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INTERIOR CURVATURE ESTIMATES

AND THE ASYMPTOTIC PLATEAU

PROBLEM IN HYPERBOLIC SPACE

Bo Guan, Joel Spruck & Ling Xiao

Abstract

We show that for a very general class of curvature functions
defined in the positive cone, the problem of finding a complete

strictly locally convex hypersurface in H
n+1

satisfying f(κ) = σ ∈
(0, 1) with a prescribed asymptotic boundary Γ at infinity has
at least one smooth solution with uniformly bounded hyperbolic
principal curvatures. Moreover, if Γ is (Euclidean) star-shaped,
the solution is unique and also (Euclidean) star-shaped, while if Γ
is mean convex, the solution is unique. We also show via a strong
duality theorem that analogous results hold in De Sitter space.
A novel feature of our approach is a “global interior curvature
estimate.”

1. Introduction

Let Hn+1 be the the hyperbolic space of dimension n+1, n ≥ 2, and
let ∂∞H

n+1 denote the ideal boundary of Hn+1 at infinity. In this paper
we are concerned with the problem of finding complete hypersurfaces
of constant curvature in H

n+1 with prescribed asymptotic boundary at
infinity. More precisely, given a disjoint collection of closed embedded
smooth (n−1)-dimensional submanifolds Γ = {Γ1, . . . ,Γm} ⊂ ∂∞H

n+1,
we seek a complete hypersurface Σ in H

n+1 satisfying

(1.1) f(κ[Σ]) = σ

with the asymptotic boundary

(1.2) ∂Σ = Γ

where f is a smooth symmetric function of n variables, κ[Σ] = (κ1, . . . , κn)
denotes the induced hyperbolic principal curvatures of Σ, and σ is a con-
stant.

The problem was first studied by Anderson [1, 2], and Hardt and
Lin [12] for area-minimizing varieties using geometric measure theory;
their results were extended by Tonegawa [20] to hypersurfaces of con-
stant mean curvature. In [15], Lin first used PDE methods to prove the
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existence of smooth complete minimal hypersurfaces that are graphs in
the upper half-space model over mean convex domains, followed by work
of Nelli and Spruck [17] and Guan and Spruck [8] for hypersurfaces of
constant mean curvature. For Gauss curvature, the asymptotic Plateau
problem was initiated by Labourie [14] in H

3 and by Rosenberg and
Spruck [18] in H

n+1. In recent work [9, 10, 11, 19] the authors consid-
ered the problem for more general curvature functions. In this paper we
shall focus on locally strictly convex hypersurfaces and give a complete
solution to problem (1.1)–(1.2) under very general assumptions on f .

Accordingly, we shall assume the curvature function f to be defined
on the positive cone K+

n :=
{

λ ∈ R
n : each component λi > 0

}

with

(1.3) f = 0 on ∂K+
n ,

and satisfy the fundamental structure conditions [4]

(1.4) fi(λ) ≡
∂f(λ)

∂λi

> 0 in K+
n , 1 ≤ i ≤ n,

(1.5) f is a concave function in K+
n .

Consequently,

(1.6) f > 0 in K+
n .

For convenience we shall assume in addition that f is normalized

(1.7) f(1, . . . , 1) = 1

and is homogeneous of degree 1:

(1.8) f(tκ) = tf(κ), ∀ t ≥ 0, κ ∈ K+
n .

A hypersurface Σ in H
n+1 is said to be locally strictly convex if κ[Σ] ∈

K+
n ; i.e., the principal curvatures of Σ are positive everywhere.
In order to state our main results, it is convenient (without loss of

any generality) to use the upper half-space model

H
n+1 = {(x, xn+1) ∈ R

n+1 : xn+1 > 0}

equipped with the hyperbolic metric

(1.9) ds2 =
1

x2n+1

n+1
∑

i=1

dx2i .

Thus ∂∞H
n+1 is naturally identified with R

n = R
n × {0} ⊂ R

n+1 and
(1.2) may be understood in the Euclidean sense.

The first main result of this paper may be stated as follows.
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Theorem 1.1. Suppose Γ = ∂Ω ∈ C2 for a bounded domain Ω ⊂
R
n = R

n × {0} and 0 < σ < 1. Under conditions (1.3)–(1.5) and (1.7)–
(1.8), there exists a complete locally strictly convex hypersurface Σ in
H

n+1 satisfying (1.1)–(1.2) with uniformly bounded principal curvatures

(1.10) C−1 ≤ κi ≤ C on Σ.

Moreover, Σ is the vertical graph of u ∈ C∞(Ω) ∩ C0,1(Ω), u > 0 in Ω,
u = 0 on ∂Ω, u2 ∈ C1,1(Ω), and

(1.11) u|D2u|+ |Du| ≤ C in Ω,
√

1 + |Du|2 = 1

σ
on ∂Ω.

Theorem 1.1 substantially improves our earlier results in [9, 11] where
∂Ω at least C3 is needed as well as an additional more technical assump-
tion

(1.12) lim
R→+∞

f(λ1, · · · , λn−1, λn +R) ≥ 1 + ε0 uniformly in Bδ0(1)

for some fixed ε0 > 0 and δ0 > 0, where Bδ0(1) is the ball of radius δ0
centered at 1 = (1, . . . , 1) ∈ R

n, which was used in the proof of boundary
estimates for curvature. We achieve this by deriving a novel “global
interior curvature bound” (Theorem 1.3) that also allows us to prove
uniqueness of the solution for mean convex or star-shaped asymptotic
boundary (Theorem 1.4 and Theorem 1.5).

An advantage in using the upper half space model of Hn+1 is due to
the fact that there is a remarkably simple relation between the hyper-
bolic (κi) and Euclidean (κei ) principal curvatures of a hypersurface Σ:

(1.13) κi = xn+1κ
e
i + νn+1, 1 ≤ i ≤ n

at (x, xn+1) ∈ Σ, where ν is Euclidean unit normal vector to Σ and
νn+1 = ν · en+1.

One important consequence of (1.13) is the following result of [9].

Theorem 1.2. Let Σ be a complete locally strictly convex C2 hyper-
surface in H

n+1 with compact asymptotic boundary at infinity. Then Σ
is the (vertical) graph of a function u ∈ C2(Ω) ∩ C0(Ω), u > 0 in Ω
and u = 0 on ∂Ω, for some domain Ω ⊂ R

n. Moreover, the function
u2 + |x|2 is strictly (Euclidean) convex.

For convenience we say Σ has compact asymptotic boundary if ∂Σ ⊂
∂∞H

n+1 is compact with respect to the Euclidean metric in R
n.

According to Theorem 1.2, the asymptotic Plateau problem (1.1)–
(1.2) for locally strictly convex hypersurfaces reduces to the Dirichlet
problem for a fully nonlinear equation of the form

(1.14)
G(D2u,Du, u) = σ, u > 0 in Ω ⊂ R

n

u = 0 on ∂Ω.



204 B. GUAN, J. SPRUCK & L. XIAO

In particular, the asymptotic boundary Γ must be the boundary of some
bounded domain Ω in R

n. Moreover, it is also necessary to assume 0 <
σ < 1 in Theorem 1.1.

The graph of a solution u of equation (1.14) is locally strictly convex
in H

n+1 if and only if |x|2 + u2 is a strictly convex function on Ω. We
shall call such solutions admissible. Condition (1.4) ensures that equa-
tion (1.14) is elliptic for admissible solutions, while assumption (1.5)
implies that the function G is concave with respect to D2u; see [4].
By (1.3), equation (1.14) becomes uniformly elliptic on compact sub-
domains of Ω for admissible solutions satisfying a priori bounds in the
C2 norm and therefore allows us to apply the Evans–Krylov theorem
[6, 13] to derive interior C2,α and higher-order estimates.

From the above discussion we see that Theorem 1.1 is essentially op-
timal as far as locally strictly convex hypersurfaces are concerned. It is
worthwhile to remark that we could remove condition (1.8) from The-
orem 1.1. (The only conclusion that might need adjustment would be
√

1 + |Du|2 = 1
σ
on ∂Ω.) We keep this assumption in Theorem 1.1 in

order to apply results from [9, 11] that allow us to significantly shorten
the proof. By an approximation argument we could also remove the
smoothness assumption on Γ = ∂Ω and instead assume a uniform exte-
rior ball condition.

The main new technical tool used in this paper is a global curvature
estimate that is obtained from an interior curvature estimate. More pre-
cisely we have the following theorem.

Theorem 1.3. Suppose f satisfies conditions (1.3)–(1.8) and 0 <
σ < 1. Let Σ be a smooth locally strictly convex hypersurface in H

n+1

satisfying (1.1)–(1.2) with uniformly bounded principal curvatures 0 <
κi ≤ C = C(Σ). In the upper half-space model, let a > 0 satisfy

(1.15) νn+1 ≥ 2a > 0 on Σ

and, for x ∈ Σ, let κmax(x) denote the largest principal curvature of Σ
at x. Then for 0 < b ≤ a

4 ,

(1.16) sup
Σ

xbn+1κmax

νn+1 − a
≤ 8

a
5

2

(

sup
Σ

xn+1

)b
.

In particular,

(1.17) κmax ≤ 8a−
5

2 on Σ.

The existence of such a constant a > 0 follows from the global gradi-
ent estimates in [11]; see Corollary 2.6.

Theorem 1.1 follows from Theorem 1.3 and the existence result of
[11]. To see this we approximate Ω uniformly in C2 by smooth do-
mains Ωθ and apply Theorem 1.2 of [11] to the curvature function

f θ := θH
1

n
n + (1 − θ)f that satisfies conditions (1.3)–(1.8) as well as
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(1.12), where Hn(κ1, . . . , κn) = κ1 · · · κn corresponds to the Gauss cur-
vature. We obtain a complete strictly locally convex hypersurface Σθ =
graph(uθ(x) : x ∈ Ωθ) in H

n+1 satisfying (1.1)–(1.2) with f replaced
by f θ. The principal curvatures of Σθ admit an upper bound depend-

ing on θ. Moreover, uθ ∈ C0,1(Ωθ), (uθ)2 ∈ C∞(Ωθ) ∩ C1,1(Ωθ) and
uθ + |Duθ| ≤ C independent of θ by Corollary 2.6. Using Theorem 1.3,
we find that uθ|D2uθ| ≤ C where C is independent of θ. We can now
let θ tend to zero using Evans–Krylov regularity theory to complete the
proof of Theorem 1.1.

An important issue is the uniqueness of solutions to problem (1.1)–
(1.2). This is a complicated question even in the case of locally strictly
convex hypersurfaces. From the PDE point of view, the main difficulty
comes from the fact that the linearized operator of equation (1.14) may
have nontrivial kernel. In this paper we are able to prove the following
general uniqueness when Γ is mean convex in R

n. Throughout the rest
of this paper, we assume Γ = ∂Ω × {0} ⊂ R

n+1 where Ω is a bounded
domain in R

n. Unless otherwise stated, we also assume ∂Ω is smooth.

Theorem 1.4. Assume Ω is a C2,α mean convex domain, i.e., the
Euclidean mean curvature H∂Ω ≥ 0. Then the solution Σ of Theorem
1.1 is unique.

There is also uniqueness if ∂Ω is strictly (Euclidean) star-shaped
about the origin. This is a well-known fact. In the following theorem
we give a quantitative description in terms of the star-shapedness of the
boundary; see Theorem 4.3 for more details.

Theorem 1.5. Let ∂Ω ∈ C2 be strictly (Euclidean) star-shaped about
the origin. Then the unique solution given in Theorem 1.1 is strictly
(Euclidean) star-shaped about the origin; i.e., x · ν > 0.

Remark 1.6. The reader should note that in Theorem 1.3 (and The-
orem 3.1 of Section 3) we are not claiming that all possible locally
strictly convex solutions Σ of (1.1)–(1.2) satisfy the global curvature
bound (1.17), rather only those which are a priori known to have glob-
ally bounded principal curvatures 0 < κi ≤ C = C(Σ). We then obtain
the bound (1.17) that depends only on the constant a of (1.15), which
in turn depends only on Γ. This is sufficient for our proof of the exis-
tence Theorem 1.1 by approximation using our earlier existence result
in [11], which assumes (1.12). It is also essential in our proof of Theo-
rems 1.4 and 1.5 which give for C2,α mean convex domain, respectively,
a C2 strictly (Euclidean) star-shaped domain, a simpler and more di-
rect proof of the existence of the unique locally strictly convex solution
that necessarily satisfies the global curvature bound (1.17). It is entirely
possible that when uniqueness fails, there exists a locally strictly convex
solution u of (1.14) such that Σ = graph(u) does not have uniformly
bounded principal curvatures (i.e., supΩ u|D2u| = +∞).
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The following example may be helpful in understanding some of the
subtlety of existence and regularity issues.

Example 1.7. Take a domain Ω that can be uniformly approximated
by smooth domains Ωε that satisfy a uniform exterior ball condition—
for example, an Ω with smooth boundary except at one point P with
a “convex conical singularity.” By Theorem 1.1 we find locally strictly
convex complete hypersurfaces Σε = graph(uε) satisfying (1.1)–(1.2)
with principal curvatures 1

Cε ≤ κεi ≤ Cε . Moreover, by Corollary 2.6,

|uε|+|Duε| ≤ C, (νε)n+1 ≥ 2a > 0 with C, a independent of ε. Applying
Theorem 1.3 we conclude that 1

C
≤ κεi ≤ C where C is independent of

ε. We can now let ε tend to zero and obtain a smooth limiting locally
strictly convex Σ = graph(u) a solution satisfying all the conditions of
Theorem 1.1. This means that u is globally Lipschitz and u|D2u| ≤ C
so u satisfies interior estimates similar to those satisfies by the solution
of a uniformly elliptic equation.

We end with an application of Theorem 1.1 to the existence of con-
stant curvature spacelike hypersurfaces in de Sitter space. There is
a natural asymptotic Plateau problem dual to (1.1)–(1.2) for strictly
spacelike hypersurfaces [19] that takes place in the steady state sub-
space Hn+1 ⊂ dSn+1 of de Sitter space. Following Montiel [16], there
is a half-space model that identifies Hn+1 with R

n+1
+ endowed with the

Lorentz metric

(1.18) ds2 =
1

y2n+1

(dy2 − dy2n+1).

It is important to note that the isometry from Hn+1 to the half-space
model reverses the time orientation. The dual asymptotic Plateau prob-
lem seeks to find a strictly spacelike hypersurface S satisfying

(1.19) f(κ[S]) = σ > 1, ∂S = Γ

where κ[S] denotes the principal curvatures of S in the induced de Sitter
metric.

If S is a complete spacelike hypersurface in Hn+1 with compact as-
ymptotic boundary at infinity, then the normal vector field N of S
is chosen to be the one pointing to the unique unbounded region in
R
n+1
+ \S, and the de Sitter principal curvatures of S are calculated with

respect to this normal vector field.
Because S is strictly spacelike, we are essentially forced to take Γ =

∂V where V ⊂ R
n is a bounded domain and seek S as the graph of a

“spacelike” function v:

(1.20) S = {(y, yn+1) : yn+1 = v(y), y ∈ V }, |∇v| < 1 in V .
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In [19] we have computed the first and second fundamental forms of
S with respect to the induced de Sitter metric. We use

Xi = ei + vien+1, N = vν = v
viei + en+1

w
,

where w =
√

1− |∇v|2 and ν is the normal vector field of S viewed as
a Minkowski space Rn,1 graph. The first and second fundamental forms
gij and hij are given by

(1.21) gij = 〈Xi,Xj〉D =
1

v2
(δij − vivj)

and

(1.22) hij = 〈∇Xi
Xj, vν〉D =

1

v2w
(δij − vivj − vvij),

respectively. Note that from (1.22), S is locally strictly convex if and
only if

(1.23) |y|2 − v2 is a (Euclidean) locally strictly convex function.

There is a well-known Gauss map duality for locally strictly convex
hypersurfaces in dSn+1. For our purposes we will need a very concrete
formulation of this duality [19]. Montiel [16] showed that if we use the
upper half-space representation for both Hn+1 and H

n+1, the Gauss
map N corresponds to the map L : S → H

n+1 defined by

(1.24) L((y, v(y))) = (y − v(y)∇v(y), v(y)
√

1− |∇v|2), y ∈ V.

We now identify the map L in terms of a hodograph map and its
associated Legendre transform. Let p(y) = 1

2(|y|2 − v(y)2); since p
is strictly convex in the Euclidean sense by (1.23), its gradient map
∇p : V ⊂ R

n → R
n is globally one to one. Define

(1.25) x = ∇p(y), u(x) := v(y)
√

1− |∇v(y)|2, y ∈ V.

Then u is well defined in Ω := ∇p(V ). The associated Legendre trans-
form is the function q(x) defined in Ω by p(y) + q(x) = x · y or q(x) =
−p(y) + y · ∇p(y).

Theorem 1.8. [19]. Let L be defined by (1.24) and x by (1.25). Then
the image of S under L is the hyperbolic locally strictly convex graph in
H

n+1

Σ = {(x, u(x)) ∈ R
n+1
+ : u ∈ C∞(Ω), u(x) > 0}

with principal curvatures κ∗i = κ−1
i . Here, κ1, . . . κn are the principal

curvatures of S with respect to the induced de Sitter metric. Moreover,
the inverse map L−1 : Σ → S

L−1((x, u(x))) = (x+ u(x)Du(x), u(x)
√

1 + |Du(x)|2), x ∈ Ω

is the dual Legendre transform and hodograph map y = Dq(x), q(x) =
1
2(|x|2 + u(x)2).
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Note that when Σ = graph(u) over Ω is a strictly locally convex
solution of the asymptotic Plateau problem (1.1)–(1.2) in H

n+1, then
its Gauss image S = graph(v) is a locally strictly convex spacelike graph
also defined over Ω that solves the asymptotic Plateau problem f∗(κ) =
1
σ
> 1. We now define f∗.

Definition 1.9. Given a curvature function f(κ) in the positive cone
K+

n , define the dual curvature function f∗(κ) by

(1.26) f∗(κ) :=
1

f(κ−1
1 , . . . , κ−1

n )
, κ ∈ K+

n .

Note that f∗ may in fact be naturally defined in a cone K ⊇ K+
n . For

example, if f(κ) =
(

Hn

Hl

)
1

n−l , n > l ≥ 0 defined in K+
n , then

f∗(κ) =
(

Hn−l

)
1

n−l

is in fact defined in the standard Garding cone K = Γn−l.
Using the duality Theorem 1.8 we can transplant Theorem 1.1 to

Hn+1.

Theorem 1.10. Suppose Γ = ∂Ω ∈ C2 for a bounded domain Ω ⊂
R
n = R

n×{0} and f(κ) satisfies conditions (1.3)–(1.5) and (1.7)–(1.8).
Then for σ > 1 there exists a complete locally strictly convex spacelike
hypersurface S in Hn+1 satisfying f∗(κ) = σ and ∂S = Γ with uniformly
bounded principal curvatures

(1.27) C−1 ≤ κi ≤ C on S.

Moreover, S = graph(v) with v ∈ C∞(Ω) ∩ C0,1(Ω), v2 ∈ C1,1(Ω),
v|D2v|+ |Dv| ≤ C and

(1.28)
√

1− |Dv|2 = 1

σ
on ∂Ω.

Corollary 1.11. Under the assumptions of Theorem 1.10, there ex-
ists a complete locally strictly convex spacelike hypersurface S in Hn+1

satisfying

(Hl)
1

l = σ > 1, 1 ≤ l ≤ n

with ∂S = Γ and having uniformly bounded principal curvatures C−1 ≤
κi ≤ C on S. Moreover, S = graph(v) with v ∈ C∞(Ω) ∩ C0,1(Ω̄), v2 ∈
C1,1(Ω), v|D2v| + |Dv| ≤ C. Further, if l = 1 or l = 2 (corresponding
to mean curvature and normalized scalar curvature) or if ∂Ω is mean
convex, we have uniqueness among convex solutions and even among all
solutions (convex or not) if Ω is simply connected.

The uniqueness part of Corollary 1.11 follows from Theorem 1.6 of
[11] or Theorem 1.4 and a continuous deformation argument as used
in [18]. Montiel [16] proved existence for H = σ > 1 (mean curvature)
assuming ∂Ω is mean convex. Our result shows that for arbitrary Ω
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there is always a unique locally strictly convex solution. If Ω is mean
convex the solutions constructed by Montiel must agree with the ones
we construct.

An outline of the paper is as follows. In Section 2 we recall some
important identities and estimates, most of them from [11], needed in
the proof of our main technical result (Theorem 3.1), the “global interior
curvature estimate.” These identities and formulas are interesting and
important in themselves and will orient the reader to our point of view.
The proof of Theorem 3.1 is carried out in Section 3; Theorem 1.3 follows
immediately. Theorem 1.5 and Theorem 1.4 are proved in Sections 4 and
5, respectively; the use of Theorem 1.3 is essential in these proofs.

In the following sections, f is always assumed to satisfy (1.3)–(1.8)
in K+

n .

Acknowledgments. This research was supported in part by the NSF
and Simons Foundation.

2. Formulas on hypersurfaces and some basic identities

In this section we recall some basic properties of solutions of (1.1)
derived in [11] that will be needed in the following sections to prove our
main results.

In this paper all hypersurfaces in H
n+1 we consider are assumed to be

connected and orientable. If Σ is a complete hypersurface in H
n+1 with

compact asymptotic boundary at infinity, then the normal vector field
of Σ is chosen to be the one pointing to the unique unbounded region in
R
n+1
+ \Σ, and the (both hyperbolic and Euclidean) principal curvatures

of Σ are calculated with respect to this normal vector field.
Let Σ be a hypersurface in H

n+1. We shall use g and ∇ to denote
the induced hyperbolic metric and Levi–Civita connection on Σ, respec-
tively.

Let x and ν be the position vector and Euclidean unit normal vector
of Σ in R

n+1, respectively, and set

u = x · e, νn+1 = e · ν
where e is the unit vector in the positive xn+1 direction in R

n+1, and ‘·’
denotes the Euclidean inner product in R

n+1. We refer u as the height
function of Σ. The hyperbolic unit normal vector is n = uν.

Let τ1, . . . , τn be local frames. The metric and second fundamental
form of Σ are, respectively, given by

(2.1) gij = 〈τi, τj〉, hij = 〈Dτiτj,n〉 = −〈Dτin, τj〉

where D denotes the Levi–Civita connection of Hn+1. Throughout the
paper we assume τ1, . . . , τn are orthonormal so gij = δij . The principal
curvatures of Σ are the eigenvalues of the second fundamental form
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{hij} with respect to the metric {gij}. The following formula is derived
in [11]:

(2.2) ∇ij
1

u
=

1

u
(gij − νn+1hij).

Let S be the space of n × n symmetric matrices and S+ = {A ∈ S :
λ(A) ∈ K+

n }, where λ(A) = (λ1, . . . , λn) are the eigenvalues of A. Let
F be the function defined by

(2.3) F (A) = f(λ(A)), A ∈ S+,

and denote

(2.4) F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A).

We have F ij(A) = fi(λ(A))δij when A is diagonal. Moreover,

(2.5) F ij(A)aij =
∑

fi(λ(A))λi = F (A),

(2.6) F ij(A)aikajk =
∑

fi(λ(A))λ
2
i .

Equation (1.1) can therefore be rewritten locally in the form

(2.7) F (hij) = σ.

Denote F ij = F ij(hij), F
ij,kl = F ij,kl(hij).

Lemma 2.1 ([11]). Let Σ be a smooth hypersurface in H
n+1 satisfy-

ing (1.1). Then

(2.8) F ij∇ij
1

u
= −σνn+1

u
+

1

u

∑

fi,

(2.9) F ij∇ij
νn+1

u
=

σ

u
− νn+1

u

∑

fiκ
2
i .

Using Lemma 2.1, one derives the following important maximum prin-
ciple.

Theorem 2.2 ([11]). Let Σ be a smooth strictly locally convex hyper-
surface in H

n+1 satisfying equation (1.1). Suppose Σ is globally a graph:
Σ = {(x, u(x)) : x ∈ Ω} where Ω is a domain in R

n ≡ ∂Hn+1. Then

(2.10) F ij∇ij
σ − νn+1

u
≥ σ(1 − σ)

(
∑

fi − 1)

u
≥ 0.

Upper and lower bounds on ∂Ω for η := σ−νn+1

u
follow from the

following lemma, which is based on comparisons with equidistant sphere
solutions.
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Lemma 2.3. Assume that ∂Σ satisfies a uniform interior and/or
exterior ball condition, and let u denote the height function of Σ with
u = ε on ∂Ω. Then for ε ≥ 0 sufficiently small,

(2.11)

− ε
√
1− σ2

r2
− ε2(1 + σ)

r22
< νn+1 − σ

<
ε
√
1− σ2

r1
+

ε2(1− σ)

r21
on ∂Σ

where r2 and r1 are the maximal radii of exterior and interior spheres
to ∂Ω, respectively. In particular, νn+1 → σ on ∂Σ as ε → 0.

Corollary 2.4.

(2.12) η :=
σ − νn+1

u
≤ sup

∂Σ

σ − νn+1

u
on Σ.

Moreover, if u = ǫ > 0 on ∂Ω (satisfying a uniform exterior ball condi-
tion), then there exists ǫ0 > 0 depending only on ∂Ω, such that for all
ǫ ≤ ǫ0,

(2.13)
σ − νn+1

u
≤

√
1− σ2

r2
+

ε(1 + σ)

r22
on Σ

where r2 is the maximal radius of exterior tangent spheres to ∂Ω.

Proposition 2.5. Let Σ be a smooth strictly locally convex graph

Σ = {(x, u(x)) : x ∈ Ω}

in H
n+1 satisfying u ≥ ε in Ω, u = ε on ∂Ω. Then at an interior max-

imum of u
νn+1 we have u

νn+1 ≤ maxΩ u. Hence for ε small compared to
σ,

(2.14) νn+1 ≥ u

maxΩ u
in Ω

Proof. Let h = u
νn+1 = uw and suppose that h assumes its maximum

at an interior point x0. Then at x0,

∂ih = uiw + u
ukuki
w

= (δki + ukui + uuki)
uk
w

= 0 ∀ 1 ≤ i ≤ n.

Since Σ is strictly locally convex, this implies that ∇u = 0 at x0 so the
proposition follows immediately from Corollary 2.4. q.e.d.

Combining Theorem 2.2 and Proposition 2.5 gives

Corollary 2.6. Let Σ be a smooth strictly locally convex graph

Σ = {(x, u(x)) : x ∈ Ω}
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in H
n+1 satisfying u ≥ ε in Ω, u = ε on ∂Ω. Assume that ∂Ω satisfies a

uniform exterior ball condition. Then, for ε sufficiently small compared
to σ,

(2.15) νn+1 ≥ 2a :=
σ

1 +M maxΩ u

where M =
√
1−σ2

r2
+ ε(1+σ)

r2
2

.

Proof. By Theorem 2.2 we have νn+1 ≥ σ −Mu, while by Proposi-
tion 2.5 we have νn+1 ≥ u

maxΩ u
. Hence if u ≤ λσ, we find νn+1 ≥ σ(1−

λM), while if u ≥ λσ, we find νn+1 ≥ λσ
maxΩ u

. Choosing λ = maxΩ u
1+M maxΩ u

completes the proof. q.e.d.

3. The global interior curvature estimate

In this section we prove an interior curvature estimate (see Theorem
3.1, below) for the largest principal curvature of locally strictly convex
graphs with uniformly bounded principal curvatures 0 < κi ≤ C sat-
isfying f(κ) = σ. What is remarkable is that the bound we obtain is
independent of C and the “cutoff ” function ub which vanishes at ∂Ω.
Hence we can let b tend to zero to prove the global estimate Theorem
1.3.

Let Σ be a smooth strictly locally convex hypersurface in H
n+1 satis-

fying f(κ) = σ with ∂Σ ⊂ ∂∞H
n+1. For a fixed point x0 ∈ Σ we choose a

local orthonormal frame τ1, . . . , τn around x0 such that hij(x0) = κiδij .
The calculations below are done at x0. For convenience we shall write
vij = ∇ijv, hijk = ∇khij , hijkl = ∇lkhij = ∇l∇khij , etc.

Since H
n+1 has constant sectional curvature −1, by the Codazzi and

Gauss equations, we have hijk = hikj and

(3.1)
hiijj = hjjii + (hiihjj − 1)(hii − hjj)

= hjjii + (κiκj − 1)(κi − κj).

Consequently, for each fixed j,

(3.2) F iihjjii = F iihiijj + (1 + κ2j )
∑

fiκi − κj
∑

fi − κj
∑

κ2i fi.

Theorem 3.1. Let Σ be a smooth strictly locally convex graph in
H

n+1 with uniformly bounded principal curvatures 0 < κi ≤ C satisfying
f(κ) = σ, ∂∞Σ ⊂ ∂∞H

n+1 and

(3.3) νn+1 ≥ 2a > 0 on Σ.

For x ∈ Σ let κmax(x) be the largest principal curvature of Σ at x. Then
for 0 < b ≤ a

4 ,

(3.4) max
Σ

ub
κmax

νn+1 − a
≤ 8

a
5

2

(sup
Σ

u)b.
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Proof. Let

(3.5) M0 = sup
x∈Σ

ub
κmax(x)

νn+1 − a
.

Since κmax(x) ≤ C, M0 > 0 is attained at an interior point x0 ∈ Σ. Let
τ1, . . . , τn be a local orthonormal frame around x0 such that hij(x0) =
κiδij , where κ1, . . . , κn are the principal curvatures of Σ at x0. We may

assume κ1 = κmax(x0). Thus, at x0, u
b h11

νn+1−a
has a local maximum,

and so

(3.6)
h11i
h11

+ b
ui
u

− ∇iν
n+1

νn+1 − a
= 0,

(3.7)
h11ii
h11

+ b
uii
u

− ∇iiν
n+1

νn+1 − a
− (b+ b2)

u2i
u2

+ 2b
ui
u

∇iν
n+1

νn+1 − a
≤ 0.

Using (3.2), we find after differentiating the equation F (hij) = σ
twice that, at x0,

(3.8) F iih11ii = −F ij,rshij1hrs1 + σ(1 + κ21)− κ1

(

∑

fi +
∑

κ2i fi

)

.

By Lemma 2.1 we immediately derive

(3.9)
F ij∇ijν

n+1 =
2

u
F ij∇iu∇jν

n+1 + σ(1 + (νn+1)2)

− νn+1
(

∑

fi +
∑

fiκ
2
i

)

,

(3.10) F ij∇iju

u
=2

∑

fi
u2i
u2

+ σνn+1 −
∑

fi.

By (3.7)–(3.10) we find

(3.11)

0 ≥ − F ij,rshij1hrs1 + σ
(

1 + κ21 −
1 + (νn+1)2

νn+1 − a
κ1

)

+
aκ1

νn+1 − a

(

∑

fi +
∑

κ2i fi

)

− bκ1
∑

fi

+ (b− b2)κ1
∑

fi
u2i
u2

− (2− 2b)κ1
νn+1 − a

F ij ui
u
∇jν

n+1.

Next, we use an inequality due to Andrews [3] and Gerhardt [7] that
states

(3.12) −F ij,klhij1hkl,1 ≥
∑

i 6=j

fi − fj
κj − κi

h2ij1 ≥ 2
∑

i≥2

fi − f1
κ1 − κi

h2i11.

Recall that (see [11])

∇iν
n+1 =

ui
u
(νn+1 − κi).
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Thus at x0 we obtain from (3.6)

(3.13) h11i = κ1
ui
u

(νn+1 − κi
νn+1 − a

− b
)

.

Inserting this into (3.12), we derive

(3.14) −F ij,klhij1hkl,1 ≥ 2κ1
2
∑

i≥2

fi − f1
κ1 − κi

u2i
u2

(κi − νn+1

νn+1 − a
+ b

)2
.

Note that we may write

(3.15)

∑

fi +
∑

κ2i fi = (1− (νn+1)2)
∑

fi

+
∑

(κi − νn+1)2fi + 2σνn+1.

Combining (3.12), (3.14), and (3.15) gives at x0

(3.16)

0 ≥ σ
(

1 + κ21 −
1 + (νn+1)2

νn+1 − a
κ1

)

− bκ1
∑

fi

+ (b− b2)
∑

fi
u2i
u2

+
aκ1

2(νn+1 − a)

(

∑

fi +
∑

κ2i fi

)

+
aκ1

2(νn+1 − a)

(

(1− (νn+1)2)
∑

fi +
∑

(κi − νn+1)2fi + 2σνn+1
)

+ 2κ1
2
∑

i≥2

fi − f1
κ1 − κi

u2i
u2

(κi − νn+1

νn+1 − a
+ b

)2
+ (2− 2b)κ1

∑

fi
u2i
u2

κi − νn+1

νn+1 − a
.

Note that (assuming κ1 ≥ 2
a
and b ≤ a

4 ) all the terms of (3.16) are

positive except possibly the ones in the last sum involving (κi − νn+1),
and only if κi < νn+1.

For θ ∈ (0, 1) to be chosen later, define

J = {i : κi − νn+1 < 0, fi < θ−1f1},
L = {i : κi − νn+1 < 0, fi ≥ θ−1f1}.

Since
∑

u2i /u
2 = |∇̃u|2 = 1− (νn+1)2 ≤ 1, νn+1 ≥ 2a, and κifi ≤ σ for

each i, we derive

(3.17)
∑

i∈J
(κi − νn+1)fi

u2i
u2

≥ −f1
θ

≥ − σ

θκ1
,

and
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(3.18)

2κ2
1

∑

i∈L

fi − f1
κ1 − κi

u2
i

u2

(κi − νn+1

νn+1 − a
+ b

)2

+ (2− 2b)κ1

∑

i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a

≥ 2(1− θ)κ1

∑

i∈L

fi
u2
i

u2

(κi − νn+1

νn+1 − a

)2

+ (2 + 2b− 4bθ)κ1

∑

i∈L

fi
u2
i

u2

(κi − νn+1)

νn+1 − a

≥ 2κ1

(νn+1 − a)2

∑

i∈L

fi
u2
i

u2
(κ2

i
− (a+ νn+1)κi + aνn+1)

− 2θ

a

κ1

νn+1 − a

∑

i∈L

fi(κi − νn+1)2 + 2b(1− 2θ)κ1

∑

i∈L

fi
u2
i

u2

(κi − νn+1)

νn+1 − a

≥ − 6σ

a
κ1 −

2bκ1(1 − (νn+1)2)

νn+1 − a

∑

fi −
2θκ1

a(νn+1 − a)

∑

i∈L

fi(κi − νn+1)2.

We now fix θ = a2

4 and 0 < b ≤ a
4 . From (3.17) and (3.18) we see that

the right-hand side of (3.16) at x0 is strictly greater than

(3.19) σ
(

1 + κ21 −
8

a
κ1 −

8

a3

)

.

Then (3.19) is strictly positive if, for example, κ1 ≥ 8a−
3

2 . Therefore,

κ1 ≤ 8a−
3

2 at x0, completing the proof of Theorem 3.1. q.e.d.

4. Strict Euclidean star-shapedness for convex solutions

In this section we prove Theorem 1.5 by direct construction in Theo-
rem 4.3, below, of a strictly star-shaped locally strictly convex solution
with boundary in the horosphere {xn+1 = ε}. By compactness and
uniqueness we can then pass to the limit as ε tends to zero. We use
the continuity method by deforming from the horosphere solution u ≡ ε
for σ = 1. Under this deformation we will show that the property of
being strictly sharshaped—i.e., x · ν > 0—persists as long as a solution
exists. This property is intertwined with the demonstration that the full
linearized operator has trivial kernel.

Suppose Σ is locally represented as the graph of a function u ∈ C2(Ω),
u > 0, in a domain Ω ⊂ R

n: Σ = {(x, u(x)) ∈ R
n+1 : x ∈ Ω}, oriented

by the upward (Euclidean) unit normal vector field ν to Σ:

ν =
(−Du

w
,
1

w

)

, w =
√

1 + |Du|2.

The Euclidean metric and second fundamental form of Σ are given re-
spectively, by

geij = δij + uiuj , heij =
uij
w

.
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According to [5] the Euclidean principal curvatures κe[Σ] are the eigen-
values of the symmetric matrix Ae[u] = {aeij}:

(4.1) aeij :=
1

w
γikuklγ

lj, γij = δij −
uiuj

w(1 + w)
.

Note that the matrix {γij} is invertible and equal to the inverse square
root of {geij}; i.e., γikγkj = (ge)ij . By (1.13) the hyperbolic principal

curvatures κ[u] of Σ are the eigenvalues of the matrix A[u] = {aij [u]}:

(4.2) aij[u] := uaeij +
δij
w

=
1

w

(

δij + uγikuklγ
lj
)

.

Problem (1.1)–(1.2) reduces to the Dirichlet problem for a fully non-
linear second-order equation that we shall write in the form

(4.3) G(D2u,Du, u) = σ, u > 0 in Ω ⊂ R
n

with the boundary condition

(4.4) u = 0 on ∂Ω.

The function G in equation (4.3) is determined by G(D2u,Du, u) =
F (A[u]) where A[u] = {aij [u]} is given by (4.2). Let

(4.5) L = Gst∂s∂t +Gs∂s +Gu

be the linearized operator of G at u, where

(4.6) Gst =
∂G

∂ust
, Gs =

∂G

∂us
, Gu =

∂G

∂u
.

We shall not need the exact formula for Gs, but note that

(4.7) Gst =
u

w
F ijγisγjt, Gstust = uGu = G− 1

w

∑

F ii

where F ij = F ij(A[u]), etc. Under condition (1.4) equation (4.3) is
elliptic for u if A[u] ∈ S+, while (1.5) implies that G(D2u,Du, u) is
concave with respect to D2u.

Since x · ν = u−
∑

xkuk

w
, the following lemma is important.

Lemma 4.1. We have L(u−∑

xkuk) = 0.

Proof. Write L = L + Gu. Note that L(uk) = 0 since horizontal
translation is an isometry. We have

L(xkuk) = xkL(uk) + ukL(xk) + 2Gijδkiukj = ukG
k + 2Gijuij = Lu

since Gijuij = uGu. q.e.d.

Lemma 4.2. Suppose Lφ = 0 in Ω, φ = 0 on ∂Ω, and there exists
v > 0 in Ω satisfying Lv = 0. Then φ ≡ 0.
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Proof. Set h = φ
v
. A simple computation shows that

Lh+ 2Gij vi
v
hj = 0 in Ω, h = 0 on ∂Ω.

The lemma now follows by the maximum principle. q.e.d.

Theorem 4.3. Let Ω be a strictly star-shaped C2,α domain with re-
spect to the origin. Suppose f satisfies (1.12) in addition to (1.3)-(1.8).
There exists a unique solution u ∈ C∞(Ω) of the Dirichlet problem

(4.8) G(D2u,Du, u) = σ in Ω, u = ε on ∂Ω.

Moreover, the hypersurface Σ = graph(u) is strictly star-shaped with
respect to the origin. More precisely, there exist constants c0, ε0 > 0
such that for all 0 < ε ≤ ε0,

(4.9) x · ν > 0 on Σ, x · ν ≥ c0
√

1− σ2 min
x∈∂Ω

x ·N

where N is the exterior unit normal to ∂Ω.

Proof. Consider for 0 ≤ t ≤ 1, the family of Dirichlet problems

(4.10)
G(D2ut,Dut, ut) = σt := tσ + (1− t) in Ω,

ut = ε on ∂Ω.

Starting from u0 ≡ ε, we shall use the continuity method to prove for
any t ∈ [0, 1] that the Dirichlet problem (4.10) has a unique solution
ut ∈ C∞(Ω). Let S be the set of all such t; we know 0 ∈ S so S is not
empty.

From the estimates derived in [9] and [11] we have

(4.11) |(ut)2|C2(Ω) ≤ C ∀ t ∈ S

where C depends only on σ and the exterior ball condition satisfied by
Ω but is independent of t and ε. This shows that S is a closed set.

Next, let t ∈ S and denote wt =
√

1 + |Dut|2, xt = (x, ut(x)). Then
for t > 0 sufficiently small, wtxt·νt = ut−∑

xku
t
k > 0 and Lt(wtxt·νt) =

0 in Ω by Lemma 4.1. By Lemma 4.2, Lt has trivial kernel. This shows
that t is an interior point of S as long as wtxt · νt > 0. Since ∂Ω is
strictly starshaped,

(4.12) xt · νt ≥ |∇ut|
wt

(x ·N) ≥ c0
√

1− σ2 min
x∈∂Ω

x ·N on ∂Ω

for ε sufficiently small by Lemma 2.3. Hence if there is a first time t
such that wtxt · νt = 0, this occurs at an interior point, violating the
maximum principle. Therefore wtxt · νt > 0 and so S = [0, 1], proving
the solvability of the Dirichlet problem (4.8) and formula (4.9). q.e.d.
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Proof of Theorem 1.5. Given f satisfying (1.3)–(1.8), let f θ := (1 −
θ)f + θH

1

n
n , 0 < θ < 1, which satisfies (1.12) in addition to (1.3)–

(1.8). By Theorem 4.3 we obtain a unique solution uθ,ε ∈ C∞(Ω) of the
approximate problem f θ(κ[uθ]) = σ with uθ,ε = ε on ∂Ω. Moreover, by
(4.11)

(4.12) |(uθ,ε)2|C2(Ω) ≤ C independent of ε.

Letting ε → 0, we obtain a solution uθ of the asymptotic problem for
f θ = σ. By Theorem 1.3 the principal curvatures of Σθ = graph(uθ)
are uniformly bounded by a constant C depending only on Ω and σ.
Hence as θ → 0 we obtain by passing to a subsequence a smooth locally
strictly convex Σ satisfying (1.1)–(1.2) and (4.9). q.e.d.

5. Uniqueness for mean convex Ω

In this section we prove Theorem 1.4. We shall assume Ω is a C2,α

domain with Euclidean mean curvature H∂Ω ≥ 0.
The main step is to show there is always a solution Σ2 = graph(u)

of the asymptotic problem (1.1)–(1.2) in Ω with Gu < 0 and moreover
u ≤ v for any other solution Σ1 = graph(v). Then we show that Σ2 is
the unique solution. The proof we give is slightly circuitous in order to
avoid delicate issues of boundary regularity caused by the degeneracy
of the problem at the asymptotic boundary.

Proposition 5.1. Let 0 < σ < 1 and u ∈ C2(Ω) be a solution of the
Dirichlet problem (4.8) for ε > 0. Then Gu < 0 in Ω. Consequently, the
linearized operator L satisfies the maximum principle and so has trivial
kernel.

Proof. Let Σ = graph(u) and η ≡ σ−νn+1

u
. Since Gu ≤ η by (4.7), we

only need to show η < 0 in Ω. According to Theorem 2.2, η must achieve
its maximum at a boundary point 0 ∈ ∂Ω. We choose coordinates so
that the xn direction is the interior unit normal to ∂Ω at 0 where

(5.1) ηn =
ununn
uw3

− η
un
u

< 0, or equivalently,
unn
w3

< η.

On the other hand, by assumptions (1.5) and (1.8),

f(κ) ≤
∑

fi(1)κi =
∑

κi/n.

That is the hyperbolic mean curvature H(Σ) ≥ σ, and therefore, equiv-
alently,

(5.2)
1

w

(

δij −
uiuj
w2

)

uij ≥ nη.

Since
∑

α<n uαα = −un(n − 1)H∂D, restricting (5.2) to ∂Ω implies

(5.3)
unn
w3

− un
w

(n− 1)H∂Ω ≥ nη.
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Combining (5.1) and (5.3) yields wη(0) < −unH∂Ω ≤ 0. By Theorem
2.2 and the maximum principle, we obtain η < 0 in Ω. q.e.d.

Proposition 5.2. Let σ ∈ (0, 1). There exists a solution u ∈ C∞(Ω)∩
C0,1(Ω) of the Dirchlet problem (4.3)–(4.4) satisfying |u2|C2(Ω) ≤ C and

Gu < 0 in Ω.

Proof. We first assume that f satisfies (1.12) in additon to (1.3)–
(1.8). By an existence theorem in [9], for ε sufficiently small we obtain
a solution u ∈ C∞(Ω) of the Dirichlet problem (4.8). By Proposition
5.1 Gu < 0 in Ω. Therefore, the linearized operator at u satisfies the
maximum principle and so has trivial kernel.

By the estimates in [9] and [11] we have |u2|C2(Ω) ≤ C independent

of ε. Letting ε tend to zero, we prove Proposition 5.2 assuming (1.12).
To remove the assumption (1.12) we consider f θ in place of f as in the

proof of Theorem 1.5. From the above proof we obtain a solution uθ of
the asymptotic problem for f θ = σ with uθ = 0 on ∂Ω. By Theorem 1.3
the principal curvatures of Σθ = graph(uθ) are uniformly bounded by a
constant C depending only ∂Ω and σ. Let θ tend to zero, and note that
the condition Gu ≤ 0 is preserved in the limiting process and therefore
Gu < 0 in Ω by Theorem 2.2 and the strong maximum principle. We
finish the proof of Proposition 5.2. q.e.d.

Let û denote the solution of (4.3)–(4.4) constructed in Proposition 5.2.
Theorem 1.4 follows from the following proposition.

Proposition 5.3. Let v ∈ C2(Ω)∩C0(Ω) be a solution of the Dirchlet
problem (4.3)-(4.4). Then v = û.

Proof. We first prove v ≥ û; the strict inequality holds in Ω unless
v ≡ û. Let 0 < t ≤ 1, ǫ > 0 and Ωǫ = {x ∈ Ω : d(x, ∂Ω) > ǫ}. For ǫ
sufficiently small, ∂Ωǫ ∈ C2,α and H∂Ωǫ

≥ 0. Applying Proposition 5.2,
let ûǫ,t ∈ C∞(Ωǫ) be the solution constructed in Proposition 5.2 of the
Dirichlet problem (4.3)-(4.4) in Ωǫ with σ replaced by σt = (1− t)+ tσ.
Note that σt > σ and v > 0 = ûǫ,t on ∂Ωǫ for all 0 < t < 1, and v > ûǫ,t

in Ωǫ for t close to zero. By the maximum principle this property must
continue to hold until t = 1. Thus as ǫ → 0 we obtain v ≥ û. Thus v > û
in Ω or v ≡ û.

Suppose now for contradiction that

max
Ω

(v − û) = v(x0)− û(x0) > 0.

Set wt := tv+(1−t)û. We claim that graph(wt) is locally strictly convex,
i.e., (wt)2+|x−x0|2 is strictly Euclidean convex, in a small neighborhood
of x0. At x0, ∇v = ∇û and D2v ≤ D2û. A simple computation shows

wtwt
ij − tvvij − (1− t)ûûij = t(1− t)(v − û)(ûij − vij) ≥ 0 at x0.
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Hence, at x0,

wtwt
ij +wt

iw
t
j + δij ≥ t(vvij + vivj + δij)+ (1− t)(ûûij + ûiûj + δij) > 0,

and the claim follows. So G(D2wt,Dwt, wt) is well defined near x0.
Note that d

dt
G(D2wt,Dwt, wt) = Ltw near x0 where w = v − û.

Evaluating at t = 0 gives

d

dt
G(D2wt,Dwt, wt)(x0)

∣

∣

∣

t=0
= Gij

∣

∣

∣

û
wij(x0) +Gu

∣

∣

∣

û
w(x0) < 0.

Hence for t > 0 small enough, ϕ(t) := G(D2wt,Dwt, wt)(x0) < σ. In
particular, there is a t0 ∈ (0, 1] such that

ϕ(t0) = σ, ϕ(t) < σ on (0, t0).

Using the integral form of the mean value theorem, we may write

0 = ϕ(t0)−ϕ(0) = [aijwij+ bsws+ c(x)w](x0) := Lw(x0)+ c(x0)w(x0) ,

where

aij(x) =

∫ t0

0
Gij

∣

∣

∣

wt
dt, bs(x) =

∫ t0

0
Gs

∣

∣

∣

wt
dt, c(x) =

∫ t0

0
Gu

∣

∣

∣

wt
dt.

Since graph(wt) is hyperbolic locally strictly convex in a small neigh-

borhood of x0, the operator L = aij ∂2

∂xi∂xj
+ bs ∂

∂xs
is elliptic in this

neighborhood. Suppose for the moment that also c(x0) < 0. Then
Lw(x0) = −c(x0)w(x0) > 0, and w has a strict interior maximum at x0
contradicting the maximum principle.

We show c(x0) < 0 to complete the proof. According to (4.7),

wtGu

∣

∣

∣

wt
(x0) ≤ ϕ(t)− 1

√

1 + |Dwt(x0)|2

< σ − 1
√

1 + |Dû(x0)|2
< 0 on (0, t0).

Hence c(x0) =
∫ t0
0 Gu|wt(x0)dt < 0. q.e.d.
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