Hence θ̃ = e2uθ is a pseudo-Einstein contact structure. In addition, if
R is constant, then u is constant and

Rαβ =
R

n
hαβ .

Proof. Define

(5.11) vαβ := Rαβ − (n+ 2)(uαβ + uβα)−
r

n
hαβ

for r with ∆bu = 1
n+2(r −R). Note that tr(vαβ) = vαα = 0 = vαα.

Next we apply the CR version of Bochner-type identity to estimate
the following:

∆b||vαβ ||
2 = ∆b(vαβvαβ)

= (vαβvαβ)λλ + (vαβvαβ)λλ
= vαβλλvαβ + vαβλλvαβ + vαβλλvαβ + vαβλλvαβ + 2vαβλvαβλ
+ 2vαβλvαβλ

≥ vαβλλvαβ + vαβλλvαβ +Conj.

(5.12)

Note that

ρ(x) =
i

(n+ 2)
{Rαβ −

r

n
hαβ}θ

α ∧ θβ

is a real-valued dH -closed (1, 1)-form. We may rewrite v = ivαβθ
α ∧ θβ

as a real-valued (1, 1)-form. Locally vαβ = w,αβ +w,βα − r
n
hαβ for some

smooth function w. But w,αβ + w,βα = 2w,αβ − iw0hαβ , which implies

vαβvαβ = (2w,αβ − iw0hαβ −
r

n
hαβ)vαβ

= 2w,αβvαβ − (iw0 +
r

n
)vαα = 2w,αβvαβ.

To apply CR Bochner-type identity to estimate

vαβλλvαβ + vαβλλvαβ +Conj

in the last term of the right hand side of (5.12), we may assume that
vαβ = v,αβ for some smooth function v (say the same notation).

More precisely, we will derive the following pointwise estimates:
(5.13), (5.14), (5.15), and (5.16).

(i) First from ([16, Lemma 2.3.]),

vαβλλ =(vαλβ − ihλβvα0 −Rαρλβvρ)λ
= vλαβλ − ihλβvα0λ −Rαρλβ,λvρ −Rαρλβvρλ

and

vλαβλ = vλαλβ + ihλβAλρvρα − ihλλAβρvρα

+ ihαβAλρvρλ − ihαλAβρvρλ.
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Hence

vαβλλ = vλαλβ − ihλβvα0λ −Rαρλβ,λvρ −Rαρλβvρλ

+ ihλβAλρvρα − ihλλAβρvρα + ihαβAλρvρλ − ihαλAβρvρλ.

Since Tr(vαβ) = 0

vλαλβ = vλλαβ + (ihαλvλ0 +Rλραλvρ)β
= ihαλvλ0β +Rλραλ,βvρ +Rλραλ,βvρβ ,

and we obtain

vαβλλ = ihαλvλ0β − ihλβvα0λ +Rλραλ,βvρ +Rλραλvρβ −Rαρλβ,λvρ

−Rαρλβvρλ + ihλβAλρvρα − ihλλAβρvρα + ihαβAλρvρλ

− ihαλAβρvρλ.

(5.13)

(ii) Again from ([16, Lemma 2.3.]),

vαβλλ

=(vαλβ + ihαβAλρvρ − ihαλAβρvρ)λ

=(vλαβ + ihαλv0β + ihαβAλρvρ − ihαλAβρvρ)λ

= vλαβλ + ihαλv0βλ + ihαβAλρ,λvρ + ihαβAλρvρλ − ihαλAβρ,λvρ

− ihαλAβρvρλ

and

vλαβλ = vλαλβ − ihλβvλα0 −Rλρβλvρα −Rαρβλvρλ

= vλλαβ + (−ihαλAλρvρ + ihλλAαρvρ)β
− ihλβvλα0 −Rλρβλvρα −Rαρβλvρλ.

We have

vαβλλ = ihαλv0βλ − ihλβvλα0 −Rλρβλvρα −Rαρβλvρλ

− ihαλAλρ,βvρ − ihαλAλρvρβ + ihλλAαρ,βvρ + ihλλAαρvρβ

+ ihαβAλρ,λvρ + ihαβAλρvρλ − ihαλAβρ,λvρ − ihαλAβρvρλ

= ihαλv0βλ − ihλβv0λα −Rλρβλvρα −Rαρβλvρλ

− ihαλAλρ,βvρ − ihαλAλρvρβ + ihλλAαρ,βvρ + ihλλAαρvρβ

+ ihαβAλρ,λvρ + ihαβAλρvρλ − ihαλAβρ,λvρ − ihαλAβρvρλ

+ ihλβAλρ,αvρ + ihλβAλρvρα + ihλβAαρvλρ + ihλβAαρ,λvρ.

(5.14)

Here we have used the following commutation relation:

vλα0 = vλ0α −Aαρvλρ −Aαρ,λvρ

=(v0λ −Aλρvρ)α −Aαρvλρ −Aαρ,λvρ

= v0λα −Aλρ,αvρ −Aλρvρα −Aαρvλρ −Aαρ,λvρ.
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(iii) By the same method as in (i) and (ii), we have

vαβλλ =(vαλβ − ihβαAλρvρ + ihλαAβρvρ)λ

= vλαβλ − ihλαv0βλ + (−ihβαAλρvρ + ihλαAβρvρ)λ
= vλαλβ + ihβλvλα0 +Rλρβλvρα +Rαρβλvλρ

− ihλαv0βλ + (−ihβαAλρvρ + ihλαAβρvρ)λ

and

vλαλβ =(vλλα + (ihλαAλρvρ − ihλλAαρvρ)β

= ihλαAλρ,βvρ + ihλαAλρvρβ − ihλλAαρ,βvρ − ihλλAαρvρβ .

Hence

vαβλλ = ihβλvλα0 − ihλαv0βλ +Rλρβλvρα +Rαρβλvλρ

+ ihλαAλρ,βvρ + ihλαAλρvρβ − ihλλAαρ,βvρ − ihλλAαρvρβ

− ihβαAλρ,λvρ − ihβαAλρvρλ + ihλαAβρ,λvρ + ihλαAβρvρλ

= ihβλv0λα − ihλαv0βλ +Rλρβλvρα +Rαρβλvλρ

+ ihλαAλρ,βvρ + ihλαAλρvρβ − ihλλAαρ,βvρ − ihλλAαρvρβ

− ihβαAλρ,λvρ − ihβαAλρvρλ + ihλαAβρ,λvρ + ihλαAβρvρλ

− ihβλAλρ,αvρ − ihβλAλρvρα − ihβλAαρvλρ − ihβλAαρ,λvρ.

(5.15)

Here we have used the following commutation relation:

vλα0 = v0λα −Aλρ,αvρ −Aλρvρα −Aαρvλρ −Aαρ,λvρ.

(iv) Finally,

vαβλλ =(vαλβ + ihβλvα0 −Rαρλβvρ)λ

= vλαβλ + ihβλvα0λ −Rαρλβ,λvρ −Rαρλβvρλ

and

vλαβλ = vλαλβ − ihβλAλρvρα + ihλλAβρvρα − ihβαAλρvρλ + ihλαAβρvρλ.

But

vλαλβ = vλλαβ − ihλαvλ0β + (Rλραλvρ)β.

Hence

vαβλλ = ihβλvα0λ − ihλαvλ0β −Rαρλβ,λvρ −Rαρλβvρλ

+Rλραλ,βvρ +Rλραλvρβ

− ihβλAλρvρα + ihλλAβρvρα − ihβαAλρvρλ + ihλαAβρvρλ.

(5.16)

Since vαβ is hermitian symmetric, after a unitary change of the ad-

missible coframe, vij = aiδαβ , ai is real and vij = 0 at a point. Now
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combing all computations as in (5.13), (5.14), (5.15), and (5.16) at that
particular point, we have

v
αβ

λλvαβ + vαβλλvαβ + vαβλλvαβ + vαβλλvαβ

= [Rλραλ,βvρ −Rλραβ,λvρ]vαβ + [Rλραλ,βvρ −Rλραβ,λvρ]vαβ

+ [Rλραλvρβvαβ +Rλρβλvραvαβ]− [Rραβλvρλvαβ +Rραβλvρλvαβ]

+ [ihλλAαρ,βvρvαβ − ihλλAαρ,βvρvαβ]

= [inAβρ,α − ihβαAλρ,λ]vρvαβ +Conj

+ [inAαρ,βvρvαβ] + Conj +
∑

α,β

Rααββ(aα − aβ)
2

=
∑

α

[inAαρ,α − iAλρ,λ]vρaα +Conj

+
∑

α

[inAαρ,αvρaα] + Conj +
∑

α,β

Rααββ(aα − aβ)
2.

(5.17)

Here we have used Rαρλλ = Rλραλ, hαβ = δαβ , and tr(vαβ) = 0.

At a point, it follows from ([13]) that there exists a contact form θ̃

which is conformal to θ with

Aαβ = Ãαβ and Rαβγδ = R̃αβγδ

such that

(5.18) Ãαβ,α = 0

for each α (we will prove this claim later).
All together, we have at any fixed point

(5.19) ∆b||vαβ ||
2 ≥

∑
Riijj(ai − aj)

2 ≥ 0

if (M,θ) is a closed strictly pseudoconvex CR (2n+1)-manifold of posi-
tive pseudohermitian bisectional curvature. Now applying the maximal
principle to (5.19), we have

ai = aj

at a point for all i, j. However, since Tr(vαβ) = 0, this implies vαβ = 0

and then

Rαβ − (n + 2)(uαβ + uβα)−
r

n
hαβ = 0

on M . Furthermore, we have

r = (n+ 2)∆bu+R.

Hence

(uαβ + uβα) =
1

(n + 2)
{Rαβ −

1

n
[(n+ 2)∆bu+R]hαβ}.
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Finally, we give a proof of (5.18). First it follows from [13, Theorem

3.1 and Lemma 3.11] for m = 3 that there exists a contact form θ̃ which
is conformal to θ with

(5.20) R = R̃ and Aαβ = Ãαβ and Rαβ = R̃αβ

such that

(5.21) R̃,α = 0, R̃αβ,β = 0 and Ãαρ,ρ = 0

at a point. Since M is spherical, it follows from (5.20) that

Rαβγδ = R̃αβγδ

at a point as well. In the following, we drop ∼ without any confusion.
By [16, (2.7)] ,

iAαγ,βhρσ + iAαγ,σhρβ − iAαρ,βhγσ − iAαρ,σhγβ = Rαβρσ,γ −Rαβγσ,ρ.

Contracting both sides by hρσ,

inAαγ,β + iAαγ,σδ
σ
β − iAαρ,βδ

ρ
γ − iAαρ

,ρhγβ = hρσ(Rαβρσ,γ −Rαβγσ,ρ)

and from (5.21),

(5.22) inAαγ,β = hρσ(Rαβρσ,γ −Rαβγσ,ρ)

at a point. Next for each α = β, since M is spherical, it follows from
(5.21) that

Rααρσ,γ = 1
n+2 [Rαα,γhρσ +Rρα,γhασ + δααRρσ,γ + δαρRασ,γ ]

and

(5.23) hρσRααρσ,γ =
1

n+ 2
[nRαα,γ +Rαα,γ +R,γ +Rασ,γ ] = Rαα,γ .

By similar computation we have

(5.24) hρσRααγσ,ρ =
1

n+ 2
[Rαα,γ +Rγα,α].

Hence from (5.22) and (5.24),

inAαγ,α = Rαα,γ −
1

n+ 2
[Rαα,γ +Rγα,α].

But from the Bianchi identity ([16, (2.10)]) and (5.21),

Rαα,γ −Rγα,α = iAγρ
,ρhαα − iAαρ

,ρhγα = 0

and then

(5.25) inAαγ,α =
n

n+ 2
Rαα,γ

for each α. But again from [13, (3.12)], for each α,

0 = i(n+ 2)Aαγ,α +Rαα,γ +Rγα,α

and then

(5.26) i(n+ 2)Aαγ,α + 2Rαα,γ = 0.
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Thus from (5.25) and (5.26),

nAαγ,α = −
n

2
Aαγ,α

and
Aαγ,α = 0

for each α. This is (5.18). q.e.d.

Then Corollary 1.2 follows from Proposition 5.1 and Theorem 1.3.
As a byproduct of Proposition 5.1, we have

Corollary 5.1. Let (M,J, θ) be a closed strictly pseudoconvex CR
(2n+1)-manifold of positive pseudohermitian bisectional curvature and

Aαγ,α = 0

for each α. There is a smooth real-valued function u solving ∆u =
1

n+2(r −R) and r =
∫
M
Rdµ�

∫
M
dµ such that

(n+ 2)(uαβ + uβα) = Rαβ −
r

n
hαβ

and then

(n+ 2)(uαβ + uβα) = Rαβ −
1

n
[(n+ 2)∆bu+R]hαβ .

Hence e2uθ is a pseudo-Einstein contact structure.

Proof. In fact, it follows from (5.17) that (5.19) holds if (M,θ) is a
closed strictly pseudoconvex CR (2n + 1)-manifold of positive pseudo-
hermitian bisectional curvature and

Aαγ,α = 0

for each α. Then we finish the proof of the lemma. q.e.d.
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