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A POLYNOMIAL BRACKET FOR THE

DUBROVIN–ZHANG HIERARCHIES

Alexandr Buryak, Hessel Posthuma & Sergey Shadrin

Abstract

We define a hierarchy of Hamiltonian PDEs associated to an ar-
bitrary tau-function in the semi-simple orbit of the Givental group
action on genus expansions of Frobenius manifolds. We prove that
the equations, the Hamiltonians, and the bracket are weighted-
homogeneous polynomials in the derivatives of the dependent vari-
ables with respect to the space variable.

In the particular case of a conformal (homogeneous) Frobenius
structure, our hierarchy coincides with the Dubrovin–Zhang hier-
archy that is canonically associated to the underlying Frobenius
structure. Therefore, our approach allows to prove the polynomial-
ity of the equations, Hamiltonians, and one of the Poisson brackets
of these hierarchies, as conjectured by Dubrovin and Zhang.

1. Introduction

In this paper we study integrable hierarchies associated to Frobenius
manifolds. For this we use the language of cohomological field theories
and the related topology of the moduli space of curves. The main results
are:

(i) We give an explicit construction of a Hamiltonian system of PDE’s
associated to a cohomological field theory. When the underlying
Frobenius manifold is homogeneous, this system is the same as
the integrable hierarchy constructed by Dubrovin and Zhang [6],
though our construction is completely different and uses only tau-
tological relations coming from topology of the moduli spaces of
curves rather than the Virasoro constraints.

(ii) When the underlying Frobenius manifold is semi-simple, we prove
that the Hamiltonian structure of this hierarchy is polynomial.
This property was conjectured by Dubrovin and Zhang.

It should be remarked that (ii) is not at all obvious from the construc-
tion in (i) and takes up the main body of the paper. Our approach is
based on the fact that in the language of cohomological field theories,
Givental’s group action appears as a new tool to study Dubrovin–Zhang
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hierarchies. We derive explicit deformation formulas for this group ac-
tion on the main ingredients of the hierarchy, and prove polynomiality
by acting on the natural base point for all semisimple theories: the
KdV–hierarchy. Let us also mention that Dubrovin-Zhang hierarchies
have two Hamiltonian structures, but the second bracket doesn’t exist
in the more general case that we consider in this paper. Therefore, the
part of the Dubrovin–Zhang conjecture that concerns the second bracket
remains open.

We refer to the papers of Dubrovin and Zhang [5, 6] (see also the
expositions of some parts of their theory in [11] and [23]) and to a
number of papers on Givental’s theory [9, 12, 13, 15, 16, 17, 24] for
the necessary general background that we will be able to recall only
briefly in this paper.

1.1. Dubrovin–Zhang construction and polynomiality. Let us
explain the main problem that we address in this paper. Dubrovin and
Zhang [5, 6] were working on a classifications project for a special class
of 1 + 1 hierarchies that would conjecturally include many interesting
hierarchies of this type. Their approach is based on a number of conjec-
tures (in some cases, proved) identifying Gromov–Witten potentials of
some target varieties as tau-functions of some hierarchies of KdV–type.

The construction of Dubrovin and Zhang consists of several steps.
First, there is a canonical relation between dispersionless bi-Hamiltonian
tau-symmetric hierarchies of hydrodynamic type and semi-simple con-
formal Frobenius manifolds (that is, semi-simple Frobenius manifolds
equipped with an Euler vector field). Second, imposing the Virasoro
constraints as an axiom, Dubrovin and Zhang find a unique quasi-Miura
transformation that turns the dispersionless hierarchy into a dispersive
one. The tau-cover of the resulting dispersive hierarchy has a distin-
guished solution called topological that is conjectured to be the Gromov-
Witten potential of some target variety X in the case we have started
with the Frobenius manifold structure determined by the quantum co-
homology of X. (N.B.: Gromov–Witten theory serves us as just one of
the motivating examples, where the objects that we consider do arise in
a natural way. Therefore we systematically ignore throughout the pa-
per the subtlety related to the fact that Gromov–Witten potential take
values in the Novikov ring rather than in C.)

The term “quasi-Miura transformation” refers to a Miura-type trans-
formation that is not necessarily a polynomial in the derivatives of the
dependent variables, but rather a rational function. Exactly this non-
polynomiality is the source of problems in the Dubrovin–Zhang con-
struction. The dispersionless hierarchy is polynomial in the derivatives,
namely, all its Hamiltonians, equations, and both Poisson brackets are
polynomials. On the other hand, all ingredients of the resulting disper-
sive hierarchy appear to be merely rational functions. In some sense, the
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canonical nature of the Dubrovin–Zhang construction, in particular, the
fact that the quasi-Miura transformation is determined unambiguously
by the axiom of Virasoro constraints, allows to control completely the
resulting hierarchy. In particular, Dubrovin and Zhang conjectured that
the Hamiltonians, the equations, and the brackets are polynomials in the
derivatives. In fact, the paper [6] contains a proof of the polynomiality
of the Hamiltonians and the equations, but Boris Dubrovin has recently
informed us that, unfortunately, there is a gap in their argument.

1.2. Givental theory. There is another canonical genus expansion of
a semi-simple conformal Frobenius manifold. It was given by Givental
in terms of the quantization of a group action on the space of Frobenius
manifolds [12, 13, 14]. Dubrovin and Zhang proved in [6] that the topo-
logical tau-function that they constructed coincides with the Givental
formula. On the other hand, a result of Teleman [26] on the classifica-
tion of semi-simple weighted homogeneous cohomological field theories
implies the following: if the quantum cohomology of a target variety
determines an analytic semi-simple Frobenius structure, then the full
descendant Gromov–Witten potential must coincide with the Givental
formula. Therefore, in this setting the conjecture of Dubrovin and Zhang
that the topological tau-function of their hierarchy coincides with the
corresponding full descendant Gromov–Witten potential is true.

We restrict our attention to a full descendant Gromov–Witten poten-
tial, or, more generally, any formal power series in the semi-simple orbit
of the quantized Givental group action. If we forget about homogeneity
and therefore the Euler vector field, we lose the bi-Hamiltonian struc-
ture associated to the underlying Frobenius manifold. However, we still
can define some pieces of the structure of the hierarchy purely in terms
of this formal power series. This includes the Hamiltonians, equations,
and one Poisson bracket of the dispersionless hierarchy, together with
a weakened version of a quasi-Miura transformation. With this trans-
formation we can therefore define the Hamiltonians, equations, and one
bracket of the full dispersive hierarchy. A weak quasi-Miura transforma-
tion simply means that in the non-homogeneous case we have no control
on the non-polynomial nature of the transformation that we construct,
and we only know, by the result of Dubrovin and Zhang, that it turns
into a rational function in the points where an Euler vector field can be
introduced.

1.3. Group action on ingredients of the hierarchy. We see that
by dropping the homogeneity condition, we loose a part of the struc-
ture. However, we gain a new tool—the quantized action of the Givental
group. It acts on some special kind of formal power series, and its action
can be translated into the action on those ingredients of the hierarchy
that can be reconstructed from topological tau-functions without a us-
age of the Euler vector field.
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Of course, we cannot say anything about weak quasi-Miura transfor-
mations, since it is even not clear in which class of functions we have
to look for its deformations, but we still can compute the infinitesimal
action of the Givental group on Hamiltonians, equations, and a bracket
of the full dispersive hierarchy associated to a particular point in the
semi-simple orbit of the Givental group. It is an amazing computation,
quite difficult in many places, and it has a remarkable outcome: the de-
formation formulas imply that if Hamiltonians, equations, and a bracket
that we deform are polynomials at one point in the orbit, they remain
to be polynomials in the whole orbit.

There is indeed one point in the orbit of the Givental group where
everything can be computed explicitly and the polynomiality of all key
structures is clear. It is the Gromov–Witten potential of n points, or,
in other words, the product of n copies of the topological tau-function
of the KdV hierarchy.

In this way, we generalize the conjecture of Dubrovin and Zhang
on polynomiality of the Hamiltonians, the equations, and one of the
brackets to the case of non-homogeneous Frobenius structures, and we
prove it in the more general settings of non-homogeneous Frobenius
structures. However, we have to mention that the second bracket is so far
completely out of reach for our methods since its definition heavily uses
the Euler vector field, which is not well compatible with the Givental
group action.

1.4. Organization of the paper. In Section 2 we recall the key for-
mulas for the Givental group action on the space of tame partition
functions associated to Frobenius manifolds. In Section 3 we explain
how to write down the principal and the full hierarchy associated to an
arbitrary tame partition function. In the homogeneous case, it is simply
an explanation how to reproduce different ingredients of the Dubrovin–
Zhang construction starting from a topological tau-function.

The equations and the Hamiltonians of the full Dubrovin–Zhang hi-
erarchy are expressed in terms of functions Ωα,p;β,q that are, roughly
speaking, the second derivatives of the logarithm of the partition func-
tion we have started with. In Section 4 we compute the formulas for the
infinitesimal deformation of Ωα,p;β,q with respect to the Lie algebra of
the Givental group.

The main property of the Poisson bracket is that it turns Hamilto-
nians into the equations. This allows us to compute an infinitesimal
deformation formula for the bracket in Section 5. It is the most com-
plicated computation in the paper. In Section 6 we state a uniqueness
result that implies that we indeed have deformed the Dubrovin–Zhang
canonical bracket (rather than that we have found a new one).

Though the formulas for the infinitesimal deformations that we ob-
tains are fairly complicated, it is enough to look into their structure in
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order to conclude that they preserve the homogeneous polynomiality of
the deformed objects. We discuss that in Section 7, and, together with
the deformations formulas themselves, it is the main result of our paper.
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2. The action of the Givental group

In this section we briefly recall the definition of the Givental group
and its action on the so-called tame partition functions.

2.1. Tame partition functions. Let V be a vector space of dimension
s equipped with a scalar product 〈 , 〉. We fix an orthonormal basis
eα, α = 1, . . . , s and write 11 for the element

∑s
α=1 eα in V . Next, we

consider the vector space V ⊗ C[z] and write t =
∑

α,k tα,keαz
k for a

generic element of it.
We shall consider partition functions in the variables ~ and tα,k, α =

1, . . . , s, k = 0, 1, . . . , of the form

(1) Z(t0, t1, . . . ) = exp




∞∑

g=0

~
g−1Fg(t0, t1, . . . )


 .

Here we assume that ~ logZ is an analytic function in the variables
t0 = {t1,0, . . . , ts,0} and a formal power series in ~ and tα,k, α = 1, . . . , s,
k ≥ 1. An example of such a partition function is the generating function
of Gromov–Witten invariants of a target variety, or, more generally,
the partition function of a cohomological field theory (modulo some
convergence issues that are still important in these cases, since we need
to check the analyticity).

For such a partition function, we define

(2) Ω
[0]
α,pβ,q :=

∂2F0

∂tα,p∂tβ,q

and introduce recursively the formal vector fields

Oα,0 :=
∂

∂tα,0
,(3)

Oα,k :=
∂

∂tα,k
−

k−1∑

i=0

∑

β

Ω
[0]
α,i,β,0Oβ,k−i−1, k ≥ 1.
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These vector fields first appeared in [8, 11]. An important regularity
condition on the partition functions is given by tameness. In Gromov–
Witten theory this property expresses the fact that by the factoriza-
tion property the potential satisfies an infinite number of equations by
pulling back high enough powers of ψ-classes on moduli spaces of sta-
ble curves, which vanish for dimensional reasons (cf. [8, 11, 13]). We
express this property as follows:

Definition 1. A partition function Z is said to be tame if

Oα,k

(
∂2F0

∂tα,p∂tβ,q

)
= 0, k > 0, α = 1, . . . , s;(4)

Oα,k (Fg) = 0, g ≥ 1, k > 3g − 2, α = 1, . . . , s.(5)

For example, the topological recursion relation for the g = 0 potential
(TRR-0) is equivalent to equation (4) for k > 0 in the definition above.
In the framework of Frobenius manifolds, it implies the associativity
of the multiplication on V and can be used to introduce descendants
starting from a prepotential on the small phase space.

Besides these relations, we shall assume that Fg, g ≥ 0, satisfies the
string equation

(6)
∂Fg

∂t11,0
=
∑

ν,k

tν,k+1
∂Fg

∂tν,k
+
δg,0
2

∑

α

t2α,0.

In the case of g = 0, this equation is related to the existence of a unit
vector field on the underlying Frobenius manifold.

2.1.1. Genus 0. In genus 0, some geometrical meaning of the tameness
condition is given by the following proposition.

Proposition 2. For a tame potential F0, the vector fields Oα,k, k ≥
1, α = 1, . . . , s, are in involution: [Oα,k, Oβ,l] = 0.

Proof. Indeed, the coefficients of the vector fields Oα,k, Oβ,l are poly-
nomials in Ωα,p;β,q. Equation (4) implies that the derivatives of coeffi-
cient of Oα,k with respect to Oβ,l (and vice versa) are equal to zero.
Therefore, the commutator is also equal to zero. q.e.d.

It follows that the vector fields Oα,k for k ≥ 1 define a foliation of

codimension s = dim(V ). By condition (4) the functions Ω
[0]
α,p,β,q are

constant along the leaves and can be written as functions of s variables
in coordinates adapted to the foliation. This can be done explicitly by
the coordinate transformation tµ,0 7→ vα(t), where

(7) vα(t) := Ω
[0]
α,0;11,0(t0, t1, . . . ) =

∂2F0

∂tα,0∂t11,0
(t0, t1, . . . ).
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Differentiating the string equation (6), one finds that

(8) vα = tα,0 +
∑

ν,k

tν,k+1Ω
[0]
α,0;ν,k.

Proposition 3. We have

(9) Ω
[0]
α,p,β,q(t0, t1, . . .) = Ω

[0]
α,p;β,q(v, 0, 0, . . . ).

Proof. Indeed, by the previous equation both sides agree when tα,k =
0, k ≥ 1, and are constant in the direction of the vector fields Oα,k,
k ≥ 1. q.e.d.

2.1.2. Higher genera. An analogue of equation (9) exists for any g ≥
1 and is called the 3g − 2 property [8, 6, 11, 13].

Let us fix g ≥ 1. The vector fields Oα,k for k ≥ 3g−1 define a foliation
of codimension s(3g − 2). By condition (5) the function Fg is constant
along the leaves and can be written as functions of s(3g − 2) variables
in coordinates adapted to the foliation. This can be done explicitly by

the coordinate transformation tµ,k 7→ v
(k)
α (t), k ≤ 3g − 2, where

(10) v(k)α (t) :=
∂kvα

∂tk11,0
=

∂k

∂tk11,0
Ω
[0]
α,0;11,0(t0, t1, . . . ).

Differentiating further equation (8) and using the string equation (6),
one finds that

(11) v(k)α = δk,1 + tα,k +
∑

ν,m

tν,k+m+1Ω
[0]
α,0;ν,m +O(t2).

In these coordinates we have the following description of Fg.

Proposition 4. There exist functions P
[g]
0 , . . . P

[g]
3g−2 of 3g − 1 vari-

ables such that

Fg(t0, t1, . . . )

(12)

= Fg

(
P

[g]
0 (v, . . . , v(3g−2)), . . . , P

[g]
3g−2(v, . . . , v

(3g−2)), 0, 0, . . .
)
.

Proof. The proof proceeds as suggested in [11]: first of all, we observe

that tameness in genus 0 implies that Oα,kv
(m)
β = 0 for k ≥ m+1. There-

fore, both the left-hand side and the right-hand side of equation (12)
are constant along Oα,k, k ≥ 3g − 1.

Let us choose functions P
[g]
i , i = 0, . . . , 3g − 2 to be the inverse map

to {tα,k}k≤3g−2 7→ {v(k)α }k≤3g−2 given by equation (11) restricted to the
subspace tα,k = 0, k ≥ 3g − 1. Since the foliation spanned by Oα,k,
k ≥ 3g − 1, is transversal to this subspace, we obtain equation (12) on
the whole space of variables. q.e.d.
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2.2. The Givental group and Lie algebra. In [13], Givental intro-

duced the action of the twisted loop group L(2)GL(V ) on the space of
tame partition functions. (N.B.: In fact, here we abuse the terminol-
ogy a little bit. The twisted loop group action includes a translation of
variables t0,α; see [9] for a detailed discussion. So, in general, to a par-
ticular partition function one can only apply a group element in a small
enough neighborhood of the unit.) Here we shall use, following [15, 9],
the infinitesimal action of its Lie algebra on the space of tame partition
functions satisfying the string equation (6). For this we use the Birkhoff
factorization of the loop group and introduce the Lie algebras

(13) g± :=

{
u(z) :=

∑

k>0

ukz
±k, uk ∈ End(V ), u(−z)t + u(z) = 0

}
.

In general, we shall write r for a generic element of g+, which is tradi-
tionally called the upper triangular subalgebra, and s for an element in
g−, the lower triangular subalgebra.

Concretely, the upper triangular subalgebra is given by formal power
series r =

∑
ℓ≥1 rℓz

ℓ ∈ End(V )[[z]], where rℓ is self-adjoint for k odd
and skew-self-adjoint for k even. Such an element acts on a partition
function by the second-order differential operator computed in [15]:

r̂ :=−
∑

ℓ≥1
µ

(rℓ)
µ
11

∂

∂tµ,ℓ+1
+

∑

d≥0,ℓ≥1
µ,ν

(rℓ)
µ
ν tν,d

∂

∂tµ,d+ℓ
(14)

+
~

2

∑

i,j≥0
µ,ν

(−1)i+1(ri+j+1)
µ,ν ∂2

∂tµ,i∂tν,j
.

For s =
∑

ℓ≥1 sℓz
−ℓ, an element of the lower triangular subalgebra, we

have the first-order differential operator computed in [15]:

ŝ :=− 1

2~
(s3)11,11 +

1

~

∑

d≥0
µ

(sd+2)11,µtµ,d(15)

+
1

2~

∑

i,j≥0
µ,ν

(−1)i(si+j+1)µ,νtµ,itν,j

−
∑

µ

(s1)
µ
11

∂

∂tµ,0
+

∑

d≥0,ℓ≥1
µ,ν

(sℓ)
µ
ν tν,d+ℓ

∂

∂tµ,d
.

The geometrical meaning of the actions of these two parts of the
Givental group is quite different: the upper triangular part correspond-
ing to g+ deforms the structure of the underlying Frobenius manifold,
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whereas the lower triangular part doesn’t; it only changes the calibra-
tion of the Frobenius manifold as well as shifts the point around which
one expands the potential F (see [9]).

Remark 5. The arguments in section 7 about polynomiality of the
first Poisson bracket of the Dubrovin–Zhang hierarchy use the fact that
the Givental group acts transitively on the space of tame partition func-
tions of cohomological field theories whose underlying Frobenius mani-
fold is semisimple. This is proved in [26].

The original Dubrovin–Zhang conjecture concerns only homogeneous
tame partition function of cohomological field theories. For this, Given-
tal [12] gives an explicit formula for any homogeneous tame partition
function corresponding to a cohomological field theory in terms of the
upper- and lower-triangular group action discussed as well as a linear
change of coordinates. This latter linear change of coordinates doesn’t
affect any polynomiality issues, but it allows to consider a Frobenius
structure with an arbitrary flat metric.

In particular, in [12] an algorithm is given for reconstruction of all the
ingredients of the Givental formula for a particular homogeneous tame
partition function. For a bit different exposition, see also [7], where it
is adapted to connect two arbitrary semi-simple Frobenius structures.

From Dubrovin and Zhang [6] we know that the homogeneous tame
partition functions of Givental coincide with the topological tau-functions
of their hierarchies. It follows from [26] that there are no other homo-
geneous tame partition functions of a cohomological field theory whose
underlying Frobenius manifold is semisimple.

Remark 6. In the following, we shall make use of the following con-
vention for raising and lowering indices of elements of the Givental Lie
algebra:

(sℓ)µν = (sℓ)
µ
ν = (sℓ)

νµ, (rℓ)µν = (rℓ)
µ
ν = (rℓ)

νµ.

3. The hierarchy associated to a potential

In this section we describe the integrable hierarchy associated to a
formal partition function. At first we shall be concerned with a for-
mal neighborhood of a non-homogeneous Frobenius manifold (that is,
a Frobenius manifold without an Euler vector field). This is given by a
tame g = 0 potential F0, i.e., satisfying the genus 0 topological recur-
sion relation (equivalent to Equation (4) given in Definition 1) and the
string equation (6).

3.1. The principal hierarchy.

3.1.1. Notation for the calculus of variations. The principal hi-
erarchy associated to a Frobenius manifold is a system of partial dif-
ferential equations in the variational bicomplex of functionals on the



162 A. BURYAK, H. POSTHUMA & S. SHADRIN

formal loop space of maps from S1 to V . Explicitly, this means that if
we denote the global coordinate on S1 by x and let vα, α = 1, . . . , s be
a basis of V , a formal loop in V is parametrized by the jet coordinates

v
(k)
α := ∂kvα/∂x

k, k ≥ 0. On this formal loop space, we consider local
functionals of the form

(16) F (v) :=

∫
f(x, v, v(1) . . . , v(k))dx,

where f(x, v, v(1) . . . , v(k)) is a differential polynomial, i.e., depends an-

alytically on x and vα and is a polynomial in the higher variables v
(k)
α ,

k ≥ 1. The total derivative acting on such differential polynomials is
given by

(17) ∂xf :=
∂f

∂x
+
∑

α,k

∂f

∂v
(k)
α

v(k+1)
α ,

so that
∫
∂xfdx = 0. Note that with this definition one indeed has that

v
(k+1)
α = ∂xv

(k)
α . As a functional, the variational derivative is defined as

(18)
δf

δvα
:=

∞∑

s=0

(−1)s∂sx
∂f

∂v
(s)
α

.

(Here we abuse a little bit the standard notation, where one is used to
write the variational derivative above applied to functionals

∫
f dx.) For

a detailed account of the variational bicomplex associated to the formal
loop space, one should consult [6, §2.2.].

For the construction of the principal hierarchy, we shall use the co-
ordinates vα defined in (7). First, we introduce an x-dependence by
shifting along the t11,0, and define

(19) vα(x, t) :=
∂2F0

∂tα,0∂t11,0
(x+ t11,0, t1, t2, . . . ).

With this shift we clearly have ∂xvα(x, t) = ∂vα(x, t)/∂t11,0 and therefore

(20) v(k)α (x, t) =
∂k+2F0

∂tk+1
11,0 ∂tα,0

(t11,0 + x, t1, t2, . . . ).

3.1.2. The equations of the hierarchy. Clearly, vα(x, t) is a solution
of the system of equations

(21)
∂vα
∂tβ,q

= ∂x

(
Ω
[0]
α,0,β,q(v, 0, 0 . . . )

)
, β = 1, . . . , s, q ≥ 0,

since the left- and right-hand sides are equal to the same triple deriv-
ative of F0. This system of equations is called the principal hierarchy
associated to the Frobenius manifold. More specifically, if we deal with
a conformal Frobenius structure—i.e., if we have an Euler vector field—
this system of equations is a dispersionless bi-Hamiltonian hierarchy
with τ -symmetry.
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Without an Euler vector field, we have only one Hamiltonian struc-
ture that we are going to describe. We first introduce the following
Poisson bracket on the formal loop space:

(22) {F,G} :=

∫ ∑

α

δf

δvα
∂x

δg

δvα
dx,

where f and g are the polynomial densities of the functionals F and G.
Next, we define the densities of higher Hamiltonians Hα,p, α = 1, . . . , s,
p ≥ 0:

(23) hα,p(v) := Ω11,0;α,p+1(v, 0, 0 . . . ).

With respect to the Poisson bracket above, we have the following.

Proposition 7. The Hamiltonians Hα,p =
∫
hα,pdx Poisson com-

mute:
{Hα,p,Hβ,q} = 0.

Proof. We need to show that

(24)
∑

γ

δhα,p
δvγ

∂x
δhβ,q
δvγ

is ∂x-exact. In fact, we can prove that this expression is equal to ∂xΩ
[0]
α,p+1;β,q.

This is a straighforward computation using the topological recursion re-
lations (4), which we write in the coordinates vγ as

(25)
∂Ω

[0]
α,p+1;β,q

∂vγ
=
∑

ξ

Ω
[0]
α,p;ξ,0

∂Ω
[0]
ξ,0;β,q

∂vγ

With this, we simply write out the Poisson bracket:

∑

γ

δhα,p
δvγ

∂x
δhβ,q
δvγ

=
∑

γ

∂Ω
[0]
α,p+1;11,0

∂vγ
∂x


∂Ω

[0]
β,q+1;11,0

∂vγ


(26)

=
∑

γ,ξ

Ω
[0]
α,p;ξ,0

∂Ω
[0]
ξ,0;11,0

∂vγ
∂x


∂Ω

[0]
β,q+1;11,0

∂vγ




=
∑

γ,ξ

Ω
[0]
α,p;γ,0∂x


Ω

[0]
β,q;ξ,0

∂Ω
[0]
ξ,0;11,0

∂vγ




=
∑

γ

Ω
[0]
α,p;γ,0∂xΩ

[0]
γ,0,β,q

= ∂xΩ
[0]
α,p+1;β,q,

where in the last step one uses the fact that ∂x = ∂/∂t11,0 because of the
shift of variables, together with the topological recursion relation (25)
once again. This completes the proof. q.e.d.
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Combining this proposition with the hierarchy (21), we find

(27) {vα,Hβ,q} = ∂xΩ
[0]
α,0,β,q =

∂vα
∂tβ,q

,

meaning that the Hamiltonian vector field associated to Hβ,q is given
by ∂/∂tβ,q.

In the presence of an Euler vector field, and, therefore, the second
Hamiltonian structure, it is proved in [6] that this set of Hamiltonians is
complete, justifying the name integrable hierarchy. The solution vα(x, t)
in (19) of equation (21) is called the topological solution. Other solu-
tions can be constructed using the hodographic method (cf. [6, §3.7.4]):
they are called monotone solutions and are determined by an invertible

element v
(1)
α (0) ∈ Tvα(0)V

∼= V .

3.2. The full hierarchy.

3.2.1. Change of coordinates. For the full (i.e., dispersive) hierar-
chy, we consider the formal extended loop space, meaning that we now
consider formal series

(28) f(x,w,w(1), . . . , ~) =

∞∑

k=0

~
kfk(x,w,w

(1) , . . . , w(2k)),

where each fk is a differential polynomial in w(1), . . . , w(2k) of degree

2k, deg(w
(i)
α ) = i. (N.B.: This differs a little bit from the original con-

ventions of Dubrovin and Zhang. They consider series in ǫ =
√
~, and

the coefficient of ǫk is a weighted homogeneous polynomial of degree k.
The natural group of coordinate transformations on the extended loop
space is the so-called Miura group of formal diffeomorphisms

(29) wα 7→ w̃α :=

∞∑

k=0

~
kGα,k(w,w

(1), . . . , w(2k)),

where Gα,0, α = 1, . . . , s is an invertible coordinate transformation and

Gα,k are differential polynomials in w(1), . . . , w(2k) with deg(Gα,k) = 2k.
When each Gα,k is a rational function of degree 2k (and, therefore,

Gα,k might depend on higher derivatives than w(2k), but still on a fi-
nite number of them), such a coordinate change is called a quasi-Miura
transformation.

We now consider the full partition function (1) and introduce the
coordinates

(30) wα(t0, t1, . . . ) :=
∂2
(∑∞

g=0 ~
gFg

)

∂tα,0∂t11,0
(t0, t1, t2, . . . ).



A POLYNOMIAL BRACKET FOR DUBROVIN–ZHANG 165

Again we introduce the x-variable by shifting along the t11,0-direction:
wα(x, t) := wα(t0 + x, t1, t2, . . . ), and therefore

(31) w(k)
α =

∂k+2
(∑∞

g=0 ~
gFg

)

∂k+1t11,0∂tα,0
(t0 + x, t1, t2, . . . ).

Recall that Fg is a function of 3g − 1 variables v, v(1), . . . , v(3g−2) as
given by Equation (12). Therefore, the second derivative of Fg depends

on v, v(1), . . . , v(3g) (here we have to use the principal hierarchy in order
to turn the derivatives in t-variables into the derivatives in x-variables).
So, the change of variables that we have here looks like

(32) vα 7→ wα := vα +

∞∑

g=1

~
g ∂2Fg

∂x∂tα,0
(v, v(1), . . . , v(3g)).

In the case of a conformal Frobenius structure, Dubrovin and Zhang
prove in [6] that it is a quasi-Miura transformation. In the general case,
we have no control on how bad are the coefficients of the ~-expansion of
this change of variables, though they still depend on a finite number of
the derivatives of the coordinates vα. We call such changes of variables
weak quasi-Miura transformations.

3.2.2. Ingredients of the full hierarchy. Following the genus zero
theory, we now define

(33) Ωα,p,β,q :=

∞∑

g=0

~
g ∂2Fg

∂tα,p∂tβ,q
.

We see that wα(x, t) is a solution of the system of partial differential
equations

(34)
∂wα

∂tβ,q
= ∂x

(
Ωα,0,β,q(w,w

(1), w(2), . . . )
)
.

This system of partial differential equations is again a Hamiltonian
system obtained from the principle hierarchy by the weak quasi-Miura
transformation (32). This coordinate change transforms the Poisson
bracket (22) to another Poisson bracket given by the formula

(35) {F,G} :=

∫ ∑

α,β

δf

δwα

∞∑

s=0

Aαβ
s ∂sx

δg

δwβ

dx,

where Aαβ
s =

∑∞
g=0 ~

gAαβ
g,s is a formal power series in ~ whose coefficients

are some functions in w,w(1), w(2), . . . given by the formula

(36)
∞∑

s=0

Aαβ
s ∂sx :=

∑

µ,e
ν,f

∂wα

∂v
(e)
µ

∂ex ◦ ∂x ◦ (−∂x)f ◦ ∂wβ

∂v
(f)
ν

.
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Is is not immediately obvious, but it is very easy to show (see Section 6,

below) that Aαβ
0 = 0.

Since we have no control on weak quasi-Miura transformations, we

can’t say anything about what kind of function Aαβ
g,s is. In the case

of a conformal Frobenius structure, when the coordinate change is a
quasi-Miura transformation, Dubrovin and Zhang conjecture that it is
a homogeneous polynomial in w(1), w(2), . . . of degree 2g + 1 − s (we

assume, as usual, that degw(i) = i). We prove this conjecture for an
arbitrary semi-simple Frobenius structure in Section 7.

In principle, under the coordinate change the Hamiltonians of the full
hierarchy should be simply recalculated in the new coordinates. How-
ever, there is still a freedom for the choice of densities of the Hamiltoni-
ans, since we can always add a ∂x-exact term to them. It is, therefore,
natural to define the densities of the Hamiltonians equal to

hα,p(w) := Ωα,p+1;11,0(w,w
(1), w(2) . . . )(37)

=

∞∑

g=0

~
g ∂2Fg

∂t11,0∂tα,p+1
(w,w(1), w(2), . . . ),

which is simply the densities of the Hamiltonians (23) deformed by
∂x(
∑

g≥1 ~
g∂Fg/∂tα,p+1).

In the case of a conformal Frobenius structure, when the coordinate
change is a quasi-Miura transformation, Dubrovin and Zhang conjec-
tured and even attempted to prove that in the variables w(1), w(2), . . .
the coefficient of ~

g of the ~-expansion of any Ωα,p;β,q is a homoge-
neous polynomial of degree 2g. As we have already mentioned above,
unfortunately, Boris Dubrovin has informed us that they have found a
gap in their argument. We generalize their conjecture for an arbitrary
semi-simple Frobenius structure and prove it in Section 7.

Example 8 (The KdV hierarchy). The fundamental example of a
principal and full hierarchy associated to a tame partition function is
given by the KdV hierarchy. It is associated to the Gromov–Witten
potential of a point, or simply, the generating function of the intersection
number of ψ-classes on the moduli space of curve,

(38) ZKdV := exp




∞∑

g=0

~
g−1

∑

n≥1
2g−2+n>0

1

n!

∑

d1,...,dn≥0

∫

Mg,n

n∏

i=1

ψdi
i tdi


 .
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This corresponds to a one-dimensional Frobenius manifold, that is, dim(V ) =
1, with prepotential F0(v) = v3/6. The hierarchy can be given very con-
veniently in Lax form. Writing out, the first few equations read

wt0 = wx,(39)

wt1 = wwx +
~

12
wxxx

wt2 =
1

2
w2wx +

~

12
(2wxwxx + wwxxx) +

~
2

240
wxxxxx

...

What is important for us is that it is an example of a bi-Hamiltonian
hierarchy, as shown in [6], with the first Poisson bracket given by (22)
and the Hamiltonians given by

h−1 = w(40)

h0 =
w2

2
+ ~

wxx

12

h1 =
w3

6
+

~

24
(w2

x + 2wwxx) + ~
2wxxxx

240
...

Setting ~ = 0, one finds the dispersionless limit of KdV, also called
the Riemann hierarchy. It is proved in [6, §3.8.3] that the transformation
from the Riemann hierarchy to the full KdV hierarchy given by
(41)

v 7→ v +
~

24
(log vx)xx + ~

2

(
vxxxx
1152v2x

− 7vxxvxxx
1920v3x

+
v3xx

360v4x

)

xx

+O(~3)

is a quasi-Miura transformation.
It is a special feature of the KdV hierarchy that its Poisson bracket

remains undeformed when going from the dispersionless hierarchy to the
dispersive tail. It shows explicitly that the Poisson bracket is polynomial,
so we can use it in our argument as the basepoint under the action of
the Givental group.

4. Deformation formulas for Ωα,p;β,q

In this section, we obtain formulas for the infinitesimal deformations

of Ωα,p;β,q as a function of w
(n)
γ (defined in Section 3.2.2) by elements

of the Lie algebra of the Givental group (presented in Section 2.2). We
write rℓz

ℓ ∈ g+ and sℓz
ℓ ∈ g− for generic elements in the Lie algebra

of the Givental group. Their action on a (multiple derivative of a) tame
partition function is denoted by a lower dot. In (14) and (15), this action
is given in terms of the t-variables. When we consider the resulting
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function in other coordinates, in this case w
(n)
γ , we write this coordinate

in square brackets behind the Lie algebra element.

Theorem 9. We have the following:

r̂ℓzℓ[w].Ωα,p;β,q = (rℓ)
µ
αΩµ,p+ℓ;β,q +Ωα,p;µ,q+ℓ(rℓ)

µ
β

(42)

+
ℓ−1∑

i=0

(−1)i+1Ωα,p;µ,i(rℓ)
µνΩν,ℓ−1−i;β,q

−
∑

γ,n

∂Ωα,p;β,q

∂w
(n)
γ

(
(rℓ)

µ
γ∂

n
xΩµ,ℓ;11,0 + (n+ 1)∂nxΩγ,0;µ,ℓ(rℓ)

µ
11

+
ℓ−1∑

i=0

n−1∑

k=0

(
n

k

)
(−1)i+1∂k+1

x Ωγ,0;µ,i(rℓ)
µν∂n−k−1

x Ων,ℓ−1−i;11,0

+

ℓ−1∑

i=0

(−1)i+1∂nx (Ωγ,0;µ,i(rℓ)
µνΩν,ℓ−1−i;11,0)

)

+
~

2

∑

γ,n
ζ,m

∂2Ωα,p;β,q

∂w
(n)
γ ∂w

(m)
ζ

ℓ−1∑

i=0

(−1)i+1∂n+1
x Ωγ,0;µ,i(rℓ)

µν∂m+1
x Ων,ℓ−1−i;ζ,0.

Proof. Direct computation. One should just use the formula

(43) r̂ℓzℓ[w].Ωα,p;β,q = r̂ℓzℓ[t].Ωα,p;β,q−
∑

γ,n

∂Ωα,p;β,q

∂w
(n)
γ

·∂nx r̂ℓzℓ[t].Ωγ,0;11,0,

which is the change of coordinates from t to w. Here, r̂ℓzℓ[t].Ωα,p;β,q (and

r̂ℓzℓ[t].Ωγ,0;11,0) is just

(44)
∂2

∂tα,p∂tβ,q

∞∑

g=0

~
g
r̂ℓzℓ[t].Fg(t),

where r̂ℓzℓ[t].Fg(t) is given by the formulas of Y.-P. Lee [15, 9]; cf. (14)
and (15). q.e.d.

Remark 10. We can simplify formula (42). We introduce a new
notation. If p < 0 or q < 0, we set Ωα,p;β,q to be equal to (−1)pδαβδp+q,−1

if p is nonnegative, and to (−1)qδαβδp+q,−1 if q is nonnegative. Then,
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we can rewrite equation (42) as

r̂ℓzℓ[w].Ωα,p;β,q =

∞∑

d=−∞

(−1)d+1(rℓ)
µν


Ωα,p;µ,dΩν,ℓ−1−d;β,q(45)

−
∑

γ,n

∂Ωα,p;β,q

∂w
(n)
γ

n∑

a=0

(
n+ 1

a

)
∂axΩγ,0;µ,d∂

n−a
x Ων,ℓ−1−d;11,0

+
~

2

∑

γ,n
ζ,m

∂2Ωα,p;β,q

∂w
(n)
γ ∂w

(m)
ζ

∂n+1
x Ωγ,0;µ,d∂

m+1
x Ων,ℓ−1−d;ζ,0


 .

We obtain a similar formula for the s-action.

Theorem 11. We have the following:

∞∑

ℓ=1

ŝℓzℓ[w].Ωα,p;β,q =
∑

1≤ℓ≤p

(sℓ)
µ
αΩµ,p−ℓ;β,q +

∑

1≤ℓ≤q

Ωα,p;µ,q−ℓ(sℓ)
µ
β(46)

+ (−1)p(sp+q+1)α,β −
∑

γ

∂Ωα,p;β,q

∂wγ
(s1)γ,11.

Proof. The proof is again a straighforward computation of the same
kind as in the proof of Theorem 9. q.e.d.

Remark 12. We can rewrite equation (46) as

∞∑

ℓ=1

ŝℓzℓ[w].Ωα,p;β,q =
∞∑

ℓ=1

∑

i+j=−l−1

(−1)i+1Ωα,p;µ,i(sℓ)
µνΩν,j;β,q(47)

−
∑

γ

∂Ωα,p;β,q

∂wγ
(s1)γ,11.

Remark 13. In genus 0, the functions Ω
[0]
α,p;β,q form a symmetric

solution of a so-called master equation [25], which is an extension of
commutativity equations [21, 22, 20]. There is a Givental-type theory of
deformations of solutions of commutativity equations developed in [22]
and revisited in [25]. The deformation formulas there are given simply
by the first three summands in Equations (42) and (46), and they have
a very nice interpretation in terms of multi-KP hierarchies [18, 10],
geometry of the Losev–Manin moduli spaces [20], and Givental-type
linear algebra of the loop space; see [25] for a detailed discussion.

5. Deformation formulas for a bracket

In this section we obtain a deformation formula for a Poission bracket
that gives one of the two Poisson structures for the Dubrovin–Zhang
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hierarchies. The starting point for this calculation is the equations of
the hierarchy, written out using the Poisson bracket:

(48) {wβ, hα,p} = ∂xΩα,p;β,0.

Using the deformation formulas for the Ωα,p;β,q of the previous section,
we obtain deformations of the densities of Hamiltonians hα,p and wβ,
as well as the right-hand side of the equation above. In the case of the
r-action, we are therefore looking for a differential operator

∞∑

s=1

(
r̂ℓzℓ[w].A

αβ
s

)
∂sx

such that

∂xr̂ℓzℓ[w].Ωα,p;β,0 =
∑

γ

∞∑

s=1

(
r̂ℓzℓ[w].A

βγ
s

)
∂sx

δ

δwγ
Ωα,p+1;11,0(49)

+
∑

γ

∞∑

s=1

Aβγ
s ∂sx

δ

δwγ
r̂ℓzℓ[w].Ωα,p+1;11,0.

Equation (49) has a solution that is quite involved, so we first need to
introduce some new notations. In Section 6 we discuss the uniqueness
of this solution.

5.1. Some notation. In order to shorten some intermediate formulas,
we introduce the following notation:

δξ :=
δ

δwξ
=

∞∑

n=0

(−∂x)n ◦ ∂

∂w
(n)
ξ

; ∂ξ,n :=
∂

∂w
(n)
ξ

;(50)

Tξ,k :=
∞∑

n=0

(
n

k

)
(−∂x)n−k ◦ ∂

∂w
(n)
ξ

.

We use the agreement that
(
n
k

)
= 0 if n ≥ 0 and k < 0 or k > n.

The operators Tξ,k satisfy the following properties:

Tξ,0 = δξ; Tξ,k = 0 if k < 0; Tξ,k ◦ ∂x = Tξ,k−1 for any k ∈ Z.(51)

Moreover, for any functions X,Y ,

δξ(XY ) =

∞∑

k=0

(
Tξ,kX(−∂x)kY + (−∂x)kXTξ,kY

)
,(52)

and, more generally, for any p ≥ 0,

Tξ,p(XY ) =
∞∑

k=0

(
k + p

k

)(
Tξ,k+pX(−∂x)kY + (−∂x)kXTξ,k+pY

)
(53)

(see [1] and [19] for more useful formulas of the same type).
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Another notation that we are using is the following. We denote by

(54) Ωγ1,k1;γ2,k2;γ3,k3 :=
∂3(
∑∞

g=0 ~
gFg)

∂tγ1,k1∂tγ2,k2∂tγ3,k3
,

the triple derivative considered as a function of w
(n)
ξ . It is a series in ~,

and the coefficient at ~
g is a weighted homogeneous polynomial in the

derivatives w
(n)
ξ , n ≥ 1, of degree 2g+1. This follows from the following

formula:

(55) Ωγ1,k1;γ2,k2;γ3,k3 :=
∑

ξ,n

∂n+1
x Ωγi,ki;ξ,0

∂Ωγj ,kj ;γℓ,kℓ

∂wξ,n

for any choice of indices {i, j, ℓ} = {1, 2, 3}. We also assume that
Ωγ1,k1;γ2,k2;γ3,k3 is equal to 0 if some of the indices k1, k2, k3 are neg-
ative.

Remark 14. We make one final remark about the notation in which
the deformation formula is presented below. In order to reduce the
amount of brackets in the expressions, we write ◦ for the composition
of differential operators. If a differential operator appears without com-
position to the right, it is to be applied to the expression immediate on
the right of it.

5.2. A formula for the operator of r-deformation.

Theorem 15. Equation (49) has the following solution:

∞∑

s=1

(
r̂ℓzℓ[w].A

βξ
s

)
∂sx(56)

=
∑

i+j=ℓ−1

(−1)i+1(rℓ)
µν


Ω11,0;ν,j

∑

γ,n

∂Ωµ,i;β,0

∂w
(n)
γ

∂nx ◦
∞∑

s≥1,ξ

Aγ,ξ
s ∂sx

−
∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0

∑

s≥1,ξ

∂Aβ,ξ
s

∂w
(n)
γ

∂sx

+
∑

s≥1,γ

Aβ,γ
s

∑

f+e=s−1

∂fx ◦Ω11,0;ν,j∂
e
x ◦

∞∑

n=0

Tγ,nΩµ,i;ξ,0(−∂x)n+1

+Ωβ,0;ν,j

∑

γ,n

∂Ωµ,i;11,0

∂w
(n)
γ

∂nx ◦
∑

s≥1,ξ

Aγ,ξ
s ∂sx
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+
∑

s≥1,γ

Aβγ
s ∂sx ◦

∑

0≤u≤v

(
v

u

)
Tγ,v+1Ω11,0;ν,j(−∂x)v−uΩµ,i;ξ,0(−∂x)u+1

−
∑

s≥1,γ

Aβγ
s ∂sx ◦

∑

0≤u≤v

(
v + 1

u

)
(−∂x)v−uΩ11,0;ν,jTγ,v+1Ωµ,i;ξ,0(−∂x)u+1

+
∑

s≥1,γ

Aβγ
s

∑

e+f=s−1

(
s

e

)
∂exδγΩ11,0;ν,j∂

f
x ◦ Ωµ,i;ξ,0∂x

− ∂xΩβ,0;ν,j−1

∑

γ,m

m−1∑

u=0

(−∂x)u∂γ,mΩµ,i+1;11,0∂
m−1−u
x ◦

∞∑

s=1

Aγξ
s ∂

s
x

− ∂xΩβ,0;ν,j−1

∑

γ

∞∑

2≤f≤s

(−∂x)s−f
(
Aγξ

s δγΩµ,i+1;11,0

)
∂f−1
x

+
~

2


∂x ◦

∑

γ,n

∂Ωβ,0;µ,i;ν,j

∂w
(n)
γ

∂nx ◦
∑

s≥1

Aγ,ξ
s ∂sx

+
∑

s≥1,γ

Aβγ
s ∂sx ◦

∞∑

m=0

Tγ,mΩξ,0;µ,i;ν,j(−∂x)m+1

−
∞∑

n=0

∑

ζ

∂n+1
x Ωζ,0;µ,i;ν,j

∑

s≥1

∂Aβξ
s

∂w
(n)
ζ

∂sx




 .

Proof. The proof is based on an explicit computation of all terms
in formula (45) applied to Ωα,p;β,0 and Ωα,p+1;11,0. This computation is
performed in Sections 5.3–5.5 below. q.e.d.

5.3. Useful lemmas. There are two commutation relations that we
are going to use several times. Consider an operator

∑∞
n=0 ∂

n
xB∂ζ,n,

where B is an arbitrary function.

Lemma 16. We have [∂x,
∑∞

n=0 ∂
n
xB∂ζ,n] = 0.

Proof. Since [∂x, ∂ζ,n+1] = −∂ζ,n, we have

(57) [∂x,
∞∑

n=0

∂nxB∂ζ,n] =
∞∑

n=0

∂n+1
x B∂ζ,n −

∞∑

n=1

∂nxB∂ζ,n−1 = 0.

q.e.d.

Lemma 17. For any function A, we have

[A∂sx ◦ δγ ,
∞∑

n=0

∂nxB∂ζ,n](58)

= A∂sx ◦
∞∑

j=0

Tγ,jB(−∂x)j ◦ δζ −
∞∑

n=0

∂nxB
∂A

∂w
(n)
ζ

∂sx ◦ δγ
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Proof. Observe that

A∂sx ◦ δγ ◦
∞∑

n=0

∂nxB∂ζ,n(59)

= A

∞∑

m,n=0

(−1)m
s+m∑

i=0

(
s+m

i

)
∂n+i
x B∂s+m−i

x ◦ ∂γ,m ◦ ∂ζ,n

+A∂sx ◦
∞∑

j,n=0

Tγ,j∂nxB(−∂x)j ◦ ∂ζ,n.

Since Tγ,j ◦ ∂nx = Tγ,j−n, the last summand is equal to

A∂sx ◦
∞∑

j=0

Tγ,jB(−∂x)jδζ .(60)

On the other hand,

∞∑

n=0

∂nxB∂ζ,n ◦ A∂sx ◦ δγ =
∞∑

n=0

∂nxB
∂A

∂w
(n)
ζ

∂sx ◦ δγ(61)

+

∞∑

m,n=0

(−1)m
s+m∑

i=0

(
s+m

i

)
∂n+i
x BA∂s+m−i

x ◦ ∂γ,m ◦ ∂ζ,n.

We see that the difference of the expressions in (59) and (61) gives
exactly the statement of the lemma. q.e.d.

5.4. The coefficient of ~
1. First, let us rewrite the ~-term on the

right-hand side of equation (45). Let i+ j = l − 1, and we have

∑

γ,n
ζ,m

∂2Ωα,p;β,q

∂w
(n)
γ ∂w

(m)
ζ

∂n+1
x Ωγ,0;µ,i∂

m+1
x Ων,j;ζ,0(62)

=


∑

γ,n

∂n+1
x Ωγ,0;µ,i∂γ,n ◦

∑

ζ,m

∂m+1
x Ων,j;ζ,0∂ζ,m

−
∑

ζ,m

∂m+1
x Ωµ,i;ν,j;ζ,0∂ζ,m


Ωα,p;β,q

(here we used the formula ∂
∂tδ,r

=
∑

γ,n ∂
n+1
x Ωδ,r;γ,0∂γ,n). Observe that

since δξ ◦ ∂x = 0, we have

δξ
∑

γ,n

∂n+1
x Ωγ,0;µ,i∂γ,n

∑

ζ,m

∂m+1
x Ων,j;ζ,0∂ζ,mΩα,p+1;11,0(63)

= δξ∂xΩα,p+1;µ,i;ν,j = 0.
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Also observe that

∑

γ,n

∂n+1
x Ωγ,0;µ,i∂γ,n

∑

ζ,m

∂m+1
x Ων,j;ζ,0∂ζ,mΩα,p;β,0(64)

=
∑

γ,n

∂Ωβ,0;µ,i;ν,j

∂w
(n)
γ

∂nx
∑

s≥1,ξ

Aγ,ξ
s ∂sxδξΩα,p+1;11,0.

Using these observations, Lemma 16 and Lemma 17, we obtain the
following expression:

∂x
∑

γ,n
ζ,m

∂2Ωα,p;β,0

∂w
(n)
γ ∂w

(m)
ζ

∂n+1
x Ωγ,0;µ,i∂

m+1
x Ων,j;ζ,0(65)

−
∑

s≥1,ξ

Aβξ
s ∂

s
xδξ
∑

γ,n
ζ,m

∂2Ωα,p+1;11,0

∂w
(n)
γ ∂w

(m)
ζ

∂n+1
x Ωγ,0;µ,i∂

m+1
x Ων,j;ζ,0

=


∂x ◦

∑

γ,n

∂Ωβ,0;µ,i;ν,j

∂w
(n)
γ

∂nx ◦
∑

s≥1,ξ

Aγ,ξ
s ∂sx ◦ δξ

+
∑

s≥1,ξ

Aβξ
s ∂

s
x ◦

∞∑

m=0

∑

ζ

Tξ,m∂xΩζ,0;µ,i;ν,j(−∂x)m ◦ δζ

−
∞∑

n=0

∑

ζ

∂n+1
x Ωζ,0;µ,i;ν,j

∑

s≥1,ξ

∂Aβξ
s

∂w
(n)
ζ

∂sx ◦ δξ


Ωα,p+1;11,0.

The sum of these expressions taken over i+j = ℓ−1 with the coefficient
(~/2)(rℓ)

µν(−1)i+1 is a part of the final formula for the operator of
deformation of the bracket.

5.5. The coefficient of ~0.

5.5.1. Observe that

−∂x
∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0

∂Ωα,p;β,0

∂w
(n)
γ

(66)

=−
∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0∂γ,n∂xΩα,p;β,0

+
∑

γ,n

Ω11,0;ν,j∂
n+1
x Ωµ,i;γ,0

∂Ωα,p;β,0

∂w
(n)
γ

.
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The second summand in the right-hand side of this formula is equal to

Ω11,0;ν,jΩµ,i;α,p;β,0 = Ω11,0;ν,j

∑

γ,n

∂Ωµ,i;β,0

∂w
(n)
γ

∂n+1
x Ωα,p;γ,0

(67)

= Ω11,0;ν,j

∑

γ,n

∂Ωµ,i;β,0

∂w
(n)
γ

∂nx
∑

s≥1,ξ

Aγ,ξ
s ∂sxδξΩα,p+1;11,0,

which is a contribution to the final formula for the operator of deforma-
tion. The first summand can be rewritten in the following way:

−
∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0∂γ,n

∑

s≥1,ξ

Aβ,ξ
s ∂sxδξΩα,p+1;11,0

(68)

= −
∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0

∑

s≥1,ξ

∂Aβ,ξ
s

∂w
(n)
γ

∂sxδξΩα,p+1;11,0

−
∑

s≥1,ξ

Aβ,ξ
s ∂sx

∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0∂γ,nδξΩα,p+1;11,0

−
∑

s≥1,ξ

Aβ,ξ
s

∑

f+e=s−1

∂fx

(
Ω11,0;ν,j∂

e
x

∞∑

γ,n

∂n+1
x Ωµ,i;γ,0∂γ,nδξΩα,p+1;11,0

)
.

Here the first summand is a contribution to the final formula. The sec-
ond summand will appear once again with the opposite sign; see the
comment after equation (75). The third summand can be rewritten us-
ing the following computation:

∞∑

n=0

∂n+1
x Ωµ,i;γ,0∂γ,nδξΩα,p+1;11,0

(69)

=

∞∑

n=0

∂n+1
x Ωµ,i;γ,0∂γ,nδξΩα,p+1;11,0 − δξ

∞∑

n=0

∂n+1
x Ωµ,i;γ,0∂γ,nΩα,p+1;11,0

= −
∞∑

n=0

Tξ,n∂xΩµ,i;γ,0(−∂x)nδγΩα,p+1;11,0,

Here we used Lemma 17 for the last equality, and the first equality
comes from the observation
(70)

δξ

∞∑

n=0

∂n+1
x Ωµ,i;γ,0∂γ,nΩα,p+1;11,0 = δξΩµ,i;α,p+1;11,0 = δξ∂xΩµ,i;α,p+1 = 0.
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So, the third summand of the right-hand side of Equation (68) is equal
to
(71)
∑

s≥1,ξ

Aβ,ξ
s

∑

f+e=s−1

∂fx

(
Ω11,0;ν,j∂

e
x

∑

γ,n

Tξ,n∂xΩµ,i;γ,0(−∂x)nδγΩα,p+1;11,0

)
,

which is again a part of final formula.

5.5.2. We have the following:

∂x (Ωβ,0;ν,jΩµ,i;α,p) = ∂xΩβ,0;ν,jΩµ,i;α,p(72)

+ Ωβ,0;ν,j

∑

γ,n

∂Ωµ,i;11,0

∂w
(n)
γ

∂nx
∑

s≥1,ξ

Aγ,ξ
s ∂sxδξΩα,p+1;11,0.

The second summand is a part of the final formula for the operator of
deformation. The first summand is considered in section 5.5.4.

5.5.3. We observe that

δξ

(
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0

∂Ωα,p+1;11,0

∂w
(n)
γ

)(73)

=
∑

k,ℓ≥0

(−1)k+l

(
k + l

k

)
Tξ,k+l∂

b
xΩ11,0;ν,j∂

a+k
x Ωµ,i;γ,0∂

ℓ
x∂γ,nΩα,p+1;11,0

+
∑

k,ℓ≥0

(−1)k+l

(
k + l

k

)
∂b+k
x Ω11,0;ν,jTξ,k+l∂

a
xΩµ,i;γ,0∂

ℓ
x∂γ,nΩα,p+1;11,0

+
∑

k,ℓ≥0

(−1)k+l

(
k + l

k

)
∂b+k
x Ω11,0;ν,j∂

a+ℓ
x Ωµ,i;γ,0Tξ,k+l∂γ,nΩα,p+1;11,0.

Meanwhile,

δξ (Ω11,0;ν,jΩµ,i;α,p+1) = δξΩ11,0;ν,jΩµ,i;α,p+1(74)

+
∑

n≥0

(−1)n+1Tξ,n+1Ω11,0;ν,j∂
n
x

∑

γ,k

∂k+1
x Ωµ,i;γ,0∂γ,kΩα,p+1;11,0

+
∑

n≥0

(−1)n∂nxΩ11,0;ν,jTξ,n+1

∑

γ,k

∂k+1
x Ωµ,i;γ,0∂γ,kΩα,p+1;11,0
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(here we used that Tξ,n+1∂x = Tξ,n). Therefore, by a direct computation
of the combinatorial coefficients, we see that

δξ

[∑

γ,n

∑

a+b=n

(
n+ 1

a

)
∂bxΩ11,0;ν,j∂

a
xΩµ,i;γ,0

∂Ωα,p+1;11,0

∂w
(n)
γ

− Ω11,0;ν,jΩµ,i;α,p+1

]
(75)

=
∑

γ

∑

0≤u≤v

(
v

u

)
Tξ,v+1Ω11,0;ν,j(−∂x)v−uΩµ,i;γ,0(−∂x)u+1δγΩα,p+1;11,0

−
∑

γ

∑

0≤u≤v

(
v + 1

u

)
(−∂x)v−uΩ11,0;ν,jTξ,v+1Ωµ,i;γ,0(−∂x)u+1δγΩα,p+1;11,0

+
∑

γ

∞∑

u,v,n=0

(−1)n
(
u+ v + 1

v

)
(−∂x)uΩ11,0;ν,j×

× (−∂x)vΩµ,i;γ,0Tξ,u+v−n∂γ,nΩα,p+1;11,0

+ δξΩ11,0;ν,j


∑

γ

∑

0≤u≤n

∂n−u
x Ωµ,i;γ,0(−∂x)u∂γ,nΩα,p+1;11,0 − Ωµ,i;α,p+1


 .

We should apply the operator
∑∞

s=1A
βξ
s ∂sx to this expression. The first

and the second summand are parts of the final formula. The third sum-
mand will turn into the second summand in the right-hand side of equa-
tion (68) with the opposite sign, so they will cancel each other. The
fourth summand will be equal to the following:

∞∑

s=1

Aβξ
s ∂

s
x

(
δξΩ11,0;ν,j

(∑

γ

∑

0≤u≤n

∂n−u
x Ωµ,i;γ,0(−∂x)u∂γ,nΩα,p+1;11,0

(76)

− Ωµ,i;α,p+1

))

=
∞∑

s=1

Aβξ
s ∂

s
xδξΩ11,0;ν,j

(∑

γ

∑

0≤u≤n

∂n−u
x Ωµ,i;γ,0(−∂x)u∂γ,nΩα,p+1;11,0

− Ωµ,i;α,p+1

)

+

∞∑

s=1

Aβξ
s

∑

γ

∑

e+f=s−1

(
s

e

)
∂exδξΩ11,0;ν,j∂

f
x (Ωµ,i;γ,0∂xδγΩα,p+1;11,0) .

Here the second summand is again a contribution to the final formula,
and the first summand is considered in the next section together with
the first summand in the right-hand side of equation (72).
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5.5.4. In this section we collect all expressions that are not yet con-
verted into the contributions to the final formula. We have

∑

i+j=l−1

(−1)i+1∂xΩβ,0;ν,j−1×

(77)

×


∑

γ

∑

0≤u≤n

∂n−u
x Ωµ,i;γ,0(−∂x)u∂γ,nΩα,p+1;11,0 −Ωµ,i;α,p+1




+
∑

i+j=l−1

(−1)i+1∂xΩβ,0;ν,jΩµ,i;α,p

=
∑

i+j=l−1

(−1)i+1∂xΩβ,0;ν,j−1Xµ,i,

where Xµ,i is equal to

−Ωµ,i+1;α,p − Ωµ,i;α,p+1 +
∑

γ

∑

0≤u≤n

∂n−u
x Ωµ,i;γ,0(−∂x)u∂γ,nΩα,p+1;11,0

(78)

We observe that

Ωµ,i+1;α,p +Ωµ,i;α,p+1(79)

= ∂−1
x

∑

γ,n
ξ,m

∂ξ,mΩµ,i+1;11,0∂
m
x

∞∑

s=1

Aξγ
s ∂

s
x(−∂x)n∂γ,nΩα,p+1;11,0

+ ∂−1
x

∑

γ,n
ξ,m

∂nx

(
∞∑

s=1

Aγξ
s ∂

s
x(−∂x)m∂ξ,mΩµ,i+1;11,0

)
∂γ,nΩα,p+1;11,0

Here ∂−1
x is a formal left inverse to ∂x, whose main property is that for

any functions A and B,

(80) ∂−1
x (∂xA ·B) = ∂−1

x (A · (−∂x)B) +A ·B.

Since
∑∞

s=1A
ξγ
s ∂sx is an operator that defines a Poisson structure on the

space of local functionals,

(81)
∞∑

s=1

Aξγ
s ∂

s
x = −

∞∑

s=1

(−∂x)s ◦ Aγξ
s .
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Using this two observations, we can rewrite equation (79) in the follow-
ing way:

Ωµ,i+1;α,p +Ωµ,i;α,p+1

(82)

=
∑

γ,n
ξ,m

(
m−1∑

u=0

(−∂x)u∂ξ,mΩµ,i+1;11,0∂
m−1−u
x

∞∑

s=1

Aξγ
s ∂

s
x(−∂x)n∂γ,nΩα,p+1;11,0

+
∞∑

1≤e≤s

(−∂x)e−1
(
Aξγ

s (−∂x)m∂ξ,mΩµ,i+1;11,0

)
∂s−e
x (−∂x)n∂γ,nΩα,p+1;11,0

+

n−1∑

v=0

∂n−1−v
x

(
∞∑

s=1

Aγξ
s ∂

s
x(−∂x)m∂ξ,mΩµ,i+1;11,0

)
(−∂x)v∂γ,nΩα,p+1;11,0

)
.

Therefore,

Xµ,i =
∑

γ


−

∑

ξ,m

m−1∑

u=0

(−∂x)u∂ξ,mΩµ,i+1;11,0∂
m−1−u
x ◦

∞∑

s=1

Aξγ
s ∂

s
x(83)

−
∑

ξ

∞∑

2≤f≤s

(−∂x)s−f
(
Aξγ

s δξΩµ,i+1;11,0

)
∂f−1
x


 δγΩα,p+1;11,0,

and
∑

i+j=l−1(−1)i+1∂xΩβ,0;ν,j−1Xµ,i is a contribution to the final for-
mula.

This computation completes the proof of Theorem 15.

5.6. A formula for the operator of s-deformation. In this section
we prove a formula for the s-deformation.

Theorem 18. We have the following:

∞∑

s=1

(
∞∑

ℓ=1

ŝℓzℓ[w].A
βξ
s

)
∂sx = −

∞∑

s=1

(∑

γ

(s1)γ,11
∂Aβξ

s

∂wγ

)
∂sx.(84)
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Proof. This is a straightforward computation. We have the following:

∂x

∞∑

ℓ=1

ŝℓzℓ[w].Ωα,p;β,0 −
∑

ξ

∞∑

s=1

Aβ,ξ
s ∂sxδξ

∞∑

ℓ=1

ŝℓzℓ[w].Ωα,p+1;11,0

(85)

=
∑

1≤ℓ≤p

(sℓ)
µ
α∂xΩµ,p−ℓ;β,0 − ∂x

∑

γ

∂Ωα,p;β,0

∂wγ
(s1)γ,11

−
∑

ξ

∞∑

s=1

Aβ,ξ
s ∂sxδξ


 ∑

1≤ℓ≤p+1

(sℓ)
µ
αΩµ,p+1−ℓ;11,0

−
∑

γ

∂Ωα,p+1;11,0

∂wγ
(s1)γ,11

)

=
∑

γ

(s1)γ,11

(
− ∂γ,0 ◦

∑

ξ

∞∑

s=1

Aβ,ξ
s ∂sx ◦ δξ

+
∑

ξ

∞∑

s=1

Aβ,ξ
s ∂sx ◦ δξ ◦ ∂γ,0

)
Ωα,p+1;11,0

= −
∑

ξ

∞∑

s=1

(∑

γ

(s1)γ,11
∂Aβξ

s

∂wγ
∂sxδξ

)
Ωα,p+1;11,0.

Here we used the fact that
∑

ξ

∑∞
s=1A

β,ξ
s ∂sxδξΩµ,p+1−ℓ;11,0 is equal to

∂xΩµ,p−ℓ;β,0 for 1 ≤ ℓ ≤ p and to 0 for ℓ = p+ 1. q.e.d.

Remark 19. In [2] we have given a more conceptual proof of Theo-
rems 9 and 18 by means of a deformation formula for the weak quasi-
Miura transformations appearing in the definition (36) of the Poisson
formula.

6. Uniqueness of the bracket

Consider the infinitesimal deformations of the Poisson bracket (or,

rather, of the operator
∑∞

s=1A
β,ξ
s ∂sx) obtained in the previous section.

It gives us a system of vector fields on the space of all operators of that
type. Consider a flow line of one of these vector fields that starts at
a point corresponding to the weak quasi-Miura transformation wγ =

vγ +
∑∞

g=1 ~
g∂2Fg/∂tγ0∂t11,0 of the operator δβ,ξ∂x. In principle, though

the whole flow line of operators satisfies the desired property

∑

ξ

∞∑

s=1

Aβ,ξ
s ∂sxδξΩα,p+1;11,0 = ∂xΩα,p;β,0, for all α, β, and p,(86)
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we still have to prove that they do coincide with the corresponding weak
quasi-Miura transformations of δβ,ξ∂x at all points of the flow line.

First, let us apply the inverse of the weak quasi-Miura transformation.

Lemma 20. The inverse weak quasi-Miura transformation, vγ =

wγ −∑∞
g=1 ~

g∂2Fg/∂tγ,0∂t11,0, maps an operator
∑∞

s=1A
β,ξ
s ∂sx into one

that also has no constant term—that is, into an operator
∑∞

s=0B
β,ξ
s ∂sx

where Bβ,ξ
0 = 0.

Proof. Indeed,

∞∑

s=0

Bβ,ξ
s ∂sx :=

∑

µ,e
ν,f

∂vβ

∂w
(e)
µ

∂ex ◦
∞∑

s=1

Aµ,ν
s ∂sx(−∂x)f ◦ ∂vξ

∂w
(f)
ν

.(87)

Therefore, Bβ,ξ
0 is equal to

∑

µ,e
ν

∂vβ

∂w
(e)
µ

∂ex

∞∑

s=1

Aµ,ν
s ∂sx

δvξ
δwν

.(88)

Since wβ−vβ is equal to ∂xGβ , where Gβ =
∑∞

g=1 ~
g∂Fg/∂tβ,0 is a series

in ~ whose coefficients depend only on a finite number of derivatives
(both in coordinates v and w), δvξ/δwν = δξ,ν . Since ∂

s
x(δξ,ν) is equal

to 0 for any s ≥ 1, we conclude that Bβ,ξ
0 = 0. q.e.d.

Now we see that the following uniqueness in genus 0 is sufficient.

Proposition 21. Any operator of the form
∑∞

s=1B
β,ξ
s ∂sx such that

∂xΩ
[0]
α,p;β,0 =

∑

ξ

∞∑

s=1

Bβ,ξ
s ∂sx

δΩ
[0]
α,p+1;11,0

δvξ
(89)

is equal to δβ,ξ∂x.

Proof. We denote by
∑∞

s=1C
β,ξ
s ∂sx the difference

(90)

(
∞∑

s=1

Bβ,ξ
s ∂sx − δβ,ξ∂x

)
.

Using the topological recursion relation in genus 0, we observe that

δΩ
[0]
α,p+1;11,0

δvξ
=
∂Ω

[0]
α,p+1;11,0

∂vξ
= Ω

[0]
α,p;ξ,0(91)
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Therefore,

0 =
∑

ξ

∞∑

s=1

Cβ,ξ
s ∂sx

δΩ
[0]
α,p+1;11,0

δvξ
=
∑

ξ

∞∑

s=1

Cβ,ξ
s ∂s−1

x ∂xΩ
[0]
α,p;ξ,0(92)

=
∑

ξ

∞∑

s=1

Cβ,ξ
s ∂s−1

x

∂vξ,0
∂tα,p

=
∑

ξ

∞∑

s=1

Cβ,ξ
s

∂vξ,s−1

∂tα,p
.

Since the change of variables tα,p ↔ v
(s)
ξ is non-degenerate, we conclude

that all coefficients Cβ,ξ
s are equal to zero. q.e.d.

7. Polynomiality in the orbit

In this section, we explain the polynomiality of Ωα,p;β,q and the co-

efficient of the operator Aαβ
s ∂sx (that determines the Poisson bracket of

the full hierarchy) considered as functions of w(1), w(2), . . . .

Theorem 22. For any tame partition function in the Givental orbit
of Z⊗s

KdV , we have the following expansion:

(93) Ωα,p;β,q =

∞∑

g=0

~
gΩ

[g]
α,p;β,q(w,w

(1), w(2), . . . ),

where Ω
[g]
α,p;β,q is a homogeneous polynomial in w(1), . . . , w(2g) of degree

2g (here degw(i) = i).

We call below this kind of homogeneous polynomiality, that is, ho-
mogeneous polynomiality in ~-expansion, the ~-homogeneity.

Proof. We have this property at one point in the orbit—for s copies
of the KdV hierarchy. See Example 8, above, and a full description of
the KdV hierarchy in [6].

Let us now look at the deformation formula, given by equations (42)
and (46). It is easy to see that the right-hand sides of both formulas are
~-homogeneous polynomials if all Ωα,p;β,q are. Indeed, the product of two
~-homogeneous polynomials is again an ~-homogeneous polynomial; the

derivatives ∂/∂w
(k)
ξ decrease the degree of homogeneity by k, and the

derivatives ∂x increase the degree by 1. The last summand in the right
hand side of equation (42) is multiplied by ~, and, simulteneously, its
homodeneous degree is shifted by 2.

In order to apply an element of the Givental group—that is, in order
to integrate the Lie algebra action—we are to solve an ODE, whose
right-hand side is given by equations (42) and (46). Then a standard
argument implies that if a solution of this ODE is an ~-homogeneous
polynomial at one point, it remains to be an ~-homogeneous polynomial
at any other point. q.e.d.
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Theorem 23. For any tame partition function in the Givental orbit
of Z⊗s

KdV , the operator that determines the Poisson bracket of the full
hierarchy,

(94)
∞∑

s=1

Aαβ
s ∂sx :=

∑

µ,e
ν,f

∂wα

∂v
(e)
µ

∂ex ◦ ∂x ◦ (−∂x)f ◦ ∂wβ

∂v
(f)
ν

,

is ~-homogeneous in w(1), w(2), . . . . More precisely, Aαβ
s =

∑∞
g=0 ~

gAαβ
g,s,

where Aαβ
g,s is a homogeneous polynomial in w(1), . . . , w(2g) of degree 2g−

s.

Proof. The proof is the same as above. Proposition 21 implies that
the deformations formulas given in Theorems 15 and 18 are indeed the
deformation formulas for the weak quasi-Miura image of the operator
∂x under the change of variables vα 7→ wα. We know that for KdV,
this quasi-Miura image of ∂x is again ∂x; that is, it is indeed an ~-
homogenenous polynomial in w(1), w(2), . . . with the right degrees of ho-
mogeneity. Also, we already know the ~-homogeneity for Ωα,p;β,q. There-
fore, analyzing the deformation formulas in Theorems 15 and 18, we see
that the right-hand sides of these formulas are again ~-homogeneous
polynomials of the right degree. Then the same ODE-solution argu-
ment as above implies that the bracket operator is ~-homogeneous for
any point in the Givental orbit of Z⊗s

KdV . q.e.d.

The last thing that we would like to mention is that Dubrovin and
Zhang have proved that in the case of a conformal Frobenius struc-
ture, the topological tau-function of their full hierarchy always lies in
the Givental orbit of Z⊗s

KdV . Therefore, in that case we always have a
polynomial Poisson bracket for their hierarchy.
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