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ENTIRE SOLUTIONS OF THE ALLEN-CAHN
EQUATION AND COMPLETE EMBEDDED MINIMAL
SURFACES OF FINITE TOTAL CURVATURE IN R

3

Manuel del Pino, Michal Kowalczyk & Juncheng Wei

Abstract

We consider minimal surfaces M which are complete, embed-
ded, and have finite total curvature in R

3, and bounded, entire
solutions with finite Morse index of the Allen-Cahn equation ∆u+
f(u) = 0 in R

3. Here f = −W ′ withW bi-stable and balanced, for
instance W (u) = 1

4
(1− u2)2. We assume that M has m ≥ 2 ends,

and additionally that M is non-degenerate, in the sense that its
bounded Jacobi fields are all originated from rigid motions (this
is known for instance for a Catenoid and for the Costa-Hoffman-
Meeks surface of any genus). We prove that for any small α > 0,
the Allen-Cahn equation has a family of bounded solutions de-
pending on m− 1 parameters distinct from rigid motions, whose
level sets are embedded surfaces lying close to the blown-up sur-
face Mα := α−1M , with ends possibly diverging logarithmically
from Mα. We prove that these solutions are L∞-non-degenerate
up to rigid motions, and find that their Morse index coincides
with the index of the minimal surface. Our construction suggests
parallels of De Giorgi conjecture for general bounded solutions of
finite Morse index.

1. Introduction and main results

1.1. The Allen-Cahn equation and minimal surfaces. The Allen-
Cahn equation in R

N is the semilinear elliptic problem

(1.1) ∆u + f(u) = 0 in R
N ,

where f(s) = −W ′(s) and W is a “double-well potential,” bi-stable and
balanced, namely

W (s) > 0 if s 6= 1,−1,(1.2)

W (1) = 0 =W (−1), W ′′(±1) = f ′(±1) =: σ2± > 0.

A typical example of such a nonlinearity is

(1.3) f(u) = (1− u2)u for W (u) =
1

4
(1− u2)2,
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while we will not make use of the special symmetries enjoyed by this
example.

Equation (1.1) is a prototype for the continuous modeling of phase
transition phenomena. Let us consider the energy in a bounded region
Ω of RN

Jα(v) =

∫

Ω

α

2
|∇v|2 + 1

4α
W (v),

whose Euler-Lagrange equation is a scaled version of (1.1),

(1.4) α2∆v + f(v) = 0 in Ω .

We observe that the constant functions u = ±1 minimize Jα. They
are idealized as two stable phases of a material in Ω. It is of interest
to analyze stationary configurations in which the two phases coexist.
Given any subset Λ of Ω, any discontinuous function of the form

(1.5) v∗ = χΛ − χΩ\Λ

minimizes the second term in Jα. The introduction of the gradient term
in Jα makes an α-regularization of u∗ a test function for which the
energy gets bounded and proportional to the surface area of the in-
terface M = ∂Λ, so that in addition to minimizing approximately the
second term, stationary configurations should also asymptotically select
interfaces M that are stationary for surface area, namely (generalized)
minimal surfaces. This intuition on the Allen-Cahn equation gave impor-
tant impulse to the calculus of variations, motivating the development
of the theory of Γ-convergence in the 1970s. Modica [31] proved that
a family of local minimizers uα of Jα with uniformly bounded energy
must converge in suitable sense to a function of the form (1.5) where ∂Λ
minimizes perimeter. Thus, intuitively, for each given λ ∈ (−1, 1), the
level sets [vα = λ] collapse as α → 0 onto the interface ∂Λ. A similar
result holds for critical points not necessarily minimizers, see [26]. For
minimizers this convergence is known in a very strong sense; see [2, 3].

If, on the other hand, we take such a critical point uα and scale it
around an interior point 0 ∈ Ω, setting uα(x) = vα(αx), then uα satisfies
equation (1.1) in an expanding domain,

∆uα + f(uα) = 0 in α−1Ω,

so that formally letting α → 0 we end up with equation (1.1) in entire
space. The “interface” for uα should thus be around the (asymptotically
flat) minimal surface Mα = α−1M . Modica’s result is based on the
intuition that if M happens to be a smooth surface, then the transition
from the equilibria −1 to 1 of uα along the normal direction should take
place in the approximate form uα(x) ≈ w(z), where z designates the
normal coordinate to Mα. Then w should solve the ODE problem

(1.6) w′′ + f(w) = 0 in R, w(−∞) = −1, w(+∞) = 1.
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This solution indeed exists thanks to assumption (1.2). It is strictly
increasing and unique up to constant translations. We fix in what follows
the unique w for which

(1.7)

∫

R

t w′(t)2 dt = 0.

For example (1.3), we have w(t) = tanh
(
t/
√
2
)
. In general w approaches

its limits at exponential rates,

w(t)− ±1 = O( e−σ±|t| ) as t→ ±∞.

Observe then that

Jα(uα) ≈ Area (M)

∫

R

[
1

2
w′2 +W (w)],

which is what makes it plausible that M is critical for its area, namely
a minimal surface.

The above considerations led E. De Giorgi [9] to formulate in 1978
a celebrated conjecture on the Allen-Cahn equation (1.1), parallel to
Bernstein’s theorem for minimal surfaces: The level sets [u = λ] of a
bounded entire solution u to (1.1), which is also monotone in one direc-
tion, must be hyperplanes, at least for dimension N ≤ 8. Equivalently,
up to a translation and a rotation, u = w(x1). This conjecture has been
proven in dimensions N = 2 by Ghoussoub and Gui [16], N = 3 by
Ambrosio and Cabré [1], and under a mild additional assumption by
Savin [38]. A counterexample was recently built for N ≥ 9 by us in
[11, 12]; see also [6, 27]. See [13, 15] for a recent survey on the state
of the art of this question.

The assumption of monotonicity in one direction for the solution u
in De Giorgi conjecture implies a form of stability, locally minimizing
character for u when compactly supported perturbations are considered
in the energy. Indeed, if Z = ∂xN

u > 0, then the linearized operator
L = ∆ + f ′(u) satisfies maximum principle. This implies stability of
u, in the sense that its associated quadratic form, namely the second
variation of the corresponding energy,

(1.8) Q(ψ,ψ) :=

∫

|∇ψ|2 − f ′(u)ψ2,

satisfies Q(ψ,ψ) > 0 for all ψ 6= 0 smooth and compactly supported.
Stability is a basic ingredient in the proof of the conjecture dimensions
2, 3 in [1, 16], based on finding a control at infinity of the growth of the
Dirichlet integral. In dimension N = 3 it turns out that

(1.9)

∫

B(0,R)
|∇u|2 = O(R2)

which intuitively means that the embedded level surfaces [u = λ] must
have a finite number of components outside a large ball, which are all
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“asymptotically flat.” The question whether stability alone suffices for
property (1.9) remains open. More generally, it is believed that this
property is equivalent to the finite Morse index of the solution u (which
means essentially that u is stable outside a bounded set). The Morse
index m(u) is defined as the maximal dimension of a vector space E of
compactly supported functions such that

Q(ψ,ψ) < 0 for all ψ ∈ E \ {0}.
Rather surprisingly, basically no examples of finite Morse index entire

solutions of the Allen-Cahn equation seem known in dimension N = 3.
Great progress has been achieved in the last decades, both in the theory
of semilinear elliptic PDE like (1.1) and in minimal surface theory in
R
3. While this link traces back to the very origins of the study of (1.1)

as discussed above, it has only been partially explored in producing new
solutions.

In this paper we construct a new class of entire solutions to the Allen-
Cahn equation in R

3 which have the characteristic (1.9), and also finite
Morse index, whose level sets resemble a large dilation of a given com-
plete, embedded minimal surface M , asymptotically flat in the sense
that it has finite total curvature, namely

∫

M
|K| dV < +∞

where K denotes Gauss curvature of the manifold, which is also non-
degenerate in a sense that we will make precise below.

As pointed out by Dancer [7], the Morse index is a natural element
to attempt classification of solutions of (1.1). Beyond De Giorgi conjec-
ture, classifying solutions with a given Morse index should be a natural
step toward understanding the structure of the bounded solutions of
(1.1). Our main results show that, unlike the stable case, the structure
of the set of solutions with finite Morse index is highly complex. On the
other hand, we believe that our construction contains germs of general-
ity, providing elements to extrapolate what may be true in general, in
analogy with classification of embedded minimal surfaces. We elaborate
on these issues in §10.

1.2. Embedded minimal surfaces of finite total curvature. The
theory of embedded, minimal surfaces of finite total curvature in R

3

has reached a notable development in the last 25 years. For more than
a century, only two examples of such surfaces were known: the plane
and the catenoid. The first nontrivial example was found in 1981 by C.
Costa [4, 5]. The Costa surface is a genus one minimal surface, com-
plete and properly embedded, which outside a large ball has exactly
three components (its ends), two of which are asymptotically catenoids
with the same axis and opposite directions, the third one asymptotic
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to a plane perpendicular to that axis. The complete proof of embed-
dedness is due to Hoffman and Meeks [21]. In [22, 24] these authors
notably generalized Costa’s example by exhibiting a class of three-end,
embedded minimal surface, with the same look as Costa’s far away, but
with an array of tunnels that provides arbitrary genus k ≥ 1. This is
known as the Costa-Hoffman-Meeks surface with genus k.

Many other examples of multiple-end embedded minimal surfaces
have been found since; see for instance [29, 40] and references therein.
In general all these surfaces look like parallel planes, slightly perturbed
at their ends by asymptotically logarithmic corrections with a certain
number of catenoidal links connecting their adjacent sheets. In reality
this intuitive picture is not a coincidence. Indeed, Osserman [35] es-
tablished that a complete minimal surface with finite total curvature
can be described by a conformal diffeomorphism of a compact surface
(actually of a Riemann surface), with a finite number of its points re-
moved. These points correspond to the ends. Moreover, assuming that
the ends are embedded, after a convenient rotation, they are asymp-
totically either catenoids or planes, all of them with parallel axes; see
Schoen [39] and Jorge and Meeks [28]. The topology of the surface is
thus characterized by the genus of the compact surface and the number
of ends, having therefore “finite topology.”

1.3. Main results. In what follows, M designates a complete, embed-
ded minimal surface in R

3 with finite total curvature (to which, below
we, will make a further nondegeneracy assumption). As pointed out in
[25], M is orientable and the set R

3 \M has exactly two components
S+, S−. In what follows we fix a continuous choice of unit normal field
ν(y), which conventionally we take to point toward S+.

For x = (x1, x2, x3) = (x′, x3) ∈ R
3, we denote

r = r(x) = |(x1, x2)| =
√

x21 + x22.

After a suitable rotation of the coordinate axes, outside the infinite
cylinder r < R0 with sufficiently large radius R0, M decomposes into a
finite number m of unbounded components M1, . . . ,Mm, its ends. From
a result in [39], we know that asymptotically each end of Mk either
resembles a plane or a catenoid. More precisely, Mk can be represented
as the graph of a function Fk of the first two variables,

Mk = { y ∈ R
3 / r(y) > R0, y3 = Fk(y

′) }

where Fk is a smooth function which can be expanded as

(1.10) Fk(y
′) = ak log r + bk + bik

yi
r2

+O(r−3) for r ≥ R0,
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for certain constants ak, bk, bik, and this relation can also be differenti-
ated. Here

(1.11) a1 ≤ a2 ≤ · · · ≤ am ,

m∑

k=1

ak = 0.

The direction of the normal vector ν(y) for large r(y) approaches, on the
ends, that of the x3 axis, with alternate signs. We use the convention
that for r(y) large we have

(1.12) ν(y) =
(−1)k

√

1 + |∇Fk(y′)|2
(∇Fk(y

′) , −1 ) if y ∈Mk.

Let us consider the Jacobi operator of M

(1.13) J (h) := ∆Mh+ |A|2h
where |A|2 = −2K is the Euclidean norm of the second fundamental
form of M . J is the linearization of the mean curvature operator with
respect to perturbations of M measured along its normal direction. A
smooth function z(y) defined on M is called a Jacobi field if J (z) = 0.
Rigid motions of the surface naturally induce some bounded Jacobi
fields. Associated to, respectively, translations along coordinates axes
and rotation around the x3-axis, are the functions

zi(y) = ν(y) · ei, y ∈M, i = 1, 2, 3,

(1.14) z4(y) = (−y2, y1, 0) · ν(y), y ∈M.

We assume thatM is non-degenerate in the sense that these functions
are actually all bounded Jacobi fields, namely

(1.15) { z ∈ L∞(M) / J (z) = 0 } = span { z1, z2, z3, z4 }.
In what follows we denote by J the dimension (≤ 4) of the above vector
space.

This assumption, expected to be generic for this class of surfaces,
is known in some important cases, most notably the catenoid and the
Costa-Hoffmann-Meeks surface, which is an example of a three-endedM
whose genus may be of any order. See Nayatani [33, 34] and Morabito
[32]. Note that for a catenoid, z04 = 0 so that J = 3. Non-degeneracy
has been used as a tool to build new minimal surfaces for instance in
Hauswirth and Pacard [20] and in Pérez and Ros [37]. It is also the basic
element for building solutions to the singularly perturbed Allen-Cahn
equation in compact manifolds in Pacard and Ritoré [36].

In this paper we will construct a solution to the Allen-Cahn equation
whose zero level sets look like a large dilation of the surface M , with
ends perturbed logarithmically. Let us consider a large dilation of M ,

Mα := α−1M.
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This dilated minimal surface has ends parameterized as

Mk,α = { y ∈ R
3 / r(αy) > R0, y3 = α−1Fk(αy

′) }.
Let β be a vector of given m real numbers with

(1.16) β = (β1, . . . , βm),
m∑

i=1

βi = 0.

Our first result asserts the existence of a solution u = uα defined for all
sufficiently small α > 0 such that given λ ∈ (−1, 1), its level set [uα = λ]
defines an embedded surface lying at a uniformly bounded distance in α
from the surface Mα, for points with r(αy) = O(1), while its k-th end,
k = 1, . . . ,m, lies at a uniformly bounded distance from the graph

(1.17) r(αy) > R0, y3 = α−1 Fk(αy
′) + βk log |αy′| .

The parameters β must satisfy an additional constraint. It is clear
that if two ends are parallel, say ak+1 = ak, we need at least that
βk+1 − βk ≥ 0, for otherwise the ends would eventually intersect. Our
further condition on these numbers is that these ends in fact diverge at
a sufficiently fast rate. We require

(1.18) βk+1 − βk > 4 max {σ−1
− , σ−1

+ } if ak+1 = ak.

Let us consider the smooth map

(1.19) X(y, z) = y + zν(αy), (y, t) ∈Mα × R.

x = X(y, z) defines coordinates inside the image of any region where
the map is one-to-one. In particular, let us consider a function p(y) with

p(y) = (−1)kβk log |αy′|+O(1), k = 1, . . . ,m,

and β satisfying βk+1 − βk > γ > 0 for all k with ak = ak+1. Then the
map X is one-to-one for all small α in the region of points (y, z) with

|z − p(y)| < δ

α
+ γ log(1 + |αy′|)

provided that δ > 0 is chosen sufficiently small.

Theorem 1. Let N = 3 and M be an embedded minimal surface,
complete with finite total curvature which is nondegenerate. Then, given
β satisfying relations (1.16) and (1.18), there exists a bounded solution
uα of equation (1.1), defined for all sufficiently small α, such that
(1.20)

uα(x) = w(z−q(y))+O(α) for all x = y+zν(αy), |z−q(y)| < δ

α
,

where the function q satisfies

q(y) = (−1)kβk log |αy′|+O(1) y ∈Mk,α, k = 1, . . . ,m.

In particular, for each given λ ∈ (−1, 1), the level set [uα = λ] is an
embedded surface that decomposes for all sufficiently small α into m
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disjoint components (ends) outside a bounded set. The k-th end lies at
O(1) distance from the graph

y3 = α−1 Fk(αy) + βk log |αy′|.

The solution predicted by this theorem depends, for fixed α, on m
parameters. Taking into account the constraint

∑m
j=1 βj = 0, this gives

m− 1 independent parameters corresponding to logarithmic twisting of
the ends of the level sets. Let us observe that, consistently, the com-
bination β ∈ Span {(a1, . . . , am)} can be set in correspondence with
moving α itself, namely with a dilation parameter of the surface. We
are thus left with m − 2 parameters for the solution in addition to α.
Thus, besides the trivial rigid motions of the solution, translation along
the coordinates’ axes, and rotation about the x3 axis, this family of
solutions depends exactly on m− 1 “independent” parameters. Part of
the conclusion of our second result is that the bounded kernel of the
linearization of equation (1.1) about one of these solutions is made up
exactly of the generators of the rigid motions, so that in some sense
the solutions found are L∞-isolated, and the set of bounded solutions
nearby is actually m− 1 + J-dimensional. A result parallel to this one,
in which the moduli space of the minimal surface M is described by a
similar number of parameters, is found in [37].

Next we discuss the connection of the Morse index of the solutions
of Theorem 1 and the index of the minimal surface M , i(M), which
has a similar definition relative to the quadratic form for the Jacobi
operator: The number i(M) is the largest dimension for a vector space
E of compactly supported smooth functions in M with

∫

M
|∇k|2 dV −

∫

M
|A|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, finite index is equiv-
alent to finite total curvature; see [19] and also §7 of [25] and references
therein. Thus, for our surfaceM , i(M) is indeed finite. Moreover, in the
Costa-Hoffmann-Meeks surface it is known that i(M) = 2l − 1 where l
is the genus of M . See [33], [34], and [32].

Our second result is that the Morse index and non-degeneracy of M
are transmitted into the linearization of equation (1.1).

Theorem 2. Let uα be the solution of problem (1.1) given by Theorem
1. Then for all sufficiently small α, we have

m(uα) = i(M).

Besides, the solution is non-degenerate, in the sense that any bounded
solution of

∆φ+ f ′(uα)φ = 0 in R
3
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must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined
as

Zi = ∂iuα, i = 1, 2, 3, Z4 = −x2∂1uα + x1∂2uα.

We will devote the rest of this paper to the proofs of Theorems 1
and 2. Before that, we discuss new ingredients and ideas in our approach,
comparing with Pacard-Ritoré’s [36].

1.4. A comparison with Pacard-Ritoré’s work. In the seminal pa-
per [36], Pacard and Ritoré considered the Allen-Cahn equation on an
N -dimensional smooth and compact Riemannian manifold (M,g)

(1.21) α2∆gu + u − u3 = 0 in M.

They constructed solutions concentrating on an (N − 1)−dimensional
embedded nondegenerate minimal submanifold of M , through an argu-
ment that shares some similarities with the one used here. Here nonde-
generacy means that the Jacobi operator admits only a trivial Jacobi
field. Our result in its existence part may be regarded as a counterpart
of this one, but now in the entire Euclidean space. In the proof of our
results we encounter the loss of compactness twice: First, the ambient
manifold is the Euclidean space. Second, the minimal embedded sur-
face is also non-compact. Thus, several difficulties due to this lack of
compactness have to be overcome in the analysis, and a major part of
our analysis is indeed devoted to design techniques to deal with this
issue. Additionally, unlike the setting in [36], non-trivial Jacobi fields
associated to rigid motions are present, and therefore we cannot speak
of non-degeneracy of M .

To prove its existence, we follow the infinite dimensional reduction
approach used in our earlier work [11]. (See also [10].) Namely, we split
the problem into two steps: first we solve the problem in the orthogonal
complement of the kernel of the linearized operator. This, by projection
on the kernel, eventually reduces the full problem to one of solving a
nonlinear, nonlocal equation which involves as a main term the Jacobi
operator of the minimal surface. The solvability of the Jacobi opera-
tor with inhomogeneous and nonlocal terms is the main objective of the
second step. Finally, establishing the correspondence between the Morse
index of the solution constructed and that of the minimal surface M is
fairly delicate and technically involved, and a major portion of the pa-
per is precisely devoted to that. Our method is likely to adapt to the
compact setting, with an easier proof. In [36], only existence of solu-
tions was obtained. Here we obtain a complete spectral correspondence
between a class of solutions of the Allen-Cahn equation and embedded,
finite total curvature minimal surfaces.

Acknowledgments. We are indebted to N. Dancer for a useful discus-
sion, and to F. Pacard for pointing out reference [40] to us. This work
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2. The Laplacian near Mα

2.1. The Laplace-Betrami Operator of Mα. Let D be the set

D = {y ∈ R
2 / |y| > R0}.

We can parameterize the end Mk of M as

(2.1) y ∈ D 7−→ y := Yk(y) = yiei + Fk(y)e3,

and Fk is the function in (1.10). In other words, for y = (y′, y3) ∈ Mk

the coordinate y is just defined as y = y′. We want to represent ∆M—
the Laplace-Beltrami operator ofM—with respect to these coordinates.
For the coefficients of the metric gij on Mk we have

∂yiYk = ei +O
(
r−1
)
e3

so that

(2.2) gij(y) = 〈∂iYk, ∂jYk〉 = δij +O
(
r−2
)
,

where r = |y|. The above relations “can be differentiated” in the sense
that differentiation makes the terms O(r−j) gain corresponding negative
powers of r. Then we find the representation
(2.3)

∆M =
1

√
det gij

∂i(
√

det gij g
ij∂j) = ∆y+O(r−2)∂ij+O(r−3) ∂i on Mk .

The normal vector to M at y ∈Mk k = 1, . . . ,m corresponds to

ν(y) = (−1)k
1

√

1 + |∇Fk(y)|2
( ∂iFk(y)ei − e3 ) , y = Yk(y) ∈Mk

so that

(2.4) ν(y) = (−1)ke3 + αkr
−2 yiei +O(r−2) , y = Yk(y) ∈Mk.

Let us observe for later reference that since ∂iν = O(r−2), the principal
curvatures of M , k1, k2 satisfy kl = O(r−2). In particular, we have that

(2.5) |A(y)|2 = k21 + k22 = O(r−4).

To describe the entire manifold M , we consider a finite number N ≥
m+ 1 of local parameterizations

(2.6) y ∈ Uk ⊂ R
2 7−→ y = Yk(y), Yk ∈ C∞(Ūk), k = 1, . . . , N.

For k = 1, . . . ,m we choose them to be those in (2.1), with Uk = D, so
that Yk(Uk) =Mk, and Ūk is bounded for k = m+1, . . . , N . We require

then that M =
⋃N

k=1 Yk(Uk). We remark that the Weierstrass represen-
tation of M implies that we can actually take N = m+ 1, namely only
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one extra parameterization is needed to describe the bounded comple-
ment of the ends inM . We will not use this fact. In general, we represent
for y ∈ Yk(Uk),

(2.7) ∆M = a0ij(y)∂ij + b0i (y)∂i, y = Yk(y), y ∈ Uk,

where a0ij is a uniformly elliptic matrix and the index k is not made
explicit in the coefficients. For k = 1, . . . ,m we have

(2.8) a0ij(y) = δij +O(r−2), b0i = O(r−3), as r(y) = |y| → ∞.

The parameterizations set up above naturally induce a description
of the expanded manifold Mα = α−1M as follows. Let us consider the
functions
(2.9)
Ykα : Ukα := α−1Uk →Mα, y 7→ Ykα(y) := α−1Yk(αy), k = 1, . . . , N.

Obviously we have Mα =
⋃N

k=1 Ykα(Ukα). The computations above lead
to the following representation for the operator ∆Mα :

(2.10) ∆Mα = a0ij(αy)∂ij + b0i (αy)∂i, y = Ykα(y), y ∈ Ukα,

where a0ij, b
0
i are the functions in (2.7), so that for k = 1, . . . ,m we have

(2.11) a0ij = δij +O(r−2
α ), b0i = O(r−3

α ), for rα(y) := |αy| ≥ R0.

2.2. The Euclidean Laplacian near Mα. We will describe in coor-
dinates relative to Mα the Euclidean Laplacian ∆x, x ∈ R

3, in a setting
needed for the proof of our main results. Let us consider a smooth func-
tion h :M → R, and the smooth map Xh defined as
(2.12)
Xh : Mα × R → R

3, (y, t) 7−→ Xh(y, t) := y + (t+ h(αy) ) ν(αy)

where ν is the unit normal vector to M . Let us consider an open subset
O of Mα × R and assume that the map Xh|O is one to one, and that
it defines a diffeomorphism onto its image N = Xh(O). Then x =
Xh(y, t), (y, t) ∈ O, defines smooth coordinates to describe the open
set N in R

3. Moreover, the maps

x = Xh(Ykα(y) , t), (y, t) ∈ (Ukα × R) ∩ O, k = 1, . . . , N

define local coordinates (y, t) to describe the region N . We shall assume
in addition that for certain small number δ > 0, we have

(2.13) O ⊂ {(y, t) / |t+ h(αy)| < δ

α
log(2 + rα(y) ) }.

The Euclidean Laplacian ∆x can be computed in a neighborhood of
a region of M by the well-known formula in terms of the coordinates
(y, z) with x = y + zν(y) as

(2.14) ∆x = ∂zz +∆Mz −HMz∂z,
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where Mz is the manifold

Mz = {y + zν(y) / y ∈M}.
Local coordinates y = Yk(y), y ∈ R

2 as in (2.1) induce natural local
coordinates in Mz. The metric gij(z) in Mz can then be computed as

(2.15) gij(z) = 〈∂iY, ∂jY 〉+ z(〈∂iY, ∂jν〉+ 〈∂jY, ∂iν〉) + z2 〈∂iν, ∂jν〉
or

gij(z) = gij + z O(r−2) + z2O(r−4),

where these relations can be differentiated. Thus we find from the ex-
pression of ∆Mz in local coordinates that

(2.16) ∆Mz = ∆M + za1ij(y, z)∂ij + zb1i (y, z)∂i, y = Y (y)

where a1ij, b
1
i are smooth functions of their arguments. We also find

gij(z) = gij + z O(r−2) + z2O(r4) + · · ·
Then we find that for large r,

(2.17) ∆Mz = ∆M + z O(r−2)∂ij + zO(r−3)∂i.

We have the validity of the formula

HMz =

2∑

i=1

ki
1− kiz

=

2∑

i=1

ki + k2i z + k3i z
2 + · · ·

where ki, i = 1, 2 are the principal curvatures. Since M is a minimal
surface, we have that k1 + k2 = 0. Thus

|A|2 = k21 + k22 = −2k1k2 = −2K

where |A| is the Euclidean norm of the second fundamental form, and
K the Gauss curvature. As r → +∞ we have seen that ki = O(r−2)
and hence |A|2 = O(r−4). More precisely, we find for large r,

HMz = |A|2z + z2O(r−6).

Using the above considerations, a straightforward computation leads to
the following expression for the Euclidean Laplacian operator in N .

Lemma 2.1. For x = Xh(y, t), (y, t) ∈ O with y = Ykα(y), y ∈ Ukα,
we have the validity of the identity

∆x = ∂tt +∆Mα − α2[(t+ h)|A|2 +∆Mh]∂t − 2αa0ij ∂jh∂it

+ α(t+ h) [a1ij∂ij − 2αa1ij ∂ih∂jt + α b1i (∂i − α∂ih∂t) ]

+ α3(t+ h)2b13∂t + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jh∂tt .(2.18)

Here, in agreement with (2.10), ∆Mα = a0ij(αy)∂ij+b
0
i (αy)∂i. The func-

tions a1ij , b
1
i , b

1
3 in the above expressions appear evaluated at the pair
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(αy, α(t + h(αy)), while the functions h, ∂ih, ∆Mh, |A|2, a0ij , b0i are
evaluated at αy. In addition, for k = 1, . . . ,m, l = 0, 1,

alij = δijδ0l +O(r−2
α ), bli = O(r−3

α ), b13 = O(r−6
α ),

for rα(y) = |αy| ≥ R0, uniformly in their second variables. The notation
∂jh refers to ∂j [h ◦ Yk].

Actually, the coefficients a1ij and b1i can be further expanded as fol-
lows:

a1ij = a1ij(αy, 0) + α(t+ h) a
(2)
ij (αy, α(t + h)) =: a1,0ij + α(t+ h)a2ij ,

with a
(2)
ij = O(r−3

α ), and similarly

b1j = b1j (αy, 0) + α(t+ h) b
(2)
j (αy, α(t+ h)) =: b1,0j + α(t+ h)b2j ,

with b
(2)
j = O(r−4

α ). As an example of the previous formula, let us com-
pute the Laplacian of a function that separates variables t and y, which
will be useful in §3 and §11.

Lemma 2.2. Let v(x) = k(y)ψ(t). Then the following holds.

∆xv = kψ′′ + ψ∆Mαk − α2[(t+ h)|A|2 +∆Mh] k ψ
′ − 2αa0ij ∂jh∂ik ψ

′

+ α(t+ h) [a1,0ij ∂ijkψ − 2αa1,0ij ∂jh∂ik ψ
′

+ α(b1,0i ∂ik ψ − αb1,0i ∂ihk ψ
′) ]

+ α2(t+ h)2 [a2ij∂ijkψ − 2αa2ij ∂jh∂ik ψ
′

+ α(b2i ∂ik ψ − αb2i ∂ihk ψ
′) ]

+ α3(t+ h)2b13 k ψ
′ + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jhk ψ

′′.

(2.19)

3. Approximation of the solution and preliminary discussion

3.1. Approximation of order zero and its projection. Let us con-
sider a function h and sets O and N as in §2.2. Let x = Xh(y, t) be the
coordinates introduced in (2.12). At this point we shall make a more
precise assumption about the function h. We need the following prelim-
inary result, whose proof we postpone for §5.2.

We consider a fixed m-tuple of real numbers β = (β1, . . . , βm) such
that

(3.1)

m∑

i=1

βj = 0.

Lemma 3.1. Given any real numbers β1, . . . , βm satisfying (3.1),
there exists a smooth function h0(y) defined on M such that

J (h0) = ∆Mh0 + |A|2h0 = 0 in M,
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h0(y) = (−1)jβj log r + θ as r → ∞ in Mj for all y ∈Mj ,

where θ satisfies

(3.2) ‖θ‖∞ + ‖r2Dθ‖∞ < +∞ .

We fix a function h0 as in the above lemma and consider a function
h in the form

h = h0 + h1.

We allow h1 to be a parameter which we will adjust. For now we will
assume that for a certain constant K we have

(3.3) ‖h1‖L∞(M) + ‖(1 + r2)Dh1‖L∞(M) ≤ Kα .
We want to find a solution to

S(u) := ∆xu+ f(u) = 0.

We consider in the region N the approximation

u0(x) := w(t) = w(z − h0(αy) − h1(αy))

where z designates the normal coordinate to Mα. Thus, whenever βj 6=
0, the level sets [u0 = λ] for a fixed λ ∈ (−1, 1) depart logarithmi-
cally from the end α−1Mj, being still asymptotically catenoidal; more
precisely, it is described as the graph

y3 = (α−1aj + βj) log r + O(1) as r → ∞.

Note that, just as in the minimal surface case, the coefficients of the
ends are balanced in the sense that they add up to zero.

It is clear that if two ends are parallel, say aj+1 = aj, we need at
least that βj+1 − βj ≥ 0, for otherwise the ends of this zero level set
would eventually intersect. We recall that our further condition on these
numbers is that these ends in fact diverge at a sufficiently fast rate:

(3.4) βj+1 − βj > 4 max {σ−1
− , σ−1

+ } if aj+1 = aj .

We will explain later the role of this condition. Let us evaluate the error
of approximation S(u0). Using Lemma 2.2 and the fact that w′′+f(w) =
0, we find

S(u0) :=∆xu0 + f(u0)

=− α2[|A|2h1 +∆Mh1]w
′

+−α2|A|2 tw′ + 2α2a0ij ∂ih0∂jh0 w
′′

+ α2 a0ij(2∂ih0∂jh1 + ∂ih1∂jh1)w
′′

+ 2α3(t+ h0 + h1)a
1
ij ∂i(h0 + h1)∂j(h0 + h1)w

′′

+ α3(t+ h0 + h1)b
1
i ∂i(h0 + h1)w

′ + α3(t+ h0 + h1)
3b13w

′(3.5)

where the formula above has been broken into “sizes,” keeping in mind
that h0 is fixed while h1 = O(α). Since we want u0 to be, as close as
possible, a solution of (1.1), we would like to choose h1 in such a way
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that the quantity (3.5) is as small as possible. Examining the above ex-
pression, it does not look like we can do that in absolute terms. However,
part of the error could be made smaller by adjusting h1. Let us consider
the “L2-projection” onto w′(t) of the error for each fixed y, given by

Π(y) :=

∫ ∞

−∞
S(u0)(y, t)w

′(t) dt

where for now, and for simplicity we assume the coordinates are defined
for all t; the difference with the integration taken in all the actual domain
for t produces only exponentially small terms in α−1. Then we find

Π(y) = α2(∆Mh1 + h1|A|2)
∫ ∞

−∞
w′2dt+ α3∂i(h0 + h1)

∫ ∞

−∞
b1i (t+ h0 + h1)w

′2dt

+ α3∂i(h0 + h1)∂j(h0 + h1)

∫ ∞

−∞
(t+ h0 + h)a1ijw

′′w′dt+ α3

∫ ∞

−∞
(t+ h0 + h1)

3b13w
′2dt(3.6)

where we have used
∫∞
−∞ tw′2 dt =

∫∞
−∞w′′w′ dt = 0 to get rid, in par-

ticular, of the terms of order α2.
Making all these “projections” equal to zero amounts to a nonlinear

differential equation for h of the form

(3.7) J (h1) = ∆Mh1 + h1|A(y)|2 = G0(h1) y ∈M

where G0 is easily checked to be a contraction mapping of small constant
in h1, in the ball radiusO(α) with the C1 norm defined by the expression
in the left-hand side of inequality (3.3). This is where the nondegeneracy
assumption on the Jacobi operator J enters, since we would like to
invert it in such a way as to set up equation (3.7) as a fixed point
problem for a contraction mapping of a ball of the form (3.3).

3.2. Improvement of approximation. The previous considerations
are not sufficient since, even after optimally adjusting h, the error in
absolute value does not necessarily decrease. As we observed, the “large”
term in the error

−α2|A|2tw′ + α2a0ij∂ih0∂jh0 w
′′

did not contribute to the projection. In order to eliminate or reduce the
size of this remaining part O(α2) of the error, we improve the approxi-
mation through the following argument. Let us consider the differential
equation

ψ′′
0 (t) + f ′(w(t))ψ0(t) = tw′(t),
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which has a unique bounded solution with ψ0(0) = 0, given explicitly
by the formula

ψ0(t) = w′(t)

∫ t

0
(w′(s)−2(

∫ s

−∞
s
′

w′(s
′

)2ds
′

)ds) .

Observe that this function is well defined and that it is decaying expo-
nentially since

∫∞
−∞ sw′(s)2ds = 0 and w′(t) ∼ e−σ±|t| as t → ±∞, with

σ± > 0. Note also that ψ1(t) =
1
2tw

′(t) solves

ψ′′
1 (t) + f ′(w(t))ψ1(t) = w′′(t).

We consider as a second approximation
(3.8)
u1 = u0 + φ1, φ1(y, t) := α2|A(αy)|2ψ0(t)− α2a0ij∂ih0∂jh0(αy)ψ1(t) .

Let us observe that

S(u0 + φ) = S(u0) + ∆xφ+ f ′(u0)φ+N0(φ),

N0(φ) = f(u0 + φ)− f(u0)− f ′(u0)φ.

We have that

∂ttφ1 + f ′(u0)φ1 = α2|A(αy)|2tw′ − α2a0ij∂ih0∂jh0(αy)w
′′.

Hence we get that the largest remaining term in the error is canceled.
Indeed, we have

S(u1) = S(u0)−(2α2a0ij∂ih0∂jh0 w
′′−α2|A(αy)|2tw′)+[∆x−∂tt]φ1+N0(φ1).

Since φ1 has size of order α2 and a smooth dependence in αy, and it is
of size O(r−2

α e−σ|t|) using Lemma 2.2, we readily check that the “error
created”

[∆x − ∂tt]φ1 +N0(φ1) := −α4 ( |A|2tψ′
0 − a0ij∂ih0∂jh0 tψ

′
1 )∆h1 +R0

satisfies

|R0(y, t)| ≤ Cα3(1 + rα(y))
−4e−σ|t|.

Hence we have eliminated the h1-independent term O(α2) that did not
contribute to the projection Π(y), and replaced it by one smaller and
with faster decay. Let us be slightly more explicit for later reference. We
have

S(u1) := ∆u1 + f(u1) =

− α2[|A|2h1 +∆Mh1]w
′

+ α2 a0ij (∂ih0∂jh1 + ∂ih1∂jh0 + ∂ih1∂jh1)w
′′

− α4 ( |A|2tψ′
0 − a0ij∂ih0∂jh0 tψ

′
1 )∆Mh1

+ 2α3(t+ h)a1ij ∂ih∂jhw
′′ +R1(3.9)

where
R1 = R1(y, t, h1(αy),∇Mh1(αy))
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with

|DıR1(y, t, ı, )| + |DR1(y, t, ı, )|
+ |R1(y, t, ı, )| ≤ Cα3(1 + rα(y))

−4e−σ|t|,

and the constant C above possibly depends on the number K of condi-
tion (3.3).

The above arguments are in reality the way we will actually solve the
problem: two separate but coupled steps are involved: (1) Eliminate the
parts of the error that do not contribute to the projection Π, and (2)
adjust h1 so that the projection Π becomes identically zero.

3.3. The condition of diverging ends. Let us explain the reason
to introduce condition (3.4) in the parameters βj. To fix ideas, let us
assume that we have two consecutive planar ends of M , Mj and Mj+1,
namely with aj = aj+1 and with d = bj+1 − bj > 0. Assuming that the
normal in Mj points upward, the coordinate t reads approximately as

t = x3 − α−1bj − h near Mjα, t = α−1bj+1 − x3 − h near Mj+1α.

If we let h0 ≡ 0 both on Mjα and M(j+1)α, which are separated at
distance d/α, then a good approximation in the entire region between
Mjα and M(j+1)α that matches the parts of w(t) coming both from Mj

and Mj+1 should read near Mj approximately as

w(t) + w(α−1d− t)− 1.

When computing the error of approximation, we observe that the fol-
lowing additional term arises near Mjα:

E := f(w(t) + w(α−1d− t)− 1 ) − f(w(t))− f(w(α−1d− t) )

∼ [f ′(w(t)) − f ′(1) ] (w(α−1d− t)− 1 ).

Now in the computation of the projection of the error, this would give
rise to

∫ ∞

−∞
[ f ′(w(t)) − f ′(1) ] (w(α−1d− t) − 1 )w′(t) dt ∼ c∗e

−σ+
d
α

where c∗ 6= 0 is a constant. Thus equation (3.7) for h1 gets modified
with a term which, even though very tiny, has no decay as |y| → +∞ on
Mj , unlike the others involved in the operator G0 in (3.7). That term
eventually dominates, and the equation for h1 for very large r would
read in Mj as

∆Mh1 ∼ e−
σ
α 6= 0,

which is inconsistent with the assumption that h is bounded. Worse
yet, its solution would be quadratic, thus eventually intersecting an-
other end. This problem is solved with the introduction of h0 satisfying
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condition (3.4). In that case, the term E created above will now read
near Mjα as

E ∼ Ce−σ+
d
α e−(βj+1−βj) log rα e−σ|t| = O(e−

σ
α r−4

α e−σ|t|)

which is qualitatively of the same type as the other terms involved in
the computation of the error.

3.4. The global first approximation. The approximation u1(x) in
(3.2) will be sufficient for our purposes; however, it is so far defined only
in a region of the type N which we have not made precise yet. Since
we are assuming that Mα is connected, the fact that Mα is properly
embedded implies that R

3 \Mα consists of precisely two components,
S− and S+. Let us use the convention that ν points in the direction of
S+. Let us consider the function H defined in R

3 \Mα as

(3.10) H(x) :=

{
1 if x ∈ S+

−1 if x ∈ S−
.

Then our approximation u1(x) approaches H(x) at an exponential rate

O(e−σ±|t|) as |t| increases. The global approximation we will use consists
simply of interpolating u1 with H sufficiently well inside R3\Mα through
a cut-off in |t|. In order to avoid the problem described in §3.3 and
having the coordinates (y, t) well-defined, we consider this cut-off to be
supported in a y-dependent region that expands logarithmically in rα.
Thus we will actually consider a region Nδ expanding at the ends, thus
becoming wider as rα → ∞ than the set Nα

δ previously considered,
where the coordinates are still well-defined.

We consider the open set O in Mα × R to be defined as

O ={(y, t) ∈Mα × R, |t+ h1(αy)| <
δ

α

+ 4max{σ−1
− , σ−1

+ } log(1 + rα(y)) =: ρα(y)}(3.11)

where δ is a small positive number. We consider the region N =: Nδ of
points x of the form

x = Xh(y, t) = y + (t+ h0(αy) + h1(αy)) ν(αy), (y, t) ∈ O,
namely Nδ = Xh(O). The coordinates (y, t) are well-defined in Nδ for
any sufficiently small δ: indeed, the map Xh is one-to-one in O thanks
to assumption (3.4) and the fact that h1 = O(α). Moreover, Lemma 2.1
applies in Nδ.

Let η(s) be a smooth cut-off function with η(s) = 1 for s < 1 and
= 0 for s > 2, and define

(3.12) ηδ(x) :=

{
η( |t+ h1(αy)| − ρα(y)− 3) if x ∈ Nδ,

0 if x 6∈ Nδ
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where ρα is defined in (3.11). Then we let our global approximation w(x)
be defined simply as

(3.13) w := ηδu1 + (1− ηδ)H

where H is given by (3.10) and u1(x) is just understood to be H(x)
outside Nδ.

Since H is an exact solution in R
3 \Mδ, the global error of approxi-

mation is simply computed as

(3.14) S(w) = ∆w+ f(w) = ηδS(u1) + E

where

E = 2∇ηδ∇u1 +∆ηδ(u1 −H) + f(ηδu1 + (1− ηδ)H) ) − ηδf(u1).

The new error terms created are of exponentially small size O(e−
σ
α )

but have, in addition, decay with rα. In fact, we have

|E| ≤ Ce−
δ
α r−4

α .

Let us observe that |t + h1(αy)| = |z − h0(αy)| where z is the normal
coordinate to Mα; hence ηδ does not depend on h1, and in particular
the term ∆ηδ does involve second derivatives of h1 on which we have
not yet made assumptions.

4. The proof of Theorem 1

The proof of Theorem 1 involves various ingredients whose detailed
proofs are fairly technical. In order to keep the presentation as clear
as possible, in this section we carry out the proof, skimming it from
several (important) steps, which we state as lemmas or propositions.
Some proofs are postponed to subsequent sections. We also refer sys-
tematically to our work [11]. The reader may also consult a preliminary
version of this paper in the preprint [14].

We look for a solution u of the Allen-Cahn equation (1.1) in the form

(4.1) u = w+ ϕ

where w is the global approximation defined in (3.13) and ϕ, is in some
suitable sense, small. Thus we need to solve the following problem:

(4.2) ∆ϕ+ f ′(w)ϕ = −S(w)−N(ϕ)

where

N(ϕ) = f(w+ ϕ)− f(w)− f ′(w)ϕ.

Next we introduce various norms that we will use to set up a suitable
functional analytic scheme for solving problem (4.2). For a function g(x)
defined in R

3, 1 < p ≤ +∞, µ > 0, and α > 0, we write

‖g‖p,µ,∗ := sup
x∈R3

(1 + r(αx))µ‖g‖Lp(B(x,1)), r(x′, x3) = |x′|.
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On the other hand, given numbers µ ≥ 0, 0 < σ < min{σ+, σ−},
p > 3, and functions g(y, t) and φ(y, t) defined in Mα × R, we consider
the norms

(4.3) ‖g‖p,µ,σ := sup
(y,t)∈Mα×R

rα(y)
µ eσ|t|

(
∫

B((y,t),1)
|f |p dVα

) 1

p

.

Consistently we set

(4.4) ‖g‖∞,µ,σ := sup
(y,t)∈Mα×R

rα(y)
µ eσ|t| ‖f‖L∞(B((y,t),1))

and let

(4.5) ‖φ‖2,p,µ,σ := ‖D2φ‖p,µ,σ + ‖Dφ‖∞,µ,σ + ‖φ‖∞,µ,σ .

We also consider for a function g(y) defined inM the Lp-weighted norm
(4.6)

‖f‖p,β :=

(∫

M
|f(y)|p (1 + |y|β )p dV (y)

)1/p

= ‖ (1 + |y|β) f ‖Lp(M)

where p > 1 and β > 0.
We assume in what follows that for a certain constant K > 0 and

p > 3 we have that the parameter function h1(y) satisfies

(4.7) ‖h1‖∗ := ‖h1‖L∞(M)+‖(1+r2)Dh1‖L∞(M)+‖D2h1‖p,4− 4

p
≤ Kα.

Next we reduce problem (4.2) to solving one qualitatively similar
(equation (4.20) below) for a function φ(y, t) defined in the whole space
Mα × R.

4.1. Step 1: The gluing reduction. We will follow the following
procedure. Let us again consider η(s), a smooth cut-off function with
η(s) = 1 for s < 1 and = 0 for s > 2, and define

(4.8) ζn(x) :=

{

η( |t+ h1(αy)| − δ
α + n) if x ∈ Nδ

0 if x 6∈ Nδ
.

We look for a solution ϕ(x) of problem (4.2) of the following form:

(4.9) ϕ(x) = ζ2(x)φ(y, t) + ψ(x),

where φ is defined in the entire Mα × R, ψ(x) is defined in R
3, and

ζ2(x)φ(y, t) is understood as zero outside Nδ.
We compute, using that ζ2 · ζ1 = ζ1,

S(w+ ϕ) = ∆ϕ+ f ′(w)ϕ+N(ϕ) + S(w)

= ζ2
[
∆φ+ f ′(u1)φ + ζ1(f

′(u1) +H(t))ψ + ζ1N(ψ + φ) + S(u1)
]

+∆ψ − [ (1− ζ1)f
′(u1) + ζ1H(t) ]ψ

(4.10) +(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ+ φ∆ζ1
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where H(t) is any smooth, strictly negative function satisfying

H(t) =

{
f ′(+1) if t > 1 ,
f ′(−1) if t < −1.

Thus, we will have constructed a solution ϕ = ζ2φ+ψ to problem (4.2)
if we require that the pair (φ,ψ) satisfies the following coupled system:
(4.11)

∆φ+f ′(u1)φ+ ζ1(f
′(u1)−H(t))ψ+ζ1N(ψ+φ)+S(u1) = 0 for |t| < δ

α
+3

∆ψ + [ (1− ζ1)f
′(u1) + ζ1H(t) ]ψ +

(4.12) (1−ζ2)S(w)+(1−ζ1)N(ψ+ζ2φ)+2∇ζ1∇φ+φ∆ζ1 = 0 in R
3 .

In order to find a solution to this system, we will first extend equation
(4.11) to the entire Mα × R in the following manner. Let us set

(4.13) B(φ) = ζ4[∆x − ∂tt −∆y,Mα ]φ

where ∆x is expressed in (y, t) coordinates using expression (2.18) and
B(φ) is understood to be zero for |t + h1| > δ

α + 5. The other terms in
equation (4.11) are simply extended as zero beyond the support of ζ1.
Thus we consider the extension of equation (4.11) given by

∂ttφ + ∆y,Mαφ + B(φ) + f ′(w(t))φ = −S̃(u1)
(4.14)
−
{
[f ′(u1)− f ′(w)]φ + ζ1(f

′(u1)−H(t))ψ + ζ1N(ψ + φ)
}

in ∈Mα×R,

where we set, with reference to expression (3.9),

S̃(u1) = −α2[|A|2h1 +∆Mh1]w
′ + α2 a0ij (2∂ih0∂jh1 + ∂ih1∂jh1 )w

′′

(4.15)
−α4 ( |A|2tψ′

0−a0ij∂ih0∂jh0 tψ′
1 )∆h1 +ζ4 [α

3(t+h)a1ij ∂ih∂jhw
′′+R1(y, t) ]

and, we recall,

R1 = R1(y, t, h1(αy),∇Mh1(αy))

with
(4.16)

|DıR1(y, t, ı, )|+|DR1(y, t, ı, )|+|R1(y, t, ı, )| ≤ Cα3(1+rα(y))
−4e−σ|t|.

In summary, S̃(u1) coincides with S(u1) if ζ4 = 1, while outside the
support of ζ4, their parts that are not defined for all t are cut-off.

To solve the resulting system (4.12)–(4.14), we first solve equation
(4.12) in ψ for a given φ, a small function in absolute value. Noticing
that the potential [ (1 − ζ1)f

′(u1) + ζ1H(t) ] is uniformly negative, so
that the linear operator is qualitatively like ∆ − 1 and using the con-
traction mapping principle, a solution ψ = Ψ(φ) is found according to
the following lemma, whose proof is essentially contained in Lemma 4.1
of [11].
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Lemma 4.1. For all sufficiently small α the following holds. Given φ
with ‖φ‖2,p,µ,σ ≤ 1, there exists a unique solution ψ = Ψ(φ) of problem
(4.12) such that

(4.17) ‖ψ‖X := ‖D2ψ‖p,µ,∗ + ‖ψ‖p,µ,∗ ≤ Ce−
σδ
α .

Besides, Ψ satisfies the Lipschitz condition

(4.18) ‖Ψ(φ1)−Ψ(φ2)‖X ≤ C e−
σδ
α ‖φ1 − φ2‖2,p,µ,σ.

Thus we replace ψ = Ψ(φ) in the first equation (4.11) so that by
setting
(4.19)
N(φ) := B(φ)+[f ′(u1)−f ′(w)]φ+ ζ1(f

′(u1)−H(t))Ψ(φ) +ζ1N(Ψ(φ)+φ),

our problem is reduced to finding a solution φ to the following nonlinear,
nonlocal problem in Mα × R:

(4.20) ∂ttφ + ∆y,Mαφ + f ′(w)φ = −S̃(u1)− N(φ) in Mα × R.

Thus, we concentrate in the remainder of this proof on solving equa-
tion (4.20). As we stated in §3.2, we will find a solution of (4.20) by
considering two more steps: We improve the approximation, roughly
solving for φ that eliminates the part of the error that does not con-
tribute to the “projections”

∫
[S̃(U1) + N(φ)]w′(t)dt, which amounts to

a nonlinear problem in φ. Then we adjust h1 in such a way that the
resulting projection is actually zero.

Let us set up the scheme for the next step in a precise form.

4.2. Step 2: Eliminating terms not contributing to projections.
Let us consider the problem of finding a function φ(y, t) such that for a
certain function c(y) defined in Mα, we have

∂ttφ + ∆y,Mαφ + f
′

(w)φ = −S̃(u1)− N(φ) + c(y)w′(t) in Mα × R,
∫

R

φ(y, t)w′(t) dt = 0, for all y ∈Mα .

(4.21)

Solving this problem for φ amounts to “eliminating the part of the error
that does not contribute to the projection” in problem (4.20). To justify
this phrase, let us consider the associated linear problem in Mα × R,

∂ttφ+∆y,Mαφ+ f ′(w(t))φ = g(y, t) + c(y)w′(t), for all (y, t) ∈Mα × R,

∫ ∞

−∞
φ(y, t)w′(t) dt = 0, for all y ∈Mα

(4.22)

where

(4.23) c(y) = −
∫

R
g(y, t)w′dt
∫

R
w′2dt

.
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In order to solve problem (4.21), we need to devise a theory to solve
problem (4.22), where we consider a class of right-hand sides g with
a qualitative behavior similar to that of the error S(u1). As we have
seen in (4.15), typical elements in this error are of the type O((1 +

rα(y))
−µe−σ|t|). The following fact holds.

Proposition 4.1. Given p > 3, µ ≥ 0, and 0 < σ < min{σ−, σ+},
there exists a constant C > 0 such that for all sufficiently small α > 0,
the following holds: Given f with ‖g‖p,µ,σ < +∞, Problem (4.22) with
c(y) given by (4.23) has a unique solution φ with ‖φ‖∞,µ,σ < +∞. This
solution satisfies in addition that

(4.24) ‖φ‖2,p,µ,σ ≤ C‖g‖p,µ,σ.
Proof. The proof consists just in a small variation of that for Propo-

sition 6.1 in [11]. We omit the details. q.e.d.
After Proposition 4.1, solving Problem (4.21) for a small φ is easy,

using the small Lipschitz character of the terms involved in the operator
N(φ) in (4.19) and the contraction mapping principle. The error term

S̃(u1) satisfies

(4.25) ‖S̃(u1) + α2∆h1w
′‖p,4,σ ≤ Cα3.

Using this, and the fact that N(φ) defines a contraction mapping in a ball
center zero and radius O(α3) in ‖ ‖2,p,4,σ, we conclude the existence of
a unique small solution φ to problem (4.21) whose size is O(α3) for this
norm. This solution φ turns out to define an operator in h1 φ = Φ(h1)
which is Lipschitz in the norms ‖ ‖∗ appearing in condition (4.7). In
precise terms, we have the validity of the following result, whose proof
is essentially that of Proposition 4.1 in [11]:

Proposition 4.2. Assume p > 3, 0 ≤ µ ≤ 3, 0 < σ < min{σ+, σ−}.
There exists a K > 0 such that problem (4.21) has a unique solution
φ = Φ(h1), such that

‖φ‖2,p,µ,σ ≤ Kα3 .

Besides, Φ has a Lipschitz dependence on h1 satisfying (4.7) in the sense
that

(4.26) ‖Φ(h1)− Φ(h2)‖2,p,µ,σ ≤ Cα2‖h1 − h2‖∗.

4.3. Step 3: Adjusting h1 to make the projection zero. In order
to conclude the proof of the theorem, we have to carry out the next step,
namely adjusting h1, within a region of the form (4.7) for suitable K in
such a way that the “projections” are identically zero, i.e. making zero
the function c(y) found for the solution φ = Φ(h1) of problem (4.21).
Using expression (4.23) for c(y), we find that

(4.27) c(y)

∫

R

w′2 =

∫

R

S̃(u1)w
′ dt+

∫

R

N(Φ(h1) )w
′ dt .



90 M. DEL PINO, M. KOWALCZYK & J. WEI

Now, setting c∗ :=
∫

R
w′2dt and using the same computation em-

ployed to derive formula (3.6), we find from expression (4.15) that
∫

R

S̃(u1)(y, t)w
′(t) dt = −c∗ α2(∆Mh1 + h1|A|2) + c∗α

2G1(h1)

where

c∗G1(h1) = −α2∆h1 ( |A|2
∫

R

tψ′
0w

′ dt− a0ij∂ih0∂jh0

∫

R

tψ′
1w

′ dt )

+ α∂i(h0 + h1)∂j(h0 + h1)

∫

R

ζ4(t+ h)a1ijw
′′w′ dt

+ α−2

∫

R

ζ4R1(y, t, h1,∇Mh1 )w
′ dt,(4.28)

and we recall that R1 is of size O(α3) in the sense of (4.16). Thus, setting
(4.29)

c∗G2(h1) := α−2

∫

R

N(Φ(h1) )w
′ dt, G(h1) := G1(h1) +G2(h1),

we find that the equation c(y) = 0 is equivalent to the problem

(4.30) J (h1) = ∆Mh1 + |A|2h1 = G(h1) in M.

Therefore, we will have proven Theorem 1 if we find a function h1
defined on M satisfying constraint (4.7) for a suitable K that solves
equation (4.30). Again, this is not so direct, since the operator J has
a nontrivial bounded kernel. Rather than directly solving (4.30), we
consider first a projected version of this problem, namely that of finding
h1 such that for certain scalars c1, . . . , cJ we have

J (h1) = G(h1) +

J∑

i=1

ci
1 + r4

ẑi in M,

(4.31)

∫

M

ẑih

1 + r4
dV = 0, i = 1, . . . , J.

Here ẑ1, . . . , ẑJ is a basis of the vector space of bounded Jacobi fields.
In order to solve problem (4.31), we need a corresponding linear in-

vertibility theory. This leads us to consider the linear problem

J (h) = f +

J∑

i=1

ci
1 + r4

ẑi in M,

(4.32)

∫

M

ẑih

1 + r4
dV = 0, i = 1, . . . J.

Here ẑ1, . . . , ẑJ are bounded, linearly independent Jacobi fields, and J
is the dimension of the vector space of bounded Jacobi fields.

We will prove in §5.1 the following result.
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Proposition 4.3. Given p > 2 and f with ‖f‖p,4− 4

p
< +∞, there

exists a unique bounded solution h of problem (4.32). Moreover, there
exists a positive number C = C(p,M) such that
(4.33)

‖h‖∗ := ‖h‖∞ + ‖ (1 + |y|2)Dh‖∞ + ‖D2h ‖p,4− 4

p
≤ C‖f‖p,4− 4

p
.

Using the fact that G is a small operator of size O(α) uniformly
on functions h1 satisfying (4.7), Proposition 4.3 and the contraction
mapping principle yield the following result, whose detailed proof we
carry out in §6.

Proposition 4.4. Given p > 3, there exists a number K > 0 such
that for all sufficiently small α > 0, there is a unique solution h1 of
problem (4.31) that satisfies constraint (4.7).

4.4. Step 4: Conclusion. As the last step, we prove that the constants
ci found in equation (4.31) are in reality all zero, without the need of
adjusting any further parameters, but rather as a consequence of the
natural invariances of the full equation. The key point is to realize what
equation has been solved so far.

First we observe the following. For each h1 satisfying (4.7), the pair
(φ,ψ) with φ = Φ(h1), ψ = Ψ(φ), solves the system

∆φ+ f ′(u1)φ + ζ1(f
′(u1)−H(t))ψ + ζ1N(ψ + φ) + S(u1)

= c(y)w′(t) for |t| < δ

α
+ 3

∆ψ + [ (1 − ζ1)f
′(u1) + ζ1H(t) ]ψ

+ (1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ+ φ∆ζ1 = 0 in R
3.

Thus setting

ϕ(x) = ζ2(x)φ(y, t) + ψ(x), u = w+ ϕ,

we find from formula (4.10) that

∆u+ f(u) = S(w+ ϕ) = ζ2c(y)w
′(t).

On the other hand, choosing h1 as that given in Proposition 4.4 which
solves problem (4.31) amounts precisely to making

c(y) = c∗α
2

J∑

i=1

ci
ẑi(αy)

1 + rα(y)4

for certain scalars ci. In summary, we have found h1 satisfying constraint
(4.7) such that

(4.34) u = w+ ζ2(x)Φ(h1) + Ψ(Φ(h1) )
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solves the equation

(4.35) ∆u+ f(u) =
J∑

j=1

c̃i
1 + r4α

ẑi(αy)w
′(t)

where c̃i = c∗α
2ci. Testing equation (4.35) against the generators of the

rigid motions ∂iu i = 1, 2, 3, −x2∂1u+ x1∂2u, and using the balancing
formula for the minimal surface and the zero average of the numbers βj
in the definition of h0, we find a system of equations that leads us to
ci = 0 for all i, thus concluding the proof. We will carry out the details
in §7.

In sections §5–7 we will complete the proofs of the intermediate steps
of the program designed in this section.

5. The Jacobi operator

We consider in this section the problem of finding a function h such
that for certain constants c1, . . . , cJ ,

(5.1) J (h) = ∆Mh+ |A|2h = f +

J∑

j=1

ci
1 + r4

ẑi in M,

(5.2)

∫

M

ẑih

1 + r4
= 0, i = 1, . . . , J

and prove the result of Proposition 4.3. We will also deduce the existence
of Jacobi fields of logarithmic growth as in Lemma 3.1. We recall the
definition of the norms ‖ ‖p,β in (4.6).

Outside of a ball of sufficiently large radius R0, it is natural to pa-
rameterize each end of M , y3 = Fk(y1, y2) using the Euclidean coordi-
nates y = (y1, y2) ∈ R

2. The requirement in f on each end amounts to

f̃ ∈ Lp(B(0, 1/R0)) where

(5.3) f̃(y) := |y|−4f(|y|−2y).

Indeed, observe that

‖f̃‖pLp(B(0,1/R0))
=

∫

B(0,1/R0)
|y|−4p| f(|y|−2y) |p dy

=

∫

R2\B(0,R0)
|y|4(p−1)|f(y)|p dy.

In order to prove the proposition, we need some a priori estimates.

Lemma 5.1. Let p > 2. For each R0 > 0 sufficiently large, there
exists a constant C > 0 such that if

‖f‖p,4− 4

p
+ ‖h‖L∞(M) < +∞
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and h solves

∆Mh+ |A|2h = f, y ∈M, |y| > R0,

then

‖h‖L∞(|y|>2R0) + ‖ |y|2Dh‖L∞(|y|>2R0) + ‖ |y|4−
4

pD2h‖Lp(|y|>2R0)

≤ C [ ‖f‖p,4− 4

p
+ ‖h‖L∞(R0<|y|<3R0) ].

Proof. Along each end Mk of M , ∆M can be expanded in the coor-
dinate y as

∆M = ∆+O(|y|−2)D2 +O(|y|−3)D.

A solution of h of equation (5.1) satisfies

∆Mh+ |A|2h = f, |y| > R0

for a sufficiently large R0. Let us consider a Kelvin’s transform

h(y) = h̃(y/|y|2).
Then h̃ satisfies the equation

∆h̃+O(|y|2)D2h̃+O(|y|)Dh̃ +O(1)h = f̃(y), 0 < |y| < 1

R0

where f̃ is given by (5.3). The operator above satisfies the maximum

principle in B(0, 1
R0

) if R0 is fixed large enough. This, the fact that h̃ is
bounded, and Lp-elliptic regularity for p > 2 in two dimensional space
imply that

‖h̃‖L∞(B(0,1/2R0)) + ‖Dh̃‖L∞(B(0,1/2R0)) + ‖D2h̃‖Lp(B(0,1/2R0))

≤ C [ ‖f‖p,4− 4

p
+ ‖h‖L∞(B(R0<|y|<3R0)) ].

From this it directly follows that

‖h‖L∞(|y|>2R0) + ‖ |y|2Dh‖L∞(|y|>2R0) + ‖ |y|4−
4

pD2h‖Lp(|y|>2R0)

≤ C [ ‖f‖p,4− 4

p
+ ‖h‖L∞(B(R0<|y|<3R0)) ] .

Since this estimate holds at each end, the result of the lemma follows,
after possibly changing slightly the value R0. q.e.d.

Lemma 5.2. Under the conditions of Lemma 5.1, assume that h is
a bounded solution of problems (5.1)–(5.2). Then the a priori estimate
(4.33) holds.

Proof. Let us observe that this a priori estimate in Lemma 5.1 implies
in particular that the Jacobi fields ẑi satisfy

∇ẑi(y) = O(|y|−2) as |y| → +∞.

Using ẑi as a test function in a ball B(0, ρ) in M , we obtain
∫

∂B(0,ρ)
(h∂ν ẑi − ẑi∂ν ẑi) +

∫

|y|<ρ
(∆M ẑi + |A|2ẑi)h =
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∫

|y|<ρ
f ẑi +

J∑

j=1

cj

∫

M

ẑiẑj
1 + r4

.

Since the boundary integral in the above identity is of size O(ρ−1), we
get

(5.4)

∫

M
f ẑi +

J∑

j=1

cj

∫

M

ẑiẑj
1 + r4

= 0

so that in particular

(5.5) |cj | ≤ C‖f‖p,4− 4

p
for all j = 1, . . . , J.

In order to prove the desired estimate, we assume by contradiction
that there are sequences hn, fn with ‖hn‖∞ = 1 and ‖fn‖p,4− 4

p
→ 0,

such that

∆Mhn + |A|2hn = fn +

J∑

j=1

cni ẑi
1 + r4

∫

M

hnẑi
1 + r4

= 0 for all i = 1, . . . , J.

Thus, according to estimate (5.5), we have that cni → 0. From Lemma
5.1 we find

‖hn‖L∞(|y|>2R0) ≤ C[o(1) + ‖hn‖L∞(B(0,3R0))] .

The latter inequality implies that

‖hn‖L∞(B(0,3R0)) ≥ γ > 0.

Local elliptic estimates imply a C1 bound for hn on bounded sets. This
implies the presence of a subsequence hn which we denote the same way
such that hn → h uniformly on compact subsets of M , where h satisfies

∆Mh+ |A|2h = 0 .

h is bounded; hence, by the nondegeneracy assumption, it is a linear
combination of the functions ẑi. Besides, h 6= 0 and satisfies

∫

M

hẑi
1 + r4

= 0 for all i = 1, . . . , J .

The latter relations imply h = 0, and hence a contradiction that proves
the validity of the a priori estimate. q.e.d.
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5.1. Proof of Proposition 4.3. Thanks to Lemma 5.2, it only remains
to prove existence of a bounded solution to problems (5.1)–(5.2). Let f
be as in the statement of the proposition. Let us consider the Hilbert
space H of functions h ∈ H1

loc(M) with

‖h‖2H :=

∫

M
|∇h|2 + 1

1 + r4
|h|2 < +∞,

∫

M

1

1 + r4
hẑi = 0 for all i = 1, . . . , J.

Problems (5.1)–(5.2) can be formulated in weak form as finding h ∈ H
with ∫

M
∇h∇ψ − |A|2hψ = −

∫

M
fψ for all ψ ∈ H.

In fact, a weak solution h ∈ H of this problem must be bounded, thanks
to elliptic regularity. This weak problem can be written as an equation
of the form

h− T (h) = f̃

where T is a compact operator in H and f̃ ∈ H depends linearly on f .
When f = 0, the a priori estimates found yield that, necessarily, h = 0.
Existence of a solution then follows from Fredholm’s alternative. The
proof is complete. q.e.d.

5.2. Jacobi fields of logarithmic growth and the proof of Lemma
3.1. Let us consider an m-tuple of numbers β1, . . . , βm with

∑m
j=1 βj =

0, and any smooth function p(y) in M such that on each end Mj we
have that for sufficiently large r = r(y),

p(y) = (−1)jβj log r(y), y ∈Mj

for certain numbers β1, . . . , βm that we will choose later. To prove the
result of Lemma 3.1, we need to find a solution h0 of the equation
J (h0) = 0 of the form h0 = p+ h where h is bounded. This amounts to
solving

(5.6) J (h) = −J (p).

Let us consider the cylinder CR = {x ∈ R
3 / r(x) < R} for a large R.

Then
∫

M∩CR

J (p) z3dV =

m∑

j=1

∫

∂CR∩Mj

(z3∂np− p∂nz3) dσ(y).

Thus, using the graph coordinates on each end, we find
∫

M∩CR

J (p) z3dV =

m∑

j=1

(−1)j

[

βj
R

∫

|y|=R
ν3dσ(y)− βj logR

∫

|y|=R
∂rν3dσ(y)

]

+O(R−1).
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We have that, on each end Mj ,

ν3(y) =
(−1)j

√

1 + |∇Fk(y)|2
= (−1)j +O(r−2), ∂rν3(y) = O(r−3).

Hence we get
∫

M∩CR

J (p) z3dV = 2π

m∑

j=1

βj +O(R−1) .

It is easy to see, using the graph coordinates, that J (p) = O(r−4) and
it is hence integrable. We pass to the limit R→ +∞ and get

(5.7)

∫

M
J (p) z3dV = 2π

m∑

j=1

βj = 0.

We make a similar integration for the remaining bounded Jacobi
fields. For zi = νi(y) i = 1, 2 we find
∫

M∩CR

J (p) z2dV =
m∑

j=1

(−1)j

[

βj
R

∫

|y|=R
ν2dσ(y) − βj logR

∫

|y|=R
∂rν2dσ(y)

]

+O(R−1).

Now, on Mj,

ν2(y) =
(−1)j

√

1 + |∇Fk(y)|2
= (−1)jaj

xi
r2

+O(r−3), ∂rν2(y) = O(r−2).

Hence ∫

M
J (p) zidV = 0 i = 1, 2.

Finally, for z4(y) = (−y2, y1, 0) · ν(y), we find on Mj,

(−1)jz4(y) = −y2∂2Fj+y1∂1Fj = bj1
y2

r2
−bj2

y1

r2
+O(r−2), ∂rz4 = O(r−2)

and hence again
∫

M
J (p) z4dV = 0.

From the solvability theory developed, we can then find a bounded so-
lution to the problem

J (h) = −J (p) +

J∑

j=1

qcj ẑj .

Since
∫

M J (p)zidV = 0 and hence
∫

M J (p)ẑidV = 0, relations (5.4)
imply that ci = 0 for all i.
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We have thus found a bounded solution to equation (5.6) and the
proof is concluded. q.e.d.

Remark 5.1. Observe that, in particular, the explicit Jacobi field
z0(y) = y · ν(y) satisfies that

z(y) = (−1)jaj log r +O(1) for all y ∈Mj

and we have indeed
∑

j aj = 0. Besides this one, we thus have the

presence of another m−2 linearly independent Jacobi fields with |z(y)| ∼
log r as r → +∞, where m is the number of ends.

These are in reality all Jacobi fields with exact logarithmic growth.
In fact, if J (z) = 0 and

(5.8) |z(y)| ≤ C log r ,

then the argument in the proof of Lemma 5.1 shows that the Kelvin’s
inversion z̃(y) as in the proof of Lemma 5.2 satisfies near the origin

∆z̃ = f̃ where f̃ belongs to any Lp near the origin, so it must equal a
multiple of log |y| plus a regular function. It follows that on Mj there is
a number βj with

z(y) = (−1)jβj log |y|+ h

where h is smooth and bounded. The computations above force
∑

j βj = 0. It follows from Lemma 3.1 that then z must be equal to
one of the elements predicted there, plus a bounded Jacobi field. We
conclude in particular that the dimension of the space of Jacobi fields
satisfying (5.8) must be at most m− 1+ J , thus recovering a fact stated
in Lemma 5.2 of [37].

6. The reduced problem: Proof of Proposition 4.4

In this section we prove Proposition 4.4, based on the linear theory
provided by Proposition 4.3. Thus, we want to solve the problem

J (h1) =∆Mh1 + h1|A|2 = G(h1) +

J∑

i=1

ci
1 + r4

ẑi in M,(6.1)

∫

M

h1ẑi
1 + r4

dV = 0 for all i = 1, . . . , J,

where the linearly independent Jacobi fields ẑi will be as chosen in (7.1)
and (7.2) of §8, and G = G1 +G2 is as defined in (4.28) and (4.29). We
will use the contraction mapping principle to determine the existence of
a unique solution h1 for which constraint (4.7), namely

(6.2) ‖h1‖∗ := ‖h1‖L∞(M)+‖(1+r2)Dh1‖L∞(M)+‖D2h1‖p,4− 4

p
≤ Kα,

is satisfied after fixing K sufficiently large.
To analyze the size of the operator G, we make use of the following

estimate, whose lengthy but rather straightforward proof we omit.
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Lemma 6.1. Let ψ(y, t) be a function defined in Mα × R such that

‖ψ‖p,µ,σ := sup
(y,t)∈Mα×R

eσ|t|(1 + rµα ) ‖ψ‖Lp(B((y,t),1) < +∞

for σ, µ ≥ 0. The function defined in M as

q(y) :=

∫

R

ψ(y/α, t)w′(t) dt

satisfies

(6.3) ‖q‖p,a ≤ C ‖ψ‖p,µ,σ
provided that

µ >
2

p
+ a .

In particular, for any τ > 0,

(6.4) ‖q‖p,2− 2

p
−τ ≤ C ‖ψ‖p,2,σ

and

(6.5) ‖q‖p,4− 4

p
≤ C ‖ψ‖p,4,σ .

Let us apply this result to ψ(y, t) = N(Φ(h1) ) to estimate the size of
the operator G2 in (4.29). For φ = Φ(h1), we have that

G2(h1)(y) := c−1
∗ α−2

∫

R

N(φ)(y/α, t)w′ dt

satisfies
‖G2(h1)‖p,4− 4

p
≤ Cα−2‖N(φ)‖p,4,σ ≤ C α2.

On the other hand, we have that, similarly, for φl = Φ(hl), l = 1, 2,

‖G2(h1)−G2(h2)‖p,4− 4

p
≤ Cα−2‖N(φ1, h1)− N(φ2, h2)‖p,4,σ.

Now,

‖N(φ1, h1)−N(φ1, h2)‖p,4,σ ≤ Cα2‖h1−h2‖∗‖φ1‖2,p,3,σ,≤ Cα5‖h1−h2‖∗,
and

‖N(φ1, h1)− N(φ2, h1)‖p,4,σ ≤ Cα2‖φ1 − φ2‖p,3,σ ≤ Cα4‖h1 − h2‖∗ .
We conclude then that

‖G2(h1)−G2(h2)‖p,4− 4

p
≤ C α2‖h1 − h2‖∗.

In addition, we also have that

‖G2(0)‖p,4− 4

p
≤ Cα2

for some C > 0 possibly dependent of K. On the other hand, it is
similarly checked that the remaining small operator G1(h1) in (4.28)
satisfies

‖G1(h1)−G1(h2)‖p,4− 4

p
≤ C1 α‖h1 − h2‖∗.
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A simple but crucial observation we make is that

c∗G1(0) = α∂ih0∂jh0

∫

R

ζ4(t+h0)a
1
ijw

′′w′ dt+α−2

∫

R

ζ4R1(y, t, 0, 0)w
′ dt

so that for a constant C2 independent of K in (6.2), we have

‖G1(0)‖p,4− 4

p
≤ C2α .

In all, we have that the operator G(h1) has an O(α) Lipschitz constant,
and in addition satisfies

‖G(0)‖p,4− 4

p
≤ 2C2α.

Let h = T (g) be the linear operator defined by Proposition 4.3. Then
we consider the problem (6.1) written as the fixed point problem

(6.6) h1 = T (G(h1) ), ‖h‖∗ ≤ Kα.
We have

‖T (G(h1) )‖∗ ≤ ‖T‖ ‖G(0)‖p,4− 4

p
+ Cα‖h1‖∗ .

Hence, fixing K > 2C2‖T‖, we find that for all α sufficiently small, the
operator T G is a contraction mapping of the ball ‖h‖∗ ≤ Kα into itself.
We thus have the existence of a unique solution of the fixed problem
(6.6), namely a unique solution h1 to problem (6.1) satisfying (6.2), and
the proof of Proposition 4.4 is concluded. q.e.d.

7. Conclusion of the proof of Theorem 1

We denote in what follows

r(x) =
√

x21 + x22, r̂ =
1

r
(x1, x2, 0), θ̂ =

1

r
(−x2, x1, 0) .

We consider the four Jacobi fields associated to rigid motions,
z1, . . . , z4 introduced in (1.14). Let J be the number of bounded, linearly
independent Jacobi fields of J . By our assumption and the asymptotic
expansion of the ends (1.12), 3 ≤ J ≤ 4. (Note that when M is a
catenoid, z4 = 0 and J = 3.) Let us choose

(7.1) ẑj =

4∑

l=1

djlz0l, j = 1, . . . , J,

normalized such that

(7.2)

∫

M
q(y)ẑiẑj = 0, for i 6= j,

∫

M
q(y)ẑ2i = 1, i, j = 1, . . . , J.

In what follows we fix the function q as

(7.3) q(y) :=
1

1 + r(y)4
.
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So far we have built, for certain constants c̃i, a solution u of equation
(4.35), namely

∆u + f(u) =

J∑

j=1

c̃iẑi(αy)w
′(t)q(αy)ζ2

where u, defined in (4.34), satisfies the following properties:

(7.4) u(x) = w(t) + φ(y, t)

near the manifold, meaning x = y + (t+ h(αy) ) ν(αy) with

y ∈Mα, |t| ≤ δ

α
+ γ log(2 + r(αy)).

The function φ satisfies in this region the estimate

(7.5) |φ|+ |∇φ| ≤ Cα2 1

1 + r2(αy)
e−σ|t| .

Moreover, we have the validity of the global estimate

|∇u(x)| ≤ C

1 + r3(αx)
e−σ δ

α .

We introduce the functions

Zi(x) = ∂xi
u(x), i = 1, 2, 3, Z4(x) = −αx2∂x2

u + αx1∂x2
u .

From the expansion (7.4) we see that

∇u(x) = w′(t)∇t + ∇φ.
Now, t = z − h(αy), where z designates a normal coordinate to Mα.
Since ∇z = ν = ν(αy), we then get

∇t = ν(αy)− α∇h(αy).
Let us recall that h satisfies h = (−1)kβk log r + O(1) along the k-th
end, and

∇h = (−1)k
βk
r
r̂ +O(r−2) .

From estimate (7.5) we find that

(7.6) ∇u(x) = w′(t)(ν − α(−1)k
βk
rα
r̂) +O(αr−2

α e−σ|t|).

From here we get that, near the manifold,
(7.7)

Zi(x) = w′(t) (zi(αy) − α(−1)k
βk
rα
r̂ei) +O(αr−2

α e−σ|t|), i = 1, 2, 3,

(7.8) Z4(x) = w′(t) z04(αy) +O(αr−1
α e−σ|t|).



THE ALLEN-CAHN EQUATION AND MINIMAL SURFACES IN R
3 101

Using the characterization (4.35) of the solution u and barriers (in ex-
actly the same way as in Lemma 9.4 below, which estimates eigen-
functions of the linearized operator), we find the following estimate for
rα(x) > R0:

(7.9) |∇u(x)| ≤ C
m∑

k=1

e−σ|x3−α−1(Fk(αx
′)+βjα log |αx′| ) | .

We claim that

(7.10)

∫

R3

(∆u + f(u))Zi(x) dx = 0 for all i = 1, . . . , 4

so that
(7.11)

J∑

j=1

c̃j

∫

R3

q(αx)ẑj(αy)w
′(t)Zi(x) ζ2 dx = 0 for all i = 1, . . . , 4.

Let us accept this for the moment. Let us observe that from estimates
(7.7) and (7.8),

α2

∫

R3

q(αx)ẑj(αy)w
′(t)

4∑

l=1

dilZl(x) ζ2 dx

=

∫ ∞

−∞
w′(t)2dt

∫

M
q ẑj ẑidV + o(1)

with o(1) small with α. Since the functions ẑi are linearly independent
on any open set, because they solve an homogeneous elliptic PDE, we
conclude that the matrix with the above coefficients is invertible. Hence
from (7.11) and (7.2), all c̃i’s are necessarily zero. We have thus found a
solution to the Allen-Cahn equation (1.1) with the properties required
in Theorem 1.

It remains to prove identities (7.10). The idea is to use the invariance
of ∆u + f(u) under rigid translations and rotations. This type of Po-
hozaev identity argument has been used in a number of places; see for
instance [18].

In order to prove that the identity (7.10) holds for i = 3, we consider
a large number R >> 1

α and the infinite cylinder

CR = {x / x21 + x22 < R2}.

Since in CR the quantities involved in the integration approach zero at
an exponential rate as |x3| → +∞ uniformly in (x1, x2), we have that
∫

CR

(∆u+f(u))∂x3
u−
∫

∂CR

∇u · r̂ ∂x3
u =

∫

CR

∂x3
(F (u)− 1

2
|∇u|2 ) = 0.
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We claim that

lim
R→+∞

∫

∂CR

∇u · r̂ ∂x3
u = 0.

Using estimate (7.6), we have that near the manifold,

∂x3
u∇u(x) · r̂ = w′(t)2((ν − α(−1)k

βk
rα
r̂) · r̂)ν3 +O(αe−σ|t| 1

r2
).

Let us consider the k-th end, which for large r is expanded as

x3 = Fk,α(x1, x2) = α−1(ak logαr + bk +O(r−1))

so that

(7.12) (−1)kν =
1

√

1 + |∇Fk,α|2
(∇Fk,α,−1) =

ak
α

r̂

r
− e3 + O(r−2).

Then on the portion of CR near this end we have that

(7.13) (ν − α(−1)k
βk
rα
r̂) · r̂ ν3 = −α−1ak + αβk

R
+O(R−2).

In addition, for x21 + x22 = R2 we have the expansion

t = (x3 − Fk,α(x1, x2)− βk logαr +O(1))(1 +O(R−2))

with the same order valid after differentiation in x3, uniformly in such
(x1, x2). Let us choose ρ = γ logR for a large, fixed γ. Observe that
on ∂CR the distance between ends is greater than 2ρ whenever α is
sufficiently small. We get

∫ Fk,α(x1,x2)+βk logαr+ρ

Fk,α(x1,x2)+βk logαr−ρ
w′(t)2dx3 =

∫ ∞

−∞
w′(t)2dt+O(R−2).

Because of estimate (7.9) we conclude, fixing γ, appropriately that
∫

⋂
k{|x3−Fk,α|>ρ}

∂x3
u∇u(x) · r̂ dx3 = O(R−2) .

As a conclusion,

∫ ∞

−∞
∂x3

u∇u · r̂ dx3 = − 1

αR

m∑

k=1

(ak + αβk)

∫ ∞

−∞
w′(t)2 dt +O(R−2)

and hence
∫

∂CR

∂x3
u∇u(x) · r̂ = −2π

α

m∑

k=1

(ak + αβk) +O(R−1) .

But
∑m

k=1 ak =
∑m

k=1 βk = 0 and hence (7.10) for i = 3 follows after
letting R→ ∞.
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Let us prove the identity for i = 2. We now need to carry out the
integration against ∂x2

u. In this case we get

∫

CR

(∆u + f(u))∂x2
u =

∫

∂CR

∇u · r̂ ∂x2
u +

∫

CR

∂x2
(F (u) − 1

2
|∇u|2 ).

We have that
∫

CR

∂x2
(F (u) − 1

2
|∇u|2 ) =

∫

∂CR

(F (u) − 1

2
|∇u|2 )n2

where n2 = x2/r. Now, near the ends, estimate (7.6) yields

|∇u|2 = |w′(t)|2 +O(e−σ|t| 1

r2
),

and arguing as before, we get
∫ ∞

−∞
|∇u|2dx3 = m

∫ ∞

−∞
|w′(t)|2dt+O(R−2).

Hence
∫

∂CR

|∇u|2n2 = m

∫ ∞

−∞
|w′(t)|2dt

∫

[r=R]
n2 +O(R−1) .

Since
∫

[r=R] n2 = 0, we conclude that

lim
R→+∞

∫

∂CR

|∇u|2 n2 = 0.

In a similar way we get

lim
R→+∞

∫

∂CR

F (u)n2 = 0.

Since near the ends we have

∂x2
u = w′(t)(ν2 − α(−1)k

βk
rα
r̂e2) +O(αr−2e−σ|t|),

and from (7.12) ν2 = O(R−1), completing the computation as previously
done yields

∫

∂CR

∇u · r̂ ∂x2
u = O(R−1).

As a conclusion of the previous estimates, letting R → +∞ we finally
find the validity of (7.10) for i = 2. Of course, the same argument holds
for i = 1.
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Finally, for i = 4 it is convenient to compute the integral over CR

using cylindrical coordinates. Let us write u = u(r, θ, z). Then
∫

CR

(∆u + f(u)) (x2∂x1
u − x1∂x1

u)

=

∫ 2π

0

∫ R

0

∫ ∞

−∞
[uzz + r−1(rur)r + f(u)]uθ r dθ dr dz

=− 1

2

∫ 2π

0

∫ R

0

∫ ∞

−∞
∂θ [u

2
z + u2r − 2F (u)] r dθ dr dz

+R

∫ ∞

−∞

∫ 2π

0
ur uθ(R, θ, z) dθ dz

=0 +

∫

∂CR

uruθ.

On the other hand, on the portion of ∂CR near the ends we have

ur uθ = w′(t)2R(ν · r̂)(ν · θ̂) +O(R−2e−σ|t|).

From (7.12) we find

(ν · r̂)(ν · θ̂) = O(R−3),

and hence

ur uθ = w′(t)2O(R−2) +O(R−2e−σ|t|),

and finally
∫

∂CR

ur uθ = O(R−1).

Letting R → +∞, we obtain relation (7.10) for i = 4. The proof is
concluded. q.e.d.

8. Negative eigenvalues and their eigenfunctions for the
Jacobi operator

For the proof of Theorem 2, we need to translate the information
on the index of the minimal surface M into spectral features of the
Jacobi operator. Since M has finite total curvature, the index i(M) of
the minimal surface M is finite. We will translate this information into
an eigenvalue problem for the operator J . Let

Q(k, k) :=

∫

M
|∇k|2 dV −

∫

M
|A|2k2 dV.

The number i(M) is, by definition, the largest dimension for a vector
space E of compactly supported smooth functions in M such that

Q(z, z) < 0 for all z ∈ E \ {0}.
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The number i(M), when finite, has the following convenient charac-
terization, whose proof is straightforward. In what follows, we fix the
function q as

(8.14) p(y) :=
1

1 + r(y)4
.

Let us consider, for a large number R, the region

MR = {y ∈M / r(y) < R}
and the eigenvalue problem

(8.15) ∆Mk + |A|2k + λp(y) k = 0 in MR,

k = 0 on ∂MR.

Let mR(p) denote the number of negative eigenvalues (counting multi-
plicities) for this problem. Then we have

(8.16) i(M) = sup
R>0

mR(p).

Let us also consider the eigenvalue problem in entire space

(8.17) ∆Mk + |A|2k + λp(y) k = 0 in M, k ∈ L∞(M) .

We will prove the following result.

Lemma 8.1. Problem (8.17) has exactly i(M) negative eigenvalues,
counting multiplicities.

8.0.1. A priori estimates in MR. For the proof of Lemma 8.1, and
for later purposes, it is useful to have a priori estimates uniform in large
R > 0 for the linear problem

(8.18) ∆Mk + |A|2k − γp(y) k = f in MR,

k = 0 on ∂MR .

We have the following result.

Lemma 8.2. Let p > 1, σ > 0. Then for R0 > 0 large enough and
fixed and γ0 > 0, there exists a C > 0 such that for all R > R0 + 1,
0 ≤ γ < γ0, any f , and any solution k of problem (8.18), we have that

(a) If ‖f‖p,4− 4

p
< +∞, then

(8.19) ‖k‖∞ ≤ C [ ‖f‖p,4− 4

p
+ ‖k‖L∞(|y|<3R0) ] .

(b) If ‖f‖p,2− 2

p
−σ < +∞, then

(8.20) ‖D2k‖p,2− 2

p
−σ + ‖Dk ‖p,1− 2

p
−σ ≤ C [ ‖f‖p,2− 2

p
−σ + ‖k‖∞ ].

If p > 2, we have in addition

(8.21) ‖ (1 + |y|)1−σ Dk ‖∞ ≤ C [ ‖f‖p,2− 2

p
−σ + ‖k‖∞ ] .
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Proof. Let us consider the equation in M

(8.22) ∆Mψ + |A|2ψ = −|f |χ|y|<R, |y| > R0 ,

(8.23) ψ(y) = 0, |y| = R0 .

For a large and fixed R0, solving this problem amounts to doing it on
each separate end. As in Lemma 5.1, after a Kelvin’s transform the
problem reduces in each end to solving in a ball in R

2 an equation of
the form

∆ψ̃ +O(|y|2)D2ψ̃ +O(|y|)Dψ̃ +O(1)ψ̃ = −|f̃ |χ|y|> 1

R
, |y| < 1

R0
,

ψ̃(y) = 0, |y| = 1

R 0
.

Enlarging R0 if necessary, this problem has a unique solution, which is
also positive. This produces a bounded, positive solution ψ of (8.22)–
(8.23) with

‖ψ‖∞ ≤ C‖f‖p,4− 4

p
.

On the other hand, on this end the Jacobi field z3 = ν ·e3 can be taken as
positive with z3 ≥ 1 on |y| > R0. Thus the function ψ+‖k‖L∞(|y|=R0)z3
is a positive, bounded supersolution for the problem (8.18) on this end,
where |y| > R0, and estimate (8.19) then readily follows.

Let us now prove estimate (8.20). Fix a large number R0 > 0 and
another number R >> R0. Consider also a large ρ > 0 with 3ρ < R. On
a given end, we parameterize with Euclidean coordinates y ∈ R

2 and
get that the equation satisfied by k = k(y) reads

∆k +O(|y|−2)D2k +O(|y|−3)Dk +O(|y|−4)k = f, R0 < |y| < R.

Consider the function kρ(z) = k(ρz) wherever it is defined. Then

∆kρ +O(ρ−2|z|−2)D2kρ +O(ρ−2|z|−3)Dkρ +O(ρ−2|z|−4)kρ = fρ

where fρ(z) = ρ2f(ρz). Then interior elliptic estimates (see Theorem
9.11 of [17]) yield the existence of a constant C = C(p) such that for
any sufficiently large ρ,

‖Dkρ‖Lp(1<|z|<2) + ‖D2kρ‖Lp(1<|z|<2) ≤ C ( ‖kρ‖L∞( 1
2
<|z|<3)

+ ‖fρ‖Lp( 1
2
<|z|<3) ).(8.24)

Now,

‖fρ‖pLp( 1
2
<|z|<3)

= ρ2p
∫

( 1
2
<|z|<3)

|f(ρz)|p dz

≤ Cρpσ
∫

( 1
2
<|z|<3)

|ρz|2p−2−pσ|f(ρz)|p ρ2dz

= C ρpσ
∫

( ρ
2
<|y|<3ρ)

|y|2p−2−pσ|f(y)|p dy.



THE ALLEN-CAHN EQUATION AND MINIMAL SURFACES IN R
3 107

Similarly,

‖D2kρ‖pLp(1<|z|<2) ≥ C ρpσ
∫

(ρ<|y|<2ρ)
|y|2p−2−pσ|D2k(y)|p dy.

Thus
∫

(ρ<|y|<2ρ)
|y|2p−2−pσ|D2k(y)|p dy ≤ C

∫

( ρ
2
<|y|<4ρ)

|y|2p−2−pσ|f(y)|p dy + ρ−pσ‖k‖p∞.

Take ρ = ρj = 2j . Then
∫

(ρj<|y|<ρj+1)
|y|2p−2−pσ|D2k(y)|p dy ≤

C

∫

(ρj−1<|y|<ρj+2)
|y|2p−2−pσ|f(y)|p dy + 2−jpσ‖k‖p∞ .

Then, adding up these relations wherever they are defined, also taking
into account boundary elliptic estimates which give that for ρ = R

2 ,

‖D2kρ‖Lp(1<|z|<2) ≤ C
(

‖kρ‖L∞( 1
2
<|z|<2) + ‖fρ‖Lp( 1

2
<|z|<2)

)

,

plus a local elliptic estimate in a bounded region, we obtain that for
some C > 0 independent of R,

‖D2k‖p,2− 2

p
−σ ≤ C ( ‖k‖∞ + ‖f‖p,2− 2

p
−σ ).

The corresponding estimate for the gradient follows immediately from
(8.24). We have proven (8.20). In the case p > 2, we can use Sobolev’s
embedding to include ‖Dkρ‖L∞(1<|z|<2) on the left-hand side of (8.24),
and estimate (8.21) follows. The proof is complete. q.e.d.

8.0.2. Proof of Lemma 8.1. We will prove first that problem (8.17)
has at least i(M) linearly independent eigenfunctions associated to neg-
ative eigenvalues in L∞(M). For all R > 0 sufficiently large, problem
(8.15) has n = i(M) linearly independent eigenfunctions k1,R, . . . , kn,R
associated to negative eigenvalues

λ1,R ≤ λ2,R ≤ · · · ≤ λn,R < 0.

Through the min-max characterization of these eigenvalues, we see that
they can be chosen to define decreasing functions of R. On the other
hand, λ1,R must be bounded below. Indeed, for a sufficiently large γ > 0,
we have that

|A|2 − γp < 0 in M

and by maximum principle, we must have λ1,R > −γ. The eigenfunc-
tions can be chosen orthogonal in the sense that

(8.25)

∫

MR

p ki,R kj,R dV = 0 for all i 6= j.
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Let us assume that ‖ki,R‖∞ = 1. By (8.19) of Lemma 8.2, we obtain

(8.26) 1 = ‖ki,R‖∞ ≤ C [ ‖(λi,R+γ)pki,R‖p,4− 4

p
+ ‖ki,R‖L∞(|y|<3R0) ] .

Then the a priori estimate in Lemma 8.2 implies, passing to a subse-
quence in R→ +∞, that we may assume that

λi,R ↓ λi < 0, ki,R(y) → ki(y),

uniformly on compact subsets of M , where ki 6≡ 0 (by (8.26)) is a
bounded eigenfunction of (8.17) associated to the negative eigenvalue
λi. Moreover, relations (8.25) pass to the limit and yield

(8.27)

∫

M
p ki kj dV = 0 for all i 6= j.

Thus, problem (8.17) has at least n = i(M) negative eigenvalues. Let
us assume there is a further bounded eigenfunction kn+1, linearly inde-
pendent of k1, . . . , kn, say with

(8.28)

∫

M
p ki kn+1 dV = 0 for all i = 1, . . . , n,

associated to a negative eigenvalue λn+1. Then the a priori estimate of
Lemma 5.1 implies that

‖(1 + r2)∇kn+1‖ < +∞.

The same of course holds for the remaining ki’s. It follows that

Q(k, k) < 0 for all k ∈ span {k1, . . . , kn+1} \ {0}.
However, again since ∇kj decays fast, the same relation above will hold
true for the ki’s replaced by suitable smooth truncations far away from
the origin. This implies, by definition, i(M) ≥ n+1, and we have reached
a contradiction. The proof is concluded. q.e.d.

9. The proof of Theorem 2

In this section we will prove that the Morse index m(uα) of the solu-
tion we have built in Theorem 1 coincides with the index of the surface
M , as stated in Theorem 2. We recall that this number is defined as the
supremum of all dimensions of vector spaces E of compactly supported
smooth functions for which

Q(ψ,ψ) =

∫

R3

|∇ψ|2 − f ′(uα)ψ
2 < 0 for all ψ ∈ E \ {0}.

We provide next a more convenient characterization of this number,
analogous to that for the Jacobi operator of §8. Let us consider a smooth
function p(x) defined in R

3 such that

p(αx) =
1

1 + rα(y)4
if x = y + (t+ h(αy))ν(αy) ∈ Nδ,
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and such that for positive numbers a, b,

a

1 + |αx′|4 ≤ p(αx) ≤ b

1 + |αx′|4 for all x = (x′, x3) ∈ R
3.

For each R > 0, we consider the eigenvalue problem in the cylinder

CR = { (x′, x3) / |x′| < Rα−1, |x3| < Rα−1) },

(9.1) ∆φ+ f ′(uα)φ+ λp(αx)φ = 0 in CR,
φ = 0 on ∂CR.

We also consider the problem in entire space

(9.2) ∆φ+ f ′(uα)φ+ λp(αx)φ = 0 in R
3, φ ∈ L∞(R3).

Let mR(uα) be the number of negative eigenvalues λ (counting mul-
tiplicities) of problem (9.1). Then we readily check that

m(uα) = sup
R>0

mR(uα).

On the other hand, we have seen in §8 that the index i(M) of the mini-
mal surface can be characterized as the number of linearly independent
eigenfunctions associated to negative eigenvalues of the problem

(9.3) ∆z + |A|2z + λp(y)z = 0 in M, z ∈ L∞(M) ,

which corresponds to the maximal dimension of the negative subspace
in L∞(M) for the quadratic form

Q(z, z) =

∫

M
|∇Mz|2 − |A|2z2 dV.

We shall prove in this section that m(uα) = i(M) for any sufficiently
small α.

The idea of the proof is to put in correspondence eigenfunctions for
negative eigenvalues of problem (9.1) for large R with those of problem
(9.3). This correspondence comes roughly as follows. If z is such an
eigenfunction for problem (9.3), then the function defined near Mα as

(9.4) k(y)w′(t), k(y) = z(αy)

defines after truncation a negative direction for the quadratic form Q on
any large ball. Reciprocally, an eigenfunction for a negative eigenvalue
of problem (9.1) will look for any sufficiently small α and all large R like
a function of the form (9.4). In the following two lemmas, we clarify the
action of the operator L on functions of this type, and the corresponding
connection at the level of the quadratic forms Q and Q.

Lemma 9.1. Let k(y) be a function of class C2 defined in some open
subset V of Mα. Let us consider the function v(x) defined for x ∈ Nδ,
y ∈ V as

v(x) = v(y, t) := k(y)w′(t) , y ∈ V, |t+ h1(αy)| < ρα(y)
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where ρα is the function in the definition of Nα, (3.11). Then L(v) :=
∆xv + f ′(uα)v can be expanded as in (9.8) below. Besides, we have
∫

|t+h1|<ρα

L(v)w′ dt = (∆Mαk + α2|A|2k + αha1,0ij ∂ijk )

∫

R

w′2 dt

(9.5) + O(α2r−2
α ) ∂ijk + O(α2r−3

α ) ∂ik +O(α3r−4
α )k.

Here

a1,0ij = a1,0ij (αy) = O(r−2
α ) .

The same conclusions hold for the function

v(x) = v(y, t) := k(y)w′(t) ηδ(y, t), y ∈ V, |t+ h1(αy)| < ρα(y)

where the cut-off function ηδ is defined as in (3.12).

Proof. Using Lemma 2.2, we get

∆xv + f ′(uα)v = k(w′′′ + f ′(w)w′) + [f ′(uα)− f ′(w)] kw′

+ w′ ∆Mαk − α2[(t+ h1)|A|2 +∆Mh1] k w
′′ − 2αa0ij∂jh∂ik w

′′

+ α(t+ h) [a1ij∂ijkw
′ − αa1ij( ∂jh∂ik + ∂ih∂jk)w

′′

+ α(b1i ∂ik w
′ − αb1i ∂ihw

′′) ]

+ α3(t+ h)2b13 k w
′′ + α2[ a0ij + α(t+ h)a1ij) ]∂ih∂jhk w

′′′.(9.6)

We can expand

a1ij = a1ij(αy, 0) + α(t+ h) a2ij(αy, α(t + h)) =: a1,0ij + α(t+ h)a2ij

with a2ij = O(r−2
α ), and similarly

b1j = b1j (αy, 0) + α(t+ h) b2j (αy, α(t + h)) =: b1,0j + α(t+ h)b2j

with b2j = O(r−3
α ). On the other hand, let us recall that

uα − w = φ1 +O(α3r−4
α e−σ|t|)

where φ1 is given by (3.2),

(9.7) φ1(y, t) = α2|A(αy)|2ψ0(t)− α2a0ij∂ih0∂jh0(αy)ψ1(t),

and ψ0, ψ1 decay exponentially as |t| → +∞. Hence

[f ′(uα)− f ′(w)]w′ = f ′′(w)φ1 w
′ + O(α3e−σ|t|r−4

α ).

Using these considerations and expression (9.6), we can write

Q := ∆xv + f ′(uα)v =

∆Mα
k w′ − α2|A|2 k tw′′ + α2 a0ij∂ih0∂jh0 k w

′′′ + αha1,0ij ∂ijkw
′

︸ ︷︷ ︸

Q1

+ f ′′(w)φ1 kw
′

︸ ︷︷ ︸

Q2
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−w′′
[

αa0ij(∂jh∂ik + ∂ih∂jk) + α2k∆Mh1 + α2ha1,0ij (∂jh∂ik + ∂ih∂jk)
]

︸ ︷︷ ︸

Q3

+ αtw′
[

a1,0ij ∂ijk + αb1,0i ∂ik
]

︸ ︷︷ ︸

Q4

(9.8)

+ α2(t+ h)2a2ij∂ijkw
′ + α2(t+ h)a2ij(∂jh∂ik + ∂ih∂jk)w

′′

︸ ︷︷ ︸

Q5

+O(α3e−σ|t|r−2

α )
︸ ︷︷ ︸

Q6

.

The precise meaning of the remainder Q6 is

Q6 = O(α3e−σ|t|r−2
α ) ∂ijk + O(α3e−σ|t|r−3

α ) ∂jk .

We will integrate the above relation against w′(t) in the region |t +
h1(αy)| < ρα(y). Let us observe that the terms Qi for i = 1, . . . , 4 are
in reality defined for all t and that

(9.9)

∫

|t+h1|<ρα

Qiw
′ dt =

∫

R

Qiw
′ dt +O(α3r−4

α )

where the remainder means

O(α3r−4
α ) := O(α3r−4

α ) ∂ijk +O(α3r−4
α ) ∂ik + O(α3r−4

α ) k.

Let us observe that

(9.10)

∫

R

(Q3 + Q4)w
′ dt = 0.

On the other hand, since
∫

R

tw′′w′ dt = − 1

2

∫

R

w′2 dt,

we get that
∫

R

Q1 w
′ dt = (∆Mαk +

1

2
|A|2k + αha1,0ij ∂ijk)

∫

R

w′2 dt

+ a0ij∂ih0∂jh0

∫

R

w′′′ w′ dt.(9.11)

Next we will compute
∫

R
Q2w

′ dt. We recall that, setting L0(ψ) = ψ′′+
f ′(w)ψ, the functions ψ0 and ψ1 in (9.7) satisfy

L0(ψ0) = tw′(t), L0(ψ1) = w′′.

Differentiating these equations, we get

L0(ψ
′
0) + f ′′(w)w′ψ0 = (tw′)′, L0(ψ

′
1) + f ′′(w)w′ψ1 = w′′′.

Integrating by parts against w′, using L0(w
′) = 0, we obtain

∫

R

f ′′(w)w′2ψ0 = −
∫

R

tw′′w′ =
1

2

∫

w′2,

∫

R

f ′′(w)w′2ψ1 =

∫

R

w′′′w′.
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Therefore ∫

R

Q1 w
′ dt =

∫

R

f ′′(w)φ1 kw
′2 dt

= α2k|A|2
∫

R

f ′′(w)ψ0 w
′2 dt − α2a0ij∂ih0∂jh0 k

∫

R

f ′′(w)ψ1 w
′2 dt

(9.12) = α2k|A|2 1
2

∫

R

w′2 − α2a0ij∂ih0∂jh0 k

∫

R

w′′′w′.

Thus, combining relations (9.10)–(9.12), we get
(9.13)
∫

R

(Q1 + · · · +Q4)w
′ dt = (∆Mαk + |A|2k + αha1,0ij ∂ijk )

∫

R

w′2 dt.

On the other hand, we observe that

(9.14)

∫

|t+h1|<ρα

(Q5 +Q6)w
′ dt = O(α2r−2

α ) ∂ijk + O(α2r−3
α ) ∂ik.

Combining relations (9.13), (9.14), and (9.9), expansion (9.5) follows.
Finally, for v replaced by ηδk w

′, we have that
∫

L(kwηδ)ηδ kw
′ dt =

∫

η2δL(kw)kw dt

+

∫

ηδ(∆ηδ kw
′ + 2∇ηδ∇(kw′)) kw dt.

The arguments above apply to obtain the desired expansion for the first
integral in the right-hand side of the above decomposition. The second
integral produces only smaller order operators in k since ∆ηδ, ∇ηδ are
both of order O(r−4

α α4) inside their supports. The proof is concluded.
q.e.d.

Let us now consider the region

W := {x ∈ Nδ / rα(y) < R},
where R is a given large number.

Lemma 9.2. Let k(y) be a smooth function in Mα that vanishes
when rα(y) = R, and set v(y, t) := ηδ(y, t) k(y)w

′(t). Then the following
estimate holds.

Q(v, v) =

∫

W
|∇v |2 − f ′(uα) v

2 dx

=

∫

rα(y)<R

[
|∇Mαk|2 − α2|A(αy)|2 k2

]
dVα

∫

R

w′2 dt

(9.15) + O

(

α

∫

rα(y)<R
[ |∇k|2 + α2 (1 + r4α)

−1 k2 ] dVα

)

.



THE ALLEN-CAHN EQUATION AND MINIMAL SURFACES IN R
3 113

Proof. The proof follows from computations in a similar spirit to
those in Lemma 9.1, and the facts that mean curvature of M vanishes
and the Gauss curvature equals |A|2, so that

dx = (1 + α2(t+ h)2 |A(αy)|2 ) dVα(y) dt.
After Lemma 9.2, the inequality

(9.16) m(uα) ≥ i(M)

for small α follows at once. Indeed, we showed in §8 that the Jacobi
operator has exactly i(M) linearly independent bounded eigenfunctions
ẑi associated to negative eigenvalues λi of the weighted problem in entire
space M . According to the theory developed in §5, we also find that
∇ẑi = O(r−2); hence we may assume

(9.17) Q(ẑi, ẑj) = λi

∫

M
q ẑi ẑj dV.

Let us set ki(y) := ẑi(αy). According to Lemma 9.2, setting vi(x) =
ki(y)w

′(t)ηδ and changing variables, we get
(9.18)

Q(vi, vj) = α2Q(ẑi, ẑj)

∫

R

w′2 +O(α3)
∑

l=i,j

∫

M
|∇ẑl|2 + (1 + r4)−1ẑ2l dV.

From here and relation (9.17), we find that the quadratic form Q is
negative on the space spanned by the functions v1, . . . , vi(M). The same
remains true for the functions vi smoothly truncated around rα(y) = R,
for very large R. We have thus proven inequality (9.16).

In what remains of this section, we will carry out the proof of the
inequality

(9.19) m(uα) ≤ i(M).

Relation (9.18) suggests, that associated to a negative eigenvalue λi of
problem (9.3), there is an eigenvalue of (9.1) approximated by ∼ λiα

2.
We will show next that negative eigenvalues of problem (9.1) cannot
exceed a size O(α2).

Lemma 9.3. There exists a µ > 0 independent of R > 0 and all
small α such that if λ is an eigenvalue of problem (9.1), then

λ ≥ −µα2.

Proof. Let us denote

QΩ(ψ,ψ) :=

∫

Ω
|∇ψ|2 − f ′(uα)ψ

2.

Then if ψ(x) is any function that vanishes for |x′| > Rα−1, we have

Q(ψ,ψ) ≥ QNδ∩{rα(y)<R} (ψ,ψ) + γ

∫

R3\Nδ

ψ2
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where γ > 0 is independent of α and R. We want to prove that, for
some µ > 0, we have in Ω = Nδ ∩ {rα(y) < R} that

(9.20) QΩ (ψ,ψ) ≥ −µα2

∫

Ω

ψ2

1 + r4α
dx.

Equivalently, let us consider the eigenvalue problem

(9.21) L(ψ) + λp(αx)ψ = 0 in Ω,

ψ = 0 on rα = R, ∂nψ = 0 on |t+ h1| = ρα.

Then we need to show that for any eigenfunction ψ associated to a neg-
ative eigenfunction, inequality (9.20) holds. Here ∂n denotes the normal
derivative. Let us express this boundary operator in terms of the coor-
dinates (t, y). Let us consider the portion of ∂Nδ where

(9.22) t+ h1(αy) = ρα(y).

We recall that for some γ > 0, ρα(y) = ρ(αy) = γ log(1 + rα(y)).
Relation (9.22) is equivalent to

(9.23) z − h0(αy)− ρα(y) = 0

where z denotes the normal coordinate to Mα. Then, for ∇ = ∇x, we
have that a normal vector to the boundary at a point satisfying (9.23)
is

n = ∇z −∇Mα(h0 + ρ) = ν(αy)− α∇M (h0 + ρ)(αy).

Now we have that ∂tψ = ∇xψ ·ν(αy). Hence, on points (9.22), condition
∂nψ = 0 is equivalent to

(9.24) ∂tψ − α∇M (h0 + ρ) · ∇Mαψ = 0,

and similarly, for

(9.25) t+ h1(αy) = ρα(y),

it corresponds to

(9.26) ∂tψ − α∇M (h0 − ρ) · ∇Mαψ = 0.

Let us consider a solution ψ of problem (9.21). We decompose

ψ = k(y)w′(t)ηδ + ψ⊥

where ηδ is the cut-off function (3.12) and
∫

|τ+h1(αy)|<ρα(y)
ψ⊥(y, τ)w′(τ) dτ = 0 for all y ∈Mα ∩ {rα(y) < R},

namely

(9.27) k(y) =

∫

|τ+h1(αy)|<ρα(y)
ψ(y, τ)w′(τ) dτ

∫

R
w′(t)2ηδ dt

.

Then we have

QΩ(ψ,ψ) = QΩ(ψ
⊥, ψ⊥) +QΩ(kw

′ηδ, kw
′ηδ) + 2QΩ(kw

′ηδ, ψ
⊥).
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Since ψ⊥ satisfies the same boundary conditions as ψ, we have that

QΩ(ψ
⊥, ψ⊥) = −

∫

Ω
(ψ⊥∆xψ

⊥ + f ′(uα)ψ
⊥2

) dx.

Thus,

QΩ(ψ
⊥, ψ⊥) = −

∫

rα<R

∫

|t+h1|<ρα

[ψ⊥∆xψ
⊥

+ f ′(uα)ψ
⊥2

] (1 + α2(t+ h)2|A|2) dVα dt .
Let us fix a smooth function H(t) with H(t) = +1 if t > 1, H(t) = −1
for t < −1. Let us write

−∆xψ
⊥ − f ′(uα)ψ

⊥ = −∂ttψ⊥

− f ′(w)ψ⊥ + α∂t

[

∇M (h0 +H(t)ρ) · ∇Mαψ
⊥
]

−∆Mαψ
⊥ +B(ψ⊥).

Then, integrating by parts in t, using the Neumann boundary condition,
we get that the integral

I :=

−
∫

|t+h1|<ρα

ψ⊥
[

∂ttψ
⊥ + f ′(w)ψ⊥

]

dt

+

∫

|t+h1|<ρα

α∂t

(

∇M(h0 +H(t)ρ) · ∇Mαψ
⊥
)

ψ⊥ (1+α2(t+h)2|A|2) dt

=

∫

|t+h1|<ρα

[ |∂tψ⊥|2 − f ′(w)|ψ⊥|2 ] (1 + o(1) ) dt

+

∫

|t+h1|<ρα

[αO(r−1
α )∇Mαψ

⊥ ∂tψ
⊥ + o(1)∂tψ

⊥ ψ⊥] dt .

Now we need to make use of the following standard fact: there is a γ > 0
such that if a > 0 is a sufficiently large number, then for any smooth
function ξ(t) with

∫ a
−a ξ w

′ dt = 0, we have that

(9.28)

∫ a

−a
ξ′

2 − f ′(w)ξ2 dt ≥ γ

∫ a

−a
ξ′

2
+ ξ2 dt .

Hence
(9.29)

I ≥ γ

2

∫

|t+h1|<ρα

[ |∂tψ⊥|2+|ψ⊥|2 ] dt+
∫

|t+h1|<ρα

αO(r−1
α )∇Mψ

⊥ ∂tψ
⊥ dt .

On the other hand, for the remaining part, integrating by parts in the
y variable the terms that involve two derivatives of ψ⊥, we get that

II := −
∫

|t+h1|<ρα

dt

∫

rα(y)<R
(∆Mαψ

⊥+Bψ⊥)ψ⊥ (1+α2(t+h)2|A|2) dVα(y) ≥
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(9.30)
∫

|t+h1|<ρα

dt

∫

rα(y)<R
|∇Mαψ

⊥|2 + o(1) (ψ⊥2
+ |∂tψ⊥|2|∇Mαψ

⊥|2 ).

Using estimates (9.29) and (9.30), we finally get

(9.31) QΩ(ψ
⊥, ψ⊥) ≥ 3µ

∫

Ω
(|∂tψ⊥|2 + |∇Mαψ

⊥|2 + ψ⊥2
) dx,

for some µ > 0.
Now we estimate the crossed term. We have

−QΩ(ψ
⊥, kw′ηδ) =

∫

Ω
L(kw′ηδ)ψ

⊥ (1 + α2(t+ h)2|A|2) dVα dt .

Let us consider expression (9.8) for L(kw′), and let us also consider the
fact that

L(ηδkw
′) = ηδL(kw

′) + 2∇ηδ∇(kw′) + ∆ηδ kw
′,

with the last two terms producing a first order operator in k with expo-
nentially small size, at the same time with decay O(r−4

α ). Thus all main
contributions come from the integral

I =

∫

Ω
ηδL(kw

′)ψ⊥ (1 + α2(t+ h)2|A|2) dVα dt.

Examining the expression (9.8), integrating by parts once in the y vari-
able those terms involving two derivatives in k, we see that most of the
terms obtained straightforwardly produce quantities of the type

θ := o(1)

∫

Mα

(|∇k|2 + α2|A|2k2 ) dVα + o(1)

∫

Ω
(|ψ⊥|2 + |∇ψ⊥|2).

In fact, we have

I =

∫

Ω
∆Mαk w

′ ηδ ψ
⊥ dVα dt

︸ ︷︷ ︸

I1

+

∫

Ω
α2 a0ij∂ih0∂jh0 k w

′′′ ψ⊥dVα dt

︸ ︷︷ ︸

I2

+

∫

Ω
f ′′(w)φ1 kw

′ ψ⊥dVα dt

︸ ︷︷ ︸

I3

+ θ.

On the other hand, the orthogonality definition of ψ⊥ essentially elimi-
nates I1. Indeed,

I1 = −
∫

Ω
∆Mαk w

′ (1− ηδ)ψ
⊥ dVα dt

=

∫

Ω
∇Mαk w

′ [(1− ηδ)∇Mαψ
⊥ −∇ηδψ⊥) dVα dt = θ .

On the other hand, for a small, fixed number ν > 0, we have

|I2| ≤ Cα2

∫

Ω

1

1 + r2α
|k| |w′′′| |ψ⊥| dVα dt ≤ Cν−1α2

∫

Mα

1

1 + r4α
k2 dVα
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+ν

∫

Ω
|ψ|2 dx .

A similar estimate is valid for I3, since φ1 = O(α2r−2
α ). We then get

(9.32) I ≥ −Cν−1α2

∫

Mα

1

1 + r4α
k2 dVα − ν

∫

Ω
|ψ⊥|2.

Finally, we recall that from Lemma 9.2,
(9.33)

QΩ(kw
′ηδ, kw

′ηδ) =

∫

rα(y)<R

[
|∇Mαk|2 − α2|A(αy)|2 k2

]
dVα

∫

R

w′2 dt+ θ.

From estimates (9.31), (9.32), and (9.33), we obtain that if ν is chosen
sufficiently small, then

QΩ(ψ,ψ) ≥ −C α2

∫

Mα

1

1 + r4α
k2 dVα ≥ −µα2

∫

Ω

1

1 + r4α
|ψ|2 dx

for some µ > 0, and inequality (9.20) follows. q.e.d.
In the next result, we show that an eigenfunction with negative eigen-

value of problem (9.1) or (9.2) decays exponentially, away from the in-
terface of uα.

Lemma 9.4. Let φ be a solution of either (9.1) or (9.2) with λ ≤ 0.
Then, in the subregion of Nα where it is defined, φ satisfies that

(9.34) |φ(y, t)| ≤ C ‖φ‖∞ e−σ|t|

where σ > 0 can be taken arbitrarily close to min{σ+, σ−}. The number
C depends on σ, but it is independent of small α and large R. We have,
moreover, that for |αx′| > R0,

(9.35) |φ(x)| ≤ C
m∑

j=1

e−σ|x3−α−1(Fk(αx
′)+βjα log |αx′| ) |

where R0 is independent of α. Finally, we have that

(9.36) |φ(x)| ≤ C e−σ δ
α for dist (x,Mα) >

δ

α
.

Proof. Let φ solve problem (9.1) for a large R. Let us consider the
region between two consecutive ends Mj,α and Mj+1,α. For definiteness,
we assume that this region lies inside S+ so that f ′(uα) approaches σ

2
+

inside it. So let us consider the region S of points x = (x′, x3) such that
rα(x) > R0 for a sufficiently large but fixed R0 > 0, and

(aj+αβj) log α|x′|+bj+αγ < αx3 < (aj+1+αβj+1 ) log α|x′|+ bj+1−αγ.

In terms of the coordinate t near Mj,α, saying that

αx3 ∼ (aj + αβj) log α|x′|+ bj + αγ

is, up to lower order terms, the same as saying t ∼ γ, and similarly
near Mj+1,α. Thus, given any small number τ > 0, we can choose γ
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sufficiently large but fixed, independently of all R0 sufficiently large and
any small α, such that

f ′(uα) < −(σ+ − τ)2 in S.

Let us consider, for x ∈ S and σ = σ+ − 2τ , the function

v1(x) := e−σ[ x3−α−1(aj+αβj) logα|x′|+bj ]

+ e−σ(α−1[aj+1+αβj+1) logα|x′|+bj+1)−x3].

Then v has the form

v1 = A1e
−σx3rA2 +B1e

σx3r−B2 , r = |x′|,
so that

∆v1 = A2
2r

−2rA2 A1e
−σx3 +B2

2r
−2B1r

−B2eσx3 + σ2v1 <

[α2A2
2R

−2
0 + α2B2

2R
−2
0 + σ2 ] v1 .

Here

A2 = σα−1(aj + αβj), B2 = σα−1(aj+1 + αβj+1).

Hence, enlarging R0 if necessary, we achieve

∆v1 + f ′(uα)v1 < 0 in S.

Therefore, v so chosen is a positive supersolution of

(9.37) ∆v + f ′(uα)v + λp(αx)v ≤ 0 in S.

Observe that the definition of v also achieves that

inf
∂S\{rα=R0}

≥ γ > 0

where γ is independent of α. Now, let us observe that the function v2 =

e−σ(|x′|−
R0
α

) also satisfies, for small α, inequality (9.37). As a conclusion,
for φ, a solution of (9.1), we have that

(9.38) |φ(x)| ≤ C ‖φ‖∞ [v1(x) + v2(x)] for all x ∈ S, rα(x) < R.

Using the form of this barrier, we then obtain the validity of estimate
(9.35), in particular that of (9.34), in the subregion of Nδ in the positive
t direction of Mj,α and Mj+1,α when rα(y) > R0. The remaining subre-
gions of Nδ∩{rα(y) > R0} are dealt with in a similar manner. Finally, to
prove the desired estimate for rα(y) < r0, we consider the region where
|t| < 2δ

α , assuming that the local coordinates are well defined there. In
this case we use, for instance in the region

ν < t <
2δ

α

for ν > 0 large and fixed, a barrier of the form

v(y, t) = e−σt + e−σ( 2δ
α
−t) .
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It is easily seen that, for small α, this function indeed satisfies

∆xv − f ′(uα)v < 0

where σ can be taken arbitrarily close to σ+. We conclude that

|φ(y, t)| ≤ C‖φ‖∞e−σt for ν < t <
δ

α
.

Thus estimate (9.34) holds true. Inequality (9.36) follows from the max-
imum principle.

Finally, for a solution of problem (9.2), the same procedure works,
with only minor differences introduced. Estimate (9.38) can be obtained
after adding a growing barrier. Indeed, we obtain

|φ(x)| ≤ C ‖φ‖∞ [v1(x) + v2(x) + εv3(x)] for all x ∈ S

with v3(x) = εeσ|x
′|, and then we let ε→ 0. We should also use εeσx3 to

deal with the region above the last end Mm, and similarly below M1.
We then use the controls far away to deal with the comparisons at the
second step. The proof is concluded. q.e.d.

9.1. The proof of inequality (8.23). Let us assume by contradiction
that there is a sequence α = αn → 0 along which

m(uα) > i(M) =: N.

This implies that for some sequence Rn → +∞, we have that, for all R >
Rn, problem (9.1) has at least N+1 linearly independent eigenfunctions

φ1,α,R, . . . , φN+1,α,R

associated to negative eigenvalues

λ1,α,R ≤ λ2,α,R ≤ · · · ≤ λN+1,α,R < 0 .

We may assume that ‖φi,α,R‖∞ = 1 and that
∫

R3

p(αx)φi,α,R φj,α,R dx = 0 for all i, j = 1, . . . , N + 1, i 6= j.

Let us observe that then the estimates in Lemma 9.4 imply that the
contribution to the above integrals of the region outside Nδ is small. We
have at most
(9.39)
∫

Nδ

p(αy)φi,α,R φj,α,R dx = O(α3) for all i, j = 1, . . . , N+1, i 6= j.

From the variational characterization of the eigenvalues, we may also
assume that λi,α,R defines a decreasing function of R. On the other
hand, from Lemma 9.3 we know that λi,α,R = O(α2), uniformly in R,
so that we write for convenience

λi,α,R = µi,α,R α
2, µi,α,R < 0.



120 M. DEL PINO, M. KOWALCZYK & J. WEI

We may assume µi,α,R → µi,α < 0 as R → +∞. We will prove
that φi,α,R converges, up to subsequences, uniformly over compacts to
a nonzero bounded limit φi,α, which is an eigenfunction with eigenvalue
µi,αα

2 of problem (9.2). We will then take limits when α → 0 and
find a contradiction with the fact that J has at least i(M) negative
eigenvalues.

We fix an index i and consider the corresponding pair φi,α,R, µi,α,R,
to which temporarily we drop the subscripts i, α,R.

Note that by maximum principle, |φ| can have values that stay away

from zero only inside Nδ. Besides, from Lemma 9.4, φ = O(e−σ|t|) in Nδ.
We observe then that since λ remains bounded, local elliptic estimates
imply the stronger assertion

(9.40) |D2φ|+ |Dφ|+ |φ| ≤ C e−σ|t| in Nδ.

In particular, considering its dependence in R, φ approaches a limit,
locally uniformly in R

3, up to subsequences. We will prove by suitable
estimates that that limit is nonzero. Moreover, we will show that φ ≈
z(αy)w′(t) in Nδ where z is an eigenfunction with negative eigenvalue
≈ µ of the Jacobi operator J .

First, let us localize φ inside Nδ. Let us consider the cut-off function
ηδ in (3.12), and the function

φ̃ = ηδφ.

Then φ̃ satisfies

(9.41) L(φ̃) + µα2q(αx)φ̃ = Eα := −2∇ηδ∇φ−∆ηδφ

with L(φ̃) = ∆φ̃ + f ′(uα)φ̃. Then from (9.40) we have that for some
σ > 0,

|Eα| ≤ Cα3e−σ|t|(1 + r4α)
−1.

Inside Nδ, we write equation (9.41) in (y, t) coordinates as

(9.42) L∗(φ̃) +B(φ̃) + λp(αy)φ̃ = Eα

where
L∗(φ̃) = ∂ttφ̃+∆Mαφ̃+ f ′(w(t))φ̃ .

Extending φ̃ and Eα as zero, we can regard equation (9.42) as the solu-
tion of a problem in entire Mα × R for an operator L that interpolates
L inside Nδ with L∗ outside. More precisely, φ̃ satisfies

(9.43) L(φ̃) := L∗(φ̃) + B(φ̃) + λp(αy)φ̃ = Eα in MR
α × R,

where for a function ψ(y, t) we denote

(9.44) B(ψ) :=

{
χB(ψ) if |t+ h1(αy)| < ρα(y) + 3

0 otherwise

and
χ(y, t) = ζ1(y + (t+ h)να(y))



THE ALLEN-CAHN EQUATION AND MINIMAL SURFACES IN R
3 121

with ζ1 the cut off function defined by (4.8) for n = 1. In particular,
L = L in Nδ.

Now, we decompose

(9.45) φ̃(y, t) = ϕ(y, t) + k(y) ηδ w
′(t)

where

k(y) = −w′(t)

∫

R
φ̃(y, ·)w′ dτ
∫

R
ηδw′2 dτ

so that ∫

R

ϕ(y, t)w′(t) dt = 0 for all y ∈MR
α .

From (9.40), k is a bounded function of class C2 defined on MR
α with

first and second derivatives uniformly bounded independently of large
R. A posteriori we expect that k also has bounded smoothness as a
function of αy, which means in particular that Dk = O(α). We will see
that this is indeed the case.

The function ϕ satisfies the equation

(9.46) L(ϕ)+µα2p(αy)ϕ = −L(kw′)+ Eα − µα2p k w′ in MR
α ×R.

We observe that the expansion (9.8) holds true globally in MR
α ×R for

L(kw′) replacing L(kw′). We also have the validity of expansion (9.5)
for the corresponding projection, namely

∫

R

L(kw′)w′ dt = (∆Mαk + α2|A|2k )
∫

R

w′2 dt

(9.47) + O(αr−2
α ) ∂ijk + O(α2r−3

α ) ∂ik +O(α3r−4
α ) k .

Thus, integrating equation (9.46) against w′, we find that k satisfies

∆Mαk + α2|A|2k + µα2 p(αy) k

+O(αr−2
α ) ∂ijk + O(α2r−3

α ) ∂ik +O(α3r−4
α ) k

(9.48) = O(α3r−4
α )− 1

∫

R
w′2

∫

R

B(ϕ)w′ dt, y ∈MR
α .

Let us consider the function z(y) defined in M by the relation k(y) =
z(αy). Then (9.48) translates in terms of z as

∆Mz + |A(y)|2z + µ q(y) z =

(9.49)

α
[
O(r−2) ∂ijz + O(r−3) ∂iz +O(r−4) z +O(r−4)

]
+ B y ∈MR,

where

(9.50) B(y) :=
1

∫

R
w′2

α−2

∫

R

B(ϕ)(α−1y, t)w′ dt, y ∈MR .

In other words, we have that k(y) = z(αy), where z solves “a perturba-
tion” of the eigenvalue equation for the Jacobi operator that we treated
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in §8. We need to make this assertion precise, the basic element being to
prove that the operator B[z] is “small.” For this we will derive estimates
for ϕ from equation (9.46).

We shall refer to the decomposition Q1 + · · ·+Q6 in (9.8) to identify
different terms in L(kw′). Let us consider the decomposition

ϕ = ϕ1 + ϕ2,

where ϕ1 solves the linear problem for the operator L∗ and the part of
L(kw′) that “does not contribute to projections,” namely

Q3 +Q4 = −w′′

(9.51)

[

αa0ij(∂jh∂ik + ∂ih∂jk) + α2k∆Mh1 + α2ha1,0ij (∂jh∂ik + ∂ih∂jk)
]

+ αtw′
[

a1,0ij ∂ijk + αb1,0i ∂ik
]

.

(9.52)

More precisely, ϕ1 solves the equation

(9.53) L∗(ϕ1) + α2µ pϕ1 = Q3 +Q4 in MR
α × R.

This problem can indeed be solved: according to the linear theory de-
veloped, there exists a unique solution to the problem

L∗(ϕ1) + µα2pϕ1 = Q3 +Q4 + c(y)w′(t) in MR
α × R,

such that ∫

R

ϕ1 w
′ dt = 0 for all y ∈MR

α

and
(9.54)
‖D2ϕ1‖p,1,σ + ‖Dϕ1‖∞,1,σ + ‖ϕ1‖∞,1,σ ≤ ‖Q3 +Q4‖p,1,σ ≤ Cα .

But since ∫

R

(Q3 +Q4)w
′ dt = 0 for all y ∈MR

α

it follows that actually c(y) ≡ 0; namely, ϕ1 solves equation (9.53).
We claim that ϕ2 actually has a smaller size than ϕ1. Indeed, ϕ2

solves the equation

L∗(ϕ2) + B(ϕ2) + µα2pϕ2 = Eα − B(ϕ1)− (Q1

+Q2 +Q5 +Q6)− µα2q kw′ in MR
α × R.(9.55)

Now we have that

Q1 +Q2 +Q5 +Q6

=
[

∆Mαk + αha1,0ij ∂ijk
]

w′ + α2
[
−|A|2 k tw′′ + a0ij∂ih0∂jh0 k w

′′′

+ α−2f ′′(w)φ1 kw
′ + (t+ h)2a2ij∂ijkw

′ + 2(t+ h)a2ij ∂ih∂jk)w
′′
]
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(9.56) +α3
[

O(e−σ|t|r−2
α ) ∂ijk + O(e−σ|t|r−3

α ) ∂jk
]

= O(α2r−2
α log2 rα e

−σ|t|) + ρ(y)w′(t),

for a certain function ρ(y). On the other hand, let us recall that

B = (f ′(uα)−f ′(w))−α2[(t+h1)|A|2+∆Mh1]∂t −αa0ij( ∂jh∂it+∂ih∂jt) +

α(t+ h) [a1ij∂ij − 2αa1ij∂ih∂jt + α(b1i ∂i − αb1i ∂ih∂t) ] +

(9.57) α3(t+ h)2b13∂t + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jh∂tt

Thus the order of B(ϕ1) carries both an extra α and an extra r−1
α over

those of ϕ1, in the sense that

(9.58) ‖B(ϕ1)‖p,2,σ ≤ Cα2.

From relations (9.56) and (9.58), we find that ϕ2 satisfies an equation
of the form

(9.59) L∗(ϕ2) + B(ϕ2) + µα2qϕ2 = g + c(y)w′ in MR
α × R

where for arbitrarily small σ′ > 0 we have

‖g‖p,2−σ′,σ ≤ Cα2.

Since ϕ2 satisfies
∫

R
ϕ2 w

′ dt ≡ 0, the linear theory for the operator L∗

yields then that

(9.60) ‖D2ϕ2‖p,2−σ′,σ + ‖Dϕ2‖∞,2−σ′,σ + ‖ϕ2‖∞,2−σ′,σ ≤ Cα2 ,

which compared with (9.54) gives us the claimed extra smallness:

(9.61) ‖B(ϕ2)‖p,3−σ′,σ ≤ Cα3.

Let us decompose in (9.50)

B = B1 + B2

where

(9.62) Bl :=
1

∫

R
w′2

α−2

∫

R

B(ϕl)(α
−1y, t)w′ dt, l = 1, 2.

From Lemma 6.1 we get that

(9.63) ‖B1‖p,2− 2

p
−σ′ ≤ Cα−2‖B(ϕ1)‖p,2,σ ≤ C

and

(9.64) ‖B2‖p,3− 2

p
−2σ′ ≤ Cα−2‖B(ϕ2)‖p,3−σ′,σ ≤ Cα.

Now we apply the estimate in part (b) of Lemma 8.2 to equation
(9.49) and then get for z(y) = k( yα ) the estimate
(9.65)

‖D2z‖p,2− 2

p
−2σ′ + ‖ (1 + |x|)1−2σ′

Dz ‖∞ ≤ C [ ‖f‖p,2− 2

p
−2σ′ + ‖z‖∞ ]
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where

f = α
[
O(r−2) ∂ijz + O(r−3) ∂iz +O(r−4) z +O(r−4)

]
+ B.

Then from estimate (9.65) it follows that for small α,

(9.66) ‖D2z‖p,2− 2

p
−2σ′ + ‖ (1 + |x|)1−2σ′

Dz ‖∞ ≤ Cα.

Using this new information, let us go back to equation (9.53) and to the
expression (9.52) for Q3 +Q4. The terms contributing the largest sizes
in this function can be bounded by

C α e−σ|t|

[ |Dk|
1 + rα

+
|D2k|
1 + r2α

]

.

Now we compute

(1 + rα(y)
2)p
∫

B(y,1)

|D2k|p
(1 + r2α)

p
dVα ≤

Cα2p−2

∫

B(y,α)
|D2z|p dV ≤ Cα2p−2‖D2z‖p,2− 2

p
−2σ′ ≤ Cα2p−2

and

(1 + rα(y)
2−2σ′

)p
∫

B(y,1)

|Dk|p
(1 + rα)p

dVα ≤

C‖ |Dk| (1 + rα)
1−2σ′ ‖p∞ = C αp ‖ |Dz| (1 + r)1−2σ′ ‖p∞ ≤ Cαp .

As a conclusion, from expression (9.52) we obtain that

‖Q3 +Q4‖p,2−2σ′,σ ≤ Cα2,

and therefore a substantial reduction of the size of ϕ1, compared with
(9.54). We have

(9.67) ‖D2ϕ1‖p,2−2σ′,σ + ‖Dϕ1‖∞,2−2σ′,σ ≤ Cα2 ,

and hence, again using Lemma 6.1, we get

(9.68) ‖B1‖p,3− 2

p
−3σ′ ≤ Cα−2‖B(ϕ1)‖p,3−2σ′,σ ≤ Cα,

which matches the size we initially found for B2 in (9.64).
We recall that φ = φi,α,R has a uniform C1 bound (9.40). Thus,

passing to a subsequence if necessary, we may assume that

φi,α,R → φi,α as R→ +∞
locally uniformly, where φi,α is bounded and solves

(9.69) ∆φi,α + f ′(uα)φi,α + µi,α α
2 p(αx)φi,α = 0 in R

3.

Let us return to equation (9.49), including the omitted subscripts. Thus
k = ki,α,R satisfies the local uniform convergence in Mα,

ki,α,R(y) = c

∫

|t+h1|<ρα

φi,α,R w
′ dt→ c

∫

|t+h1|<ρα

φi,αw
′ dt =: ki,α(y).



THE ALLEN-CAHN EQUATION AND MINIMAL SURFACES IN R
3 125

We have that z = zi,α,R satisfies

∆Mzi,α,R + |A(y)|2zi,α,R + µi,α,R q(y) zi,α,R =

α
[
O(r−2) ∂ijzi,α,R + O(r−3) ∂izi,α,R +O(r−4) zi,α,R +O(r−4)

]
+

Bi,α,R, y ∈MR,

where

(9.70) ‖Bi,α,R‖p,3− 2

p
−3σ′ ≤ Cα

with arbitrarily small σ′ > 0 and C independent of R. We now apply
the estimates in Lemma 8.2 for some 1 < p < 2 and find that for C
independent of R we have

‖zi,α,R‖L∞(MR) ≤ C [ ‖zi,α,R‖L∞(r<R0) +O(α) ]

or equivalently

(9.71) ‖ki,α,R‖L∞(MR
α ) ≤ C [ ‖ki,α,R‖L∞(rα<R0) +O(α) ] .

Since from (9.45) we have that
(9.72)

φi,R,α(y, t) = ϕi,R,α(y, t) + ki,R,α(y) w
′(t) in Nδ, rα(y) ≤ R,

where we have uniformly in R |ϕi,R,α(y, t)| = O(α e−σ|t|r−2
α ), while

φi,R,α = O(e−
a
α ) outsideNδ, and ‖φi,R,α‖∞ = 1, then ‖ki,α,R‖L∞(MR

α ) ≥
γ > 0 uniformly in R. Thus from (9.71), the limit ki,α as R→ +∞ can-
not be zero. We have thus found that φi,α is non-zero. Moreover, we
observe the following: Since the functions

Zi := ∂iuα, i = 1, 2, 3, Z4 := −x2∂1uα + x1∂2uα

are bounded solutions of (9.2) for λ = 0, we necessarily have that

(9.73)

∫

R3

p(αx)Zjφi,α dx = 0, j = 1, 2, 3, 4.

Let Ẑi =
∑4

l=1 dilZl, i = 1, . . . , J . Then we also have

(9.74)

∫

R3

p(αx) Ẑiφi,α dx = 0, i = 1, . . . , J .

Now we want to let α→ 0. zi,α satisfies

∆Mzi,α + |A(y)|2zi,α + µi,α p(y) zi,α

= α
[
O(r−2) ∂ijzi,α +O(r−3) ∂izi,α +O(r−4) zi,α +O(r−4)

]

+ Bi,α, y ∈M,

with

(9.75) ‖Bi,α‖p,3− 2

p
−3σ′ ≤ Cα.

Moreover, ‖zi,α‖L∞(M) ≤ C [ ‖zi,α,R‖L∞(r<R0) + O(α) ] . Since we also

have that ‖D2zi,α‖Lp(M) ≤ C, Sobolev’s embedding implies that passing
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to a subsequence in α, zi,α converges as α→ 0, uniformly over compact
subsets of M to a non-zero bounded solution z̄i of the equation

∆M z̄i + |A(y)|2z̄i + µi q(y) z̄i = 0 in M,

with µi ≤ 0.
Now we have that φi,α = zi,α(αy)w

′(t) + ϕi(y, t) in Nδ where

|ϕi(y, t)| ≤ Cαe−σ|t| . We recall that
∫

Nα

q(αy)φi,α φj,α dx = O(α) for all i 6= j .

Since on Nδ, dx = (1+α2|A|2(t+h))dVα dt , we get then that
∫

Mα
q(αy)

zi,α(αy) zj,α(αy) dVα = O(α) or
∫

M
q(y)zi,α(y) zj,α(y) dV = O(α3) for all i 6= j.

We conclude, passing to the limit, that the zi’s i = 1, . . . , N + 1 satisfy
∫

M
q z̄iz̄j dV = 0 for all i 6= j.

Since, as we have seen in §8, this problem has exactly N = i(M) negative
eigenvalues, it follows that µN+1 = 0, so that zN+1 is a bounded Jacobi
field. But we also recall that

Zi = zi(αy)w
′(t) +O(αe−σ|t|) for all i = 1, . . . , J,

and hence the orthogonality relations (9.74) pass to the limit to yield
∫

M
q ẑi · z̄N+1 dV = 0, i = 1, . . . , J

where ẑi’s are the J linearly independent Jacobi fields. We have thus
reached a contradiction with the non-degeneracy assumption forM , and
the proof of m(uα) = i(M) is concluded.

Finally, the proof of the non-degeneracy of uα for all small α goes
along the same lines. Indeed, the above arguments are also valid for a
bounded eigenfunction in entire space, in particular for µ = 0. If we
assume that a bounded solution Z5 of equation (9.2) is present, linearly
independent from Z1, . . . , Z4, then we assume that

(9.76)

∫

R3

p(αx)Z5 Ẑi dx = 0 i = 1, . . . , J.

Thus, in the same way as before, we have that in Nδ, Z5 = z5(αy)w
′(t)+

ϕ with ϕ orthogonal to w′(t) for all y and ϕ small with size α and uniform
exponential decay in t, the function zα solves an equation of the form
of (9.75), but now for µ = 0. In the same way as before, it converges
uniformly on compacts to a non-zero limit which is a bounded Jacobi
field. But the orthogonality (9.76) passes to the limit, thus implying the
existence of at least J + 1 linearly independent Jacobi fields. We have
reached a contradiction that finishes the proof of Theorem 2. q.e.d.
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10. Further comments and open questions

10.1. Symmetries. As is natural, the invariances of the surface are
at the same time inherited from the construction. If M is a catenoid,
revolved around the x3 axis, the solution in Theorem 1 is radial in the
first two variables,

uα(x) = uα
(
|x′|, x3

)
.

This is a consequence of the construction. The invariance of the Lapla-
cian under rotations and the autonomous character of the nonlinearity
imply that the entire proof can be carried out in spaces of functions with
this radial symmetry. More generally, if M is invariant under a group
of linear isometries, so will be the solution found, at least in the case
that f(u) is odd. This assumption allows for odd reflections. The Costa-
Hoffmann-Meeks surface is invariant under a discrete group constituted
of a combination of dihedral symmetries and reflections to which this
remark applyies.

10.2. Toward a classification of finite Morse index solutions.
Understanding bounded, entire solutions of nonlinear elliptic equations
in R

N is a problem that has always been at the center of PDE research.
This is the context of various classical results in PDE literature such
as the Gidas-Ni-Nirenberg theorems on radial symmetry of one-signed
solutions, Liouville-type theorems, or the achievements around the De
Giorgi conjecture. In those results, the geometry of level sets of the
solutions turns out to be a posteriori very simple (planes or spheres).
The problem of classifying solutions with finite Morse index, though,
seems more challenging, even in a model as simple as the Allen-Cahn
equation. While the solutions predicted by Theorem 1 are generated
in an asymptotic setting, it seems plausible that they contain germs of
generality, in view of parallel facts in the theory of minimal surfaces. In
particular, we believe that the following two statements hold true for a
bounded solution u to equation (1.1) in R

3.

(1) If u has finite Morse index and ∇u(x) 6= 0 outside a bounded
set, then, outside a large ball, each level set of u must have a finite
number of components, each of them asymptotic either to a plane or to a
catenoid. After a rotation of the coordinate system, all these components
are graphs of functions of the same two variables.

(2) If u has Morse index equal to one, then u must be axially symmet-
ric: namely, after a rotation and a translation, u is radially symmetric in
two of its variables. Its level sets have two ends, both of them catenoidal.

It is worth mentioning that a balancing formula for the “ends” of level
sets to the Allen-Cahn equation is available in R

2; see [18]. An extension
of such a formula to R

3 should involve the configuration (1) as its basis.
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The condition of finite Morse index can probably be replaced by the
energy growth (1.9).

On the other hand, (1) should not hold if the condition ∇u 6= 0
outside a large ball is violated. For instance, let us consider the octant
{x1, x2, x3 ≥ 0} and the odd nonlinearity f(u) = (1 − u2)u. Problem
(1.1) in the octant with zero boundary data can be solved by a super-
subsolution scheme (similar to that in [8]) yielding a positive solution.
Extending by successive odd reflections to the remaining octants, one
generates an entire solution (likely to have finite Morse index), whose
zero level set does not have the characteristics above: the condition
∇u 6= 0 far away corresponds to embeddedness of the ends.

Various rather general conditions on a minimal surface imply that
it is a catenoid. For example, R. Schoen [39] proved that a complete
embedded minimal surface in R

3 with two ends must be catenoid (and
hence it has index one). One may wonder if a bounded solution to (1.1)
whose zero level set has only two ends is radially symmetric in two
variables. On the other hand a one-end minimal surface is forced to be
a plane [23]. We may wonder: if the zero level set lies in a half space,
then the solution depends on only one variable.

The case of infinite topology may also give rise to very complicated
patterns; we refer to Hauswirth and Pacard [20] and references therein
for recent result on construction of minimal surfaces in this scenario.
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