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THE SKEIN ALGEBRA OF ARCS AND LINKS AND THE
DECORATED TEICHMÜLLER SPACE

JULIEN ROGER & TIAN YANG

Abstract

We define an associative C[[h]]–algebra ASh(Σ) generated by regu-
lar isotopy classes of arcs and links over a punctured surface Σ which
is a deformation quantization of the Poisson algebra C(Σ) of arcs and
loops on Σ endowed with a generalization of the Goldman bracket. We
then construct a Poisson algebra homomorphism from C(Σ) to the alge-
bra of smooth functions on the decorated Teichmüller space endowed
with a natural extension of the Weil-Petersson Poisson structure de-
scribed by Mondello. The construction relies on a collection of ge-
odesic lengths identities in hyperbolic geometry which generalize Pen-
ner’s Ptolemy relation, the trace identities and Wolpert’s cosine formula.
As a consequence, we derive an explicit formula for the geodesic lengths
functions in terms of the edge lengths of an ideally triangulated deco-
rated hyperbolic surface.

1. Introduction

The skein module Sq(M) of a 3–manifoldM was introduced independently
by Turaev [Tu88] and Przytycki [Pr91] as a generalization of the Jones poly-
nomial of a link in S3, using as a key ingredient the Kauffman bracket skein
relation. If the 3–manifold is the product Σ× [0, 1] of a surface Σ by an inter-
val, its skein module has a natural structure of an algebra, and is at the heart of
the combinatorial approach to constructing a TQFT developed in [BHMV95].
This construction in turn has had many applications in low dimensional topol-
ogy (see [FWW02] for example) and has been shown recently to be equivalent
to the geometric approach to TQFT coming from conformal field theory (see
the recent work of Andersen and Ueno [AU11]).

On the other hand, the skein algebra turns out to be deeply related to the
SL2–geometry of the underlying surface. More precisely, following the work
of Turaev [Tu91], Bullock, Frohman and Kania-Bartoszyńska [Bu97, BFK99]
and Przytycki and Sikora [PS00], the skein algebra can be understood as a
deformation quantization of the SL2(C)–character variety of Σ.
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The goal of the present paper is the following: First, we extend the no-
tion of skein algebra for a punctured surface by allowing for arcs between the
punctures. In order to show that this construction is well-defined we revisit
arguments found in [Go86, Pr91] and extend them when necessary. Second,
following the approach of [BFK99], we relate our construction to geomet-
ric structures of Σ. In our approach, the relevant object turns out to be the
decorated Teichmüller space and the notion of λ–length introduced by Penner
[Pe87]. In order to establish a connection between the two constructions, we
derive a series of identities in hyperbolic geometry which we hope will be of
interest in themselves.

To motivate our approach let us first recall some of the steps in the con-
struction of the skein algebra and its relationship with the character variety.
Let q be the formal power series e

h
4 ∈ C[[h]]. The skein algebra Sh(Σ), intro-

duced by Przytycki [Pr91] and Turaev [Tu88], is the C[[h]]–algebra generated
by isotopy classes of framed links in Σ×[0, 1] subject to the Kauffman bracket
skein relation

= q + q−1

as well as the framing relation = −q2 − q−2. In [Tu91], Turaev stud-
ied the relationship between the skein algebra and the Lie algebra of curves
on Σ introduced by Goldman [Go86]. In turn, in the work of Goldman, the
Lie bracket on curves is related to the Weil-Petersson Poisson structure on the
SL2(C)–character variety X (Σ) of Σ, that is, the space of conjugacy classes
of representations ρ : π1(Σ) → SL2(C). A direct relationship between the
skein algebra and the character variety was described by Bullock [Bu97] who
constructed a surjective homomorphism from the commutative algebra S0(Σ)
to the coordinate ring C[X (Σ)] of X (Σ). This map turns out to be an isomor-
phism by the work of Przytycki and Sikora [PS00] (see more recently [CM09]
for a direct proof). Up to a sign, it assigns to each free homotopy class of
curves γ in Σ its trace function trγ in C[X (Σ)], given by taking the trace
of representations evaluated at γ. One of the key ingredients is then given
by the trace identities which relate the product of traces of two intersecting
curves with the traces of their resolutions at one point. These identities, in
turn, come from the classical formula trA · trB = trAB + trAB−1 relating
traces in SL2(C). Using this isomorphism, Bullock, Frohman and Kania-
Bartoszyńska [BFK99] showed that the skein algebra is in fact a quantization
of the character variety for the Goldman-Weil-Petersson bracket, in the sense
of deformation of Poisson algebras. This means that S0(Σ), endowed with the
Poisson bracket inherited from the commutator on Sh(Σ), is isomorphic as a
Poisson algebra to C[X (Σ)].

Our goal is to extend this construction by including arcs in the definition of
the skein algebra for a surface with punctures. We define a generalized link to
be an embedding of a collection of circles and closed intervals in Σ × [0, 1],
so that the ends of the intervals sit above the punctures (see Section 2 for a
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precise definition).

v1 × [0, 1] v2 × [0, 1]

A component given by an interval will be called an arc. Instead of introducing
framings, we follow the original approach of Kauffman [Kau90] and identify
such links under a suitable notion of regular isotopy. The skein algebra of
arcs and links ASh(Σ) of Σ will then be generated by regular isotopy classes
of generalized links subject to the following set of relations. The usual skein
relation still applies for crossings occurring above Σ, where we allow some
of the strands to be arcs. When two arcs meet at a puncture we introduce the
so-called puncture-skein relation

. =
1

v

(
q

1
2 . + q−

1
2 . )

.

Here v is a central element associated to the puncture which turns out to be
essential when trying to interpret this relation geometrically. In addition, the
framing relation still applies and we also impose the puncture-framing relation

. = q + q−1.
In the classical case, we consider the algebra C(Σ) generated by arcs and

loops on Σ itself subject to the corresponding non-quantum skein relations. It
admits a Poisson bracket described in terms of resolutions of intersections in-
side the surface and at the punctures which generalizes Goldman’s Lie bracket
on loops. Using arguments similar to the ones in [BFK99], we show that this
bracket comes from the commutator in ASh(Σ), In other words

Theorem 1.1. ASh(Σ) is a deformation quantization of C(Σ).

The next step of our construction is to relate the algebra C(Σ) to the SL2–
geometry of the surface Σ, in the case when χ(Σ) < 0 and the set of punc-
tures V is non-empty. In this context, the relevant object is the decorated
Teichmüller space T d(Σ) introduced by Penner [Pe87]. It is defined as a
bundle over the usual Teichmüller space T (Σ) with fiber RV>0. Given a hy-
perbolic metric m ∈ T (Σ), the choice of a point in the fiber corresponds to
fixing the length of a horocycle at each of the punctures of Σ. This assign-
ment, in turn, permits the measure of the length l(α) of any arc α between
horocycles. A more relevant quantity in our context is the λ-length of α given
by λ(α) = e

l(α)
2 . This quantity satisfies the well-known Ptolemy relation

λ(e)λ(e′) = λ(a)λ(c) + λ(b)λ(d)
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where a, b, c, d are the consecutive edges of a quadrilateral and e and e′ are its
diagonals. Graphically, the Ptolemy relation can be rewritten:

e e' = a c +
b

d
which we want to interpret as a non-quantum skein relation.

Using these notions, we obtain the following theorem.

Theorem 1.2. There is a well-defined homomorphism of Poisson algebras

Φ: C(Σ)→ C∞(T d(Σ)) .

Up to signs, this map sends loops to their trace functions, arcs to their λ-
lengths and punctures to horocycle lengths around them. The Poisson structure
on T d(Σ) is an extension of the usual Weil-Petersson Poisson bracket on T (Σ)
and was described by Mondello [Mo09]. The proof of the theorem relies on a
collection of length identities which generalize Penner’s Ptolemy relation, the
trace identities and Wolpert’s cosine formula [Wo83] for the Poisson bracket
of two trace functions. These identities are derived in turn from a set of “cosine
laws” which can be found in Appendix A of [GL09] by Guo and Luo.

Combining Theorems 1.1 and 1.2, it is tempting to interpret ASh(Σ) as
a deformation quantization of the decorated Teichmüller space. Following
[Bu97] and [PS00], we first conjecture that the homomorphism Φ in the the-
orem above is injective. Another important step would then be to understand
what is the correct “algebra of functions” on T d(Σ). In their work, Bullock,
Frohman and Kania-Bartoszyńska make use of the fact that the character vari-
ety is an algebraic variety, and as such they are lead to use its coordinate ring
C[X (Σ)]. This choice is made natural by the fact that C[X (Σ)] is generated
by trace functions. In our context, the image of the homomorphism Φ is es-
sentially the subalgebra generated by trace functions and λ–lengths. A natural
question to ask is then if T d(Σ) has a natural structure of an algebraic vari-
ety for which its coordinate ring coincides with this subalgebra. An important
observation which makes this approach sensible is the fact that the λ–lengths
associated to the edges of an ideal triangulation form a coordinate system on
T d(Σ) in which every trace function can be written as a Laurent polynomial
(see Proposition 3.19 and Theorem 3.22). The way this fact translates at the
level of the skein algebra ASh(Σ), however, remains an intriguing problem.

The fact that the trace identity and the Ptolemy relation can be combined
into generalized skein relations involving both arcs and loops has been used
recently in works of Dupont and Palesi [DP11] and Musiker and Williams
[MW11], in the context of cluster algebras associated to triangulated surfaces,
and was observed previously by Fock and Goncharov [FG06]. It would be in-
teresting to see if our work applies to the context of quantum cluster algebras
as defined by Berenstein and Zelevinsky [BZ05]. Closely related to these con-
siderations is the construction of quantum trace functions in the context of the
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quantization of Teichmüller space [Ka98, CF99]. This problem was solved
recently by Bonahon and Wong in [BW10, BW11] using the skein relation in
a crucial way. In turn, their construction is based on the use of shear coordi-
nates [Bo96] which are closely related to λ-lengths. As such, we hope that our
work could shed new light on the relationship between the skein algebra and
the quantum Teichmüller space.

Acknowledgments. We are grateful to M. Freedman, C. Frohman, J. Przy-
tycki and Z-H.Wang for showing interest in this work and for their helpful
comments. We would also like to thank F. Bonahon and F. Luo for their con-
tinuous support and for the many conversations which have lead to this work.
Finally, we would like to thank the referees for the very helpful suggestions
on improving this article.

2. Algebraic and topological aspects

2.1. The skein algebra of arcs and links. We consider a surface Σ obtained
from a closed oriented surface Σ by removing a possibly empty finite subset
V . Elements of V will be called the punctures of Σ.

Definition 2.1. A continuous map α =
∐
i αi t

∐
j lj from a finite collec-

tion of intervals
∐
i [0, 1] and circles

∐
j S

1 into Σ × [0, 1] is called a gener-
alized link in Σ× [0, 1] if

(1) α is an injection into Σ× (0, 1);
(2) each lj is an embedding into Σ× (0, 1);
(3) the restriction of each αi to (0, 1) is an embedding into Σ× (0, 1);
(4) the restriction of each αi to {0, 1} is an injection into V × (0, 1).

We identify such embeddings under a change of orientation of any of their
components.

Definition 2.2. Given two generalized links α and β in Σ× [0, 1] we define
the stacking of α over β to be the union in Σ × [0, 1] of the rescaling of α to
Σ× [1

2 , 1] and the rescaling of β to Σ× [0, 1
2 ].

The open interval in condition (1) implies that the stacking of two gener-
alized links is still injective, hence is a generalized link in Σ × [0, 1]. Each
component αi in a generalized link α will be called an arc, with the under-
standing that such a component can be “knotted”, and condition (4) implies
that each arc component of a link ends at a different height above the punctures
of Σ.

Some conventions are needed when considering a diagram of a generalized
link projected onto Σ. We use the usual convention to encode which strand of
a generalized link passes over another in Σ× [0, 1] and we assume that the dia-
gram only possesses ordinary double points in Σ. However, we cannot impose
this condition on the diagrams for intersections occurring above a puncture,
since more than two arcs can meet at a puncture and such intersections cannot
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be resolved via an ambient isotopy of Σ × [0, 1]. If two strands of arcs meet
above a puncture, we consider the following diagram:

.
Here the left strand ends above the right one at the puncture, and no other
strand ends in between. We call such a configuration a consecutive crossing.
However, we do not necessarily sketch the strands ending above or below. In
some cases, we need to study relations involving more than two strands ending
at a puncture, then a picture such as this one,

.
will be supplemented with an explanation of the respective positions of the
strands lying under the top one.

Following the approach of Kauffman [Kau90], we say that two links are
regularly isotopic if the diagram of one can be obtained from that of the other
via consecutive applications of Reidemeister Moves II and III

←→ ←→

as well as the following new moves (Figure 1), occuring when two strands of
arcs cross consecutively at a puncture, which we will call Reidemeister Moves
II′. As is standard in the context of skein theory, we do not identify diagrams

.. ..
Figure 1. Reidemeister Moves II′.

under Reidemeister Moves I. We will show in Section 2.2 that Moves II, II’
and III correspond to the moves needed when performing regular homotopies
on the surface.

Let C[[h]] denote the ring of power series in h. We endow it with the h–
adic topology and, following the approach of Bullock, Frohman and Kania-
Bartoszyńska [BFK99] we will work over the category of topological C[[h]]-
modules. We refer to their paper as well as to the standard reference [Kas95]
for details.

We let L be the set of regular isotopy classes of generalized links in Σ ×
[0, 1] together with the empty link and let V ±1 be the set of punctures v of
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Σ and their formal inverses v−1. We consider the C–vector space C[L, V ±1]
with basis L ∪ V ±1 and define a product on this space via
(1) the product α · β of α and β in L is obtained by stacking α over β;
(2) the elements of V ±1 are central and v · v−1 = 1 for each v ∈ V .
The empty link is the identity for this operation.

We can then form the set C[L, V ±1][[h]] of formal power series with coef-
ficients in C[L, V ±1] which inherits a natural structure of C[[h]]-module. The
multiplication on C[L, V ±1] extends naturally to C[L, V ±1][[h]] and turns it
into a topological algebra.

We are now ready to introduce the main object of this article.

Definition 2.3. Let q be the formal power series e
h
4 ∈ C[[h]]. The skein

algebra of arcs and links ASh(Σ) is the quotient of C[L, V ±1][[h]] by the
closure in the h–adic topology of the sub–module generated by the following
relations:
(1) Kauffman Bracket Skein Relation: for a crossing in the surface, we

have

= q + q−1 ;

(2) Puncture-Skein Relation: for a consecutive crossing at a puncture v, we
have

. =
1

v

(
q

1
2 . + q−

1
2 . )

;

(3) Framing Relation: for the isotopy class of a trivial loop, we have

= −q2 − q−2;

(4) Puncture-Framing Relation: for the isotopy class of a circle around a
puncture, we have

. = q + q−1.

The multiplication · is induced by the stacking operation on C[L, V ±1][[h]].

Some comments are in order to justify this definition. First, note that if V is
empty, thenASh(Σ) coincides with the algebra defined in [BFK99], which is
a topological version of the usual Kauffman bracket skein algebra Sq(Σ) over
a formal parameter q as defined in [Pr91] and [Tu88]. Second, The choice of
the coefficients q±

1
2 in the puncture-skein relation turns out to be essential in

proving that this algebra is well-defined and that the product is associative. It
will also have a geometrical justification which will be explained in Section
3. Finally, the central elements v associated to the punctures are not essential
from the algebraic point of view but will play an important rôle in the geomet-
ric interpretation given in Section 3, where they will be related to the choice
of a horocycle at each puncture.
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We recall that a C[[h]]–module M is called topologically free if there ex-
ists a C-vector space V so that M is isomorphic to V[[h]] (see for example
[Kas95]). We have the following

Theorem 2.4. The skein algebra
(
ASh(Σ), ·

)
is a well-defined topologi-

cally free associative C[[h]]–algebra.

Proof. One can easily see that the stacking operation is compatible with
regular isotopies. Therefore, to verify the well-definedness of the multiplica-
tion, it suffices to show that it is invariant under Reidemeister Moves II, II′

and III. The invariance under Reidemeister Moves II and III follows from the
same arguments as in [Pr91]. For Reidemeister Move II′, we first calculate
that

. =
1

v

(
q

1
2

. + q−
1
2 . )

=
1

v

(
q

1
2 (−q2 − q−2) + q−

1
2 (q + q−1)

)
=

1

v

(
q

1
2 − q

5
2

)
,

where v is the puncture and the second equality follows from the framing and
the puncture-framing relations. With this, we obtain

. = q . + q−1 .

=
1

v
q
(
q

1
2 . + q−

1
2 . )

+
1

v
q−1

(
q

1
2 − q

5
2

) .

=
1

v

(
q

1
2 . + q−

1
2 . )

= . ,

where the first equality follows from the Kauffman bracket skein relation and
the second equality from the puncture-skein relation and the previous calcula-
tion. The well-definedness under the other Reidemeister Move II′ is verified
similarly.

To show that α ·
⊙

=
⊙
· α = (q + q−1)α, the only case we need to

consider is when
⊙

is a circle around a puncture v and α is an arc having v
as one of its endpoints. For α ·

⊙
, we have

. = q . + q−1 . =
(
q + q−1

) . ;

and similarly for
⊙
· α = (q + q−1)α.

When three links cross inside the surface, the associativity follows from the
same arguments as in [Pr91], and similarly if some intersections happen at a
puncture as long as there are no triple points. If three arcs α, β and γ meet at
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a puncture v, say in counterclockwise order, we have for (α · β) · γ that

β .
α

γ

=
1

v

(
q

1
2 . + q−

1
2 . )

=
1

v

(
q

3
2 . + q−

1
2 . + q−

1
2 . )

;

and for α · (β · γ) that

β .
α

γ

=
1

v

(
q

1
2 . + q−

1
2 . )

=
1

v

(
q

3
2 . + q−

1
2 . + q−

1
2 . )

.

The case when α, β and γ are ordered clockwise can be checked similarly.
The proof that ASh(Σ) is topologically free follows from the same argu-

ments as in [BFK99]. In our case, a diagram of a generalized link in Σ× [0, 1]
is a graph in Σ which is four-valent in Σ and many-valent at V with over- and
under-crossings. Two diagrams represent the regularly isotopic generalized
links if and only if they differ by a sequence of isotopies of Σ and Reide-
meister Moves II, II′ and III. We consider the vector spaceW over C whose
basis consists of all diagrams which have no crossing in Σ, no trivial loops
and no loops bounding a puncture, and let V = W ⊗ C[V ±1]. To any ele-
ment in C[L, V ±1] one can associate an element of V[[h]] by considering one
of its associated diagrams and first resolving intersections at the punctures
using the puncture-skein relation (2), then resolving intersections in Σ using
the skein relation (1) and finally sending each trivial loops to −q2 − q−2 and
loops around punctures to q + q−1. This process converges when extended to
power series in C[L, V ±1][[h]] and can be seen to descend to a well-defined
homomorphism of topological algebras Ψ: ASh(Σ) → V[[h]] whose inverse
is given by considering the inclusion of V[[h]] in C[L, V ±1][[h]] and taking
the quotient. q.e.d.

Remark 2.5. In the rest of this paper, we call an element S of V = W ⊗
C[V ±1] a state. Recall that W consists of all the diagrams on Σ with no
crossings and no loops bounding a disk or a puncture.

2.2. Generalized curves and regular homotopy. The classical counterpart
of the skein algebra can be defined in terms of curves on the surface Σ itself.
As such we start by introducing the proper class of curves we will need to
consider.

Definition 2.6. A generalized curve on Σ is an immersion α : D → Σ of a
finite union D of circles and closed intervals into Σ so that
(1) the circles and the interior of the intervals are mapped into Σ;
(2) the end points of the intervals are mapped to the set of punctures V.
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We identify such immersions under a change of orientation of any of their
components.

The empty map is also considered as a generalized curve and called the
empty curve.

Definition 2.7. Two generalized curves α and β : D → Σ are called regu-
larly homotopic if there exists a homotopy F : D × [0, 1] → Σ from α to β
relative to the end points of the intervals so that F |D×{t} is an immersion for
all t ∈ [0, 1].

We refer to [Wh37] for more details of regular homotopies. Besides the
standard Reidemeister Moves II and III,

←→ ←→

we also introduce the Reidemeister Move II’ for generalized curves:

. ←→ .

Lemma 2.8. Two generalized curves on Σ are regularly homotopic if and
only if one can be obtained from the other by a sequence of ambient isotopies
of Σ and Reidemeister Moves II, II′ and III.

Proof. If two generalized curves differ by a Reidemeister Move II, II’ or
III, then we can perform the following regular homotopies or their inverses
respectively:
(II) For a Reidemeister Move II, the homotopy creates a tangential double
point where the two strands of the curve intersect tangentially;

−→ −→

(II’) For a Reidemeister Move II’, the homotopy creates a tangential double
point at a puncture where the two ends intersect tangentially;

. −→ . −→ .

(III) For a Reidemeister Move III, the homotopy creates a transverse triple
point where the three strands intersect.

−→ −→
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For the converse, we follow the approach of Goldman in
[Go86, 5.6. Lemma]. Let Imm(D,Σ) be the space of generalized curves
α : D → Σ endowed with the Fréchet topology, and we call a generalized
curve α : D → Σ generic if its only self-intersections in Σ are transverse
double points and its self-intersections at the punctures v ∈ V are all trans-
verse. By standard transversality arguments (see for example [Hi76]), generic
immersions form an open dense subset Imm0(D,Σ) of Imm(D,Σ). De-
note by Imm1(D,Σ) the subspace of Imm(D,Σ) consisting of immersions
α : D → Σ with finitely many transverse double points and exactly one of the
following singularities:

.

Then, by transversality, Imm1(D,Σ) has codimension 1 in Imm(D,Σ).
Suppose now that α and β are two regularly homotopic generalized curves

in Σ. By transversality, they are homotopic via a generic path in Imm(D,Σ),
that is, a path which avoids entirely the codimension > 2 subset Imm(D,Σ)\
(Imm0(D,Σ) ∪ Imm1(D,Σ)) and meets Imm1(D,Σ) transversely. Thus,
there is a homotopy Ft from α to β such that Ft ∈ Imm0(D,Σ) for all
t ∈ [0, 1] except at finitely many ti ∈ {t1, . . . , tk} where Fti ∈ Imm1(D,Σ)
and the homotopy Ft in a neighborhood of ti is of one of the types described
in (II), (II’) or (III) above. q.e.d.

2.3. The Poisson algebra of generalized curves. In this section, we intro-
duce the classical counterpart C(Σ) of the skein algebra ASh(Σ) and show
that one is a deformation quantization of the other.

Definition 2.9. The algebra of curves C(Σ) on Σ is the quotient of the C–
algebra generated by the regular homotopy classes of generalized curves on Σ,
the punctures of Σ and their formal inverses, modulo the subspace generated
by the following relations:

(1′) Skein Relation: = + for an intersection in Σ;

(2′) Puncture-Skein Relation: . = v−1
( . + . )

for an

intersection at v;
(3′) Framing Relation: = −2;

(4′) Puncture-Framing Relation: . = 2.

The product α ·β of two generalized curves α and β is obtained by taking their
union with unit the empty curve.

The fact that C(Σ) is a well-defined commutative algebra follows from the
same arguments as for ASh(Σ). These two algebras are related naturally as
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follows: let p : ASh(Σ) → C(Σ) be the map which to a generalized link in
Σ×[0, 1] associates its projection on Σ. We also let p(h) = 0 and let p(v±1) =
v±1 for each puncture v. Since pmaps regular isotopies to regular homotopies
and relations (1) – (4) to the corresponding relations (1′) – (4′), and maps the
stacking of generalized framed links in Σ × [0, 1] to the union of generalized
curves on Σ, it is a well-defined surjective C–algebra homomorphism.

Proposition 2.10. The map p : ASh(Σ)/hASh(Σ) → C(Σ) induced by p
is an isomorphism of C–algebras.

Proof. Since ASh(Σ) ∼= V[[h]] is topologically free, each element a ∈
ASh(Σ) can be uniquely written as a power series

∑
akh

k with coefficients
ai ∈ V . By the definition of p, we have p(a) = p(a0). Remember that the
elements of V are diagrams without crossings either in Σ or at V , hence p is
injective on V . Since a0 ∈ V , we have p(a0) = 0 if and only if a0 = 0. As
a consequence, ker p = hASh(Σ) and p induces a C–algebra isomorphism
p : ASh(Σ)/hASh(Σ)→ C(Σ). q.e.d.

In [Go86], Goldman defines a Lie bracket on the free algebra generated
by free homotopy classes of curves on Σ. It can be described in terms of
resolutions of intersections and is of a purely topological nature. Generalizing
this construction, we consider the Goldman bracket on C(Σ) to be the bilinear
map { , } : C(Σ)× C(Σ)→ C(Σ) defined as follows:
(1) for two punctures v and w, we let {v, w} = 0;
(2) for a puncture v and a generalized curve α, we let {v, α} = 0;
(3) for two generalized curves α and β, we let

{α, β} =
1

2

∑
p∈α∩β∩Σ

(αpβ
+ − αpβ−) +

1

4

∑
v∈α∩β∩V

1

v
(αvβ

+ − αvβ−).

In the first sum, the positive resolution αpβ+ of α and β at p is obtained
by going along α toward p then turning left at p before going along β, and the
negative resolution αpβ− is obtained similarly by turning right.

α β αpβ+ αpβ−

In the second sum, we introduce positive and negative resolutions of in-
tersections at a puncture in a similar manner. However, we have to consider
several cases depending on the number and the relative positions of the ends
of α and β meeting at v. Given an end of α and an end of β at v, a positive
resolution consists in going along the corresponding strand of α toward v then
turning left around v before going along the strand of β. In this process the
other ends of α and β, if any, are left untouched. The positive resolution αvβ+

is then defined to be the sum of all the positive resolutions between the ends of
α and the ends of β. The negative resolution αvβ− is defined accordingly by
turning right around v. The possible configurations and resolutions are given
in the table below.



SKEIN ALGEBRAS AND DECORATED TEICHMÜLLER SPACE 107

αvβ
+ αvβ

−

. .

. + . . + .

. + . + . + . . + . + . + .

. + . + . + . . + . + . + .

Similarly to the skein algebra, most of the facts about this bracket rely on
computations done locally around intersections. As such, diagrams of these
types { } { }
will be used to denote the sum of the terms in {α, β} coming from their in-
tersections in the dotted circle. Note in particular that the order in the bracket
will be encoded using over and under crossings, even though the curves do
intersect in Σ.

We recall that a Poisson algebra is an associative algebra together with an
anti-symmetric bilinear form which satisfies the Jacobi identity as well as the
Leibniz rule.

Theorem 2.11. The algebra
(
C(Σ), ·, { , }

)
is a well-defined Poisson alge-

bra.

To prove Theorem 2.11, we need the following lemma.

Lemma 2.12. The following identities hold in C(Σ):

(1) = − ;

(2) . = 0;

(3) . = . + 2 . .

Proof. This is a simple computation using the relations in Definition 2.9.
As an illustration, for relation (2) we have
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. =
1

v

( . + . )
=

1

v
(2− 2) = 0.

q.e.d.

Proof of Theorem 2.11. By Lemma 2.8, in order to verify the well-definedness,
it suffices to show that { , } is invariant under Reidemeister Moves II, II′ and
III and relations (1′) – (4′). The invariance under Reidemeister Moves II and
III and relations (1′), (3′) and (4′) follows from the same arguments as in
[Go86]. For the invariance under Reidemeister Move II′, We have, with the
pictorial conventions set earlier,{ }

=
1

2

(
− . )

+
1

4v

( . − . )
=

1

2v

( . + . )
+

1

4v

(
− 3 . − . )

=
1

4v

( . − . )
=
{ . }

,

where the second equality follows from Lemma 2.12. For the invariance under
the puncture-skein relation (3′), we have to verify the following three cases:

(i)
{ }

= v−1
({

.
}

+
{ . })

,

(ii)
{ }

= v−1
({ . }

+
{ . })

,

(iii)
{ }

= v−1
({ . }

+
{ . })

.

For (i), if we apply to the left hand side the definition of the bracket then
resolve the intersections in the surface using the skein relation, we obtain{ }

=
1

4v

( . + . − . − . )
=

1

4v

( . + . + . − . − . − . )
=

1

2v

( . − . )
,

while by definition the second term on the right hand side vanishes and so

1

v

({
.
}

+
{ . })

=
1

2v

( . − . )
.

Note that since the left hand sides of (ii) and (iii) differ by a Reidemeister
Move II′, it suffices to verify either of them, which follows from a computation
similar to that for (i) and is left to the reader. The anti-symmetry of { , }
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follows from the fact that αxβ± = βxα
∓ for each x ∈ α ∩ β either in the

surface or at the punctures.
The verification of the Jacobi identity is in the spirit of Goldman [Go86]

separating the following two cases:

(1) α ∩ β ∩ γ ∩ V = ∅, and
(2) α ∩ β ∩ γ ∩ V 6= ∅.

In case (1), we let α, β and γ be three generalized curves on Σ. We let
c(x, y) = 1

4 if x, y ∈ Σ and c(x, y) = 1
16x
−1y−1 if x, y ∈ V ; and if only one

of x and y, say x, is a puncture of Σ, we let c(x, y) = 1
8x
−1. Then we have

{{α, β}, γ}

=
∑

x ∈ α ∩ β
y ∈ β ∩ γ

c(x, y)
(
(αxβ

+)yγ
+ − (αxβ

+)yγ
− − (αxβ

−)yγ
+ + (αxβ

−)yγ
−)

+
∑

x ∈ α ∩ β
z ∈ γ ∩ α

c(x, z)
(
(αxβ

+)zγ
+ − (αxβ

+)zγ
− − (αxβ

−)zγ
+ + (αxβ

−)zγ
−),

and

{{β, γ}, α}

=
∑

y ∈ β ∩ γ
z ∈ γ ∩ α

c(y, z)
(
(βyγ

+)zα
+ − (βyγ

+)zα
− − (βyγ

−)zα
+ + (βyγ

−)zα
−)

+
∑

y ∈ β ∩ γ
x ∈ α ∩ β

c(y, x)
(
(βyγ

+)xα
+ − (βyγ

+)xα
− − (βyγ

−)xα
+ + (βyγ

−)xα
−).

By definition, we have that (αxβ
+)yγ

+ = (βyγ
+)xα

−, (αxβ
+)yγ

− =
(βyγ

−)xα
−, (αxβ

−)yγ
+ = (βyγ

+)xα
+ and (αxβ

−)yγ
− = (βyγ

−)xα
+ for

each x ∈ α ∩ β and y ∈ β ∩ γ, so the summands in the first row of the
expansion of {{α, β}, γ} cancel out the summands in the second row of the
expansion of {{β, γ}, α}. Similarly, the summands in the second row of the
expansion of {{α, β}, γ} and the first row of the expansion of {{β, γ}, α} can-
cel out the summands in the expansion of {{γ, α}, β}. Hence {{α, β}, γ} +
{{β, γ}, α} + {{γ, α}, β} = 0. In case (2), we let v ∈ α ∩ β ∩ γ. If v is
a self-intersection of one of α, β or γ, say α, then by the well-definedness of
{ , } we can resolve α at v to reduce to case (1). If v is a self-intersection of
none of α, β or γ, then we may without loss of generality assume that α, β and
γ are counterclockwise ordered at v. Then all the summands in {{α, β}, γ}+
{{β, γ}, α}+ {{γ, α}, β} cancel out in pairs as in case (1) except three sum-
mands around v which are from 1

4v
−1{αvβ+, γ}, 1

4v
−1{βvγ+, α} and
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1
4v
−1{γvα+, β} respectively; and for the sum of them, we have{ . }

+
{

.
}

+
{ . }

=
1

2

( . − . )
+

1

2

( . − . )
+

1

2

( . − . )
= 0.

The Leibniz rule follows directly from the definition and the fact that (α ·β)∩
γ = (α ∪ β) ∩ γ = (α ∩ γ) ∪ (β ∩ γ). q.e.d.

Following the approach of [BFK99] (see also [KS98]), we recall that a
topologically free C[[h]]–algebra Ah is called a (formal) deformation
quantization of a Poisson algebra A if there is a C–algebra isomorphism
Θ: Ah/hAh → A such that

Θ
( ᾱ · β̄ − β̄ · ᾱ

h

)
= {α, β}

for any ᾱ ∈ Θ−1(α) and β̄ ∈ Θ−1(β). Using the isomorphism from Proposi-
tion 2.10, we obtain the following theorem.

Theorem 2.13. The C[[h]]–algebraASh(Σ) is a deformation quantization
of C(Σ) via the C–algebra isomorphism p.

Proof. We adapts arguments which can be found in [BFK99]. Given a dia-
gram on the surface, we let p±(S), respectively, be the number of positive and
negative resolutions in the surface used to obtain the state S, and let v±(S), re-
spectively, be the number of positive and negative resolutions at the punctures
used to obtain S. If none of α and β has a self-intersection at the punctures,
then, keeping track of the crossings, we have

{α, β} =
∑
S

(1

2

(
p+(S)− p−(S)

)
+

1

4

(
v+(S)− v−(S)

))
S,

where the summation is taken over all states S obtained from resolving α∪β,
and

ᾱ · β̄ − β̄ · ᾱ =
∑
S

(
q(p+(S)−p−(S))+ 1

2
(v+(S)−v−(S))

− q−(p+(S)−p−(S))− 1
2

(v+(S)−v−(S))
)
S,

in which the coefficient of h is exactly {α, β}. If one of α or β, say α, has a
self-intersection at a puncture v ∈ V , then we let α1 and α2 be the resolutions
of α at v. Let σ1 and σ2 respectively be the set of states obtained by resolving
α1 ∪ β and α2 ∪ β, and let nS = 1

2(p+(S) − p−(S)) + 1
4(v+(S) − v−(S)).

By the previous calculation, we have

{α, β} =
1

v

(
{α1, β}+ {α2, β}

)
=

1

v

∑
S∈σ1∪σ2

nS S.
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If ᾱ1 and ᾱ2, respectively, are the positive and negative resolutions of ᾱ at v,
then by the puncture-skein relation ᾱ = v−1(q

1
2 ᾱ1 + q−

1
2 ᾱ2), and we have

that

ᾱ · β̄ − β̄ · ᾱ =
1

v

(
q

1
2
(
ᾱ1 · β̄ − β̄ · ᾱ1

)
+ q−

1
2
(
ᾱ2 · β̄ − β̄ · ᾱ2

))
=

1

v

(
q

1
2

∑
S∈σ1

(
q2nS − q−2nS

)
S + q−

1
2

∑
S∈σ2

(
q2nS − q−2nS

)
S
)

in which the coefficient of h is {α, β}. q.e.d.

In particular, the proof of Theorem 2.13 explains the relationship between
the coefficients q±

1
2 in the puncture-skein relation used in the definition of

ASh(Σ) and the coefficient 1
4 in front of the puncture terms in the Goldman

bracket on C(Σ). Both of these choices were essential at some point in the
well-definedness of ASh(Σ) and { , } and turn out to be related to the geo-
metric aspects of the theory described in the next section.

3. Relationship with hyperbolic geometry

An essential aspect of the skein algebra is its relationship with the SL2–
character variety X (Σ). This was first noticed by Turaev [Tu91] and the
full picture was unraveled by the works of Bullock, Frohman and Kania-
Bartoszyńska [Bu97, BFK99, BFK98] and Przytycki and Sikora [PS00]. In
our context, the corresponding framework will be that of the decorated Te-
ichmüller space and the notion of λ-lengths, which as we will see can be un-
derstood as generalized trace functions.

3.1. The decorated Teichmüller space and its Poisson structure. As be-
fore, we let Σ be a surface with a nonempty set of punctures V = {v1, . . . , vs}.
In order to work in the hyperbolic setting, we suppose in addition that χ(Σ) <
0. We consider the cusped Teichmüller space Tc(Σ) defined as the set of Te-
ichmüller equivalence classes of complete hyperbolic metrics on Σ with finite
area. We recall that two hyperbolic metrics m and m′ on Σ are called Te-
ichmüller equivalent if there exists an isometry from (Σ,m) to (Σ,m′) that is
isotopic to the identity map of Σ.A decoration r ∈ RV>0 is given by a choice of
a positive real number ri = r(vi) associated to each puncture. Geometrically,
given a metric m ∈ Tc(Σ), a decoration should be interpreted as a choice of
a horocycle of length ri at each puncture vi of Σ. The decorated Teichmüller
space T d(Σ), introduced by Penner in [Pe87], is then defined to be the space
of decorated hyperbolic metrics (m, r), m ∈ Tc(Σ). Topologically, it is the
fiber bundle T d(Σ) = Tc(Σ)× RV>0 over the cusped Teichmüller space.

One of the reasons for introducing decorations is to be able to measure the
length of an arc between punctures. More precisely, Let α be an arc between
two punctures of Σ, possibly with self-intersections. Given a decorated hy-
perbolic metric (m, r), consider a geodesic lift α̃ of α to the universal cover
H2 of (Σ,m). The length l(α) of α for (m, r) is then defined to be the signed
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length of the segment of α̃ between the horocycles given by the decoration,
where the sign is chosen to be positive if the horocycles do not intersect and
negative if they do. A number of properties concerning lengths of arcs are in
fact best expressed in terms of the associated λ-length

λ(α) = e
l(α)
2 .

In particular, if a, b, c and d are the consecutive sides of a decorated ideal
quadrilateral in Σ and e and e′ are its diagonals, they satisfy the Ptolemy rela-
tion [Pe87]

λ(e)λ(e′) = λ(a)λ(c) + λ(b)λ(d).

Let T be an ideal triangulation of Σ, that is, a maximal collection of iso-
topy classes of simple arcs between punctures in Σ which decomposes the
surface into ideal triangles. We let E be the set of edges of T . If Σ is a sphere
with at least three punctures or a surface of genus g > 0 with at least one
puncture then such a triangulation exists. In this case, the associated lengths
l(e), e ∈ E, form a coordinate system on T d(Σ). In these coordinates, Mon-
dello [Mo09] introduced a Poisson bi-vector field on T d(Σ) defined as fol-
lows: on a decorated hyperbolic surface Σ, given an end of an edge α and
an end of an edge β meeting at a puncture v, we define the generalized angle
from the end of α to the end of β to be the length of the horocycle segment
between them going in the positive direction for the orientation of Σ. We then
let θv be the sum of the generalized angles from each end of α to each end of
β meeting at v, and we let θ′v be the sum of the generalized angles from the
ends of β to the ends of α (see the figure below for an example).

Figure 2. here θv = θ1 + θ2 and θ′v = θ′1 + θ′2.

We then consider the following bi-vector field

ΠWP =
1

4

∑
v∈V

∑
α,β∈E
α∩β=v

θ′v − θv
r(v)

∂

∂l(α)
∧ ∂

∂l(β)

on the decorated Teichmüller space. It is a Poisson bi-vector field which is
directly related to the pull-back of the Weil-Petersson symplectic structure
on Tc(Σ) as described by Penner in [Pe92] (see Prop 4.7 in [Mo09]) and as
such we call it the Weil-Petersson Poisson bi-vector on T d(Σ). It can also be
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shown by a direct computation that this bi-vector is invariant under a diago-
nal exchange, and as a consequence is independent of the choice of the ideal
triangulation T .

If α is a loop on Σ and m ∈ Tc(Σ), we consider the quantity

λ(α) = 2 cosh
l(α)

2

where l(α) is the length of the geodesic representative of α in m. By conven-
tion, we set l(α) to be 0 if α is null-homotopic or homotopic to a puncture.
Up to a sign, λ(α) is equal to the trace tr(ρ(α)) of (a lift of) the monodromy
representation ρ : π1(Σ) → SL2(R) associated to m. We purposely used the
same notations as for λ-lengths and call λ(α) the generalized trace of α, where
α can be an arc or a loop on Σ.

The goal of this section is to construct a map from the algebra of curves
C(Σ) to the algebra of functions over T d(Σ) by associating to a generalized
curve the product of the generalized traces of its components. One issue,
however, is the fact that elements of C(Σ) are not identified up to Reidemeister
Move I, which leads us to the following definition. We suppose that α consists
of one component. For each point of self-intersection p of α, one of its two
resolutions at p is connected and the other one is not. We call the former the
non-separating resolution and the latter the separating resolution. Note that if
α is an arc, then a separating resolution consists of an arc and a loop, which
we call the arc component and the loop component respectively. Then we say
that a point of self-intersection p of a loop or an arc α is of Type I if one of
the components of the separating resolution of α at p is null-homotopic. In the
case of an arc this can only be the loop component.

Definition 3.1. If α is a non-null-homotopic loop or a non-trivial arc, then
the curling number c(α) of α is defined to be the number of Type I points of
self-intersection of α. If α is a null-homotopic loop, then c(α) is defined to be
the same number plus 1.

Note that we will not need to specify the curling number of a trivial arc.

Example 3.2. By definition c(
⊙

) = 0 and c(©) = 1.

Example 3.3. Since a geodesic minimizes self-intersections in its homo-
topy class, its curling number is necessarily 0.

The geometric intuition of the curling number is the following. Among the
curves in the regular homotopy class of an arc or a loop α, there are represen-
tatives α̃ which look like “geodesics with curls” (or a “trivial loop with curls”
if α is null-homotopic). That is, all the null-homotopic components of the sep-
arating resolutions of α̃ at the Type I points of self-intersections are embedded
trivial loops corresponding to curls in the curve, and after removing them, the
remainder is regularly homotopic to a geodesic. In this case, the quantity c(α̃)
measures exactly the number of curls that α̃ carries. Then, since the number
of Type I points of self-intersection is invariant under Reidemeister Moves II’
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. .
..
. .

and III, and changes by 0 or±2 under Reidemeister Move II, the curling num-
ber c(α) counts the number of curls modulo two, and the quantity (−1)c(α) is
well defined for the regular homotopy class of α.

Using this definition, if α = α1 ∪ · · · ∪ αn is a generalized curve, that is,
a union of arcs and loops on Σ, then we let c(α) =

∑
i c(αi) and λ(α) =∏

i λ(αi). We recall that, if (m, r) is a decorated hyperbolic metric, then
r(v) denotes the length of the horocycle at the puncture v of Σ. We think of
the quantities r(v) and λ(α) as functions of the underlying decorated metric
and denote by C∞(T d(Σ)) the space of C-valued smooth functions on the
decorated Teichmüller space T d(Σ).

Theorem 3.4. The map

Φ: C(Σ)→ C∞(T d(Σ))

defined on the generators by

Φ(v) = r(v)

if v is a puncture and
Φ(α) = (−1)c(α)λ(α)

if α is a generalized curve is a well-defined Poisson algebra homomorphism
with respect to the Goldman bracket { , } on C(Σ) and the Weil-Petersson
Poisson bracket on C∞(T d(Σ)) associated to the bi-vector field 4ΠWP .

The remainder of this article will be dedicated to the proof of this theorem.
The first step, done in Section 3.2, will be to derive a series of lengths iden-
tities in hyperbolic geometry which generalize the Ptolemy relation, the trace
identity and Wolpert’s cosine formula for the Weil-Petersson Poisson bracket
of length functions. In Section 3.3, Together with an analysis of the behavior
of the curling number under resolutions, half of these identities will be com-
bined into generalized trace identities which imply that the map Φ is an algebra
homomorphism. Finally, in Section 3.4, combined with a lemma about the ex-
pression of generalized trace functions in terms of the λ-lengths associated to
the edges of a fixed ideal triangulation, the other half will be used to show that
this homomorphism respects the Poisson structures. Explicit formulae for the
generalized trace in terms of the λ–lengths associated to the edges of an ideal
triangulation are derived in Section 3.5.
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3.2. The lengths identities. In this section we are going to derive a series of
identities involving geodesic lengths of curves and arcs between horocycles
which are the heart of the proof of Theorem 3.4. They rely on a set of “co-
sine laws” for various types of generalized hyperbolic triangles which can be
found in Appendix A of [GL09]. We will use the results and notations found
in their paper throughout this section. Some “twisted versions” of these laws
are also needed and are included in Appendix A of this paper. In Lemma 3.5
through 3.8, we study the relationship between the lengths of two intersecting
geodesics α and β, the lengths of their possible resolutions and the (general-
ized) angle from α to β. There are several cases depending on whether α or
β is an arc or a loop and whether the intersection happens inside of Σ or at
the puncture. Similarly, in Lemma 3.11 through 3.13 we study the relation-
ship between the length of a curve α with a self-intersection and the lengths
of its possible resolutions. A complication here comes from the behavior of
the curling number of the resolutions of a geodesic curve at a self-intersection.
This is treated in Lemma 3.10.

Throughout this section, we will fix a decorated hyperbolic metric (m, r) ∈
T d(Σ). We recall that if α and β are two geodesics on Σ for (m, r), then the
angle from α to β at p ∈ α∩ β in Σ is the angle measured from α to β for the
orientation of Σ, and the generalized angle from α to β at v ∈ α∩β, v ∈ V is
the length of the horocycle segment measured from α to β for the orientation
of Σ. Recall also that, by convention, the length of a loop or an arc that is
null-homotopic or homotopic to a puncture is set to be 0.

We start with the case of two loops intersecting in Σ. The following for-
mulae are well-known, Part (1) is the trace identity (see for example [Bu97,
PS00]) and Part (2) can be interpreted as Wolpert’s cosine formula [Wo83]
applied to trace functions. We nonetheless give a proof of these formulae for
completeness.

Lemma 3.5. Let α and β be two closed geodesics of lengths a and b, and
let θ be the angle from α to β at p ∈ α ∩ β. If x and y are the lengths of the
geodesic representatives of αpβ+ and αpβ− respectively, then we have

(1) cosh x
2 + cosh y

2 = 2 cosh a
2 cosh b

2 ,

(2) cosh x
2 − cosh y

2 = 2 sinh a
2 sinh b

2 cos θ.

Proof. We consider Figure 3 (A). Let 0∞ be a lift of the geodesic β in
the universal cover H2 of Σ. Let {Bi}i∈Z be the lifts of p on 0∞ so that
|BiBi+1| = b. Let Ai and Ci for i = 1, 2 be the points on the lift of the
geodesic α passing through Bi so that |AiBi| = |BiCi| = a

2 , hence |AiCi| =
a and AiCi is a lift of α for i = 1, 2. Now take the mid-point M of B1B2,
and connect A1 and C2 to M by geodesics. Since |A1B1| = |B2C2| = a

2 and
|B1M | = |MB2| = b

2 , and ∠A1B1M = ∠MB2C2 = π − θ, the triangles
A1B1M andMB2C2 are isometric, hence the anlges ∠A1MB1 = ∠B2MC2

and ∠B1A1M = ∠MC2B2. Therefore, the points A1, M and C2 are on
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the geodesic representing a lift of αpβ+, and |A1M | = |MC2| = x
2 . By

the same argument, we have that A2, M and C1 are on a lift of αpβ− and
|A2M | = |MC1| = y

2 . Applying the cosine law to the triangles A1B1M and
A2B2M respectively, we have

cos(π − θ) =
− cosh x

2 + cosh a
2 cosh b

2

sinh a
2 sinh b

2

and

cos θ =
− cosh y

2 + cosh a
2 cosh b

2

sinh a
2 sinh b

2

.

Since cos(π− θ) = − cos θ, the sum of the two equalities implies Part (1) and
the difference implies Part (2). q.e.d.

Lemma 3.6. Let α be a geodesic arc of length a and let β be a closed
geodesic of length b. Let θ be the angle from α to β at p ∈ α ∩ β. If x and y
are the lengths of geodesic representatives of the ideal arcs αpβ+ and αpβ−

respectively, then we have

(1) e
x
2 + e

y
2 = 2e

a
2 cosh b

2 ,

(2) e
x
2 − e

y
2 = 2e

a
2 sinh b

2 cos θ .

Proof. Let us look at Figure 3 (B). Let 0∞ be a lift of β in the universal
cover H2. Let {Bi}i∈Z be the lifts of p on 0∞ so that |Bi, Bi+1| = b, and
let Ai and Ci for i = 1, 2 be the end points of the lifts of α passing through
Bi. Let M be the intersection of 0∞ and the geodesic connecting A1 and
C2. Let a1 be the distance from Bi to the horocycle centered at Ai and let
a2 be the distance from Bi to Ci for i = 1, 2 so that a1 + a2 = a, and let
x1 be the distance from M to the horocycle centered at A1 and let x2 be the
distance from M to the horocycle centered at C2 so that x1 + x2 = x. Since
∠A1B1M = ∠C2B2M and ∠A1MB1 = ∠C2MB2, we have that the ideal
triangles A1B1M and C2B2M of type (0, 1, 1) are isometric which implies
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that |B1M | = |MB2| = b
2 . Applying the cosine law to the triangle A1B1M ,

we have

cos(π − θ) =
−ex1 + ea1 cosh b

2

ea1 sinh b
2

.

Applying the sine law to the triangles A1B1M and C2B2M , we have
ea1

ex1
=

sin∠A1MB1

sin∠A1B1M
=

sin∠C2MB2

sin∠C2B2M
=
ea2

ex2
hence

a2 − a1

2
=
x2 − x1

2
.

Using this, the cosine law above becomes

cos(π − θ) =
−e

x
2 + e

a
2 cosh b

2

e
a
2 sinh b

2

.

By the same argument applied to the generalized triangles A2B2M and
B1C1M , we obtain

cos θ =
−e

y
2 + e

a
2 cosh b

2

e
a
2 sinh b

2

.

Part (1) is obtained by taking the sum of the two equalities above and Part (2)
by taking their difference. q.e.d.

The following lemma involving λ–length can be found in [Pe92] (Lemma
A1). Part (1) was proved first by Penner in [Pe87] and is the celebrated
Ptolemy relation.

Lemma 3.7. (Penner [Pe92]) Let α and β be two geodesic arcs of lengths
a and b, and let θ be the angle from α to β at p ∈ α ∩ β in Σ. If x and x′ re-
spectively are the lengths of the geodesic representatives of the components of
αpβ

+, and y and y′ respectively are the lengths of the geodesic representatives
of the components of αpβ−, then we have

(1) e
x
2 e

x′
2 + e

y
2 e

y′
2 = e

a
2 e

b
2 ,

(2) e
x
2 e

x′
2 − e

y
2 e

y′
2 = e

a
2 e

b
2 cos θ.

Lemma 3.8. Let α and β be two geodesic arcs of lengths a and b each
having exactly one end at a puncture v, and let θ be the generalized angle
from α to β and θ′ be the generalized angle from β to α. Let r be the length
of the horocycle centered at v, and let x and y be the lengths of the geodesic
representatives of αvβ+ and αvβ− respectively. Then we have

(1) e
x
2 + e

y
2 = re

a
2 e

b
2 ,

(2) e
x
2 − e

y
2 = (θ′ − θ)e

a
2 e

b
2 .

Proof. Let us look at Figure 4. Let C be a lift of v in the universal cover
H2, and let A1C and B1C be the respective lifts of α and β passing through
C. Then A2B1 and A1B1 are lifts of αvβ+ and αvβ−, respectively. Applying
the cosine law to the ideal triangles CA2B1 and CA1B1, we have

θ′ = e
x−a−b

2 and θ = e
y−a−b

2 .
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Figure 4

Since r = θ+ θ′, the sum of the two equalities above implies part (1), and the
difference implies part (2). q.e.d.

Remark 3.9. Note that if α or β have several of their ends meeting at v,
similar formulae hold replacing x and y by all the possible positive and neg-
ative resolutions between α and β, taking the sum of their λ–lengths instead
and considering the sums of the generalized angles between their ends. See
the definition of the Goldman bracket on C(Σ) and that of the Weil-Petersson
Poisson bi-vector ΠWP for comparison.

Recall that, for each point of self-intersection p of an arc or a loop α, one
of its two resolutions at p is connected and the other one is not. The former is
called the non-separating resolution of α and the latter is called the separating
resolution of α. If α is an arc, then the separating resolution of α consists of
an arc component and a loop component.

Although the curling number of a geodesic is always 0, after resolving a
self-intersection the curling number of one of its resolutions may be 1. This
happens when α has two points of self-intersections p and p′ that are connected
by two segments of α, which, together with a third segment starting and ending
at p form an immersed geodesic triangle. The non-separating resolution β at
p then bounds an immersed disk and the curling number of the resolution is 1.
An example of such a configuration is illustrated in Figure 5 where the triangle
and the disk involved are shaded in gray.

Lemma 3.10. Let α be a closed geodesic or a geodesic arc. Then the
curling number c(β) of the non-separating resolution β of α at each of its
points of self-intersection is at most 1 and the only possibility that c(β) = 1 is
the one described above.

Proof. If c(β) > 0, let p′ be a Type I self-intersection point of β and let c ⊂
β be the loop based at p′ that is homotopic to the null-homotopic component
of the separating resolution of β at p′. Let also α1 and α2 be the components
of αr p. We have the following two cases:
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p '

p

.

p '

.

Figure 5. Creation of a curl from a geodesic

(a) p′ ∈ αi and c ⊂ αi for i = 1 or 2,
(b) p′ ∈ αi but c * αi for i = 1 or 2.
However, if (a) occurred, then α itself would contain a Type I self-intersection
point, which is excluded since α is a geodesic. Hence the only possibility is
(b), in which case if it is true for say i = 1, then, necessarily, α2 is contained
entirely in c and p′ is the only Type I self-intersection point of β, otherwise α
would also contain one. One can see then that the only possible configuration
is the one described above. q.e.d.

Lemma 3.11. Let α be a closed geodesic of length a and p be one of its
self-intersection points. Let x and y respectively be the lengths of the geodesic
representatives of the two components of the separating resolution ofα, and let
z be the length of the geodesic representative of the non-separating resolution
β of α.
(1) If c(β) = 0, then

cosh
a

2
= 2 cosh

x

2
cosh

y

2
+ cosh

z

2
.

(2) If c(β) = 1, then

cosh
a

2
= 2 cosh

x

2
cosh

y

2
− cosh

z

2
.

In addition, the formulae hold when some components of the resolutions of α
are circles around a puncture.

Proof. For (1), let us look at (A) of Figure 6. Let P be a lift of p in the
universal cover H2, and let θ the angle between the two lifts A and B of α
passing through P . Let X and Y be the corresponding lifts of the components
of the separating resolution of α, and let Z be the corresponding lift of the
non-separating resolution of α. Let M1 ∈ A, N1 ∈ B and Z1, Z2 ∈ Z
be such that |M1Z1| realizes the distance d(A,Z) and |N1Z2| realizes the
distance d(B,Z). Let P ′ be the lift of p on A next to P and let B′ be the
other lift of α passing through P ′. Let N ′1 ∈ B′ and Z ′2 ∈ Z be such that
|N ′1Z ′2| realizes d(B′, Z). Then N ′1Z

′
2 and N1Z2 are the lifts of the same
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Figure 6

geodesic segment, which implies that |N ′1Z ′2| = |N1Z2|. Since ∠N ′1P
′M1 =

∠N1PM1, the generalized trianglesM1Z1Z
′
2N
′
1P
′ andM1Z1Z2N1P of type

(1,−1,−1) are isometric. Therefore, the lengths |Z ′2Z1| = |Z1Z2| = z
2 and

|P ′M1| = |PM1|
.
= a1. Let M ′′1 ∈ A and X1 ∈ X be such that |M ′′1X1|

realizes d(A,X), and let N ′′1 ∈ B and Y1 ∈ Y be such that |N ′′1 Y1| realizes
d(B, Y ). By a similar argument as above, we see that |PM ′′1 | = 1

2 |P
′P | = a1

and PN ′′1 = PN1
.
= a2. Let M2 ∈ B, N2 ∈ A, X2 ∈ X and Y2 ∈ Y

be such that |M2X2| realizes d(B,X) and |N2Y2| realizes d(A, Y ). Then as
above, we have |PM2| = a1 and |PN2| = a2. Since |PM1| = |PM2| =
1
2 |P

′P |, the points M1 and M2 cover the same point on the surface Σ, hence
X1 and X2 cover the same point on Σ and |X1X2| = x. The same argument
implies |Y1Y2| = y. Applying the cosine law to the generalized triangles
PM1X1X2M2 and PN1Y1Y2N2 of type (1,−1,−1), we have

cos θ =
− coshx+ sinh2 a1

2

cosh2 a1
2

=
− cosh y + sinh2 a2

2

cosh2 a2
2

,

which implies

sin2 θ

2
=

cosh x
2 cosh y

2

cosh a1
2 cosh a2

2

.

Applying the cosine law to the generalized triangle PM1Z1Z2N1 of the same
type, we have

cos(π − θ) =
− cosh z

2 + sinh a1
2 sinh a2

2

cosh a1
2 cosh a2

2

.

From the last two equations and the identity cos(π − θ) = 2 sin2 θ
2 − 1 we

obtain the result. Note that when some components of the resolutions of α are
curves around a puncture, then the corresponding lengths x, y or z are taken to
be 0, and the corresponding generalized triangles become union of generalized
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ideal triangles of type (0, 1, 1). Applying the cosine law for such triangles we
obtain formula (1) in these degenerated cases.

For (2), let us look at (B) of Figure 6. Applying similarly the cosine law to
the generalized trianglesPM1X1X2M2 andPN1Y1Y2N2 of type (1,−1,−1),
we obtain

cos θ =
− coshx+ sinh2 a1

2

cosh2 a1
2

=
− cosh y + sinh2 a2

2

cosh2 a2
2

,

which implies

sin2 θ

2
=

cosh x
2 cosh y

2

cosh a1
2 cosh a2

2

.

Since c(β) = 1, there is an intersection T between B and B′ and the gen-
eralized triangle PM1Z1Z2N1 of type (1,−1,−1) is twisted. Applying the
cosine law for such generalized triangle (see Appendix A), we have

cos(π − θ) =
cosh z

2 + sinh a1
2 sinh a2

2

cosh a1
2 cosh a2

2

,

and the identity cos(π − θ) = 2 sin2 θ
2 − 1 implies the result. q.e.d.

Lemma 3.12. Let α be a geodesic arc of length a and p be one of its points
of self-intersection. For the separating resolution of α, let x and y be the
lengths of the geodesic representatives of the loop and of the arc component
respectively. We also let z be the length of the geodesic representative of the
non-separating resolution β of α.
(1) If c(β) = 0, then

e
a
2 = 2 cosh

x

2
e
y
2 + e

z
2 .

(2) If c(β) = 1, then

e
a
2 = 2 cosh

x

2
e
y
2 − e

z
2 .

In addition, the formulae hold when the loop component in the separating
resolution of α is a circle around a puncture.

Proof. For (1), let P in (A) of Figure 7 be a lift of p in the universal cover
H2, and let A and B be the two lifts of α passing through P with θ the angle
between them at p. Let the end point Y ofA and the end point Y1 ofB respec-
tively be the lifts of the two end points of α so that Y Y1 is a lift of the geodesic
representative of the arc component of the separating resolution of α. Let X
be the corresponding lift of the geodesic representative of the loop component
of the separating resolution of α, and let D and D1 be the lifts of the geo-
desic representative of the non-separating resolution of α. We take points X1

and X2 ∈ X , M ∈ B and N ∈ A such that |MX1| realizes d(B,X) and
|NX2| realizes d(A,X). Since MX1 and NX2 cover the same curve on Σ,
we have |MX1| = |NX2|. Applying the sine law to the generalized triangle
PMX1X2N of type (−1,−1, 1), we have |PM | = |PN | .= a3

2 . Suppose
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M ′ ∈ A′, N ′ ∈ A, Z1 ∈ D and Z2 ∈ D1 are the points such that |M ′Z1|
realizes d(B,D) and |N ′Z2| realizes d(A,D1). Then M ′Z1 and N ′Z2 cover
the same curve on Σ, hence |M ′Z1| = |N ′Z2|. Applying the cosine law to the
generalized ideal triangles PY Z1M

′ and PY1Z2N
′ of type (−1, 0, 1), we see

that

sinh |PM ′| = 1 + cos(π − θ) cosh |M ′Z1|
sin(π − θ) sinh |M ′Z1|

=
1 + cos(π − θ) cosh |N ′Z2|

sin(π − θ) sinh |N ′Z2|
= sinh |PN ′| .

Therefore we have |PM ′| = |PN ′|. Hence M ′ = M , N ′ = N and |PM ′| =
|PN ′| = a3

2 . Let HY and HY1 respectively be the horocycles centered at Y
and Y1, and a1 = d(P,HY ), a2 = d(P,HY1), z1 = d(Z1, HY ) and z2 =
d(Z2, HY1). Then a = a1 + a2 + a3 and z = z1 + z2. Applying the cosine
law to the generalized ideal triangle PY Z1M , we have

cos(π − θ) =
−ez1 + ea1 sinh a3

2

ea1 cosh a3
2

.

From the sine law applied to the generalized ideal triangles PY Z1M and
PY1Z2N , we have

ez1

ea1
=

sin(π − θ)
sinh |MZ1|

=
sin(π − θ)
sinh |NZ2|

=
ez2

ea2
, hence

a2 − a1

2
=
z2 − z1

2
.

Using this, the cosine law above becomes

cos(π − θ) =
−e

z
2 + e

a1+a2
2 sinh a3

2

e
a1+a2

2 cosh a3
2

,

hence
e
z
2 = e

a1+a2
2

(
sinh

a3

2
+ cosh

a3

2
cos θ

)
.
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Applying the cosine law to the generalized triangle PMX1X2N , we have

cos θ =
− coshx+ sinh2 a3

2

cosh2 a3
2

, hence 2 cosh
x

2
= 2 cosh

a3

2
sin

θ

2
,

and the cosine law applied to the generalized ideal triangle PY Y1 of type
(0, 0, 1) gives

e
y
2 = e

a1+a2
2 sin

θ

2
.

Therefore, we have

2 cosh
x

2
e
y
2 + e

z
2 = e

a1+a2
2

(
sinh

a3

2
+ cosh

a3

2
cos θ + 2 cosh

a3

2
sin2 θ

2

)
= e

a1+a2
2 e

a3
2 = e

a
2 .

For (2), let us look at (B) of Figure 7. Applying similarly the cosine law to
the generalized triangle PMX1X2N , we have

cos θ =
− coshx+ sinh2 a3

2

cosh2 a3
2

,

which implies

2 cosh
x

2
= 2 cosh

a3

2
sin

θ

2
,

and the cosine law applied to the generalized ideal triangle PY Y ′ of type
(0, 0, 1) gives

e
y
2 = e

a1+a2
2 sin

θ

2
.

When c(β) = 1, there is an intersection T between A′ and A′′ and the gener-
alized triangles PNZ2Y

′ and P ′NZ2Y
′′ of type (0, 1,−1) are twisted. Ap-

plying the cosine law to PNZ2Y
′, we have

cos(π − θ) =
ez1 + ea1 sinh a3

2

ea1 cosh a3
2

.

From the sine law for the generalized ideal triangles PNZ2Y
′ and PNZ2Y

′′,
we have

ez1

ea1
=

sin(π − θ)
sinh |NZ2|

=
ez2

ea2
, which implies

a2 − a1

2
=
z2 − z1

2
.

Using this, the cosine law above becomes

cos(π − θ) =
e
z
2 + e

a1+a2
2 sinh a3

2

e
a1+a2

2 cosh a3
2

,

hence
−e

z
2 = e

a1+a2
2

(
sinh

a3

2
+ cosh

a3

2
cos θ

)
.

Therefore, we obtain
2 cosh

x

2
e
y
2 − e

z
2 = e

a
2 .
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q.e.d.

Lemma 3.13. Let α be a geodesic arc of length a both of whose ends meet
at a puncture v, and let r be the length of the horocycle centered at v. Let also
x and y be the lengths of the geodesic representatives of the two resolutions
α1 and α2 of α at v. Then we have

e
a
2 =

2

r

(
cosh

x

2
+ cosh

y

2

)
.

In addition, the formula holds when some of the components of the resolutions
of α are circles around a puncture.

A

A

B
B'

C

1 2

x y

A

C '

1 2

V

Hv

Figure 8

Proof. In Figure 8, let V be the lift of v and let HV be the lift of the horo-
cycle centered at V , letAV andA1V be the lifts of α passing through V in the
universal cover H2. Let θ1 be the generalized angle betweenAV andA1V and
let BB′ be the corresponding lift of the geodesic representative of the homo-
topy class of α1. We take the point A, A1, B and B′ such that |AB| realizes
the distance from AV to BB′ and |A1B

′| realizes the distance from A1V to
BB′. Since AB and A1B′ cover the same line in Σ, we have |AB| = |A1B

′|
and |BB′| = x. By the sine law for the generalized triangle CABB′A′ of
type (0,−1,−1), we have

ed(A,HV )

sinh |A1B′|
=
ed(A1,HV )

sinh |AB|
= 1,

which implies that d(A,HV ) = d(A1, HV ) = a
2 . Applying the cosine law to

the generalized triangle CABB′A′, we have

θ2
1 =

coshx+ 1
ea

2

,

which implies that

θ1 =
2 cosh x

2

e
a
2

.
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Similarly, if we let A2V be the other lift of α adjacent to AV and let θ2 be the
generalized angle between AV and A2V , we obtain

θ2 =
2 cosh y

2

e
a
2

,

which together with the previous identity implies the formula. q.e.d.

3.3. Generalized trace identities and the algebra homomorphism. Com-
bining the results from the previous section, we obtain the following general-
ized trace identities.

Proposition 3.14. (a) For a generalized curve α with p one of its self-
intersection points in Σ, let α1 and α2 be the components of the separating
resolution of α at p and let β be the non-separating resolution of α at p.
Then we have

(−1)c(α)λ(α) = (−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β).

(b) For α and β two generalized curves with p ∈ Σ one of their intersection
points, let γ1 and γ2 be the resolutions of α and β at p. Then we have

(−1)c(α)+c(β)λ(α)λ(β) = (−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2).

Proof. We use induction on the number of intersection points. If a general-
ized curve α has only one self-intersection p, we have to consider the follow-
ing two cases:
(1) p is of Type I, and
(2) p is not of Type I.
In case (1), one of α1 and α2, say α1, is a trivial loop. In this case λ(α1) = 2,
λ(α) = λ(α2) = λ(β), c(α) = c(α1) = 1 and c(β) = c(α2) = 0. Then

(−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β)

= −2λ(α) + λ(α) = (−1)c(α)λ(α).

Hence (a) is true. In case (2), α is regularly homotopic to a geodesic, and (a) is
true by Lemma 3.11 and 3.12. If two simple generalized curves α and β have
only one intersection, then α and β are regularly homotopic to geodesics, and
(b) is true by (1) of Lemma 3.5 - 3.7.

Now we assume that formula (a) holds when the number of self-intersec-
tions of α is less than n, and formula (b) holds when the number of crossings
of α ∪ β is less than n. We induct on the number of self-intersections of α for
(a) and on the number of crossings of α ∪ β for (b).

For (a), we call a self-intersection p of α of Type II if p is not of Type
I and there is a self-intersection p′ of α such that one of the simultaneous
resolutions of α at p and p′ contains a null-homotopic component. We call
such component a (topological) bigon bounded by α with vertices p and p′.
Note that this bigon is not assumed to be immersed. If the number of self-
intersections of α is equal to n, we have to consider the following three cases:
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(1) p is of Type I,
(2) p is of Type II, and
(3) p is neither of Type I nor of Type II.

In case (1), we have λ(α) = λ(α2) = λ(β) and c(α) = c(α1) + c(α2) =
c(β) + 1, where the extra Type I self-intersection is given by p. As a conse-
quence,

(−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β)

= (−1)c(α)2λ(α)− (−1)c(α)λ(α) = (−1)c(α)λ(α).

Hence (a) is true in this case.
In case (2), we let p′ be the other vertex of the topological bigon B. Then

B is a component of the separating resolution of one of α1, α2 or β at p. If
B is bounded by one of α1 and α2, say α1, then we let α′1 be the non-null-
homotopic component of the separating resolution of α1 at p′. Note that α′1 is
also one of the components of the separating resolution of β at p′. We let α′2
be the other component of the separating resolution of β at p′ and let α′ be the
non-separating resolutions of β at p′. Then λ(α) = λ(α′), λ(α1) = λ(α′1),
λ(α2) = λ(α′2), c(α) = c(α′) and c(α1) + c(α2) = c(α′1) + c(α′2) + 1,
where the extra Type I self-intersection is given by p′. From this, formula (a)
is equivalent to

(−1)c(β)λ(β) = (−1)c(α
′)λ(α′) + (−1)c(α

′
1)+c(α′2)λ(α′1)λ(α′2),

which holds by the inductive assumption for (a), since the number of self-
intersections of β is less than n. If B is bounded by β, we have that one of
the resolutions of α1 ∪ α2 at p′, which we denote by α′, is homotopic α with
c(α) = c(α′). The other resolution of α1 ∪ α2 at p′, which we denote by β, is
homotopic to β′ with c(β) = c(β′)+1,where the extra Type I self-intersection
is given by p′. Then formula (a) is equivalent to

(−1)c(α1)+c(α2)λ(α1)λ(α2) = (−1)c(α
′)λ(α′) + (−1)c(β

′)λ(β′),

which holds by the induction assumption for (b), since the number of crossings
of α1 ∪ α2 is less than n.

In case (3), we let α be the non-null-homotopic component of the separating
resolution of α at all of its Type I self-intersections simultaneously. Then α
is regularly homotopic to the geodesic representative of α and c(α) = 0. We
let α1 and α2 be the components of the separating resolution of α and let β
be the non-separating resolution of α at p. Then c(α) = c(α1) + c(α2) and
c(β)− c(α) = c(β)− c(α) = c(β). By Lemma 3.11 and 3.12, we have

(−1)c(α)λ(α) = (−1)c(α)λ(α)

= (−1)c(α)
(
λ(α1)λ(α2) + (−1)c(β)λ(β)

)
= (−1)c(α1)+c(α2)λ(α1)λ(α2) + (−1)c(β)λ(β).
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For (b), a crossing p of α∪β can also be of Type II if there is a crossing p′ of
α∪β such that one of the simultaneous resolutions bounds is null-homotopic.
If the number of crossings of α ∪ β is equal to n, we have to consider the
following two cases:
(1) p is of Type II, and
(2) p is not of Type II.

In case (1), we let p′ be the other vertex of the topological bigonB bounded
by α∪β. Then B is a component of the separating resolution of one of γ1 and
γ2, say γ1, at p. We let α′ be the component of the separating resolution of
γ2 at p′ that is homotopic to α, and let β′ be the component of the separating
resolution of γ2 at p′ that is homotopic to β. Then c(α)+c(β) = c(α′)+c(β′).
We let γ′2 be the non-separating resolution of γ2 at p′. Then γ′2 is homotopic
to γ1 and c(γ1) = c(γ′2) + 1, where the extra Type I self-intersection is given
by p′. Now formula (b) is equivalent to

(−1)c(γ2)λ(γ2) = (−1)c(α
′)+c(β′)λ(α′)λ(β′) + (−1)c(γ

′
2)λ(γ′2),

which holds by the induction assumption for formula (a), since the number of
self-intersections of γ2 is less than n.

In case (2), we let α (resp. β) be the non-null-homotopic component of the
separating resolution of α (resp. β) at all of its Type I self-intersections, and
let γ1 and γ2 be the resolutions of α and β at p. Then c(α) + c(β) = c(γ1) =
c(γ2) and

(−1)c(α)+c(β)λ(α)λ(β) = (−1)c(α)+c(β)λ(α)λ(β)

= (−1)c(α)+c(β)
(
λ(γ1) + λ(γ2)

)
= (−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2).

q.e.d.

Proposition 3.15. (a) For an ideal arc α both of whose ends are at the
same puncture v, let β and γ be the resolutions of α at v, and let r(v) be
the length of the horocycle centered at v. Then we have

(−1)c(α)λ(α) =
1

r(v)

(
(−1)c(β)λ(β) + (−1)c(γ)λ(γ)

)
.

(b) For α and β two ideal arcs intersecting at a puncture v, let γ1 and γ2 be
the resolutions of α and β at v. Then we have

(−1)c(α)+c(β)λ(α)λ(β) =
1

r(v)

(
(−1)c(γ1)λ(γ1) + (−1)c(γ2)λ(γ2)

)
.

Proof. For (a), we call the puncture v of Type II if there is a self-intersection
p of α so that the arc component of the separating resolution of α at p is
homotopically trivial. We call this component a topological bigon bounded by
α at v, and call p its vertex. We have to consider the following two cases:
(1) v is of Type II, and
(2) v is not of Type II.
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For case (1), we let p be the vertex of the topological bigon at v, and let α′

be the non-separating resolution of α at p. Then λ(α) = λ(α′) and c(α) =
c(α′). We let α1 and α2 be the resolutions of α at v. Since p is a vertex of a
topological bigon at v, p is a Type I self-intersection of one of β or γ, say β.
Then the non-separating resolution of β at p is regularly homotopic to one of
α1 and α2, say α1, and β is homotopic to α1. We have λ(β) = λ(α1) and
c(β) = c(α1) + 1, where the extra Type I self-intersection is given by p. The
non-separating resolution of γ at p is regularly homotopic to α2 and one of
the components of the separating resolutions of γ at p is homotopic to a circle
around v. We denote by γ2 this component and by γ1 the other. Then γ1 is
homotopic to α1. We have λ(γ1) = λ(α1) and c(γ1) + c(γ2) = c(α1). By
Lemma 3.14, we have

(−1)c(γ)λ(γ) = (−1)c(γ1)+c(γ2)λ(γ1)λ(γ2) + (−1)c(α2)λ(α2)

=(−1)c(α1)2λ(α1) + (−1)c(α2)λ(α2).

Therefore,

(−1)c(β)λ(β) + (−1)c(γ)λ(γ) = (−1)c(α1)λ(α1) + (−1)c(α2)λ(α2).

In order to prove formula (a), we use induction on the number of self-intersec-
tions of α in Σ. If α has only one self-intersection p, then α′ is regularly
homotopic to a geodesic. By Lemma 3.13, we have

λ(α) = λ(α′) =
1

r(v)

(
λ(α1) + λ(α2)

)
,

which, together with the previous calculation, gives formula (a). We now
assume that formula (a) is true when the number of self-intersections of an
arc is less than n. If α has n self-intersections, then α′ has less than n self-
intersections, and

(−1)c(α)λ(α) = (−1)c(α
′)λ(α′)

=
1

r(v)

(
(−1)c(α1)λ(α1) + (−1)c(α2)λ(α2)

)
.

From this and the previous calculation we obtain formula (a). In case (2), we
have c(α) = c(β) = c(γ) and the formula follows from the case when α is
regularly homotopic to a geodesic.

Formula (b) is a consequence of Lemma 3.8 (1); and the proof is similar to
that of (a). q.e.d.

Combining Propositions 3.14 and 3.15, we obtain the following intermedi-
ate theorem.

Theorem 3.16. The map Φ: C(Σ)→ C∞(T d(Σ)) defined in Theorem 3.4
is a well-defined commutative algebra homomorphism.

In [Bu97], Bullock conjectured that the map he constructed from the non-
quantum skein algebra to the coordinate ring X (S) of the character variety



SKEIN ALGEBRAS AND DECORATED TEICHMÜLLER SPACE 129

was in fact an isomorphism, which he reduced to the question of showing that
there are no non-zero nilpotent elements in X (S). This question was later
addressed by Przytycki and Sikora [PS00] (see also [CM09] for a direct proof
of injectivity). We thus state the following conjecture.

Conjecture 3.17. The map Φ: C(Σ)→ C∞(T d(Σ)) is injective.

3.4. The homomorphism of Poisson algebras. To complete the proof of
Theorem 3.4, we need the following lemma.

Lemma 3.18. Let T be an ideal triangulation of a punctured surface Σ,
and E be its set of edges. Suppose α is a generalized curve on Σ and i(α, e)
is the number of intersection points of α and e ∈ E. Then the product α ·∏
e∈E e

i(α,e) in C(Σ) can be expressed as a polynomial Pα with variables in
E.

a

e
.

.

.

.

.

.
+

(A) (B )

Figure 9

Proof. Let e ∈ E such that α ∩ e 6= ∅ and p ∈ α ∩ e. As in (A) of
Figure 9, each resolution of α · e at p has less intersection number with e than
α does. Resolving the product α

∏
e∈E e

i(α,e) at each point of intersection
p ∈ α ∩ (

⋃
e∈E e) ∩ Σ, we see that each component of the final resolution

has no intersection with each edge e ∈ E in the surface, hence must lie in
a triangle in T . Since a triangle is contractible, each component of the final
resolution is either 0 or up to sign an edge e ∈ E (as in (B) of Figure 9). q.e.d.

As a direct consequence of Theorem 3.16 and Lemma 3.18, we have the
following

Proposition 3.19. Let T be an ideal triangulation of a punctured surface Σ
endowed with a decorated hyperbolic metric, and E be its set of edges. Then
the λ-length λ(α) of any generalized curve α on Σ is a Laurent polynomial in
{λ(e) | e ∈ E}.

Remark 3.20. In Theorem 3.22 in the next section we give explicit formu-
lae for the generalized trace λ(α) in terms of the λ–lengths associated to the
edges of an ideal triangulation, α being either a loop or an ideal arc.
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Proof of Theorem 3.4. For the Poisson structures, we let T be a triangulation
of Σ with a set of edges E. If e and e′ are two edges in E each having ex-
actly one end meeting at a puncture v, and x and y are the resolutions of e and
e′ at v, then {e, e′} = 1

4v
−1(x − y). By Theorem 3.16 and Lemma 3.8 (2),

we have Φ({e, e′}) = 1
4r(v)(e

l(x)
2 − e

l(y)
2 ) = 1

4
θ′−θ
r(v) e

l(e)
2 e

l(e′)
2 . We also have

that ΠWP (e
l(e)
2 , e

l(e′)
2 ) = 1

16
θ′−θ
r(v) e

l(e)
2 e

l(e′)
2 . If either edge has more than one

end meeting at v the same computation holds, replacing x and y by the corre-
sponding sums of resolutions and taking the sums of their λ–lengths instead
(see Remark 3.9 following Lemma 3.8). If e and e′ are two disjoint edges

in E, then Φ({e, e′}) = 4ΠWP (e
l(e)
2 , e

l(e′)
2 ) = 0. Therefore, we have that

Φ({e, e′}) = 4ΠWP (λ(e), λ(e′)) for all pairs of edges in E. Now for each
generalized curve α, by lemma 3.18, we have α

∏
e∈E e

i(α,e) = Pα for some
polynomial Pα with variables in E. Since {, } is a Poisson bracket, we have
{α
∏
e∈E e

i(α,e), e0} =
∏
e∈E e

i(α,e){α, e0}+
∑

e′∈E α
∏
e6=e′ e

i(α,e){e′, e0}
for each edge e0 in E, from which we see that

∏
e∈E e

i(α,e){α, e0} =
{Pα, e0} − Q for some polynomial Q in α, e and {e, e0} in which the de-
grees of α and {e, e0} are equal to 1. Since Φ is a C–algebra homomorphism
and ΠWP is a bi-vector field, we have

Pα(λ(e)) = (−1)c(α)λ(α)
∏
e∈E

λ(e)i(α,e),

and

ΠWP

(
(−1)c(α)λ(α)

∏
e∈E

λ(e)i(α,e), λ(e0)
)

=
∏
e∈E

λ(e)i(α,e)ΠWP

(
(−1)c(α)λ(α), λ(e0)

)
+ (−1)c(α)Qλ,

where Qλ is the value of Q at λ(α), λ(e) and ΠWP (λ(e), λ(e0)). As a conse-
quence, since λ(e) 6= 0 for each e ∈ E, we have

Φ({α, e0}) =
Φ({Pα, e0})− Φ(Q)∏

e∈E Φ(e)i(α,e)

=
4ΠWP

(
Pα(λ(e)), λ(e0)

)
− (−1)c(α)4Qλ∏

e∈E λ(e)i(α,e)

= 4ΠWP

(
(−1)c(α)λ(α), λ(e0)

)
.

For two generalized curves α an β, we let α
∏
e∈E e

i(α,e) = Pα and
β
∏
e∈E e

i(β,e) = Pβ as in Lemma 3.18. Then we have∏
e∈E

ei(α,e)+i(β,e){α, β} = {Pα, Pβ} −R,

where R is a polynomial in α, β, e, {α, e}, {e, β} and {e, e′} such that the de-
grees of α, β, {α, e}, {e, β} and {e, e′} are all equal to 1. Therefore, we have
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Φ(R) = 4Rλ, where Rλ is the value of R at λ(α), λ(β), λ(e), ΠWP (λ(α),
λ(e)), ΠWP (λ(e), λ(β)) and ΠWP (λ(e), λ(e′)), and

Φ({α, β}) =
Φ({Pα, Pβ})− Φ(R)∏
e∈E Φ(e)i(α,e)+i(β,e)

=
4ΠWP

(
Pα(λ(e)), Pβ(λ(e))

)
− (−1)c(α)+c(β)4Rλ∏

e∈E λ(e)i(α,e)+i(β,e)

= 4ΠWP

(
(−1)c(α)λ(α), (−1)c(β)λ(β)

)
.

Let π : T d(Σ)→ RV>0 be the projection onto the fiber. By Mondello [Mo09],
the kernel of ΠWP is the pull-back π∗(T ∗RV>0) of the cotangent space of RV>0.
Since d(r(v)) = π∗(dv) ∈ π∗(T ∗RV>0), we have

Φ({v, α}) = 4ΠWP

(
r(v), (−1)c(α)λ(α)

)
= 0

for each puncture v and each generalized curve α. q.e.d.

As a consequence of Theorem 3.4, Wolpert’s cosine formula generalizes to
the bi-vector field ΠWP as follows:

Corollary 3.21. Let θp be the angle from α to β at p ∈ α∩β in Σ. If α and
β are two geodesic arcs, then let θv be the generalized angle from α to β and
let θ′v be the generalized angle from β to α at a puncture v ∈ α ∩ β. We have

ΠWP (l(α), l(β)) =
1

2

∑
p∈α∩β∩Σ

cos θp +
1

4

∑
v∈α∩β∩V

θ′v − θv
r(v)

.

Proof. We let λ′(α) = sinh l(α)
2 if α is a loop on Σ, and let λ′(α) = 1

2e
l(α)
2

if α is an ideal arc on Σ. By Theorem 3.4 and (2) of Lemma 3.5 - 3.8, we have

ΠWP (l(α), l(β))

=
1

λ′(α)λ′(β)
ΠWP (λ(α), λ(β))

=
1

4λ′(α)λ′(β)
Φ({α, β})

=
1

4λ′(α)λ′(β)
Φ

(
1

2

∑
p∈α∩β∩Σ

(αpβ
+ − αpβ−)

+
1

4

∑
v∈α∩β∩V

1

v
(αvβ

+ − αvβ−)

)
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=
1

8

∑
p∈α∩β∩Σ

λ(αpβ
+)− λ(αpβ

−)

λ′(α)λ′(β)

+
1

16

∑
v∈α∩β∩V

1

r(v)

λ(αvβ
+)− λ(αvβ

−)

λ′(α)λ′(β)

=
1

2

∑
p∈α∩β∩Σ

cos θp +
1

4

∑
v∈α∩β∩V

θ′v − θv
r(v)

.

where if αvβ± corresponds to a sum of resolutions seen as an element in C(Σ),
then λ(αvβ

±) consists of the sum of their λ–lengths. q.e.d.

3.5. Trace functions and λ–lengths: an explicit formula. Let Σ be a sur-
face with at least one puncture and such that χ(Σ) < 0, and choose a deco-
rated hyperbolic metric (m, r) on Σ. Fix an ideal triangulation T of Σ with
triangles {∆1, . . . ,∆s} and edges {e1, . . . , et}. We let α be a loop or an
ideal arc on Σ and let α be the unique geodesic homotopic to α for the given
metric. In addition, we choose an arbitrary orientation for α. If α is a loop,
we list the successive triangles that α crosses by ∆i1 through ∆in starting at
some arbitrary point inside the first triangle. Similarly we list the edges that α
crosses ej1 through ejn in such a way that ejk is shared by ∆ik and ∆ik+1

for
1 6 k 6 n− 1 and ejn is shared by ∆in and ∆i1 . If α is an ideal arc, we list
triangles and edges accordingly, from Deltai1 containing the starting vertex
to ∆in+1 containing the end vertex. Note that in either case the same triangles
and edges can occur several times. We denote by λi = λ(ei) the λ-length of
each edge for (m, r).

If α makes a left turn in ∆ik as in (l) of Figure 10, then we let

Mk =

(
λb λr
0 λl

)
for the corresponding labels b, l and r and if α makes a right turn in ∆ik as in
(r) of Figure 10, then we let

Mk =

(
λr 0
λl λb

)
.

In addition, If α is an ideal arc starting at ∆i1 and ending at ∆in+1 as in (s)
and (t) of Figure 10, then we let

M1 = ( λr λl ) and Mn+1 =

(
λr
λl

)
.

Theorem 3.22. Let α be a generalized curve on a decorated hyperbolic
surface Σ with a given ideal triangulation T , and let λjk and Mk be as above.
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(l) (r ) (s) (t )

Figure 10. intersections of α with ideal triangles

Then we have

λ(α) =


tr(M1 · · ·Mn)
λj1 · · ·λjn

, if α is a loop,

M1 · · ·Mn+1
λj1 · · ·λjn

, if α is an ideal arc.

Proof. We consider the product α ·
∏
k ejk and consider the set S of the

states obtained by simultaneously resolving all the intersections of the product
in Σ. By Theorem 3.16, we have

λ(α) ·
∏
k

λjk =
∑
s∈S

λ(s).

For each simultaneous resolution s of the product α ·
∏
k ejk , each triangle

∆ik that α crosses, starts from or ends at contributes exactly one factor to the
lambda lengths λ(s) as follows.

If α makes a left turn in ∆ik as in (l) of Figure 10, we have the following
four cases according to the type of resolution at the intersections p1 and p2 of
α with the edges of ∆ik :
(l1) If s is positive at both p1 and p2, then there is an ideal arc α++ in the state

which is isotopic to eb as in (l1) of Figure 11. In this case ∆ik contributes
a factor λb to λ(s);

(l2) If s is positive at p1 and negative at p2, then there is an ideal arc α+− in
the state which is isotopic to er as in (l2) of Figure 11. In this case ∆ik
contributes a factor λr to λ(s);

(l3) If s is negative at p1 and positive at p2, then there is an ideal arc α−+

in the state which is homotopically trivial as in (l3) of Figure 11. By
Lemma 2.12 (2), ∆ik contributes a factor 0 to λ(s) in this case;

(l4) If s is negative at both p1 and p2, then there is an ideal arc α−− in the state
which is isotopic to el as in (l4) of Figure 11. In this case ∆ij contributes
a factor λl to λ(s).

If α makes a right turn in ∆ik as in (r) of Figure 10, we similarly have four
cases:
(r1) If s is positive at both p1 and p2, then ∆ik contributes a factor λr to λ(s);
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(l1) (l2) (l3) (l4)

a a a a++ +- +- --

Figure 11

(r2) If s is positive at p1 and negative at p2, then ∆ik contributes a factor 0 to
λ(s);

(r3) If s is negative at p1 and positive at p2, then ∆ik contributes a factor λl
to λ(s);

(r4) If s is negative at both p1 and p2, then ∆ik contributes a factor λb to λ(s).
One can then check that, if α is a loop on Σ, each simultaneous resolu-

tion s of α ·
∏
k ejk corresponds to a summand in the trace of the product

matrix M1 · · ·Mn, and by the above discussion the lambda lengths λ(s) is
equal to the corresponding summand in tr(M1 · · ·Mn). Therefore, we have∑

s∈S λ(s) = tr(M1 · · ·Mn). As a consequence,

λ(α) =
tr(M1 · · ·Mn)

λj1 · · ·λjn
.

If α is an ideal arc, the triangles ∆i1 and ∆in+1 that α starts from and ends
at respectively contributes a factor of λ(s) as follows.
(s1) If s is positive at the intersection p of α and ∆i1 , then there is an ideal

arc α+ in the state which is isotopic to er as in (s1) of Figure 12. In this
case ∆i1 contributes a factor λr to λ(s).

(s2) If s is negative at p, then there is an ideal arc α− in the state which is
isotopic to el as in (s2) of Figure 12. In this case ∆i1 contributes a factor
λl to λ(s).

(s1) (s2)

a + a -

Figure 12
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(t1) If s is positive at the intersection q of α and ∆in+1 , then ∆in+1 contributes
a factor λr to λ(s).

(t2) If s is negative at q, then ∆in+1 contributes a factor λl to λ(s).

As such, each simultaneous resolution s can be seen to correspond to a
summand in the product M1 · · ·Mn+1 and the lambda lengths λ(s) is equal to
the value of the corresponding summand in M1 · · ·Mn+1. Therefore, we have∑

s∈S λ(s) = M1 · · ·Mn+1. As a consequence,

λ(α) =
M1 · · ·Mn+1

λj1 · · ·λjn
.

q.e.d.

In the case of a loop, one should compare this formula with the expression
of trace functions in terms of shear coordinates which can be found in [BW11,
Lemma 3].

Appendix A. Cosine and sine laws of twisted generalized triangles

1) Type (1, 1,−1):

2

1

3

l 1

l 2

l 3

sinh l1 =
− cos θ1 + cos θ2 cosh θ3

sinh θ2 sin θ3
cos θ1 =

sinh l1 + sinh l2 cosh l3
cosh l2 sinh l3

sinh l2 =
− cos θ2 + cos θ1 cosh θ3

sin θ1 sinh θ3
cos θ2 =

sinh l2 + sinh l1 cosh l3
cosh l1 sinh l3

cosh l3 =
cosh θ3 − cos θ1 cos θ2

sin θ1 sin θ2
cosh θ3 =

cosh l3 − sinh l1 sinh l2
cosh l1 cosh l2

sin θ1

cosh l1
=

sin θ2

cosh l2
=

sinh θ3

sinh l3
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2) Type (1, 0,−1):

2

1

3

l 1

l 2

l 3

el1 =
− cos θ1 + cosh θ3

θ2 sinh θ3
cos θ1 =

el1 + el3 sinh l2
el3 cosh l2

sinh l2 =
−1 + cos θ1 cosh θ3

sin θ1 sinh θ3
θ2

2 =
− sinh l2 + sinh(l3 − l1)

el1+l3
2

el3 =
cosh θ3 − cos θ1

θ2 sin θ1
cosh θ3 =

el3 − el1 sinh l2
el1 cosh l2

sin θ1

el1
=

θ2

cosh l2
=

sinh θ3

el3

3) Type (1,−1,−1):

2

1

3

l 1

l 2

l 3

cosh l1 =
− cos θ1 + cosh θ2 cosh θ3

sinh θ2 sinh θ3
cos θ1 =

cosh l1 + sinh l2 sinh l3
cosh l2 cosh l3

sinh l2 =
− cosh θ2 + cos θ1 cosh θ3

sin θ1 sinh θ3
cosh θ2 =

− sinh l2 + cosh l1 sinh l3
sinh l1 cosh l3

sinh l3 =
cosh θ3 − cos θ1 cosh θ2

sin θ1 sinh θ2
cosh θ3 =

sinh l3 − cosh l1 sinh l2
sinh l1 cosh l2

sin θ1

sinh l1
=

sinh θ2

cosh l2
=

sinh θ3

cosh l3
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4) Type (0, 0,−1):

2

1

3

l 1

l 2

l 3

el1 =
−1 + cosh θ3

θ2 sinh θ3
θ2

1 =
−el1 + el3−l2

el2+l3

el2 =
−1 + cosh θ3

θ1 sinh θ3
θ2

2 =
−el2 + el3−l1

el1+l3

el3 =
cosh θ3 − 1

2θ1θ2
cosh2 θ3

2
= el3−l1−l2

θ1

el1
=
θ2

el2
=

sinh θ3

2el3

5) Type (0,−1,−1):

2

1

3

l 1

l 2

l 3

cosh l1 =
−1 + cosh θ2 cosh θ3

sinh θ2 sinh θ3
θ2

1 =
− cosh l1 + cosh(l3 − l2)

el2+l3
2

el2 =
− cosh θ2 + cosh θ3

θ1 sinh θ3
cosh θ2 =

−el2 + el3 cosh l1
el3 sinh l1

el3 =
cosh θ3 − cosh θ2

θ1 sinh θ2
cosh θ3 =

el3 − el2 cosh l1
el2 sinh l1

θ1

sinh l1
=

sinh θ2

el2
=

sinh θ3

el3
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6) Type (−1,−1,−1):

2

1

3

l 1

l 2

l 3

cosh l1 =
− cosh θ1 + cosh θ2 cosh θ3

sinh θ2 sinh θ3
cosh θ1 =

− cosh l1 + cosh l2 cosh l3
sinh l2 sinh l3

cosh l2 =
− cosh θ2 + cosh θ1 cosh θ3

sinh θ1 sinh θ3
cosh θ2 =

− cosh l2 + cosh l1 cosh l3
sinh l1 sinh l3

cosh l3 =
cosh θ3 − cosh θ1 cosh θ2

sinh θ1 sinh θ2
cosh θ3 =

cosh l3 − cosh l1 cosh l2
sinh l1 sinh l2

sinh θ1

sinh l1
=

sinh θ2

sinh l2
=

sinh θ3

sinh l3
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