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SOBOLEV METRICS ON THE MANIFOLD

OF ALL RIEMANNIAN METRICS

Martin Bauer, Philipp Harms & Peter W. Michor

Abstract

On the manifoldM(M) of all Riemannian metrics on a compact
manifold M , one can consider the natural L2-metric as described
first by [11]. In this paper we consider variants of this metric,
which in general are of higher order. We derive the geodesic equa-
tions; we show that they are well-posed under some conditions and
induce a locally diffeomorphic geodesic exponential mapping. We
give a condition when Ricci flow is a gradient flow for one of these
metrics.

1. Introduction

On the manifoldM(M) of all Riemannian metrics on a compact man-
ifold M , one can consider the natural L2-metric. It was first described
by [11]. Geodesics and curvature on it were described by [14] and [15],
who also described the Jacobi fields and the exponential mapping. This
was extended to the space of non-degenerate bilinear structures on M in
[16] and restricted to the space of almost Hermitian structures in [17]. In
his thesis [8] that was published in two subsequent papers [9, 10], Brian
Clarke showed that geodesic distance for the L2-metric is a positive
topological metric on M(M), and he determined the metric comple-
tion of M(M). In contrast, it was shown in [24, 23] that the natural
L2-metric on the space of immersions from a compact manifold into a
Riemannian manifold has indeed vanishing geodesic distance. This also
holds for the right invariant L2-metric on diffeomorphism groups [23],
and even on the Virasoro-Bott group [5] where the geodesic equation is
the KdV-equation.

In this paper, guided by the results of [2, 3, 4], we investigate stronger
metrics onM(M) than the L2-metric. These are metrics of the following
form:

Gg(h, k) = Φ(Vol)

∫

M
g02(h, k) vol(g) see Section 4.2

or =

∫

M
Φ(Scal).g02(h, k) vol(g) see Section 4.3
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or =

∫

M
g02((1 + ∆)ph, k) vol(g) see Section 4.4

where Φ is a suitable real-valued function, Vol =
∫
M vol(g) is the total

volume of (M,g), Scal is the scalar curvature of (M,g), and g02 is the

induced metric on
(
0
2

)
-tensors. We describe all these metrics uniformly as

GP
g (h, k) =

∫

M
g02(Pgh, k) vol(g) =

∫

M
Tr(g−1.Pg(h).g

−1.k) vol(g),

where Pg : Γ(S2T ∗M) → Γ(S2T ∗M) is a positive, symmetric, bijective
pseudo-differential operator of order 2p, p ≥ 0, depending smoothly on
the metric g. We derive the geodesic equation for the general metric
and all particular cases. We show that under certain assumptions on
Pg, the geodesic equation is well-posed, and that the geodesic exponen-
tial mapping is a diffeomorphism from a neighborhood of the 0 section
in the tangent bundle TM(M) onto a neighborhood of the diagonal in
M(M) ×M(M). The assumptions are satisfied for the metrics in Sec-
tions 4.2 and 4.4, but not for the metric in Section 4.3. In many cases the
curve (1−t)g0 can be reparameterized as a geodesic. In each case we can
estimate its length, getting conclusions about geodesic incompleteness.

Finally we derive a condition on Pg that is sufficient for the Ricci
vector field to be a gradient field in the GP -metric.

Acknowledgments. We thank the referee for very helpful remarks. All
authors were supported by FWF Project 21030. Bauer was supported
by FWF Project P24625.

2. Notation

2.1. Metric on tensor spaces. A Riemannian metric g : TM ×M

TM → R will equivalently be interpreted as

♭ = g : TM → T ∗M and ♯ = g−1 : T ∗M → TM.

The metric g can be extended to the cotangent bundle T ∗M = T 0
1M by

setting

g−1(α, β) = g01(α, β) = α(β♯)

for α, β ∈ T ∗M , and the product metric

grs =
r⊗

g ⊗
s⊗

g−1

extends g to all tensor spaces T r
sM . A useful formula is

g02(h, k) = Tr(g−1hg−1k) for h, k ∈ T 0
2M if h or k is symmetric.

For a proof using orthonormal frames, see [3]. In this work, traces always
contract the first two free appropriate tensor slots:

Tr : T r
sM → T r−1

s−1 , Trg : T r
sM → T r−2

s M.
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2.2. Directional derivatives of functions. We will use the follow-
ing ways to denote directional derivatives of functions, in particular in
infinite dimensions. Given a function F (x, y), for instance, we will write:

D(x,h)F or dF (x)(h) as shorthand for ∂t|0F (x+ th, y).

Here (x, h) in the subscript denotes the tangent vector with foot point
x and direction h. If F takes values in some linear space, we will iden-
tify this linear space and its tangent space. We use calculus in infinite
dimensions as explained in [20].

2.3. Volume density. The volume density on M induced by the met-
ric g is given by vol(g) = vol(g) ∈ Γ(vol(M)), where vol(M) denotes the
volume bundle. The volume of the manifold with respect to the metric
g is given by Vol =

∫
M vol(g). The integral is well-defined since M is

compact. If M is oriented, we may identify the volume density with a
differential form. Furthermore, we have the following formula for the
first variation of the volume density (see for example [2, Section 3.6] for
the proof):

Lemma. The differential of the volume density
{

Γ(S2
+T

∗M) → Γ(vol(M))
g 7→ vol(g)

is given by

D(g,m) vol(g) =
1

2
Tr(g−1.m) vol(g).

2.4. Metric on tensor fields. A metric on a space of tensor fields is
defined by integrating the appropriate metric on the tensor space with
respect to the volume density:

g̃rs(h, k) =

∫

M
grs
(
h(x), k(x)

)
vol(g)(x)

for h, k ∈ Γ(T r
sM). According to Section 2.1, if h and k are tensor fields

of type ( 02 ) and h or k is symmetric, then

g̃02(h, k) =

∫

M
Tr(g−1h(x)g−1k(x)) vol(g)(x).

2.5. Covariant derivative on M . We will use covariant derivatives
on vector bundles as explained in [22, especially Section 19.12]. Let X be
a vector field on M . The Levi-Civita covariant derivative ∇X on (M,g)
can be extended uniquely to an operator on the space Γ(T r

sM) of all
tensor fields on M . This covariant derivative depends on the metric g.

We define its derivative with respect to g as

(1) N r
s (m) = N r

s (g,m) = D(g,m)∇,

where
∇ ∈ L

(
Γ(T r

sM),Γ(T r
s+1M)

)
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and where m is a tangent vector to M(M) with foot point g. The
operator N r

s (m) ∈ Γ
(
L(T r

sM,T r
s+1M)

)
is tensorial since

D(g,m)∇(fh) = D(g,m)(df ⊗ h+ f∇h) = fD(g,m)∇h

holds for f ∈ C∞(M) and h ∈ Γ(T r
sM). In abstract index notation, one

has

(2)
(
N1

0 (m)
) i
jk =

1

2
gil

(
(∇m)jkl + (∇m)kjl − (∇m)ljk

)
,

as can be seen from the formula [6, theorem 1.174]:

g
(
D(g,m)(∇XY ), Z

)
=

1

2

(
(∇Xm)(Y,Z)+(∇Y m)(X,Z)−(∇Zm)(X,Y )

)
.

Furthermore, (N0
1 (m))ijk = −(N1

0 (m))ikj , since one has for α ∈ Ω1(M)

and X,Y ∈ X(M):
(
N0

1 (m)α
)
(X,Y ) = (D(g,m)∇Xα)(Y ) = D(g,m)

(
d(α(Y )).X − α(∇XY )

)

= −α(D(g,m)∇XY ) = −
(
N1

0Y
)
(α,X).

Since ∇X is a derivation on tensor products, one gets a similar property
for N r

s (m):

(3)
(
N r

s (m)
)
j
i1
k1

...ir

...kr

ir+1

kr+1

...ir+s

...kr+s
=

=
(
N1

0 (m)
) i1
jk1

δi2k2 . . . δ
ir+s

kr+s
+ · · · + δi1k1 . . . δ

ir+s−1

kr+s−1

(
N0

1 (m)
) ir+s

jkr+s
,

where one has N1
0 in the first r summands and N0

1 in the last s sum-
mands.
2.6. The adjoint of the covariant derivative. The covariant de-
rivative, seen as a mapping ∇ : Γ(T r

sM) → Γ(T r
s+1M), admits an ad-

joint ∇∗ : Γ(T r
s+1M) → Γ(T r

sM) with respect to the metric g̃, i.e.,
g̃rs+1(∇B,C) = g̃rs(B,∇∗C). It is given by ∇∗B = −Trg(∇B), where
the trace contracts the first two tensor slots. This formula is proven
in [3].
2.7. Second covariant derivative. When the covariant derivative is
seen as a mapping ∇ : Γ(T r

sM) → Γ(T r
s+1M), then the second covariant

derivative is simply ∇∇ = ∇2 : Γ(T r
sM) → Γ(T r

s+2M). For X,Y ∈
X(M), it is given by ∇2

X,Y = ιY ιX∇2 = ιY ∇X∇ = ∇X∇Y − ∇∇XY .
Higher covariant derivatives are defined accordingly.
2.8. Laplacian. The Bochner-Laplacian is defined as ∆h := ∇∗∇h =
−Trg(∇2h). It can act on all tensor fields h, and it respects the degree
of the tensor field it is acting on. Using Section 2.5 we get:

Lemma. The differential of the Laplacian acting on
(r
s

)
-tensors is

given by:

D(g,m)∆h = −D(g,m)Tr
g(∇2h)

= Tr(g−1mg−1∇2h)− Trg
(
N r

s+1(m)∇h
)
− Trg

(
∇N r

s (m)h
)
.
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Here the trace contracts the first two tensor slots, for example

Tr(g−1mg−1∇2h) = gijmjkg
kl∇2

lih.

2.9. Curvature. The Riemann curvature tensor is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Ricci tensor field Ricci(X,Y ) is the trace of Z 7→ R(Z,X)Y . The
scalar curvature is Scal = Trg(Ricci).

Lemma. [6, theorem 1.174] The differential of the scalar curvature
{

Γ(S2
+T

∗M) → C∞(M),
g 7→ Scal

is given by

D(g,m) Scal = ∆(Tr(g−1.m)) +∇∗(∇∗(m))− g02(Ricci,m).

3. Riemannian metrics on the manifold of

Riemannian metrics

Let Pg : Γ(S2T ∗M) → Γ(S2T ∗M) be a positive, symmetric, bijec-
tive pseudo-differential operator of order 2p depending smoothly on the
metric g. Then the operator P induces a metric on the manifold of
Riemannian metrics, namely

GP
g (h, k) =

∫

M
g02(Pgh, k) vol(g) =

∫

M
Tr(g−1.Pgh.g

−1.k) vol(g).

3.1. Geodesic equation. Given (1, 2)-tensors H and K on M(M)
such that

D(g,m)G
P
g (h, k) = GP

g (Kg(h,m), k) = GP
g (m,Hg(h, k)),

the geodesic equation is given by the following variant of the Christoffel
symbols:

gtt =
1

2
Hg(gt, gt)−Kg(gt, gt).

See [25, 2, 3].
We will now compute the metric gradients H and K. The calculations

at the same time show the existence of the gradients. For this aim, let
m,h, k ∈ TgM be constant vector fields on M(M). Using the formula
for the variation of the volume density from Section 2.3, we get

GP
g (Kg(h,m), k) = D(g,m)G

P
g (h, k)

= D(g,m)

∫

M
Tr(g−1.Ph.g−1.k) vol(g)

=

∫

M
Tr

(
(D(g,m)g

−1).Ph.g−1.k
)
vol(g)

+

∫

M
Tr

(
g−1.(D(g,m)P )h.g−1.k

)
vol(g)
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+

∫

M
Tr

(
g−1.Ph.(D(g,m)g

−1).k
)
vol(g)

+

∫

M
Tr

(
g−1.Ph.g−1.k

)
D(g,m) vol(g)

=

∫

M

[
− Tr

(
g−1.m.g−1.Ph.g−1.k

)

+Tr
(
g−1.(D(g,m)P )h.g−1.k

)
− Tr

(
g−1.Ph.g−1.m.g−1.k

)

+Tr
(
g−1.Ph.g−1.k

)1
2
Tr(g−1.m)

]
vol(g)

=

∫

M
g02

(
−m.g−1.Ph+ (D(g,m)P )h− Ph.g−1.m

+
1

2
Tr(g−1.m).Ph, k

)
vol(g).

Therefore the K-gradient is given by

Kg(h,m) = P−1
[
−m.g−1.Ph

+ (D(g,m)P )h− Ph.g−1.m+
1

2
Tr(g−1.m).Ph

]
.

To calculate the H-gradient we will assume that there exists an adjoint
in the following sense:

(1)

∫

M
g02
(
(D(g,m)P )h, k

)
vol(g) =

∫

M
g02
(
m, (D(g,.)Ph)∗(k)

)
vol(g)

which is smooth in (g, h, k) and bilinear in (h, k). The existence of the
adjoint, needs to be checked for each specific operator P , usually by
partial integration. Using the adjoint we can rewrite the equation above
as follows:

GP
g (Hg(h, k),m) = (D(g,m)G

P
g )(h, k) = D(g,m)

∫

M
g02(Ph, k) vol(g)

=

∫

M
g02

(
−m.g−1.Ph+ (D(g,m)P )h− Ph.g−1.m

+
1

2
Tr(g−1.m).Ph, k

)
vol(g)

=

∫

M

(
g02
(
m,−Ph.g−1.k

)
+ g02

(
m, (D(g,.)Ph)∗(k)

)

+ g02
(
m,−k.g−1.Ph

)
+

1

2
g02
(
m, g.Tr(g−1.Ph.g−1.k)

))
vol(g).

Here we can easily read off the H-gradient:

Hg(h, k) = P−1
[
(D(g,.)Ph)∗(k)

− Ph.g−1.k − k.g−1.Ph+
1

2
.g.Tr(g−1.Ph.g−1.k)

]
.
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Therefore the geodesic equation on the manifold of Riemannian metrics
reads as:

gtt =
1

2
Hg(gt, gt)−Kg(gt, gt)

= P−1
[1
2
(D(g,.)Pgt)

∗(gt) +
1

4
.g.Tr(g−1.Pgt.g

−1.gt) +
1

2
gt.g

−1.Pgt

+
1

2
Pgt.g

−1.gt − (D(g,gt)P )gt −
1

2
Tr(g−1.gt).Pgt

]

We can rewrite this equation to get it in a slightly more compact form:

(2)

(Pgt)t = (D(g,gt)P )gt + Pgtt

=
1

2
(D(g,.)Pgt)

∗(gt) +
1

4
.g.Tr(g−1.Pgt.g

−1.gt)

+
1

2
gt.g

−1.Pgt +
1

2
Pgt.g

−1.gt −
1

2
Tr(g−1.gt).Pgt

3.2. Well-posedness of some geodesic equations. For any fixed
background Riemann metric ĝ on M and its Levi-Civita covariant deriv-
ative ∇̂, the Sobolev space Hk(S2T ∗M) is the Hilbert space completion
of the space Γ(S2T ∗M) of smooth sections, in the Sobolev norm

‖h‖2k =

k∑

j=0

∫

M
ĝ02+j((∇̂)jh, (∇̂)jh) vol(ĝ).

The topology of the Sobolev space does not depend on the choice of ĝ;
the resulting norms are equivalent. See [26] for more information. The
following results hold:

• Sobolev lemma. If k > dim(M)
2 then the identity on Γ(S2T ∗M)

extends to an injective bounded linear mapping Hk+p(S2T ∗M) →
Cp(S2T ∗M) where Cp(S2T ∗M) carries the supremum norm of all
derivatives up to order p.

• Module property of Sobolev spaces. If k > dim(M)
2 then the eval-

uation Hk(L(S2T ∗M,S2T ∗M))×Hk(S2T ∗M) → Hk(S2T ∗M) is
bounded and bilinear. Likewise, all other point wise contraction
operations are multilinear bounded operations. See [13], or [12,
1.3.12].

The Sobolev lemma allows us to define the Sobolev space Mk(M) :=

Hk(S2
+T

∗M) for k > dim(M)
2 .

Assumptions. In the following we assume the natural condition that
h 7→ Pgh is an elliptic and self-adjoint pseudo-differential operator of
order 2p ≥ 0. Then it is Fredholm and it has vanishing index by [26,
theorem 26.2]. Thus it is invertible and g 7→ P−1

g is a smooth mapping

Hk(S2
+T

∗M) → L(Hk(S2T ∗M),Hk+2p(S2T ∗M))
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by the implicit function theorem on Banach spaces.
We assume that (D(g,.)Ph)∗(m) exists and is a linear pseudo-differen-

tial operator of order 2p in m,h.
As (non-linear) mappings in the foot point g, we assume that Pgh,

(Pg)
−1h, (D(g,.)Ph)∗(m) are compositions of operators of the following

type:

(a) non-linear differential operators of order l ≤ 2p, i.e.

A(g)(x) = A
(
x, g(x), (∇̂g)(x), . . . , (∇̂lg)(x)

)
,

(b) linear pseudo-differential operators of order ≤ 2p,

such that the total (top) order of the composition is ≤ 2p.

Theorem. Let the assumptions above hold. Then for k > dim(M)
2 +1,

the initial value problem for the geodesic equation (3.1.2) has unique local
solutions in the Sobolev manifold Mk+2p(M) of Hk+2p-metrics. The
solutions depend smoothly on t and on the initial conditions g(0, . ) ∈
Mk+2p(M) and gt(0, . ) ∈ Hk+2p(S2T ∗M). The domain of existence
(in t) is uniform in k and thus this also holds in M(M).

Moreover, in each Sobolev completion Mk+2p(M), the Riemannian
exponential mapping expP exists and is smooth on a neighborhood of the
zero section in the tangent bundle, and (π, expP ) is a diffeomorphism
from a (smaller) neighborhood of the zero section to a neighborhood of
the diagonal in Mk+2p(M) × Mk+2p(M). All these neighborhoods are

uniform in k > dim(M)
2 and can be chosen Hk0+2p-open, where k0 >

dim(M)
2 . Thus all properties of the exponential mapping continue to hold

in M(M).

This proof is an adaptation of [3, Section 4.2].

Proof. We consider the geodesic equation as the flow equation of a
smooth (C∞) vector field X on the open set

Mk+2p ×Hk(S2T ∗M) ⊂ Hk+2p(S2T ∗M)×Hk(S2T ∗M).

We now write the geodesic equation as the flow equation of an au-
tonomous smooth vector field X = (X1,X2) on Mk+2p×Hk, as follows
(using (3.1.2):

gt = (Pg)
−1h =: X1(g, h)

ht =
1

2

(
(D(g,.)Pg)(Pg)

−1h
)∗
((Pg)

−1h) +
1

4
.g.Tr(g−1.h.g−1.(Pg)

−1h)

+
1

2
(Pg)

−1h.g−1.h+
1

2
h.g−1.(Pg)

−1h− 1

2
Tr(g−1.(Pg)

−1h).h(1)

=: X2(g, h).

For (g, h) ∈ Mk+2p × Hk we have (Pg)
−1h ∈ Hk+2p. Thus a term-by-

term investigation of (1), using the assumptions on the orders, shows



METRICS ON THE MANIFOLD OF ALL RIEMANNIAN METRICS 195

that X2(g, h) is smooth in (g, h) ∈ Mk+2p × Hk with values in Hk.
Likewise X1(g, h) is smooth in (f, h) ∈ Mk+2p × Hk with values in
Hk+2p. Thus by the theory of smooth ODE’s on Banach spaces, the flow
Flk exists on Mk+2p ×Hk and is smooth in t and the initial conditions
for fixed k > dim(M)

2 + 1.
We choose C∞ initial conditions g0 = g(0, ) and h0 = Pg0gt(0, ) =

h(0, ) for the flow equation (1) in M(M) × Γ(S2T ∗M). Suppose the

trajectory Flkt (g0, h0) of X through these initial conditions in Mk+2p ×
Hk maximally exists for t ∈ (−ak, bk), and the trajectory Flk+1

t (g0, h0)
in Mk+1+2p×Hk+1 maximally exists for t ∈ (−ak+1, bk+1) with ak+1 <

ak and bk+1 < bk, say. Since solutions are unique, Flk+1
t (g0, h0) =

Flkt (g0, h0) for t ∈ (−ak+1,bk+1). We now apply the background de-

rivative ∇̂ to both equations (1):

(∇̂g)t = ∇̂gt = ∇̂X1(g, h)

(∇̂h)t = ∇̂ht = ∇̂X2(g, h).

We claim that for i = 1, 2 we have

∇̂Xi(g, h) = Xi,1(g, h)(∇̂2p+1g) +Xi,2(g, h)(∇̂2p+1h) +Xi,3(g, h)

where all Xi,j(g, h)(l) and Xi,3(g, h) (i, j = 1, 2) are smooth in all vari-
ables, of highest order 2p in g and h, linear and algebraic (i.e., of order
0) in l. This claim follows from the assumptions: (a) For a local operator
we can apply the chain rule: The highest order derivative of g appears
only linearly. (b) For a linear pseudo differential operator B of order
q the commutator [∇Y , B] is a pseudo differential operator of order q
again for any vector field Y .

We write ∇̂2p+1g = ∇̂2pg̃ and ∇̂2p+1h = ∇̂2ph̃ for the highest deriva-
tives only. Then g̃ and h̃ satisfy

g̃t = X1,1(g, h)(∇̂2p g̃) +X1,2(g, h)(∇̂2ph̃) +X1,3(g, h)

h̃t = X2,1(g, h)(∇̂2p g̃) +X2,2(g, h)(∇̂2ph̃) +X2,3(g, h).

This ODE is inhomogeneous bounded and linear in (g̃, h̃) ∈ Mk+2p×Hk

with coefficients that are bounded linear operators on Hk+2p and Hk,
respectively. These coefficients are C∞ functions of (g, h) ∈ Mk+2p ×
Hk ⊂ C1 which we already know on the interval (−ak, bk). This equation

therefore has a solution (g̃(t, ), h̃(t, )) ∈ Mk+2p × Hk for all t for
which the coefficients exists, and thus for all t ∈ (−ak, bk). Obviously,

(g̃, h̃) = (∇̂g, ∇̂h) for t ∈ (−ak+1, bk+1). By continuity, this holds also
for t ∈ [−ak+1, bk+1] which contradicts that the interval (−ak+1, bk+1)
is maximal. We can iterate this and conclude that the flow of X exists
in

⋂
m≥k Mm+2p ×Hm = M× Γ.

It remains to check the properties of the Riemannian exponential
mapping expP . It is given by expPg (h) = c(1) where c(t) is the geodesic
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emanating from value g with initial velocity h. From the form gtt =
1
2Hg(gt, gt) −Kg(gt, gt) =: Γg(gt, gt) (see Section 3.1), namely linearity
in gtt and bilinearity in gt, and from local existence and uniqueness on
each space Mk+2p(M) the properties claimed follow: see for example
[22, 22.6 and 22.7] for a detailed proof in terms of the spray vector
field S(g, h) = (g, h;h,Γg(h, h)) on a finite dimensional manifold. This
proof carries over to infinite dimensional convenient manifolds without
any change in notation. So we check this on the largest of these spaces
Mk0(M) (with the smallest k). Since the spray on Mk0(M) restricts to
the spray on each Mk+2p(M), the exponential mapping expP and the
inverse (π, expP )−1 on Mk0(M) restrict to the corresponding mappings
on each Mk+2p(M). Thus the neighborhoods of existence are uniform
in k. q.e.d.

3.3. Conserved Quantities. Consider the right action of the diffeo-
morphism group Diff(M) on M(M) given by (g, φ) 7→ φ∗g with funda-
mental vector field

ζX(g) = LXg = 2Sym∇(g(X)).

For a proof of the last equality, see [6, Section 1]. If the metric GP is
invariant under this action, we have the following conserved quantities
(see for example [2]):

const = GP (gt, ζX(g)) =

∫

M
g02
(
Pgt, 2 Sym∇(g(X))

)
vol(g)

= 2

∫

M
g01
(
∇∗ SymPgt, g(X)

)
vol(g) = 2

∫

M
(∇∗Pgt)(X) vol(g)

= 2

∫

M
g
(
g−1∇∗Pgt,X

)
vol(g).

Since this equation holds for all vector fields X, this yields

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in time.

The geometric interpretation of this conserved quantity is carried by
the expression GP (gt, ζX). After normalization, this gives a formula for
the cosine of the angle between the geodesic and any vector field ζX . If
the constant vanishes, then this geodesic is GP -perpendicular to each
Diff(M)-orbit it meets.

3.4. Geodesics of pure scalings. In this section we want to investi-
gate when r(t)g0 is a geodesic for some real function r and some fixed
metric g0. This will help us to determine the geodesic completeness of
the space M(M) under various metrics.

Lemma. Let g0 ∈ M(M) and N = R>0 g0 = {rg0 : r > 0} ⊂
M(M). If P viewed as a

(1
1

)
-tensor field on M(M) ‘restricts’ to the

submanifold N in the sense that Pgh is tangential to N for all g ∈ N
and h ∈ TgN , then the following statements are equivalent:
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(a) N is totally geodesic.
(b) (D(g,·)Ph)∗(k) is tangential to N for all g ∈ N and h, k ∈ TgN .

(c) (D(g,m)P )(h) is g̃02-normal to N for all g ∈ N , h ∈ TgN , m ∈
TgM(M) such that m is g̃02-normal to N .

If P restricts to N and (a)–(c) hold, then there are Ψ, f : R>0 → R

such that

Prg0(g0) = Ψ(r)g0, ((D(rg0,·)P )g0)
∗(g0) = f(r)g0

holds for all r > 0. Then the path g(t, ·) = r(t).g0 is a geodesic in M(M)
if and only if the function r satisfies

r′′Ψ(r) = r′2
(1
2
f(r)−Ψ′(r) +

(
1− dim(M)/4

)
Ψ(r)r−1

)
.

Along these geodesics, the conserved quantity vanishes, i.e.,

(∇∗Pgt) vol(g) = 0.

Remark. Note that (D(g,m)P )(h) and (D(g,·)Ph)∗(k) are tensorial in
h, k and that for g ∈ N , all tangent vectors in TgN can be written as
real multiples of g. Therefore conditions (b) and (c) are equivalent to

(b′) (D(g,·)Pg)∗(g) is tangential to N for all g ∈ N .

(c′) (D(g,m)P )(g) is g̃02-normal to N for all g ∈ N and m ∈ TgM(M)

such that m is g̃02-normal to N .

Proof. The submanifold N is totally geodesic iff 1
2Hg(h, k)−Kg(h, k)

is tangential to N for all g ∈ N and h, k ∈ TgN . We now look at the for-
mulas for H and K from Section 3.1. Since Pg is bijective and preserves

TgN , the above condition is equivalent to Pg(
1
2Hg(h, k)−Kg(h, k)) be-

ing tangential. A term-by-term investigation shows that this is the case
if and only if ((D(g,·)P )h)∗(k) is tangential, in which case it can be
expressed using a function f . A test for the latter condition is

g̃02
(
((D(g,·)P )h)∗(k),m

)
= g̃02

(
(D(g,m)P )h, k

)
= 0

for all m ∈ TgM(M) that are g̃02-normal to N . Equivalently, (D(g,m)P )h

has to be g̃02-normal to N whenever m is g̃02-normal to N and h is
tangential to N .

It remains to check the form of the geodesic equation. We use the
geodesic equation (2) from Section 3.1 and substitute

g = r(t)g0, gt = r′(t)g0, Pg(gt) = Ψ(r(t))r′(t)g0.

Dropping the dependence on t in our notation, we get for the left-hand
side of the geodesic equation:

∂t(Pggt) = r′′Ψ(r)g0 +Ψ′(r)r′2g0

The previous substitutions and

((D(g,.)P )gt)
∗(gt) = f(r(t))r′(t)2g0.
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yield the right-hand side of the geodesic equation:

1

2
(D(g,.)Pgt)

∗(gt) +
1

4
.g.Tr(g−1.Pgt.g

−1.gt) +
1

2
gt.g

−1.Pgt

+
1

2
Pgt.g

−1.gt −
1

2
Tr(g−1.gt).Pgt

=
1

2
f(r)r′2g0 +

1

4
Ψ(r) dim(M)r−1r′2g0 +

1

2
Ψ(r)r−1r′2g0

+
1

2
Ψ(r)r−1r′2g0 −

1

2
Ψ(r) dim(M)r−1r′2g0

=
1

2
f(r)r′2g0 +

(
1− dim(M)/4

)
Ψ(r)r−1r′2g0.

For the conserved quantity, we calculate:

(∇∗Pgt) vol(g) = Tr
(
g−1∇g(r′(t)g0)

)
vol(g)

=
r′(t)

r(t)
Tr

(
g−1∇g(g)

)
vol(g) = 0.

q.e.d.
3.5. Length of pure scalings.

Lemma. Given g0 such that Prg0(g0) = Ψ(r).g0, the length of the
curve g(r) = rg0 for r ∈ [0, 1] is given by

Len10(g) =
√
dim(M)Vol(g0)

∫ 1

0

√
Ψ(r)rdim(M)/2−2dr.

If Ψ(r) = O(rα) for some α > − dim(M)/2, then R>0 g0 ⊂ M(M) is an
incomplete metric space under GP . If in addition P and g0 satisfy the
conditions of lemma 3.4, then (M(M), GP ) is geodesically incomplete.

Note that (M(M), GP ) is always an incomplete metric space since it
does not contain Sobolev class Hp metrics.

Proof. For the length of the curve we calculate:

Len10(g) =

∫ 1

0
GP

r.g0(g0, g0)
1/2 dr

=

∫ 1

0

(∫

M
Tr((rg0)

−1.Prg0(g0).(rg0)
−1.g0) vol(rg0)

)1/2
dr

=

∫ 1

0
rdim(M)/4−1

(∫

M
Tr((g0)

−1.Prg0(g0)) vol(g0)
)1/2

dr.

Using the assumption Prg0(g0) = Ψ(r).g0, we can compute this as

Len10(g) =

∫ 1

0
rdim(M)/4−1

√
dim(M)

( ∫

M
Ψ(r) vol(g0)

)1/2
dr.

Note that the metric space (M(M), GP ) is geodesically incomplete if
R>0 g0 contains a geodesic in M(M) which connects g0 to 0 in finite
time. q.e.d.
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4. Special cases of P

In this section we present various interesting examples of metrics.
These special choices are motivated by related metrics on spaces of
immersions and shape spaces, see [3, 2, 1]. We will use the notation
n = dim(M) for all of this section.

4.1. The H0-metric. The simplest and most natural example is the
operator P of order zero given by Pg(h) = h for g ∈ M(M) and h ∈
TgM(M). With this choice of P , the metric GP equals g̃02 . It is the so
called L2-metric or H0-metric, which is well studied as mentioned in
the introduction. We can easily read off the geodesic equation from the
previous section:

gtt =
1

4
.g.g02(gt, gt) + gt.g

−1.gt −
1

2
Tr(g−1.gt).gt.

This coincides with the equation derived in [14] and [15]. All conditions
from Section 3.2 are obviously satisfied. Thus the geodesic equation
is well-posed. Here the geodesic equation evolves in each set S2

+T
∗
xM

separately. The conserved quantities have the form

(∇∗gt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in time.

The conditions of lemma 3.4 are obviously satisfied for all g0 ∈ M(M)
and we get again the result from [15] that R>0 g0 is the image of a
geodesic. The geodesic is r(t).g0 where r(t) satisfies

r′′(t) =
r′(t)2

r(t)

(
1− n

4

)
, i.e., r(t) =

(
t(r(1)n/4 − r(0)n/4) + r(0)n/4

)4/n
.

This geodesic connects g0 with 0 in finite time. Thus it follows that the
space (M(M), g̃02) is geodesically incomplete.

4.2. Conformal metrics. Here we consider metrics of the form

GP
g (h, k) = Φ(Vol(g))

∫

M
g02(h, k) vol(g),

where Φ ∈ C∞(R>0,R>0) and Vol(g) =
∫
M vol(g). To calculate the

adjoint, we will use the variational formula for the volume form from
Section 2.3:∫

M
g02
(
m, (D(g,.)Ph)∗(k)

)
vol(g) =

∫

M
g02
(
(D(g,m)P )h, k

)
vol(g)

= Φ′.(D(g,m) Vol).

∫

M
g02
(
h, k

)
vol(g)

=
1

2
Φ′.

∫

M
Tr(g−1.m) vol(g).

∫

M
g02
(
h, k

)
vol(g)

=
1

2

∫

M
Tr

(
g−1.m.Φ′.

∫

M
g02(h, k) vol(g)

)
vol(g)



200 M. BAUER, P. HARMS & P.W. MICHOR

=
1

2

∫

M
g02

(
m,Φ′.g.

∫

M
g02(h, k) vol(g)

)
vol(g).

Using this formula for the adjoint, the geodesic equation reads as:

gtt =
Φ′

4Φ
.g.

∫

M
g02(gt, gt) vol(g) +

1

4
.g.g02(gt, gt) + gt.g

−1.gt

− Φ′

2Φ
.gt.

∫

M
g02(gt, g) vol(g) −

1

2
g02(gt, g).gt

or

(Φ.gt)t =
Φ′

4
.g.

∫

M
g02(gt, gt) vol(g) +

Φ

4
.g.g02(gt, gt)

+ Φ.gt.g
−1.gt −

Φ

2
g02(gt, g).gt

All conditions of theorem 3.2 are satisfied. Thus the geodesic equation
is well-posed and the geodesic exponential mapping exists and is a local
diffeomorphism. Since the total volume Vol(M) does not depend on the
point x ∈ M , the conserved quantities are:

Φ(Vol)Tr(g−1∇gt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in time.

Now we want to study again whether there exist metrics g0 and pos-
itive real function r such that r(t)g0 is a geodesic. Therefore we check
whether the conditions of lemma 3.4 are satisfied. P obviously restricts
to the submanifold R>0 g0 for every g0 ∈ M(M). Using again the vari-
ational formula for Vol, we get

g̃02
(
(D(g,m)P )g, g

)
=

1

2
Φ′.

∫

M
Tr(g−1.m) vol(g)

∫

M
g02
(
g, g

)
vol(g)

=
1

2
Φ′

∫

M
Tr(g−1.m.g−1.g) vol(g)

∫

M
n vol(g)

=
n

2
Φ′Vol g̃02(m, g) = 0,

if m is g̃02-normal to R>0 g0. Thus R>0 g0 is a totally geodesic subman-
ifold for any g0 ∈ M(M). For the corresponding functions Ψ and f we
obtain:

Prg0g0 = Ψ(r)g0 with Ψ(r) := Φ(r
n
2 Vol(g0))

((D(rg0,·)P )g0)
∗(g0) = f(r)g0 with f(r) :=

n

2
Φ′
(
r
n
2 Vol(g0)

)
r
n
2−1Vol(g0).

The geodesic equation on R>0 g0 is then given by

r′′Φ(Vol(rg0)) =
r′2

r

(
− n

4
Φ′(Vol(rg0))Vol(rg0) +

(
1− n

4

)
Φ(Vol(rg0))

)
.
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Let us now consider the special case Φ(Vol) = Volk for real k. Then
the ODE for r(t) simplifies to

r′′ =
r′2

r

(
1− n

4
(k + 1)

)

with solution

r(t) =
(
t(r(1)a − r(0)a) + r(0)a

) 1

a

where a =
n

4

(
1 + k

)
.

This geodesic connects g0 with 0 in finite time if and only if k > −1. Thus
(M(M), GΦ(Vol)) is geodesically incomplete if Φ(r) = O(rk) for r ց 0,
for some k > −1. Note that this would also follow from lemma 3.5, since
Ψ(r) = Φ

(
r

n

2 Vol(g0)
)
.

4.3. Curvature weighted metrics. We consider metrics weighted by
scalar curvature,

GP
g (h, k) =

∫

M
Φ(Scal(g)).g02(h, k) vol(g),

where Φ ∈ C∞(R,R>0). Using the variational formula from Section 2.9,
we can calculate the adjoint as follows:
∫

M
g02
(
m, (D(g,.)Ph)∗(k)

)
vol(g) =

∫

M
g02
(
(D(g,m)P )h, k

)
vol(g)

=

∫

M
Φ′.(D(g,m) Scal)g

0
2

(
h, k

)
vol(g)

=

∫

M
Φ′.

(
∆(Tr(g−1.m)) +∇∗(∇∗(m))− g02(Ricci,m)

)
g02
(
h, k

)
vol(g)

=

∫

M
Φ′.

[
g01

(
∇Tr(g−1.m),∇g02(h, k)

)
+ g01

(
∇∗(m),∇g02(h, k)

)

− g02

(
g02(h, k)Ricci,m

)]
vol(g)

=

∫

M
Φ′.

[
Tr(g−1.m).∇∗∇g02(h, k) + g02

(
m,∇2g02(h, k)

)

− g02

(
g02(h, k)Ricci,m

)]
vol(g)

=

∫

M
Φ′.g02

(
m, g.∆g02(h, k) +∇2g02(h, k)− g02(h, k)Ricci

)
vol(g).

Using the formula for the geodesic equation from Section 3.1 yields

(Φ.gt)t =
Φ′

2

(
g.∆gg02(gt, gt) +∇2g02(gt, gt)− g02(gt, gt)Ricci

)

+
Φ

4
.g.g02(gt, gt) + Φ.gt.g

−1.gt −
Φ

2
g02(gt, g).gt.
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The conditions of theorem 3.2 are violated and therefore it is not ap-
plicable. We do not know whether the geodesic equation is well-posed.
The conserved quantities are given by

∇∗(Φ(Scal)gt) vol(g)

=

(
Φ′(Scal)Tr

(
g−1 dScal⊗gt

)
+Φ(Scal)Tr

(
g−1∇gt

))
vol(g).

The conditions of lemma 3.4 are violated for general g0. However,
we consider the special case that M admits a metric g0 such that the
Einstein equation Ricci(g0) = Cg0 is satisfied. Let g = rḡ0 ∈ R>0 g0;
then Scal(g) = Cn

r . For h ∈ Tg(R>0 g0), we calculate

Pgh = Φ(Scal(g))h = Φ(
Cn

r
)h ∈ Tg(R>0 g0).

It remains to show that (D(g,m)P )(g) is g̃02-normal to R>0 g0 for all

m ∈ TgM(M) such that m is g̃02-normal to R>0 g0. This follows from

g̃02
(
(D(g,m)P )g, g

)
=

= g̃02

(
Φ′(Scal(g))

(
∆(Tr(g−1.m)) +∇∗(∇∗(m))− g02(Ricci,m)

)
g, g

)

= Φ′
(Cn

r

) ∫

M

(
∆(Tr(g−1.m)) +∇∗(∇∗(m))

− g02(Ricci,m)
)
g02(g, g) vol(g)

= Φ′
(Cn

r

)
n

∫

M

(
∆(Tr(g−1.m)) +∇∗(∇∗(m)) − g02(Cg,m)

)
vol(g) = 0.

The first two terms vanish because they are divergences, and the last
term vanishes by assumption on m. Thus R>0 g0 is a totally geodesic
submanifold if g0 satisfies the Einstein equation. For the corresponding
functions Ψ and f we obtain:

Ψ(r) := Φ(
1

r
Scal(g0)) = Φ(

Cn

r
), f(r) = −Φ′(

Cn

r
)
Cn

r2
.

Thus g(t) = r(t)g0 is a geodesic iff g0 is a solution to the Einstein
equation and r satisfies

r′′Φ
(Cn

r

)
=

r′2

r

(1
2
Φ′
(Cn

r

)Cn

r
+

(
1− n

4

)
Φ
(Cn

r

))
.

In the case that M does not admit a metric solving the Einstein
equation, we cannot use lemma 3.5 to check for geodesic incompleteness,
but we can still compute the length of shrinking a metric to zero. Let
g(r) = rg0, with Scal(g0) not necessarily constant:

Len10(g) =

∫ 1

0
r

n

4
−1√n

(∫

M
Φ
(Scal(g0)

r

)
vol(g0)

)1/2
dr.
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Now let us assume that Φ(u) ≤ C(1 + |u|2k) for constants C and k:

Len10(g) ≤
∫ 1

0
r

n

4
−1√n

(
C

∫

M

(
1 + | Scal(g0)|2k

r2k

)
vol(g0)

)1/2
dr

=

∫ 1

0
r

n

4
−1

√
nC

(
Vol(g0) +

1

r2k

∫

M
|Scal(g0)|2k vol(g0)

)1/2
dr

=

∫ 1

0
r

n

4
−1

√
nC Vol(g0)

(
1 +

1

2r2k Vol(g0)

∫

M
|Scal(g0)|2k vol(g0)

)
dr.

This is finite if and only if n
4 − 1 − 2k > −1, i.e., n > 8k. Thus

(M(M), GΦ(Scal)) is geodesically incomplete if M admits a metric solv-
ing the Einstein equation and Φ(u) ≤ C(1 + |u|2k) for k < dim(M)/8.

4.4. Sobolev metrics using the Laplacian. We first consider the
Sobolev metric of the form

GP
g (h, k) =

∫

M
g02
(
(1 + ∆)ph, k

)
vol(g)

where ∆g is the geometric Bochner-Laplacian described in Section 2.8.
The adjoint of the derivative of P satisfies∫

M
g02
(
m, (D(g,.)Ph)∗(k)

)
vol(g) =

∫

M
g02
(
(D(g,m)P )h, k

)
vol(g)

=

p∑

i=1

∫

M
g02
(
(1 +∆)i−1(D(g,m)∆)(1 + ∆)p−ih, k

)
vol(g)

=

p∑

i=1

∫

M
g02
(
(D(g,m)∆)(1 + ∆)p−ih, (1 + ∆)i−1k

)
vol(g)

=

p∑

i=1

∫

M
g02

(
m,

(
(D(g,.)∆)(1 + ∆)p−ih

)∗
(1 + ∆)i−1k

)
vol(g) .

Thus it remains to calculate the adjoint of the derivative of ∆.

Lemma. The differential of the Laplacian acting on
(0
2

)
-tensors ad-

mits an adjoint with respect to the metric g̃02, which is given by:

g̃02
(
D(g,m)∆h, k

)
=: g̃02

(
m, (D(g,.)∆h)∗(k)

)

= g̃02

(
m, gi1j1gi2j2(∇2h)..i1i2kj1j2−(N0

3 (.)∇h)∗(g⊗k)+(N0
2 (.)h)

∗(∇k)
)
.

Here (N0
q (.)h)

∗ denotes the adjoint of the differential of the covariant
derivative:

g̃0q+1(N
0
q (m)h, k) =: g̃02

(
m, (N0

q (.)h)
∗(k)

)
= g̃02

(
m,∇∗(σ(N0

q )(.)h)
∗k

)
,

where h ∈ Γ(T 0
q M), k ∈ Γ(T 0

q+1M) and where σ(N0
q ) denotes the total

symbol of N0
q . It is tensorial and of the form

σ(N0
q )(m̃)(h)(X0, . . . ,Xq)
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=
−1

2

q∑

j=1

h
(
X1, . . . ,Xj−1,

2∑

i=0

(−1)i
(
τ i(m̃)(X0,Xj , ·)

)♯
,Xj+1, . . . ,Xq

)
,

where m̃ ∈ Γ(T ∗M ⊗ S2T ∗M), h ∈ Γ(T 0
q M), X0, . . . ,Xq ∈ X(M), and

where τ i is the i-th power of the cyclic permutation τ(α ⊗ β ⊗ γ) =
γ ⊗ α⊗ β.

Proof. To prove the formula for (N0
q (.)h)

∗, it suffices to show that

Np
q (m)(h) = σ(Np

q )(∇m)(h).

This follows from (2) and (3) in Section 2.5. The formula for D(g,.)∆
follows from Section 2.8. q.e.d.

The above discussion and the formula for the geodesic equation from
Section 3.1 yield the geodesic equation for Sobolev-type metrics:

((1 + ∆)pgt)t =
1

2
gi1j1gi2j2(∇2(1 + ∆)p−igt). . i1i2(1 + ∆)i−1(gt)j1j2

− 1

2
(N0

3 (.)∇(1 + ∆)p−igt)
∗(g ⊗ (1 + ∆)i−1gt)

+
1

2
(N0

2 (.)(1 + ∆)p−igt)
∗(∇(1 + ∆)i−1gt)

+
1

4
.g.Tr(g−1.(1 +∆)pgt.g

−1.gt) +
1

2
gt.g

−1.(1 + ∆)pgt

+
1

2
(1 + ∆)pgt.g

−1.gt −
1

2
Tr(g−1.gt).(1 + ∆)pgt.

The conditions of theorem 3.2 are valid, so the geodesic equation is
well-posed. The conserved quantity is

∇∗
(
(1 + ∆)pgt)

)
vol(g).

Finally we want to study again the geodesics of pure scaling using
lemma 3.4. Let g0 ∈ M(M) and g = rg0 ∈ R>0 g0. Since ∇g = 0 and
consequently ∆g = 0, one has Pgg = (1 +∆)pg = g. It remains to show
that (D(g,m)P )(g) is g̃02-normal to R>0 g0 for all m ∈ TgM(M) such that

m is g̃02-normal to R>0 g0. This follows from

g̃02

(
(D(g,m)P )g, g

)
=

p∑

i=1

g̃02

(
(1 + ∆)i−1(D(g,m)∆)(1 + ∆)p−ig, g

)

=

p∑

i=1

g̃02

(
(D(g,m)∆)(1 + ∆)p−ig, (1 + ∆)i−1g

)
= p g̃02

(
(D(g,m)∆)g, g

)

= p g̃02

(
Tr(g−1mg−1∇2g)− Trg

(
N0

3 (m)∇g
)
− Trg

(
∇N0

2 (m)g
)
, g
)

= 0− 0 + p g̃02

(
∇∗

(
N0

2 (m)g
)
, g
)
= p g̃03

((
N0

2 (m)g
)
,∇g

)
= 0.
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Thus the conditions of lemma 3.4 are satisfied and R>0 g0 is a to-
tally geodesic submanifold for every g0 ∈ M(M). Furthermore, since
(D(rg0,·)Pg0)

∗(g0) = g0, the equation for geodesics of the form r(t)g0
with respect to Sobolev metrics is equal to that with respect to the L2

metric, c.f. Section 4.1. In particular, this proves that M(M) is geodesi-
cally incomplete for each Sobolev metric.

4.5. General remarks. The L2-metric is the only one of the above
discussed examples that is relatively well understood. An explicit ana-
lytic formula for geodesics has been derived, e.g. in [15], and as a direct
consequence it has been shown that the space of Riemannian metrics is
not complete with respect to this metric. Furthermore, the completion
of this space has been described and analyzed in [8, 10].

For the other metrics described in this section, the situation is more
complicated, since there is no hope to find general analytic solutions to
the corresponding geodesic equations. But the equations as presented
above are ready for numerical implementation. This has been success-
fully done for the related spaces of immersions and shapes; see [3, 2, 1].
Another issue is that we still do not know whether there exists a metric
such that the space of all Riemannian metrics is geodesically complete.

5. The Ricci vector field

The space of metrics M(M) is a convex open subset in the Fréchet
space Γ(S2T ∗M). So it is contractible. A necessary and sufficient con-
dition for Ricci curvature to be a gradient vector field with respect to
the GP -metric is that the following exterior derivative vanishes:

(
dGP (Ricci, ·)

)
(h, k) =

= hGP (Ricci, k)− kGP (Ricci, h)−GP (Ricci, [h, k]) = 0.

It suffices to look at constant vector fields h, k, in which case [h, k] = 0.
We have

hGP (Ricci, k)− kGP (Ricci, h)

=

∫ (
− Tr

(
g−1hg−1(P Ricci)g−1k

)
+Tr

(
g−1kg−1(P Ricci)g−1h

)

+Tr
(
g−1Dg,h(P Ricci)g−1k

)
− Tr

(
g−1Dg,k(P Ricci)g−1h

)

− Tr
(
g−1(P Ricci)g−1hg−1k

)
+Tr

(
g−1(P Ricci)g−1kg−1h

)

+
1

2
Tr

(
g−1(P Ricci)g−1k

)
Tr(g−1h)

− 1

2
Tr

(
g−1(P Ricci)g−1h

)
Tr(g−1k)

)
vol(g).

Some terms in this formula cancel out because for symmetric A,B,C
one has Tr(ABC) = Tr((ABC)⊤) = Tr(C⊤B⊤A⊤) = Tr(A⊤C⊤B⊤) =
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Tr(ACB). Therefore

hGP (Ricci, k) − kGP (Ricci, h)

=

∫ (
Tr

(
g−1Dg,h(P Ricci)g−1k

)
− Tr

(
g−1Dg,k(P Ricci)g−1h

)

+
1

2
Tr

(
g−1(P Ricci)g−1k

)
Tr(g−1h)

− 1

2
Tr

(
g−1(P Ricci)g−1h

)
Tr(g−1k)

)
vol(g).

We writeDg,h(P Ricci) = Q(h) for some differential operatorQmapping
symmetric two-tensors to themselves and Q∗ for the adjoint of Q with
respect to g̃02 .

hGP (Ricci, k)− kGP (Ricci, h) =

=

∫ (
g02
(
Q(h), k

)
− g02

(
Q(k), h

)
+

1

2
g02
(
P Ricci, k

)
Tr(g−1h)

− 1

2
g02
(
P Ricci, h

)
Tr(g−1k)

)
vol(g)

=

∫
g02

(
Q(h)−Q∗(h) +

1

2
(P Ricci).Tr(g−1h)

− 1

2
g.g02

(
P Ricci, h

)
, k
)
vol(g).

We have proved:

Lemma. The Ricci vector field Ricci is a gradient field for the GP -
metric if and only if the equation

(1)
2
(
Q(h)−Q∗(h)

)
+ (P Ricci).Tr(g−1h)− g.g02

(
P Ricci, h

)
= 0,

with Q(h) = Qg(h) = Dg,h(Pg Riccig),

is satisfied for all g ∈ M(M) and all symmetric
(
0
2

)
-tensors h.

None of the specific metrics studied in Section 4 of this paper sat-
isfies the lemma in general dimension. Note that the lemma is triv-
ially satisfied in dimension dim(M) = 1. In dimension 2 the equation
Riccig = 1

2 Scalg holds and the operator Pgh = 2Scal−1
g h satisfies equa-

tion (1) on the open subset {g : Scalg 6= 0}. Generally, equation (1) is
satisfied if Pg Riccig = g, but this cannot hold on the space of all metrics
if dim(M) > 2.
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